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Summary 

In this thesis I use two existing models to construct a model that can evaluate the exploration 

phase and the production phase of a real investment project simultaneously. I assume that the 

value of the production phase is the value of the outcome of an exploration project and can 

therefore make a model that combines the two phases. I assume that the exploration phase 

has on-going investment costs until completion and that the time to completion is uncertain. 

I allow the exploration project to shift between an active and a passive state and the 

production can be shut down and restarted whenever this is optimal. The model is applicable 

for R&D projects and natural resource exploration projects such as mine or oil exploration 

projects.  
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1. Introduction 

The purpose of this thesis is to construct a model that can be used to evaluate the exploration 

phase and the production phase of an investment project simultaneously to find out if it is 

profitable to invest in the project. The model should give closed form solutions to the value 

of the investment project. The outcome of this thesis can be useful for investors in the 

starting phase of a real investment project, for example an R&D project or a natural resource 

exploration project such mine or oil exploration.  

Problem:  

Can real option theory be used to make a model that simultaneously evaluates the 

exploration phase and production phase of an investment project? 

I will construct a model that uses the value of the production phase as the value of the 

outcome of an exploration project. The model computes the present value of future cash 

flows that can be generated from selling the product/commodity/mineral that is discovered. 

The output price of the production phase is treated as a stochastic variable.  I assume that the 

exploration phase has on-going investment costs until completion and that the time to 

completion is uncertain. I will consider the possibility of shutting down the exploration 

project at any time if the future prospects are not good enough, and restarting the project if 

this is profitable. I will also consider the possibility of closing down and restarting the 

production/extraction of the product/commodity/mineral after what is optimal for the value 

of the investment project. The model should give closed form solutions to the value of the 

investment project and to the optimal switching points between an active and a passive 

investment project and between a closed and an open production. 

The assumptions make my model highly applicable for R&D projects and mine or oil 

exploration project. These industries can experience great price swings, and it is therefore 

essential that the output price is treated as stochastic. Such projects also require high on-

going investment costs until completion. The time to completion is uncertain, and hence, the 

total on-going investment costs are uncertain. The ability to shut down a money losing 

project and restart it again when this is profitable is important.  

As a basis for the exploration phase in my model I will use a model developed by Miltersen 

and Schwartz in their article “Real Options with Uncertain Maturity and Competition”. 
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Miltersen and Schwartz analyze two general types of models; monopoly models where the 

owner of the investment project has exclusive rights to outcome, and duopoly models where 

there are two (or more) owners with similar investment projects who compete to get the 

value of the outcome. They analyze the models with different options; model with 

abandonment option, model with switching option and model with both abandonment and 

switching options. To limit the extent of this thesis I choose only to consider the monopoly 

model with switching option.  

Schwartz has also, together with Brennan, developed a model for evaluating natural resource 

investments. They treat output prices as stochastic and allow the project to be closed down 

and reopened when output prices fall/rise far enough. The model is from 1985 but it is still 

applicable and I will use this as a basis for the production phase in my model. I think it 

might give a more correct model when I combine two models that are developed (to a certain 

degree) by the same person. The models may have more similar characteristics and can more 

easily be compared and combined.  

I will in the next chapter present introductory theory about options and real options. Further I 

will present Miltersen and Schwartz’s model as the theory about the valuation of the 

exploration phase and Brennan and Schwartz’s model as the theory about the valuation of 

the exploration phase. In chapter 3 I will combine the two models to construct a model that 

evaluates the two phases simultaneously. A numerical example is created in chapter 4 to 

illustrate the model and to see how the model behaves when central parameter values are 

changed. I show the complex deriving of new equations in the appendixes.  
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2. Theory  

In this part I will give a brief introduction to option theory and real options. After that I will 

present Miltersen and Schwartz’s model for valuation of real option with uncertain time to 

completion, and lastly I will present Brennan and Schwartz’s model for evaluating a natural 

resource investment. 

2.1 An Introduction to Options and Real Options  

An option is a derivative, which means a financial instrument that has a value determined by 

the price of something else (McDonald 2006). Derivatives are used for in for example risk 

management, as insurance to reduce the risk and in speculation to secure an investment. 

Call Options and Put Options 

An option gives the holder the right to do something. The holder does not have to exercise 

this right (Hull 1997). A call option gives the holder the right but not the obligation to buy 

the underlying asset by a certain date for a certain price. A put option gives the holder the 

right but not the obligation to sell the underlying asset by a certain date for a certain price. 

This certain price is called the strike price or exercise price, and the date is the expiration 

date or maturity. They are both prearranged and written in the contract. If the option is not 

exercised the holder of the option would get zero.  

I will consider two option styles: American option and European option. The American 

option can be exercised at any time up to maturity, while the European option can only be 

exercised at maturity. European options are generally easier to analyze than American 

options. Even though most of the options that are traded on exchanges are American options 

(Hull 1997) I will only show the payoffs of a European option. 

When you take a long position in the option it is the same as buying the call or the put 

option. You enter a call option contract to get the right to buy the underlying asset at 

maturity for the exercise price. If the exercise price 𝑋 is lower than the spot price at maturity 

𝜏, 𝑆𝜏  , you will exercise the call option. The option is then in-the-money because it gives a 

positive payoff. The opposite will be if the option was out-of-the-money. This is the case 

when it is not profitable to exercise the option, when the payoff is negative. The option 
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holder will not exercise the option and get a payoff of zero. If the option is at-the-money the 

exercise price is equal to the spot price. The payoff from a long position in a European call 

option is 

max 𝑆𝜏 − 𝑋 , 0  

The same principles apply for a put option; you enter a put option contract to get the right to 

sell the underlying asset at maturity for the exercise price. If the exercise price is greater than 

the spot price at maturity the option is in-the-money and you will exercise the put option. 

The payoff from a long position in a European put option will be 

max 𝑋 − 𝑆𝜏  , 0  

If you expect the price of the underlying asset to become higher you should buy a call 

option, and if you expect the price to be lower you should buy a put option. You can also sell 

or write the option. You then sell something you don’t have, and this is called taking a short 

position in the option. You will sell a call option if you expect the price of the underlying 

asset to fall. At maturity the buyer of the call option has the right to exercise the option. If 

the spot price at maturity is greater than the exercise price the buyer of the contract would 

exercise the option. The writer of the call option would then lose the difference between the 

spot price at maturity and the exercise price. The payoff from a short position in a European 

call option is the opposite of the payoff from a long position and will be 

−max 𝑆𝜏 − 𝑋 , 0  

You will sell a put option if you expect the price of the underlying asset to rise. If the spot 

price at maturity is lower than the exercise price the buyer of the contract would exercise the 

option and the writer of the put option would lose the difference between the exercise price 

and the spot price. The payoff from a short position in a European put option is the opposite 

of the payoff from a long position and will be 

−max 𝑋 − 𝑆𝜏  , 0  

Short selling is more risky than taking a long position because you have to pay the difference 

between the exercise price and the spot price if the option holder exercises the option. There 

can also be an option premium added to the scenarios above. The option buyer pay a 

premium at the contract date to enter the contract, and this premium is deducted from the 
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payoff from the long positions (when you are a buyer) and added to the payoff of the short 

position (when you are a seller).  

Real options 

Real options can be defined as the application of derivatives theory to the operation and 

valuation of real investment projects (McDonald 2006). Any real investment can be viewed 

as a call option with the investment costs equal to the strike price and the present value of 

future cash flows equal to the price of the underlying asset. The present value of future cash 

flows is then compared to the investment costs, and if the present value is greater it is 

profitable to exercise the option, or in real option terms: it is profitable to invest in the 

project. The payoff from the investment project is: 

max 𝑉𝜏 − 𝐾 , 0  

𝑉𝜏  is the present value of future cash flows at maturity 𝜏 and 𝐾 is the investment costs. 

In real investment decisions, as well as with financial options, you have to make a decision 

about whether and when to invest in the project and consider the ability to shut down, restart, 

and abandon projects. The decision about whether to invest has, as I said before, the 

properties as a standard call option. If the net present value is negative, it might be profitable 

to wait to invest. Waiting to invest can make the investment project profitable if the net 

present value was originally negative or more profitable if the net present value was already 

positive. The ability to temporarily shut down or abandon a money-losing project is 

important to investors because it is an insurance against greater losses. This can be viewed as 

having the investment project plus a put option; if the value drops under a certain threshold 

level it is profitable to shut down or abandon the investment project. There are often costs 

attached to shutting down or abandoning the project. When there are such costs the threshold 

level for shutting down or abandoning is lower and the insurance provided by the option is 

therefore less. Having the option to restart the project once it is shut down makes it easier to 

shut down because you can then keep the project in a “passive” state. The project will be 

restarted when it has reached a threshold level where it is profitable to pay the restarting 

costs. The option to restart can be viewed as a call option. When you decide to shut down a 

project you exercise the put option and at the same time you acquire a call option to restart 

(McDonald 2006). This increases the value of the investment project and makes investors 

more willing to invest.  
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Real options can be used in the valuation of research and development (R&D) projects 

(McDonald 2006). These projects involve paying R&D costs today to receive future cash 

flows. If the R&D is successful a project can be undertaken if the net present value is 

positive. This is a call option; exercise the option if the present value of the future cash flows 

exceeds the final investment necessary. The R&D costs leading up to the completion date 

can be viewed as an option premium. The uncertainty of the results of an R&D project 

requires that there is a possibility to temporarily shut down, restart or abandon the project.  

Real options can also be used as a valuation tool and to make investment decisions in natural 

resources investment projects. The extraction of a natural resource has great resemblance to 

the exercise of a financial option; by paying the extraction costs you can receive the present 

value of the future cash flows the extracted resource will generate. It is important to have the 

option to temporarily shut down, restart or abandon the extraction if the investment project 

becomes unprofitable.  

2.2 Valuation of the Exploration Phase 

In the article “Real Options with Uncertain Maturity and Competition” Miltersen and 

Schwartz (2006) develop a new approach to dealing with real option problems with 

uncertain maturity. The approach is highly applicable to analyze R&D investments and mine 

or oil exploration projects. There was some literature on this subject before
1
, but they 

involve complex numerical solution techniques, like elliptical partial differential equations 

or the Monte Carlo simulation. Miltersen and Schwartz simplify the framework to get closed 

form solutions to the values of the investment project without losing the important elements 

for the valuation.  

Their main simplification is that completion of the project is governed by an independent 

exponential random variable, which means that the conditional probability of completion per 

unit of time is constant. This simplification implies that the value of the project will be a 

solution to an ordinary differential equation, instead of a partial differential equation.  

                                                 

1 
Articles on this subject include Pindyck (1993), Schwartz and Moon (2000), Schwartz (2004), Miltersen and 

Schwartz (2004), and Hsu and Schwartz (2006). Reference to articles is taken from Miltersen and Schwartz 

(2006).
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I will present Miltersen and Schwartz’s monopoly model with a switching option. The owner 

can at any time switch between an active and a passive investment project. This is equivalent 

to an American option; it can be exercised at any time up till maturity. At completion the 

owner has the right to the value of the outcome of the investment project. This is equivalent 

to a European option; it can only be exercised at maturity. It is assumed that the investment 

project will be completed at a random date 𝜏. Up until this date the owner has to pay the on-

going investment costs at the rate of 𝑘 per unit of time. Since the time to maturity is 

uncertain the total on-going investment costs is also uncertain. At maturity the owner of the 

investment project has to compare the final investment cost 𝐾 to the present value of future 

cash flows to decide whether it is profitable to make the final investment necessary to make 

use of the resource. This present value is referred to as the value of the outcome 𝑉. The value 

of the investment project at completion date would be 

max  𝑉 − 𝐾, 0  

It is assumed that the value of the outcome evolves stochastically through time and that it 

can be observed or estimated by the owner of the investment project at any point in date 𝑡. 

This estimated value is denoted 𝑉𝑡 . The dynamics of 𝑉 is given by the geometric Brownian 

motion
2
 

𝑑𝑉𝑡 = 𝑉𝑡𝜇 𝑑𝑡 + 𝑉𝑡𝜍 𝑑𝑊𝑡   

where 𝜍 is the instantaneous volatility of the value process, 𝜇 is the instantaneous drift and 

𝑊 is the increment of a Brownian motion. 

