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Abstract 

Using a newly available dataset about the unavailability of power plants and the in-feed of 

renewable energies to forecast day-ahead electricity prices at the German Power Exchange, 

this work shows that the predictive power increases considerably when including 

exogenous variables. While a similar univariate approach based on the year 2001 yielded a 

Mean Absolute Percentage Error of 13.2%, the use