It is further assumed that the random time to completion, 𝜏, is exponentially distributed with 

intensity 𝜆 and that the time to completion is independent of the value process. The expected 

time to completion is therefore 𝑇 = 1
𝜆  . 𝜆 is also interpreted as probability of completion 

per unit of time. The riskless rate 𝑟 is constant and strictly greater than 𝜇. This is to avoid the 

possibility of infinite values of the investment project. The expected time to completion 𝑇 

                                                 

2
 A Brownian motion (also called a Wiener Process) is a continuous time stochastic process with three 

important properties; (i) it is a Markov Process which implies that only current value is useful for forecasting 

the future path of the process, (ii) it has independent increments, and (iii) changes in the process over any finite 

time interval are normally distributed (Dixit and Pindyck 1994). The increment of the Brownian motion 

represents the randomness of the change in the value of the outcome. For a geometric Brownian motion the 

percentage change in the value of the outcome is normally distributed. 
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does not depend on calendar time. It has the same distribution as , and it is therefore no 

need to distinguish between these two terms. The value of the investment project at any date 

𝑡 depends only on 𝑉𝑡  and not at date 𝑡 itself. This simplifies the analysis and makes it 

possible to obtain closed form solutions. 

When you have an investment project with a switching option the owner has the option to 

temporarily suspend investing in the project by switching to a passive state. He can at any 

time switch back to an active state. The active state incurs on-going investment costs and has 

a positive probability of completion, while the passive state has no on-going investment cost 

and no chance of completion; 𝑘 = 0 and 𝜆 = 0. Miltersen and Schwartz assume that it is 

costless to switch between the two states. There is a threshold level 𝑆𝑁 at where it is optimal 

to switch between the two states. If the value of the outcome is above this threshold level it 

is optimal to keep the investment project active, and if the value is below this level it is 

optimal to switch to the passive state. The optimal switching point will be above the final 

investment costs, K, because by keeping the investment passive when the value is less than K 

the owner can avoid completing the project when it is out of the money. The investment 

project is therefore in the money whenever it is active. It will never be optimal to abandon 

the project because there are no costs linked to a passive investment project. 

𝑁(𝑉) is the value of the investment project and must satisfy the following set of ordinary 

differential equations 

1
2 𝜍2𝑉2𝑁′′  𝑉 + 𝜇𝑉𝑁′ 𝑉 − 𝑟𝑁 𝑉 = 0            when  𝑉 < 𝑆𝑁    

1
2 𝜍2𝑉2𝑁′′  𝑉 + 𝜇𝑉𝑁′ 𝑉 −  𝑟 + 𝜆 𝑁 𝑉 − 𝑘 + 𝜆 𝑉 − 𝐾 = 0        when 𝑆𝑁 < 𝑉 

The first equation describes the value of the investment project when the value of the 

outcome is less than the optimal switching point; when the project is passive. Here 𝑘 and 𝜆 

are equal to zero. The value of the investment project is zero in the passive state. The second 

equation describes the value when the investment project is active. It reflects that with 

intensity 𝜆 the value of the investment project will jump to the completion value  𝑉 − 𝐾 . 

This corresponds to a change in value of 𝑉 − 𝐾 − 𝑁(𝑉). In addition the owner has to pay the 

on-going investment costs 𝑘 per unit of time to keep the investment project active. 

Remember that 𝜆 = 1
𝑇  . The general solutions to the ordinary differential equations are 
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𝑁1 𝑉 =  𝑛11𝑉
𝑥1 + 𝑛12𝑉

𝑥2                  when 𝑉 ≤ 𝑆𝑁 

𝑁2 𝑉 =  𝑛21𝑉
𝑦1 + 𝑛22𝑉

𝑦2 +
𝑉

1+ 𝑟−𝜇 𝑇
–  
𝑘𝑇+𝐾

1+𝑟𝑇
              when 𝑆𝑁 ≤ 𝑉 

The powers are given by 

𝑥1 =
 

1
2𝜍

2 − 𝜇 +  𝜇 −
1
2𝜍

2 
2

+ 2𝑟𝜍2

𝜍2
> 1 

𝑥2 =
 

1
2𝜍

2 − 𝜇 −    𝜇 −
1
2𝜍

2 
2

+ 2𝑟𝜍2

𝜍2
< 0 

𝑦1 =
 

1
2𝜍

2 − 𝜇 +    𝜇 −
1
2𝜍

2 
2

+ 2 𝑟 + 𝜆 𝜍2

𝜍2
> 1 

𝑦2 =
 

1
2
𝜍2 − 𝜇 −    𝜇 −

1
2
𝜍2 

2

+ 2 𝑟 + 𝜆 𝜍2

𝜍2
< 0 

Since 𝑥2 < 0 the value of the investment project 𝑁 𝑉  is increasing when the value of the 

outcome 𝑉 converge to zero. 𝑁 𝑉  must be zero when this happens and the 𝑉𝑥2  term 

therefore  has to be eliminated. This is done by giving 𝑛12  the value zero. 𝑁 𝑉  can also 

never exceed the value of the outcome, and since  𝑦1 > 1 the 𝑉𝑦1  term has to be eliminated 

as well. This gives the simplified solutions 

𝑁1 𝑉 =  𝑛11𝑉
𝑥1                              when 𝑉 ≤ 𝑆𝑁 

𝑁2 𝑉 =  𝑛22𝑉
𝑦2 +

𝑉

1+ 𝑟−𝜇 𝑇
–  
𝑘𝑇+𝐾

1+𝑟𝑇
               when 𝑆𝑁 ≤ 𝑉 

The value of the investment project has the following boundary conditions, which reflect that 

the value function should be continuous and differentiable at the point where the two 

ordinary differential equations meet at the switching point 

𝑁1(𝑆𝑁) = 𝑁2(𝑆𝑁)  

𝑁1′ 𝑆𝑁 = 𝑁2′ 𝑆𝑁  
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The optimal switching point 𝑆𝑁 is found by weighing the instantaneous cost and benefits 

from switching between an active and a passive investment project. The increased 

instantaneous benefit from switching from a passive to an active state is the increased 

intensity of completion which has a value flow 𝜆 𝑉 − 𝐾 per unit of time. The increased 

instantaneous costs of switching are the increased intensity of losing the investment project 

which has a value flow 𝜆𝑁2 𝑉  per unit of time. In addition there are the increased on-going 

investment costs 𝑘 per unit of time. This gives the following equilibrium equation for the 

optimal switching point 

 𝑆𝑁 − 𝐾 =  𝑁2 𝑆𝑁 + 𝑘 

It is also correct to use 𝑁1(𝑆𝑁) instead of 𝑁2 𝑆𝑁  because of the first boundary condition. 

The unknowns 𝑛11and 𝑛22are found by solving the boundary conditions 

𝑛11 =
𝑦2 1 +  𝑟 − 𝜇 𝑇  𝑘𝑇 + 𝐾 +  1− 𝑦2 (1 + 𝑟𝑇)𝑆𝑁

 𝑥1 − 𝑦2  1 +  𝑟 − 𝜇 𝑇  1 + 𝑟𝑇 𝑆𝑁
𝑥1

 

𝑛22 =
𝑥1 1 +  𝑟 − 𝜇 𝑇  𝑘𝑇 + 𝐾 −  𝑥1 − 1 (1 + 𝑟𝑇)𝑆𝑁

 𝑥1 − 𝑦2  1 +  𝑟 − 𝜇 𝑇  1 + 𝑟𝑇 𝑆𝑁
𝑦2

 

These are together with the equilibrium equation used to find the equation for the optimal 

switching point 

𝑆𝑁 =
(𝑥1 +  𝑥1 − 𝑦2 𝑟𝑇) 1 +  𝑟 − 𝜇 𝑇 (𝑘𝑇 + 𝐾)

 𝑥1 − 1 +  𝑥1 − 𝑦2  𝑟 − 𝜇 𝑇  1 + 𝑟𝑇 
 

Parameters values – Base case 

 

 

Instantaneous drift of the value process μ 3 %  per year 

 

Instantaneous volatility of the value process σ 40 %  per year 

 

Expected time to completion T 5 years 

 

On-going investment costs rate k 1 million $ per year 

 

Final (fixed) investment costs K 5 million $ 

 

Interest rate r 5 %  per year 

 

TABLE 1: Parameter values in Miltersen and Schwartz’s model - Base case  
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FIGURE 1: Values of investment projects as a function of the value of the outcome for different 

expected time to completion. The value of the investment project increases when the expected time to 

completion decreases, and vice versa. The base case has an optimal switching point at 𝑆𝑁
𝑇=5= 37,58. 

The threshold levels for 𝑇 = 1 and 𝑇 = 10 are 𝑆𝑁
𝑇=1= 32,04 and 𝑆𝑁

𝑇=10= 44,79. 

Miltersen and Schwartz use the parameter values shown in table 1 as a base case for 

numerical illustration. The base case has an expected time to completion equal to 5 years, 

and they change this value to 𝑇 = 1 and 𝑇 = 10 years to see how the value of the investment 

project and the optimal switching points are affected. Figure 1 shows the solutions for the 

value of the investment project as a function of the value of the outcome. They find that the 

value of the investment project is higher when the expected time to completion is shorter and 

that the values of the investment project are strictly positive. This is because there are no 

costs related to keeping the investment project passive. The switching levels are higher when 

the expected time to completion is higher.  

2.3 Valuation of the Production Phase 

Brennan and Schwartz published in 1985 a new model for evaluation of investment projects 

in their article “Evaluating Natural Resource Investments”. The standard technique before 

Brennan and Schwartz discounts expected cash flows from an investment project at a rate 

appropriate to the risk, and the present value is compared to the cost of the project. This does 
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not take the stochastic characteristic of output prices into account. Brennan and Schwartz 

made a model that treats output prices as stochastic. This is of great importance in the natural 

resource industries where there may be large price swings. They also consider the possibility 

that a project may be closed down or abandoned if the output prices fall under a certain level. 

The model is useful to corporations considering when, whether, and how to develop a given 

resource, and to financial analysts concerned with the valuation of such corporations.  

Brennan and Schwartz begin their paper with developing a general model for valuing the 

cash flow from a natural resource investment, which they later  present in a more specialized 

or simplified version. It is only possible to get closed form solutions from the simplified 

model. The assumptions are that the convenience yield can be written as a function of the 

output price, the interest rate is constant, the resource is of a known amount and the costs are 

known. The convenience yield is the flow of services that accrues to an owner of the 

physical commodity and not to the owner of a contract for future delivery of the commodity. 

They use an example of a hypothetical mine that produces a single homogenous commodity. 

The spot price of the commodity 𝑆 is determined competitively and follows an exogenously 

given stochastic process 

𝑑𝑆 =  𝜇𝑆 𝑑𝑡 +  𝜍𝑆 𝑑𝑧 

where 𝜍 is the instantaneous standard deviation of the spot price, 𝜇 is the instantaneous drift 

and 𝑑𝑧 is the increment to a standard Gauss-Wiener process
3
.   

The value of the mine 𝐻 depends on whether the mine is currently open, 𝑗 = 1, or closed, 

𝑗 = 0, the current commodity price 𝑆, the physical inventory in the mine 𝑄, calendar time 𝑡 

and the mine operating policy 𝜙. Under the value maximizing operating policy 𝜙∗ the values 

of the open mine V and the closed mine W are given by 

𝑉 𝑆,𝑄, 𝑡 ≡ max
𝜙

 𝐻 𝑆,𝑄, 𝑡; 𝑗 = 1,𝜙  

𝑊 𝑆,𝑄, 𝑡 ≡ max
𝜙

 𝐻 𝑆,𝑄, 𝑡; 𝑗 = 0,𝜙  

                                                 

3
 A Wiener Process is equivalent to a Brownian motion (see footnote 2).  
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The after tax cash flow is 

𝑞 𝑆 − 𝐴 − 𝑀 1− 𝑗 −  𝑗𝐻 − 𝑇 

where A is the average cash cost rate, M is the after-tax fixed-cost rate of maintaining the 

mine when it is closed, T is the total income tax and royalties imposed on the mine when it is 

operating, and 𝑗  is the proportional rate of tax on the value of the mine. 𝑗  can also be 

interpreted as the intensities of Poisson processes governing the event of uncompensated 

expropriation of the owners of the mine. When using this interpretation of 𝑗  the expression 

above represents the cash flow of the net expected cost of expropriation. 

There is a cost to close and open the mine, represent by 𝐾1 and 𝐾2 respectively. The value of 

the mine depends on calendar time because the costs 𝐴, 𝑀, 𝐾₁ and 𝐾₂ and the convenience 

yield C depends on time. This can be changed. Suppose the convenience yield can be written 

as κS. If there is a constant rate of inflation π in all of the variables, they can be deflated by 

multiplying each variable with 𝑒−𝜋𝑡 . The deflated values are written in small letters; a, f 

(deflated value of M), k₁, k₂, s, v and w. The real interest rate is 𝑟 = 𝜌 − 𝜋. 

This leads to a set of partial differential equation that has to be solved numerically. To get 

closed form solutions to this model it is assumed that the physical inventory of the mine Q is 

infinite. Q was previously of a known amount. When Q is infinite it means that Q is no longer 

a state variable and the partial differential equations for the value of the mine can be replaced 

with ordinary differential equations. It is further assumed that the tax system allows for full 

loss offset and finally that the mine only has two operating rates, 𝑞∗ when it is open, and 

zero when it is closed. The (deflated) value of the mine when it is open satisfies the ordinary 

differential equation 

1
2 𝜍2𝑠2𝑣 ′′  𝑠 +  𝑟 − 𝜅 𝑠 𝑣 ′(𝑠) +𝑚𝑠 − 𝑛 −  𝑟 + 𝜆 𝑣 = 0 

where 𝑚 =  𝑞∗(1− 𝑡1)(1− 𝑡2)  and  𝑛 =  𝑞∗𝑎(1− 𝑡2) 

Assuming that the periodic maintenance cost for a closed mine f is equal to zero, the value of 

the closed mine satisfies this differential equation 

1
2 𝜍2𝑠2𝑤 ′′  𝑠 +  𝑟 − 𝜅 𝑠 𝑤 ′(𝑠)−  𝑟 + 𝜆 𝑤 = 0 
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The boundary conditions are as follows 

𝑤 0 = 0 

𝑣 𝑠1
∗ = max 𝑤 𝑠1

∗ − 𝑘1, 0  

𝑤 𝑠2
∗ = 𝑣 𝑠2

∗ − 𝑘2 

𝑣′ 𝑠1
∗ =  

𝑤′ 𝑠1
∗  if 𝑤 𝑠1

∗ − 𝑘1 ≥ 0 

0 if 𝑤 𝑠1
∗ − 𝑘1 < 0

  

𝑤′ 𝑠2
∗ = 𝑣′ 𝑠2

∗  

𝑠1
∗, and 𝑠2

∗ are the critical commodity prices: 𝑠1
∗ is the threshold level to close the mine if it 

was already open, and 𝑠2
∗ is the threshold level to open the mine if it was already closed. The 

complete solutions to the differential equations are 

𝑤 𝑠 = 𝛽1𝑠
𝛾1 + 𝛽2𝑠

𝛾2  

𝑣 𝑠 = 𝛽3𝑠
𝛾1 + 𝛽4𝑠

𝛾2 +
𝑚𝑠

 𝜆 + 𝜅 
−

𝑛

 𝑟 + 𝜆 
 

where  𝛾 1 =  𝛼1 + 𝛼2   and  𝛾 2 =  𝛼1 − 𝛼2 

   𝛼1  =  1
2 −  

(𝑟  – ĸ)

𝜍2  and 𝛼2  =  𝛼1
2 +

2(𝑟  +)

2   

It is necessary that  𝑟 + 𝜆 > 0 for the present value of the future cost to be finite. 𝛾 1 > 1 

and 𝛾 2 < 0. The value of a closed mine 𝑤(𝑠) must remain finite as 𝑠 approaches zero and 

since 𝛾 2  is negative 𝛽2 has to be zero. The value of an open mine 𝑣(𝑠) must remain finite as 

𝑠 goes to infinity and because 𝛾 1 is greater than 1 𝛽3 also has to be zero. This leaves the 

shortened solutions 

𝑤 𝑠 = 𝛽1𝑠
𝛾1  

𝑣 𝑠 = 𝛽4𝑠
𝛾2 +

𝑚𝑠

 𝜆 + 𝜅 
−

𝑛

 𝑟 + 𝜆 
 

The term 𝛽1𝑠
𝛾1  represents the value of the option to open the mine and the term 𝛽4𝑠

𝛾2  

represents the value of the closure option. If there was no such option the value of the mine 
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would be given by 
𝑚𝑠

 𝜆+𝜅 
−

𝑛

 𝑟+𝜆 
. 𝛽1, 𝛽4 and the optimal prices for when to close and open the 

mine, 𝑠1
∗ and 𝑠2

∗, are determined by the boundary conditions which gives these solutions 

𝛽1 =
𝑑𝑠2

∗ 𝛾2 − 1 + 𝑏𝛾2

 𝛾2 − 𝛾1 𝑠2
∗𝛾1

  

𝛽4 =
𝑑𝑠2

∗ 𝛾1 − 1 + 𝑏𝛾1

 𝛾2 − 𝛾1 𝑠1
∗𝛾2

 

𝑠2
∗ =

𝛾2 𝑒 − 𝑏𝑥
𝛾1 

 𝑥𝛾1 − 𝑥 𝑑 𝛾2 − 1 
 

𝑠1
∗

𝑠2
∗ = 𝑥 

 𝑥𝛾2 − 𝑥  𝛾1 − 1 

𝛾1 𝑒 − 𝑏𝑥𝛾2 
=
 𝑥𝛾1 − 𝑥  𝛾2 − 1 

𝛾2 𝑒 − 𝑏𝑥𝛾1 
 

Where  𝑒 = 𝑘1 −
𝑛

𝑟+𝜆
 , 𝑏 = − 𝑘2 −  

𝑛

𝑟+𝜆
 and      𝑑 =

𝑚

𝜆+𝜅
 

𝑥 is the ratio of commodity prices at which the mine is closed and opened. 𝑥 is found by 

solving the non-linear equation above.  

Figure 2 shows the values of the mine when it is open and closed as functions of the 

commodity price 𝑠. If the price is below 𝑠1
∗ the value of the mine is sufficiently greater when 

it is closed for it to be profitable to pay the cost 𝑘1 to close the mine. Because of the cost of 

opening the mine it is profitable to open the mine again when the price reaches 𝑠2
∗. If the cost 

of opening and closing the mine was larger the gap between 𝑤(𝑠) and 𝑣(𝑠) in 𝑠1
∗ and 𝑠2

∗ 

would be greater and the closure option will eventually become worthless. On the other 

hand, if the cost of opening and closing the mine was lower 𝑠1
∗ and 𝑠2

∗ would move closer, 

and if 𝑘1 and 𝑘2 were zero the value of the mine would be one single curve.  
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FIGURE 2: Value of the mine when it is closed and open as a function of the commodity price. The 

optimal switching points 𝑠1
∗ and 𝑠2

∗ are shown on the horizontal axis. 

Brennan and Schwartz use a hypothetical mine to illustrate the general model. They do not 

have an example of the simplified model but I will use the parameter values from the general 

model in my analysis. The values, assuming 𝑄 is infinite and 𝑓 = 0, are shown in table 2.  

 

Parameter values for the mine 

  Output rate of the mine 𝑞∗ 10 million pounds per year 

  Mine inventory 𝑄 infinite million pounds 

  Initial average cost of production 𝑎 0,5 $ per pound 

  Initial cost of opening and closing  𝑘1,𝑘2 0,2 million $ 

  Convenience yield 𝜅 1 % per year 

  Price variance 𝜍2 8 % per year 

  Intensity of expropriation of the mine 𝜆1, 𝜆2 2 % per year 

  Income tax 𝑡2 50 % 

  Royalty 𝑡1 0 % 

  Inflation 𝜋 8 % per year 

  Interest rate 𝜌 10 % per year 

 

TABLE 2: Parameter values for a hypothetical mine in Brennan and Schwartz’s model.  
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3. Results  

I will combine the two models I just described to come up with a model that can evaluate 

both the exploration phase and the production phase simultaneously. I will refer to Miltersen 

and Schwartz’s model as the exploration phase and Brennan and Schwartz’s model as the 

production phase. 

3.1 Combination of the Exploration Phase and the 
Production Phase 

To be able to combine the two models I have to make some assumptions. Firstly, the two 

models differ in one fundamental condition; in the exploration phase the value of the 

outcome follows a geometric Brownian motion while it is the commodity price that follows 

a geometric Brownian motion in the production phase. To combine the two models I 

therefore have to assume that the commodity price at any date 𝑡 is the value of the outcome 

at any date 𝑡, 𝑆𝑡 = 𝑉𝑡 . I will from now on refer to the commodity price as the value of the 

outcome 𝑉, and it follows the same geometric Brownian motion as before 

𝑑𝑉𝑡 = 𝑉𝑡𝜇 𝑑𝑡 + 𝑉𝑡𝜍 𝑑𝑊𝑡   

where 𝜍 is the instantaneous volatility of the value process, 𝜇 is the instantaneous drift and 

𝑊 is the increment of a Brownian motion
4
.  

To be able to use the simplified model for the production phase I have to assume that the 

mine inventory 𝑄 is infinite and the maintenance cost of a closed mine 𝑓 is zero. I think of 𝜆𝑗  

as the intensity of uncompensated expropriation of the owners of the mine. I also change the 

symbol for this to 𝛿 because the exploration phase has a different 𝜆 which symbolizes the 

probability of completion of the investment project. For simplification reasons I assume that 

there is no final investment cost 𝐾 needed to exploit the value of the mine. Further, I assume 

that it is costless to switch between a closed and an open mine, 𝑘1 = 𝑘2 = 0.  

                                                 

4
 Brennan and Schwartz write the increment of the Brownian motion as dz while Miltersen and Schwartz use 

dW. These are equivalent; the increment is just given different symbols. 
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The last assumption simplifies the combination of the models to a great extent. Recall that 

the switching point 𝑠1
∗ and 𝑠2

∗ becomes on combined switching point when 𝑘1 = 𝑘2 = 0. The 

value of an open and a closed mine is therefore equal in this point. Look at the ordinary 

differential equations for the production phase 

1
2 𝜍2𝑠2𝑣 ′′  𝑠 +  𝑟 − 𝜅 𝑠 𝑣 ′(𝑠) +𝑚𝑠 − 𝑛 −  𝑟 + 𝜆 𝑣 = 0 

1
2 𝜍2𝑠2𝑤 ′′  𝑠 +  𝑟 − 𝜅 𝑠 𝑤 ′(𝑠)−  𝑟 + 𝜆 𝑤 = 0 

In the switching point the value of an open and a closed mine is the same, 𝑣(𝑠) = 𝑤(𝑠). The 

optimal switching point is found by weighing thee instantaneous benefits and costs of 

switching between the two states. The instantaneous benefit of switching to an open mine 

has the value flow of 𝑚𝑠 and the instantaneous cost has a value flow equal to 𝑛. The trade-

off between benefits and costs results in the equilibrium equation 𝑚𝑠 = 𝑛. The optimal 

switching point is therefore 𝑠 =
𝑛

𝑚
. 

When I combine the two models I start by finding out what the completion value of the 

exploration phase will be. At completion, that is when a mineral or a product is found, the 

owner of the investment project has the option to the value of the outcome. This will not be 

(𝑉 − 𝐾) like in Miltersen and Schwartz’s model, but it will be an option to the value of the 

mine in the production phase. I call this option value 𝑃(𝑉). The value of the option at 

completion will be 

max 𝑃(𝑉𝜏) , 0  

The investment project will jump to the completion value 𝑃(𝑉) with intensity 𝜆. The 

solutions to my model must satisfy these ordinary differential equations: 

1
2  𝜍2𝑉2𝐿′′ 𝑉 + 𝜇𝑉𝐿′ 𝑉  − 𝑟𝐿 𝑉 =  0                when 𝑉 < 𝑆 

1
2  𝜍2𝑉2𝐿′′ 𝑉 +  𝜇𝑉𝐿′ 𝑉 –   𝑟 + 𝜆 𝐿 𝑉  –  𝑘 +  𝜆𝑃 𝑉 = 0             when 𝑉 ≥ 𝑆 

Where 𝑃 𝑉 =  
𝑤 𝑉      if 𝑉 <

𝑛

𝑚

𝑣 𝑉      if 𝑉 ≥
𝑛

𝑚
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𝑤(𝑉) and 𝑣(𝑉) are the values of a closed and an open mine. If the value of the outcome is 

less that the switching point between an open and a closed mine, the owner of the investment 

project has the option to get the value of a closed mine at maturity. The owner will get the 

option to the value of an open mine if the value of the outcome is greater than the same 

switching point. In the equations below I have switched the symbols 𝛾1 and 𝛾2 to 𝑧1 and 𝑧2 

respectively to make it less confusing since I also use 𝑦1 and 𝑦2 in the exploration phase. 

The equations for 𝛾1 and 𝛾2 and the other unknowns are given by Brennan and Schwartz’s 

model in chapter 2.3. 

𝑤 𝑉 = 𝛽1𝑉
𝑧1  

𝑣 𝑉 = 𝛽4𝑉
𝑧2 +

𝑚𝑉

𝛿 + 𝜅
−

𝑛

𝑟 + 𝛿
 

To find the complete set of ordinary equations that have to be satisfied I have to separate 

between 𝑆𝐻 >
𝑛

𝑚
 and 𝑆𝐿 <

𝑛

𝑚
.  𝑆𝐻 >

𝑛

𝑚
 describes the situation when the switching point 

between an active and a passive investment project is above the switching point for an open 

and a closed the mine in the production phase. 𝑆𝐿 <
𝑛

𝑚
 describes the situation when the 

switching point between an active and a passive investment project is above the switching 

point for an open and a closed the mine in the production phase. The switching point 𝑆𝐿 will 

apply if the switching point 𝑆𝐻 turns out to be less than 
𝑛

𝑚
. Whenever the value of the 

outcome 𝑉 is below 𝑆𝐻  and 𝑆𝐿 the investment project will be passive, and vice versa. A 

passive state has no chance of completion, 𝜆 = 0, and no on-going investment costs until 

completion, 𝑘 = 0. The investment project will never be completed in this state, and since it 

is costless to stay here and the value of a passive investment project will therefore always be 

zero. An active investment project has two outcomes; if 𝑉 is below 
𝑛

𝑚
 the completion value 

will be equivalent to the value of a closed mine 𝑤(𝑉), and if 𝑉 is greater than 
𝑛

𝑚
 the 

completion value will jump to the value of an open mine 𝑣(𝑉). This is illustrated in figure 3. 
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𝑆𝐻 >
𝑛

𝑚
 

 

 

𝑆𝐿 <
𝑛

𝑚
 

 

 

 

FIGURE 3: The value of the investment project at completion depends on the value of the switching 

points. The value of a passive investment project will always be zero. The completion value of an 

active investment project will be equal to the value of the mine; if  𝑉 <
𝑛

𝑚
 the completion value will 

be equal to the value of a closed mine, and if  𝑉 >
𝑛

𝑚
 it will be equal to the value of an open mine. 

This set of ordinary equations has to be satisfied 

 𝑆𝐻 >
𝑛

𝑚
 

 

1
2  𝜍2𝑉2𝐿1′′ 𝑉 + 𝜇𝑉𝐿1′ 𝑉  − 𝑟𝐿1 𝑉 =  0             when 𝑉 < 𝑆𝐻  

1
2  𝜍2𝑉2𝐿2′′ 𝑉 + 𝜇𝑉𝐿2′ 𝑉 −  𝑟 + 𝜆 𝐿2 𝑉 − 𝑘 + 𝜆 𝛽4𝑉

𝑧2 +𝑚𝑉 − 𝑛 = 0 

         when 𝑉 ≥ 𝑆𝐻 

 𝑆𝐿 <
𝑛

𝑚
 

 

1
2  𝜍2𝑉2𝐿3′′ 𝑉 + 𝜇𝑉𝐿3′ 𝑉 − 𝑟𝐿3 𝑉 =  0             when 𝑉 < 𝑆𝐿  

1
2  𝜍2𝑉2𝐿4′′ 𝑉 + 𝜇𝑉𝐿4′ 𝑉 −  𝑟 + 𝜆 𝐿4 𝑉  − 𝑘 + 𝜆(𝛽1𝑉

𝑧1 ) = 0  when 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
 

1
2  𝜍2𝑉2𝐿5′′ 𝑉 + 𝜇𝑉𝐿5′ 𝑉 −  𝑟 + 𝜆 𝐿5 𝑉 −  𝑘 + 𝜆 𝛽4𝑉

𝑧2 +𝑚𝑉 − 𝑛 = 0           

          when 𝑉 ≥
𝑛

𝑚
 

𝑛

𝑚
 

𝑆𝐿 

𝑆𝐻 
𝑉 

𝑛

𝑚
 

𝑉 

𝑃(𝑉) 

𝑃(𝑉) 

0 

0 𝑣(𝑉) 𝑤(𝑉) 

𝑣(𝑉) 
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For the first two equations the switching point for an open and a closed mine in the 

production phase is below the switching point for an active and a passive investment project, 

𝑛

𝑚
< 𝑆𝐻. The equation for 𝐿1 𝑉  describes the value of the investment project when the value 

of the outcome is below the switching point for the investment project 𝑉 < 𝑆𝐻. This 

corresponds to a passive investment project. It does not matter if 𝑉 is greater of less than 
𝑛

𝑚
, 

the value of the passive investment project will always be zero. The equation for 𝐿2 𝑉  

describes an active investment project. The value of the outcome is above both the switching 

points, 
𝑛

𝑚
< 𝑆𝐻 ≤ 𝑉, the investment project will therefore always be in the money in this 

state. The completion value of will jump to 𝛽4𝑉
𝑧2 +𝑚𝑉 − 𝑛 with intensity 𝜆, deducted the 

value of the increased probability of losing the investment project 𝜆𝐿2 𝑉  and the on-going 

investment costs 𝑘 per unit of time. For the following three equations the switching point for 

an open and a closed mine in the production phase is above the switching point for an active 

and a passive investment project, 
𝑛

𝑚
> 𝑆𝐿. For 𝐿3 𝑉  the value of the outcome is below both 

of the switching points, 𝑉 < 𝑆𝐿 <
𝑛

𝑚
. The investment project is passive and the value is zero. 

The equation for 𝐿4 𝑉  describes the situation when the value of the outcome is between the 

two switching points, 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
. The investment project is active, but it is not optimal to 

open the mine at completion. The completion value is 𝛽1𝑉
𝑧1  with intensity 𝜆, deducted the 

increased value of the probability of losing the investment project 𝜆𝐿4 𝑉  the on-going 

investment cost 𝑘 per unit of time. For the last equation, 𝐿5 𝑉 , the value of the outcome is 

greater than both switching points, and the investment project is also here always in the 

money when it is active. The value terms are the same as for 𝐿2 𝑉 ; The completion value of 

will jump to 𝛽4𝑉
𝑧2 + 𝑚𝑉 − 𝑛 with intensity 𝜆, deducted the value of the increased 

probability of losing the investment project 𝜆𝐿5 𝑉  and the on-going investment costs 𝑘 per 

unit of time.  

The general solutions to the ordinary differential equations are 

 𝑆𝐻 >
𝑛

𝑚
 

 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1 + 𝑙12𝑉

𝑥2                 when 𝑉 < 𝑆𝐻 

𝐿2 𝑉 = 𝑙21𝑉
𝑦1 + 𝑙22𝑉

𝑦2 +
𝜆𝑚𝑉

𝑟+𝜆−𝜇
−
𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2

          when 𝑉 ≥ 𝑆𝐻 
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 𝑆𝐿 <
𝑛

𝑚
 

 

𝐿3 𝑉 = 𝑙31𝑉
𝑥1 + 𝑙32𝑉

𝑥2                 when 𝑉 < 𝑆𝐿 

𝐿4 𝑉 = 𝑙41𝑉
𝑦1 + 𝑙42𝑉

𝑦2 −
𝑘

𝑟+𝜆
+

𝜆𝛽1𝑉
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2

               when 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
 

𝐿5 𝑉 = 𝑙51𝑉
𝑦1 + 𝑙52𝑉

𝑦2 +
𝜆𝑚𝑉

𝑟+𝜆−𝜇
−
𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2

           when 𝑉 ≥
𝑛

𝑚
 

Equations for all the unknowns are given in the theory about the exploration phase, chapter 

2.3. Since 𝑥2 < 0, the value of the investment project will increase when the value of the 

outcome decreases. This has to be prevented and the 𝑉𝑥2  terms must therefore be eliminated 

and consequently 𝑙12  and 𝑙32  has to be zero.  Furthermore, the value of the investment 

project never can exceed the value of the outcome. Since 𝑦1 > 1 the value of the investment 

project will increase more than 𝑉. 𝑙21  and 𝑙51  has to be zero to eliminate the 𝑉𝑦1  terms. 𝑙41  

does not have the value zero because the equation for 𝐿4 𝑉  is two-sided, 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
. This 

leaves the simplified solutions 

 𝑆𝐻 >
𝑛

𝑚
 

 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1                  when 𝑉 < 𝑆𝐻 

𝐿2 𝑉 = 𝑙22𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−
𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2

            when 𝑉 ≥ 𝑆𝐻 

 𝑆𝐿 <
𝑛

𝑚
 

 

𝐿3 𝑉 = 𝑙31𝑉
𝑥1                  when 𝑉 < 𝑆𝐿 

𝐿4 𝑉 = 𝑙41𝑉
𝑦1 + 𝑙42𝑉

𝑦2 −
𝑘

𝑟+𝜆
+

𝜆𝛽1𝑉
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2

               when 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
 

𝐿5 𝑉 = 𝑙52𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−
𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2

             when 𝑉 ≥
𝑛

𝑚
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The following boundary conditions apply for the situation when the optimal switching point 

between an active and a passive state is greater than the switching point between an open and 

a closed mine in the production phase, 𝑆𝐻 >
𝑛

𝑚
 

𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝐿1′ 𝑆𝐻 = 𝐿2′ 𝑆𝐻  

𝐿1 𝑉  should be equal to 𝐿2 𝑉  in the switching point between an active and a passive 

investment project. The optimal switching point is found by weighing the instantaneous 

costs and benefits for switching between an active and a passive state. The increased benefit 

from switching to an active state is the value of the increased intensity of completion. This 

has a value flow 𝜆 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛  per unit of time. The increased costs of switching to 

an active state are the increased intensity of losing the investment project, and also the 

increased on-going investment costs 𝑘 per unit of time. The costs has a value flow 𝜆𝐿2 𝑉 +

𝑘. This trade-off gives an equilibrium equation which is used to find the optimal switching 

point 

𝜆 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 = 𝜆𝐿2 𝑆𝐻 + 𝑘 

The equation can be rearranged, and because of the first boundary condition 𝐿2 𝑆𝐻  can be 

replaced by 𝐿1 𝑆𝐻   

𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻 = 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 −

𝑘

𝜆
 

The boundary conditions are used to find 𝑙11 and 𝑙22 . I derive the equations in appendix A. 

𝑙11 =
1

 𝑦2 − 𝑥1 𝑆𝐻
𝑥1
 
 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
  

𝑙22 = −
1

 𝑦2 − 𝑥1 𝑆𝐻
𝑦2
 
 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
  

The optimal switching point is found by inserting for 𝑙11or 𝑙22  in 𝐿1 𝑉  or 𝐿2 𝑉  and using 

the equilibrium equation. 𝐿 𝑆𝐻  in the equilibrium equation can be replaced by 𝐿1 𝑉  or 

𝐿2 𝑉  when 𝑉 = 𝑆𝐻. This is shown in appendix B. The optimal switching point is found by 

solving a non-linear equation 
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 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1  𝜆𝑛 + 𝑘 

𝜆
= 0 

The following boundary conditions apply for the situation when the optimal switching point 

between an active and a passive state is below the switching point between an open and a 

closed mine in the production phase, 𝑆𝐿 <
𝑛

𝑚
 

𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿  

𝐿3′ 𝑆𝐿 = 𝐿4′ 𝑆𝐿  

𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
   

𝐿4′  
𝑛

𝑚
 = 𝐿5′  

𝑛

𝑚
   

𝐿3 𝑉  should be equal to 𝐿4 𝑉  in the switching point between an active and a passive 

investment project 𝑆𝐿  , and 𝐿4 𝑉  should be equal to 𝐿5 𝑉  in the switching point between 

an open and a closed mine in the production phase 
𝑛

𝑚
. The optimal switching point for the 

investment project is found the same way as above, by weighing the instantaneous costs and 

benefits from switching between an active and a passive state. The increased benefits of 

switching to an active state have a value flow 𝜆 𝛽1𝑉
𝑧1 , and the increased costs have the 

value flow 𝜆𝐿4 𝑉 + 𝑘. The trade-off between the benefits and costs gives an equilibrium 

equation for the optimal switching point 

𝜆 𝛽1𝑆𝐿
𝑧1 = 𝜆𝐿4 𝑆𝐿 + 𝑘 

Since 𝐿3 𝑆𝐿  is equal to 𝐿4 𝑆𝐿 , it can replace 𝐿4 𝑆𝐿  in the equation. Rearranging the 

equation gives this equilibrium equation 

𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿 = 𝛽1𝑆𝐿
𝑧1 −

𝑘

𝜆
 

The boundary conditions are used to find 𝑙31 , 𝑙41 , 𝑙42  and 𝑙52 . The equations are derived in 

appendix A. 
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𝑙31 =
1

 𝑦2−𝑥1 𝑆𝐿
𝑥1
  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

  

𝑙41 =
1

 𝑦2 − 𝑦1  
𝑛
𝑚 

𝑦1
 
 𝑦2 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦2𝜆𝑛

𝑟 + 𝜆
−

 𝑦2 − 𝑧1 𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
 𝑦2 − 𝑧2 𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

𝑙42 = −
1

 𝑦2−𝑥1 𝑆𝐿
𝑦2
  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑥1𝑘

𝑟 + 𝜆
  

𝑙52 = 𝑙42 +
1

 𝑦2 − 𝑦1  
𝑛
𝑚 

𝑦2
 −

 𝑧2 − 𝑦1 𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
 𝑦1 − 𝑧1 𝜆𝛽1  

𝑛
𝑚
 
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
 𝑦1 − 1 𝜆𝑚  

𝑛
𝑚
  

𝑟 + 𝜆 − 𝜇
−
𝑦1𝜆𝑛

𝑟 + 𝜆
  

The optimal switching point is found by inserting for 𝑙31  in 𝐿3 𝑉  or for 𝑙41  and 𝑙42  in 𝐿4 𝑉  

and using the equilibrium equation. 𝐿 𝑆𝐻  in the equilibrium equation can be replaced by 

𝐿3 𝑉  or 𝐿4 𝑉  when 𝑉 = 𝑆𝐻. This is shown in appendix B. The equation for the optimal 

switching point is also here a non-linear equation 

  𝑦2−𝑥1 −
 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 𝛽1𝑆𝐿
𝑧1 −  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
 𝑦2−𝑥1 𝑘

𝜆

+
𝑦2𝑘

𝑟 + 𝜆
= 0 

I now have all the equations I need to evaluate the exploration phase and productions phase 

simultaneously. In the next section I will construct an example to see how this works in 

practice and how the value investment project and the switching points are affected by 

changes in the parameter values. 
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4. Analysis 

In this part I construct an example to illustrate my model numerically. I examine how the 

value investment project and the switching points are affected by changes in the parameter 

values. I mostly use the parameter values from Miltersen and Schwartz’s and Brennan and 

Schwartz’s examples but I make some simplifying assumptions. To be able to use the 

ordinary differential equation from Brennan and Schwartz’s model I have already assumed 

that the mine inventory 𝑄 is infinite and that there is no maintenance costs for a closed mine, 

𝑓 = 0. In my model I have also assumed that the final investment cost 𝐾 is equal to zero and 

that there are no switching costs between an open and a closed mine, 𝑘1 = 𝑘2 = 0. To 

simplify the computation of the model I further assume that there is no inflation 𝜋 = 0, no 

taxes 𝑡1 = 𝑡2 = 0, and that the interest rates in the two phases are constant and the same, 5 

%. After combining the models the commodity price of the resource extracted from the mine 

is the same as value of the outcome in the exploration phase. The value of the outcome of the 

two phases is therefore the same; hence, the volatility is the same. 

4.1 Base Case 

The parameter values for the base case scenario are shown in table 3. The different variable 

values that follows from the base case parameters are shown in table 4. 

Parameter values – Base case 

 

Instantaneous drift of the value process μ 3 % per year 

 

Instantaneous volatility of the value process σ 20 % per year 

 

Expected time to completion of the project T 5 years 

 

On-going investment costs rate until completion k 1 million $ per year 

 

Riskless interest rate r 5 % per year 

 Mine output rate q* 10 million pounds per year 

 Mine inventory Q infinite million pounds 

 Initial average cost of production a 0,5 $ per pound 

 Convenience yield of the commodity ĸ 1 % per year 

 Intensity of expropriation of the mine 𝛿 2 % per year 

TABLE 3: Parameter values in the combined model - Base case 
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Variable values – Base case 

λ 0,20 

x₁ 1,35 

x₂ -1,85 

y₁ 3,29 

y₂ -3,79 

m 10,00 

n 5,00 

𝑛

𝑚
  0,50 

α₁ -0,50 

α₂ 1,94 

z₁ 1,44 

z₂ -2,44 

b -71,43 

d 333,33 

β₁ 278,64 

β₄ 1,42 

 

TABLE 4: Variable values derived from the base case parameters. These are calculated using Excel. 

From table 4 you see that the switching point between an open and a closed mine 
𝑛

𝑚
  is equal 

to $0,5 million. The switching point depends on the average cost of production and taxes. 

This follows from the formulas for m and n 

𝑚 = 𝑞∗(1− 𝑡1)(1− 𝑡2) 

𝑛 = 𝑞∗𝑎(1− 𝑡2) 

𝑛

𝑚
=

𝑎

(1− 𝑡1)
 

Since there are no taxes the switching point between an open and a closed mine is equal to 

the average cost of production and it is constant even when other parameters changes. To 

find the optimal switching point between an active and a passive investment project I have to 

solve the non-linear equations I found in the previous chapter 
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 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1  𝜆𝑛 + 𝑘 

𝜆
= 0 

and 

  𝑦2−𝑥1 −
 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 𝛽1𝑆𝐿
𝑧1 −  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
 𝑦2−𝑥1 𝑘

𝜆

+
𝑦2𝑘

𝑟 + 𝜆
= 0 

I will use the equation for 𝑆𝐻 first. If I find that the optimal switching point for the 

investment project is less than the switching point for an open and a closed mine (less than 

$0,5 million) I will have to use the equation for 𝑆𝐿. Using the equation for 𝑆𝐻 I find two 

optimal switching points: 𝑆𝐻 = $0,61 million and 𝑆𝐻 = $2,62 million. The values of the non-

linear equation for different values of the switching point are shown in figure 4. The optimal 

switching points are found when the equation is equal to zero. This is in the intersection 

between the graph and the horizontal axis. 

 

FIGURE 4: Optimal switching point for an active and a passive investment project using the base 

case parameters. The figure shows the values of the non-linear equation for 𝑆𝐻 as a result of 

different values of 𝑆𝐻. The optimal switching points are found in the intersection with the horizontal 

axis, when 𝑆𝐻  = 0,61 and 𝑆𝐻 = 2,62. 
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Why are there two switching points? This is because it is a non-linear equation and the 

chosen parameter values give this result. The equation will give two switching points for all 

my scenarios. I choose always to use the highest switching point. The results from using the 

lowest switching points are inconsistent with theory and I find that these switching points are 

not valid. The analysis of the switching points are shown in appendix C.  

The investment project is active when the value of the outcome is greater than $2,62 million, 

and passive when the value of the outcome is below this threshold level. The values of the 

investment project for different values of the outcome are shown in table 5 and graphically 

in figure 5. 

Value of the 

outcome 

𝑉 

𝑆𝐻 >
𝑛

𝑚
 

𝑉 < 𝑆𝐻  𝑉 ≥ 𝑆𝐻 Value of the investment project 

𝐿1(𝑉) 𝐿2(𝑉) 𝐿(𝑉) 

0 0,00 0,00 0,00 

1 4,45 16,35 4,45 

2 11,35 11,49 11,35 

2,62 16,34 16,34 16,34 

3 19,62 19,61 19,61 

4 28,94 28,50 28,50 

5 39,12 37,52 37,52 

6 50,04 46,58 46,58 

7 61,63 55,66 55,66 

8 73,81 64,74 64,74 

9 86,54 73,83 73,83 

10 99,77 82,92 82,92 

TABLE 5: Value of the investment project for different values of the outcome using the base case 

parameters. The values of a passive and an active investment project are shown separately, and they 

are combined in the last column to get the value of the investment project. In the switching point 𝑆𝐻 

= 2,62 the value of an active and a passive investment project are equal. 
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FIGURE 5: Value of the investment project for different values of the outcome using the base case 

parameters. The switching point 𝑆𝐻 is 2,62. The value of the investment project is equivalent to the 

value of a passive investment project when 𝑉 is below this threshold level and equivalent to value of 

an active investment project when 𝑉 is above this threshold level. 

To see how the value of the investment project is affected by changes in the parameter 

values I have tried with different values for expected time to completion T and on-going 

investment costs until completion k. This affects the value of the exploration phase. My 

model behaves in the same way as Miltersen and Schwartz’s model from equivalent changes 

in parameter values. 

4.2 Change in Expected Time to Completion 

Recall that the expected time to completion is one divided by the probability of completion 

per unit of time, 𝑇 =  1
𝜆 . From this simple relationship I see that the expected time to 

completion goes towards infinity when the probability of completion goes towards zero and 

towards one when the probability of completion goes towards one. Hence, the shorter the 

expected time to completion, the greater the probability of completion. I tried with different 
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expected time to completion to see what happens to the value of the investment project. 

When T = 1 the switching point between an active and a passive investment project, 𝑆𝐻
𝑇=1, 

equal to $1,72 million. This threshold level is lower than the base case scenario. On the other 

hand, when T = 10 the switching points raises to 𝑆𝐻
𝑇=10 = $3,44 million.  

Figure 6 shows how the value of the investment project changes when expected time to 

completion changes. Shorter expected time to completion gives a higher probability of 

completion and therefore a higher value of the investment project. The on-going investment 

costs until completion are smaller when the expected time to completion is shorter, which 

also increases the value of the investment project. The rise in value of the investment project 

is shown as a shift to the left in the figure. Conversely, when the expected time to 

completion is higher there is a smaller probability of completion and the on-going 

investment costs are greater. The value of the investment project is therefore lower.  

FIGURE 6: Value of the investment project when the expected time to completion changes. T = 5 

represents the base case scenario with switching point 𝑆𝐻
𝑇=5 = 2,62. When T = 1 the value of the 

investment project rises, and the threshold level is  𝑆𝐻
𝑇=1 = 1,72. When T = 10 the value of the 

investment project falls and the threshold level is 𝑆𝐻
𝑇=10  = 3,44. 
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4.3 Change in On-Going Investment Costs until 
Completion 

The investment project has on-going investment cost per unit of time until completion when 

it is active. A change in these costs will affect the value of the investment project. When the 

on-going investment costs are smaller the value of the investment project will obviously be 

higher. When 𝑘 = $0,2 million the optimal switching point between an active and a passive 

state decreases to  𝑆𝐻
𝑘=0,2

 = $1,26 million. When the on-going investment costs are higher the 

value of the investment project will decrease and the optimal switching point will be higher. 

The investment project will therefore switch to a passive state faster if the value of the 

outcome declines; it is less profitable to be in the active state. If 𝑘 = $2 million the optimal 

switching point between an active and a passive state is  𝑆𝐻
𝑘=2 = $4 million. The solution is 

shown in figure 7.  

 

FIGURE 7: Value of the investment project when the on-going investment costs until completion 

changes. When k is lower the value of the investment project will increase, and vice versa.  k = 1 

represents the base case scenario with switching point 𝑆𝐻
𝑘=1 = 2,62. k = 0,2 has a threshold level at 

𝑆𝐻
𝑘=0,2

 = 1,26 and k = 2 has a threshold level at   𝑆𝐻
𝑘=2 = 4,00. 
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4.4 Summary of the Analysis 

For all the scenarios I have analysed the optimal switching point for an active and a passive 

investment project turned out to be above the switching point for an open and a closed mine. 

I therefore used the optimal switching point 𝑆𝐻 in all cases. Notice that the value of the 

investment project is always positive. This is because there are no costs incurred in the 

passive state. By switching to the passive state the owner of the investment project can 

protect the project against losses when the value of the outcome decreases under a certain 

threshold level. The same applies for the value of the mine; there is no costs incurred when 

the mine is closed and the production can be shut down when the value of the outcome 

decreases under the (different) threshold level for closing the mine. 

The outcome of the analysis is consistent with theory. When the expected time to completion 

is higher the value of the investment project will decrease, and vice versa. The value of the 

investment project will also decrease if there are higher on-going investment costs until 

completion. 
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5. Conclusions 

Can real option theory be used to make a model that simultaneously evaluates the 

exploration phase and production phase of an investment project? 

I have managed construct a model that uses the value of the production phase to evaluate an 

exploration project. At completion of the exploration phase the owner of the investment 

project has an option to the value of the outcome. The value of the outcome is the present 

value of future cash flows that can be generated from producing/extracting the outcome of 

the exploration. The model includes switching options in both phases.  

I am able to obtain closed form solutions to the value of the investment project and to the 

optimal switching points. I have found that the model’s behavior is consistent with theory; 

longer expected time to completion and higher on-going investment costs until completion 

will reduce the value of the investment project, and vice versa.  

The model is applicable for R&D projects and natural resource exploration projects such as 

mine or oil exploration project. The model has important qualities for the valuation of such 

investment projects; the output price is treated as stochastic, there are on-going investment 

costs in the exploration phase, the time to completion is uncertain, and it considers the ability 

to shut down a money losing project and restart it again when in both the exploration phase 

and the production phase.  

To make the model even more applicable to real investment projects, some of the 

assumptions would have to be relaxed. The model would appear more realistic if I removed 

the assumption that there are no final investment costs in the exploration phase. This would 

not be very complicated and the model would not change drastically, but it would make the 

model a lot more realistic. Adding final investment costs would cause the value of the 

investment project to decrease. It would be more complex to relax the assumption that there 

are no switching costs to open and close the mine in the production phase, and no costs to 

switch between an active and a passive investment project. This could be interesting to take a 

look at in a further development of the model.  



 39 

References 

Brennan, Michael J. and Eduardo S. Schwartz (1985): Evaluating Natural Resource 

Investments. Journal of Business, 1985, vol. 58, no. 2. The University of Chicago. 

Dixit, Avinash K. and Robert S. Pindyck (1994): Investment under Uncertainty. Princeton 

University Press, Princeton, New Jersey. 

Hull, John C. (1997): Options futures and other derivatives. 3
rd

 ed. Prentice-Hall, Inc., New 

Jersey. 

McDonald, Robert L. (2006): Derivatives Markets. 2
nd

 ed. Pearson Education, Inc. 

Miltersen, Kristian R. and Eduardo S. Schwartz (2006): Real Options with Uncertain 

Maturity and Competition. Journal of Economic Literature Classification. G31, G13. 

 



 40 

Appendix A – Equations for 𝐥𝟏𝟏, 𝐥𝟐𝟐, 𝐥𝟑𝟏,𝐥𝟒𝟏, 𝐥𝟒𝟐 and 𝐥𝟓𝟐 

Here I derive the equations for 𝑙11, 𝑙22 , 𝑙31 ,𝑙41 , 𝑙42  and 𝑙52 . I use the general solutions and the 

boundary condition from chapter 3.1 to find these. 

 𝑆𝐻 >
𝑛

𝑚
 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1                  when 𝑉 < 𝑆𝐻 

𝐿2 𝑉 = 𝑙22𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2            when 𝑉 ≥ 𝑆𝐻 

Boundary conditions 

𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝐿1′ 𝑆𝐻 = 𝐿2′ 𝑆𝐻  

 𝑆𝐿 <
𝑛

𝑚
 

𝐿3 𝑉 = 𝑙31𝑉
𝑥1                  when 𝑉 < 𝑆𝐿 

𝐿4 𝑉 = 𝑙41𝑉
𝑦1 + 𝑙42𝑉

𝑦2 −
𝑘

𝑟+𝜆
+

𝜆𝛽1𝑉
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2               when 𝑆𝐿 ≤ 𝑉 <

𝑛

𝑚
 

𝐿5 𝑉 = 𝑙52𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2             when 𝑉 ≥

𝑛

𝑚
 

Boundary conditions 

𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿  

𝐿3′ 𝑆𝐿 = 𝐿4′ 𝑆𝐿  

𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
   

𝐿4′  
𝑛

𝑚
 = 𝐿5′  

𝑛

𝑚
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Deriving the equation for 𝒍𝟏𝟏 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1         when 𝑉 < 𝑆𝐻 

𝐿2 𝑉 = 𝑙22𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2   when 𝑉 ≥ 𝑆𝐻 

I set 𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝑙11𝑆𝐻
𝑥1 = 𝑙22𝑆𝐻

𝑦2 +
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I set the 1
st
 derivatives equal to each other 𝐿1′ 𝑆𝐻 = 𝐿2′ 𝑆𝐻  and solve for 𝑙22  

𝑥1𝑙11𝑆𝐻
𝑥1−1 = 𝑦2𝑙22𝑆𝐻

𝑦2−1 +
𝜆𝑚

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙22 =
1

𝑦2𝑆𝐻
𝑦2−1  𝑥1𝑙11𝑆𝐻

𝑥1−1 −
𝜆𝑚

𝑟 + 𝜆 − 𝜇
−

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

I insert for 𝑙22  in 𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝑙11𝑆𝐻
𝑥1 =

𝑆𝐻
𝑦2

𝑦2𝑆𝐻
𝑦2−1  𝑥1𝑙11𝑆𝐻

𝑥1−1 −
𝜆𝑚

𝑟 + 𝜆 − 𝜇
−

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

+
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙11𝑆𝐻
𝑥1 =

𝑆𝐻
𝑦2
 𝑥1𝑙11𝑆𝐻

𝑥1−1 −
𝜆𝑚

𝑟 + 𝜆 − 𝜇
−

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 +
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇

−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I multiply by 𝑦2 to remove the brackets 

𝑦2𝑙11𝑆𝐻
𝑥1 = 𝑥1𝑙11𝑆𝐻

𝑥1 −
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−

𝑧2𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑦2𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+

𝑦2𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

 



 42 

I collect and draw together similar terms 

 𝑦2 − 𝑥1 𝑙11𝑆𝐻
𝑥1 =

 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
 

I solve for 𝑙11  and get the solution 

𝑙11 =
1

 𝑦2 − 𝑥1 𝑆𝐻
𝑥1
 
 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
  

 

Deriving the equation for 𝒍𝟐𝟐 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1                  when 𝑉 < 𝑆𝐻 

𝐿2 𝑉 = 𝑙22𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2            when 𝑉 ≥ 𝑆𝐻 

I set 𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝑙11𝑆𝐻
𝑥1 = 𝑙22𝑆𝐻

𝑦2 +
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I set the 1
st
 derivatives equal to each other 𝐿1′ 𝑆𝐻 = 𝐿2′ 𝑆𝐻  and solve for 𝑙11 

𝑥1𝑙11𝑆𝐻
𝑥1−1 = 𝑦2𝑙22𝑆𝐻

𝑦2−1 +
𝜆𝑚

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙11 =
1

𝑥1𝑆𝐻
𝑥1−1  𝑦2𝑙22𝑆𝐻

𝑦2−1 +
𝜆𝑚

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

I insert for 𝑙11 in 𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻  

𝑆𝐻
𝑥1

𝑥1𝑆𝐻
𝑥1−1  𝑦2𝑙22𝑆𝐻

𝑦2−1 +
𝜆𝑚

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

= 𝑙22𝑆𝐻
𝑦2 +

𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2
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𝑆𝐻
𝑥1
 𝑦2𝑙22𝑆𝐻

𝑦2−1 +
𝜆𝑚

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4𝑆𝐻
𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

= 𝑙22𝑆𝐻
𝑦2 +

𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I multiply by 𝑥1 to remove the brackets 

𝑦2𝑙22𝑆𝐻
𝑦2 +

𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
𝑧2𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

= 𝑥1𝑙22𝑆𝐻
𝑦2 +

𝑥1𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+

𝑥1𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I collect and draw together similar terms 

𝑦2𝑙22𝑆𝐻
𝑦2 − 𝑥1𝑙22𝑆𝐻

𝑦2 +
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−
𝑥1𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
𝑧2𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑥1𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

= −
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
 

 𝑦2 − 𝑥1 𝑙22𝑆𝐻
𝑦2 +

 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

= −
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
 

I solve for 𝑙22  and get the solution 

𝑙22 = −
1

 𝑦2 − 𝑥1 𝑆𝐻
𝑦2
 
 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
  

 

Deriving the equation for 𝒍𝟑𝟏 

𝐿3 𝑉 = 𝑙31𝑉
𝑥1                  when 𝑉 < 𝑆𝐿  

𝐿4 𝑉 = 𝑙41𝑉
𝑦1 + 𝑙42𝑉

𝑦2 −
𝑘

𝑟+𝜆
+

𝜆𝛽1𝑉
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2    when 𝑆𝐿 ≤ 𝑉 <

𝑛

𝑚
 

I set 𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿  

𝑙31𝑆𝐿
𝑥1 = 𝑙41𝑆𝐿

𝑦1 + 𝑙42𝑆𝐿
𝑦2 −

𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2
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I insert for 𝑙42 = −
1

 𝑦2−𝑥1 𝑆𝐿
𝑦2   𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2

+
𝑥1𝑘

𝑟+𝜆
  

𝑙31𝑆𝐿
𝑥1 = 𝑙41𝑆𝐿

𝑦1

−
𝑆𝐿
𝑦2

 𝑦2−𝑥1 𝑆𝐿
𝑦2
  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑥1𝑘

𝑟 + 𝜆
 

−
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

I multiply all terms with  𝑦2−𝑥1  to remove the bracket 

 𝑦2−𝑥1 𝑙31𝑆𝐿
𝑥1

=  𝑦2−𝑥1 𝑙41𝑆𝐿
𝑦1 −  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 −
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑥1𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝑟 + 𝜆
+

 𝑦2−𝑥1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

I collect and draw together similar terms 

 𝑦2−𝑥1 𝑙31𝑆𝐿
𝑥1 =  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

I solve for 𝑙31  and get the solution 

𝑙31 =
1

 𝑦2−𝑥1 𝑆𝐿
𝑥1
  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

  

 

Deriving the equation for 𝒍𝟒𝟏 

𝐿4  
𝑛

𝑚
  = 𝑙41  

𝑛

𝑚
 
𝑦1

+ 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟+𝜆
+

𝜆𝛽1 
𝑛

𝑚
 
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2   when 𝑆𝐿 ≤ 𝑉 <

𝑛

𝑚
 

𝐿5  
𝑛

𝑚
  = 𝑙52  

𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛

𝑚
  

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4 
𝑛

𝑚
 
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2            when 𝑉 ≥

𝑛

𝑚
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I set 𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
   

𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟 + 𝜆
+

𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑙52  
𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I set the 1
st
 derivatives equal to each other 𝐿4′  

𝑛

𝑚
 = 𝐿5′  

𝑛

𝑚
  and solve for 𝑙52  

𝑦1𝑙41  
𝑛

𝑚
 
𝑦1−1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

+
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑦2𝑙52  
𝑛

𝑚
 
𝑦2−1

+
𝜆𝑚 

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4  
𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙52 =
1

𝑦2  
𝑛
𝑚 

𝑦2−1  𝑦1𝑙41  
𝑛

𝑚
 
𝑦1−1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

−
𝜆𝑚 

𝑟 + 𝜆 − 𝜇

+
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

I insert for 𝑙52  in 𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
   

𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟 + 𝜆
+

𝜆𝛽
1
 
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=
 
𝑛
𝑚 

𝑦2

𝑦2  
𝑛
𝑚 

𝑦2−1  𝑦1𝑙41  
𝑛

𝑚
 
𝑦1−1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

−
𝜆𝑚 

𝑟 + 𝜆 − 𝜇

+
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

+
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2
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I multiply all terms with 𝑦2 to remove the bracket 

𝑦2𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑦2𝑘

𝑟 + 𝜆
+

𝑦2𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑦1𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

−
𝜆𝑚 

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
+

𝑧1𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑦2𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆

+
𝑦2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I collect and draw together similar terms 

𝑦2𝑙41  
𝑛

𝑚
 
𝑦1

− 𝑦1𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

+
𝑦2𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=
𝑦2𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
+
𝑦2𝑘

𝑟 + 𝜆
−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆

+
𝑦2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

 𝑦2 − 𝑦1 𝑙41  
𝑛

𝑚
 
𝑦1

+
 𝑦2 − 𝑧1 𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=
 𝑦2 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦2𝜆𝑛

𝑟 + 𝜆
+

 𝑦2 − 𝑧2 𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

The 𝑙42  term disappears. I solve for 𝑙41  and get the solution 
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𝑙41 =
1

 𝑦2 − 𝑦1  
𝑛
𝑚 

𝑦1
 
 𝑦2 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦2𝜆𝑛

𝑟 + 𝜆
−

 𝑦2 − 𝑧1 𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
 𝑦2 − 𝑧2 𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

 

Deriving the equation for 𝒍𝟒𝟐 

𝐿3 𝑆𝐿 = 𝑙31𝑆𝐿
𝑥1                  when 𝑉 < 𝑆𝐿 

𝐿4 𝑆𝐿 = 𝑙41𝑆𝐿
𝑦1 + 𝑙42𝑆𝐿

𝑦2 −
𝑘

𝑟+𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2

    when 𝑆𝐿 ≤ 𝑉 <
𝑛

𝑚
 

I set 𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿   

𝑙31𝑆𝐿
𝑥1 = 𝑙41𝑆𝐿

𝑦1 + 𝑙42𝑆𝐿
𝑦2 −

𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

I set the 1
st
 derivatives equal to each other 𝐿3′ 𝑆𝐿 = 𝐿4′ 𝑆𝐿  and solve for 𝑙31  

𝑥1𝑙31𝑆𝐿
𝑥1−1 = 𝑦1𝑙41𝑆𝐿

𝑦1−1 + 𝑦2𝑙42𝑆𝐿
𝑦2−1 +

𝑧1𝜆𝛽1𝑆𝐿
𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

𝑙31 =
1

𝑥1𝑆𝐿
𝑥1−1  𝑦1𝑙41𝑆𝐿

𝑦1−1 + 𝑦2𝑙42𝑆𝐿
𝑦2−1 +

𝑧1𝜆𝛽1𝑆𝐿
𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

  

I insert for 𝑙31  in 𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿  

𝑆𝐿
𝑥1

𝑥1𝑆𝐿
𝑥1−1  𝑦1𝑙41𝑆𝐿

𝑦1−1 + 𝑦2𝑙42𝑆𝐿
𝑦2−1 +

𝑧1𝜆𝛽1𝑆𝐿
𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

= 𝑙41𝑆𝐿
𝑦1 + 𝑙42𝑆𝐿

𝑦2 −
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

𝑆𝐿
𝑥1
 𝑦1𝑙41𝑆𝐿

𝑦1−1 + 𝑦2𝑙42𝑆𝐿
𝑦2−1 +

𝑧1𝜆𝛽1𝑆𝐿
𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

= 𝑙41𝑆𝐿
𝑦1 + 𝑙42𝑆𝐿

𝑦2 −
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2
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I multiply by 𝑥1 to remove the brackets 

𝑦1𝑙41𝑆𝐿
𝑦1 + 𝑦2𝑙42𝑆𝐿

𝑦2 +
𝑧1𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑥1𝑙41𝑆𝐿
𝑦1 + 𝑥1𝑙42𝑆𝐿

𝑦2 −
𝑥1𝑘

𝑟 + 𝜆
+

𝑥1𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 

I collect and draw together similar terms 

𝑦1𝑙41𝑆𝐿
𝑦1−𝑥1𝑙41𝑆𝐿

𝑦1 + 𝑦2𝑙42𝑆𝐿
𝑦2 − 𝑥1𝑙42𝑆𝐿

𝑦2 +
𝑧1𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑥1𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= −
𝑥1𝑘

𝑟 + 𝜆
 

 𝑦1−𝑥1 𝑙41𝑆𝐿
𝑦1 +  𝑦2−𝑥1 𝑙42𝑆𝐿

𝑦2 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= −
𝑥1𝑘

𝑟 + 𝜆
 

I solve for 𝑙42  and get the solution 

𝑙42 = −
1

 𝑦2−𝑥1 𝑆𝐿
𝑦2
  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑥1𝑘

𝑟 + 𝜆
  

 

Deriving the equation for 𝒍𝟓𝟐 

𝐿4  
𝑛

𝑚
  = 𝑙41  

𝑛

𝑚
 
𝑦1

+ 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟+𝜆
+

𝜆𝛽1 
𝑛

𝑚
 
𝑧1

𝑟+𝜆−𝑧1𝜇−
1
2
𝑧1(𝑧1−1)𝜍2   when 𝑆𝐿 ≤ 𝑉 <

𝑛

𝑚
 

𝐿5  
𝑛

𝑚
  = 𝑙52  

𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛

𝑚
  

𝑟+𝜆−𝜇
−

𝜆𝑛+𝑘

𝑟+𝜆
+

𝜆𝛽4 
𝑛

𝑚
 
𝑧2

𝑟+𝜆−𝑧2𝜇−
1
2
𝑧2(𝑧2−1)𝜍2            when 𝑉 ≥

𝑛

𝑚
 

I set 𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
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𝑙41  
𝑛

𝑚
 
𝑦1

+ 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟 + 𝜆
+

𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑙52  
𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I set the 1
st
 derivatives equal to each other 𝐿4′  

𝑛

𝑚
 = 𝐿5′  

𝑛

𝑚
  and solve for 𝑙41  

𝑦1𝑙41  
𝑛

𝑚
 
𝑦1−1

+ 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

+
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑦2𝑙52  
𝑛

𝑚
 
𝑦2−1

+
𝜆𝑚 

𝑟 + 𝜆 − 𝜇
+

𝑧2𝜆𝛽4  
𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙41 =
1

𝑦1  
𝑛
𝑚 

𝑦1−1  𝑦2𝑙52  
𝑛

𝑚
 
𝑦2−1

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

+
𝜆𝑚 

𝑟 + 𝜆 − 𝜇

−
𝑧1𝜆𝛽1  

𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

  

I insert for 𝑙41  in 𝐿4  
𝑛

𝑚
 = 𝐿5  

𝑛

𝑚
   

 
𝑛
𝑚 

𝑦1

𝑦1  
𝑛
𝑚
 
𝑦1−1  𝑦2𝑙52  

𝑛

𝑚
 
𝑦2−1

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

+
𝜆𝑚 

𝑟 + 𝜆 − 𝜇
−

𝑧1𝜆𝛽1  
𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 + 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟 + 𝜆

+
𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑙52  
𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2
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𝑛
𝑚 

𝑦1
 𝑦2𝑙52  

𝑛

𝑚
 
𝑦2−1

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2−1

+
𝜆𝑚 

𝑟 + 𝜆 − 𝜇
−

𝑧1𝜆𝛽1  
𝑛
𝑚 

𝑧1−1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2−1

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 + 𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑘

𝑟 + 𝜆

+
𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑙52  
𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I multiply by 𝑦1 to remove the brackets 

𝑦2𝑙52  
𝑛

𝑚
 
𝑦2

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

+
𝜆𝑚  

𝑛
𝑚 

𝑟 + 𝜆 − 𝜇
−

𝑧1𝜆𝛽1  
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+ 𝑦1𝑙42  
𝑛

𝑚
 
𝑦2

−
𝑦1𝑘

𝑟 + 𝜆

+
𝑦1𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝑦1𝑙52  
𝑛

𝑚
 
𝑦2

+
𝑦1𝜆𝑚 

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+

𝑦1𝜆𝛽4  
𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

I collect and draw together similar terms 

𝑦2𝑙52  
𝑛

𝑚
 
𝑦2

− 𝑦1𝑙52  
𝑛

𝑚
 
𝑦2

− 𝑦2𝑙42  
𝑛

𝑚
 
𝑦2

+ 𝑦1𝑙42  
𝑛

𝑚
 
𝑦2

+
𝑧2𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦1𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑧1𝜆𝛽1

 
𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑦1𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=
𝑦1𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝜆𝑚  

𝑛
𝑚 

𝑟 + 𝜆 − 𝜇
+
𝑦1𝑘

𝑟 + 𝜆
−
𝑦1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
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 𝑦2 − 𝑦1 𝑙52  
𝑛

𝑚
 
𝑦2

+  𝑦1−𝑦2 𝑙42  
𝑛

𝑚
 
𝑦2

+
 𝑧2 − 𝑦1 𝜆𝛽4  

𝑛
𝑚 

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
 𝑦1 − 𝑧1 𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=
 𝑦1 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦1𝜆𝑛

𝑟 + 𝜆
 

I solve for 𝑙52   

𝑙52 =
1

 𝑦2 − 𝑦1  
𝑛
𝑚 

𝑦2
 − 𝑦1−𝑦2 𝑙42  

𝑛

𝑚
 
𝑦2

−
 𝑧2 − 𝑦1 𝜆𝛽4  

𝑛
𝑚
 
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
 𝑦1 − 𝑧1 𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
 𝑦1 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦1𝜆𝑛

𝑟 + 𝜆
  

I draw together the terms and get the solution for 𝑙52  

𝑙52 = 𝑙42 +
1

 𝑦2 − 𝑦1  
𝑛
𝑚 

𝑦2
 −

 𝑧2 − 𝑦1 𝜆𝛽4  
𝑛
𝑚
 
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
 𝑦1 − 𝑧1 𝜆𝛽1  

𝑛
𝑚 

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
 𝑦1 − 1 𝜆𝑚  

𝑛
𝑚  

𝑟 + 𝜆 − 𝜇
−
𝑦1𝜆𝑛

𝑟 + 𝜆
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Appendix B - Equations for the optimal switching 
points 

I will here derive the equations for the optimal switching points between and active and a 

passive investment project. If this switching point is above the switching point for an open 

and a closed mine in the production phase, 𝑆𝐻 >
𝑛

𝑚
, the switching point will be denoted 𝑆𝐻. 

If 𝑆𝐿 <
𝑛

𝑚
the switching point will be denoted 𝑆𝐿. 

Deriving of the equation for the optimal switching points 𝑆𝐻 

To find the optimal switching point between an active and a passive investment project when 

𝑆𝐻 >
𝑛

𝑚
 I use the equilibrium equation found in chapter 3.1. 

𝐿1 𝑆𝐻 = 𝐿2 𝑆𝐻 = 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 −

𝑘

𝜆
 

It is indifferent if I use 𝐿1 𝑆𝐻  or 𝐿2 𝑆𝐻  to derive the formula for the switching point 

because they are equal. I have used both to be certain that they give the same result.  

Deriving of the equation for the optimal switching point 𝑺𝑯 using 𝑳𝟏 𝑺𝑯  

The ordinary differential equation for 𝐿1 𝑉  gave this solution 

𝐿1 𝑉 = 𝑙11𝑉
𝑥1  

𝑙11 =
1

 𝑦2 − 𝑥1 𝑉𝑥1
 
 𝑦2 − 1 𝜆𝑚𝑉

𝑟 + 𝜆 − 𝜇
+

 𝑦2 − 𝑧2 𝜆𝛽4𝑉
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
  

When 𝑉 = 𝑆𝐻 the equilibrium equation is equal to the right hand side of the equation 

𝑙11𝑆𝐻
𝑥1 = 𝛽4𝑆𝐻

𝑧2 +𝑚𝑆𝐻 − 𝑛 −
𝑘

𝜆
 

I insert for 𝑙11  

𝑆𝐻
𝑥1

 𝑦2 − 𝑥1 𝑆𝐻
𝑥1
 
 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
 

= 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 −

𝑘

𝜆
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I multiply by both sides with  𝑦2 − 𝑥1  to remove the brackets on the left hand side 

 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆

=  𝑦2 − 𝑥1 𝛽4𝑆𝐻
𝑧2 +  𝑦2 − 𝑥1 𝑚𝑆𝐻 −  𝑦2 − 𝑥1 𝑛 −

 𝑦2 − 𝑥1 𝑘

𝜆
 

I collect and draw together similar terms 

 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−  𝑦2 − 𝑥1 𝑚𝑆𝐻 +
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−  𝑦2 − 𝑥1 𝛽4𝑆𝐻
𝑧2

=
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
−  𝑦2 − 𝑥1 𝑛 −

 𝑦2 − 𝑥1 𝑘

𝜆
 

 
 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

=
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
−
 𝑦2 − 𝑥1 𝜆𝑛 +  𝑦2 − 𝑥1 𝑘

𝜆
 

I move all the terms to the left hand side and get an equation that is equal to zero  

 
 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1  𝜆𝑛 + 𝑘 

𝜆
= 0 

This is the equation for the optimal switching point 𝑆𝐻. It is a non-linear equation and I will 

use Excel to solve for 𝑆𝐻  in the example in chapter 4. 

Deriving of the equation for the optimal switching point 𝑺𝑯 using 𝑳𝟐 𝑺𝑯  

The ordinary differential equation for 𝐿2 𝑉  gave this solution 

𝐿2 𝑉 = 𝑙22𝑉
𝑦2 +

𝜆𝑚𝑉

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑉
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

 

𝑙22 = −
1

 𝑦2 − 𝑥1 𝑉𝑦2
 
 1− 𝑥1 𝜆𝑚𝑉

𝑟 + 𝜆 − 𝜇
+

 𝑧2 − 𝑥1 𝜆𝛽4𝑉
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
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When 𝑉 = 𝑆𝐻 the equilibrium equation is equal to the right hand side of the equation 

𝑙22𝑆𝐻
𝑦2 +

𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

= 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 −

𝑘

𝜆
 

I insert for 𝑙22   

−
𝑆𝐻

𝑦2

 𝑦2 − 𝑥1 𝑆𝐻
𝑦2
 
 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

+
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

+
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
 

+
𝜆𝑚𝑆𝐻

𝑟 + 𝜆 − 𝜇
−
𝜆𝑛 + 𝑘

𝑟 + 𝜆
+

𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

= 𝛽4𝑆𝐻
𝑧2 +𝑚𝑆𝐻 − 𝑛 −

𝑘

𝜆
 

I multiply by both sides with  𝑦2 − 𝑥1  to remove the brackets  

−
 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
 𝑦2 − 𝑥1  𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+

 𝑦2 − 𝑥1 𝜆𝛽4𝑆𝐻
𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

=  𝑦2 − 𝑥1 𝛽4𝑆𝐻
𝑧2 +  𝑦2 − 𝑥1 𝑚𝑆𝐻 −  𝑦2 − 𝑥1 𝑛 −

 𝑦2 − 𝑥1 𝑘

𝜆
 

I collect and draw together similar terms 

 𝑦2 − 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−
 1− 𝑥1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−  𝑦2 − 𝑥1 𝑚𝑆𝐻 +
 𝑦2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−
 𝑧2 − 𝑥1 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

−  𝑦2 − 𝑥1 𝛽4𝑆𝐻
𝑧2

=
𝑥1 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1  𝜆𝑛 + 𝑘 

𝑟 + 𝜆
−  𝑦2 − 𝑥1 𝑛 −

 𝑦2 − 𝑥1 𝑘

𝜆
 

 𝑦2 − 1 𝜆𝑚𝑆𝐻
𝑟 + 𝜆 − 𝜇

−  𝑦2 − 𝑥1 𝑚𝑆𝐻 +
 𝑦2 − 𝑧2 𝜆𝛽4𝑆𝐻

𝑧2

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2(𝑧2 − 1)𝜍2

− 𝑦2 − 𝑥1 𝛽4𝑆𝐻
𝑧2

=
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
−
 𝑦2 − 𝑥1 𝜆𝑛 +  𝑦2 − 𝑥1 𝑘

𝜆
 



 55 

 
 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

=
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
−
 𝑦2 − 𝑥1 𝜆𝑛 +  𝑦2 − 𝑥1 𝑘

𝜆
 

I move all the terms to the left hand side and get an equation that is equal to zero  

 
 𝑦2 − 1 𝜆

𝑟 + 𝜆 − 𝜇
−  𝑦2 − 𝑥1  𝑚𝑆𝐻 +  

 𝑦2 − 𝑧2 𝜆

𝑟 + 𝜆 − 𝑧2𝜇 −
1
2
𝑧2 𝑧2 − 1 𝜍2

−  𝑦2 − 𝑥1  𝛽4𝑆𝐻
𝑧2

−
𝑦2 𝜆𝑛 + 𝑘 

𝑟 + 𝜆
+
 𝑦2 − 𝑥1 𝜆𝑛 +  𝑦2 − 𝑥1 𝑘

𝜆
= 0 

This is the equation for the optimal switching point 𝑆𝐻. It is identical to the equation I got 

when I used 𝐿1 𝑆𝐻 . 

Deriving of the equation for the optimal switching point 𝑆𝐿 

To find the optimal switching point between an active and a passive investment project when 

𝑆𝐿 <
𝑛

𝑚
 I use the equilibrium equation found in chapter 3.1. 

𝐿3 𝑆𝐿 = 𝐿4 𝑆𝐿 = 𝛽1𝑆𝐿
𝑧1 −

𝑘

𝜆
 

It is indifferent if I use 𝐿3 𝑆𝐿  or 𝐿4 𝑆𝐿  to derive the formula for the switching point 

because they are equal. I have used both to be certain that they give the same result.  

Deriving of the equation for the optimal switching point 𝑺𝑳 using 𝑳𝟑 𝑺𝑳  

The ordinary differential equation for 𝐿3 𝑉  gave this solution 

𝐿3 𝑆𝐿 = 𝑙31𝑉
𝑥1  

𝑙31 =
1

 𝑦2−𝑥1 𝑉𝑥1
  𝑦2 − 𝑦1 𝑙41𝑉

𝑦1 −
𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑉
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

  

When 𝑉 = 𝑆𝐿 the equilibrium equation is equal to the right hand side of the equation 

𝑙31𝑆𝐿
𝑥1 = 𝛽1𝑆𝐿

𝑧1 −
𝑘

𝜆
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I insert for 𝑙31  

𝑆𝐿
𝑥1

 𝑦2−𝑥1 𝑆𝐿
𝑥1
  𝑦2 − 𝑦1 𝑙41𝑆𝐿

𝑦1 −
𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

 = 𝛽1𝑆𝐿
𝑧1 −

𝑘

𝜆
 

 I multiply by both sides with  𝑦2 − 𝑥1  to remove the brackets  

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 −

𝑦2𝑘

𝑟 + 𝜆
+

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=  𝑦2−𝑥1 𝛽1𝑆𝐿
𝑧1 −

 𝑦2−𝑥1 𝑘

𝜆
 

I collect and draw together similar terms 

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1 𝛽1𝑆𝐿
𝑧1 =

𝑦2𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝜆
 

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +  

 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1  𝛽1𝑆𝐿
𝑧1

=
𝑦2𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝜆
 

I move all the terms to the left hand side and get an equation that is equal to zero  

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +  

 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1   𝛽1𝑆𝐿
𝑧1 −

𝑦2𝑘

𝑟 + 𝜆

+
 𝑦2−𝑥1 𝑘

𝜆
= 0 

This is the equation for the optimal switching point 𝑆𝐿. It is also a non-linear equation. There 

is no need to insert for 𝑙41  as it is dependent on 
𝑛

𝑚
 and not on 𝑆𝐿. In this equation 𝑙41  is only a 

constant. 

Deriving of the equation for the optimal switching point 𝑺𝑳 using 𝑳𝟒 𝑺𝑳  

The ordinary differential equation for 𝐿4 𝑉  gave this solution 

𝐿4 𝑉 = 𝑙41𝑉
𝑦1 + 𝑙42𝑉

𝑦2 −
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑉
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2
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𝑙42 = −
1

 𝑦2−𝑥1 𝑉𝑦2
  𝑦1−𝑥1 𝑙41𝑉

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑉

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑥1𝑘

𝑟 + 𝜆
  

When 𝑉 = 𝑆𝐿 the equilibrium equation is equal to the right hand side of the equation 

𝑙41𝑆𝐿
𝑦1 + 𝑙42𝑆𝐿

𝑦2 −
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝛽1𝑆𝐿
𝑧1 −

𝑘

𝜆
 

I insert for 𝑙42  

𝑙41𝑆𝐿
𝑦1 −

𝑆𝐿
𝑦2

 𝑦2−𝑥1 𝑆𝐿
𝑦2
  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

+
𝑥1𝑘

𝑟 + 𝜆
 

−
𝑘

𝑟 + 𝜆
+

𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

= 𝛽1𝑆𝐿
𝑧1 −

𝑘

𝜆
 

I multiply by both sides with  𝑦2 − 𝑥1  to remove the brackets  

 𝑦2−𝑥1 𝑙41𝑆𝐿
𝑦1 −  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 −
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
𝑥1𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝑟 + 𝜆

+
 𝑦2−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

=  𝑦2−𝑥1 𝛽1𝑆𝐿
𝑧1 −

 𝑦2−𝑥1 𝑘

𝜆
 

I collect and draw together similar terms 

 𝑦2−𝑥1 𝑙41𝑆𝐿
𝑦1 −  𝑦1−𝑥1 𝑙41𝑆𝐿

𝑦1 +
 𝑦2−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−
 𝑧1−𝑥1 𝜆𝛽1𝑆𝐿

𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1 𝛽1𝑆𝐿
𝑧1

=
𝑥1𝑘

𝑟 + 𝜆
+
 𝑦2−𝑥1 𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝜆
 

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +

 𝑦2 − 𝑧1 𝜆𝛽1𝑆𝐿
𝑧1

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1 𝛽1𝑆𝐿
𝑧1 =

𝑦2𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝜆
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 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +  

 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1  𝛽1𝑆𝐿
𝑧1

=
𝑦2𝑘

𝑟 + 𝜆
−
 𝑦2−𝑥1 𝑘

𝜆
 

I move all the terms to the left hand side and get an equation that is equal to zero  

 𝑦2 − 𝑦1 𝑙41𝑆𝐿
𝑦1 +  

 𝑦2 − 𝑧1 𝜆

𝑟 + 𝜆 − 𝑧1𝜇 −
1
2
𝑧1(𝑧1 − 1)𝜍2

−  𝑦2−𝑥1   𝛽1𝑆𝐿
𝑧1 −

𝑦2𝑘

𝑟 + 𝜆

+
 𝑦2−𝑥1 𝑘

𝜆
= 0 

This is the equation for the optimal switching point 𝑆𝐿. It is identical to the equation I got 

when I used 𝐿3 𝑆𝐿 . 
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Appendix C – Analyse of the Switching Points 

Because the equation for the optimal switching point between an active and a passive 

investment project, 𝑆𝐻, is non-linear, it will result in two switching. This is the case in all the 

scenarios in my analysis. I will refer to the different switching points as the lowest and the 

highest switching point. The switching points are shown in table 6. The lowest switching 

points when 𝑇 = 10 and 𝑘 = 2 are less than 
𝑛

𝑚
 and the equation for 𝑆𝐿 will therefore apply. 

When I use the lowest value for the switching point in the cases where expected time to 

completion changes, the switching point will lower when the expected time to completion is 

higher, and vice versa. This is shown in figure 8. This is not consistent with theory. When 

the expected time to completion is higher there is lower probability of completion, there are 

higher on-going investment costs, and the value of the investment project is lower. 

Switching to a passive investment project should occur at a higher value of the outcome. I 

find that the lowest switching point is not valid. When I use the highest switching point, the 

behavior is consistent with theory, see figure 6 in chapter 4.2. 

The same will happen when on-going investment costs until completion are higher; when 

using the lowest switching point, the switching point is lower when the on-going investment 

costs are higher, and vice versa. See figure 9. When the investment project cost more, 

switching to a passive state should happen at a higher level. This is the case if I use the 

highest switching point. 

The results from using the lowest switching point are inconsistent with theory, and my 

conclusion is that the lowest switching points are not valid. I choose always to use the 

highest switching points. 

Switching points 

 

Lowest Highest 

T = 5, k = 1, r = 5% 0,61 2,62 

T = 1 1,00 1,72 

T = 10 0,17 3,44 

k = 0,2 1,01 1,26 

k = 2 0,20 4,00 

TABLE 6: Comparison of the switching points 
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FIGURE 8: Value of the investment project when using the lowest switching point for different values 

of T. 𝑇 = 5 represents the base case scenario and has a switching point 𝑆𝐻
𝑇=5 = 0,61. When T = 1 the 

value of the investment project rises, and the threshold level also rises,  𝑆𝐻
𝑇=1 = 1,00. When T = 10 

the threshold level falls to 𝑆𝐿
𝑇=10 =0,17.  

FIGURE 9: Value of the investment project when the on-going investment costs until completion 

changes. k = 1 represents the base case scenario with switching point 𝑆𝐻
𝑘=1 = 0,61. When k = 0,2 the 

threshold level increases to 𝑆𝐻
𝑘=0,2

 = 1,01 and when k = 2 the threshold level drops to   𝑆𝐿
𝑘=2 = 0,20. 
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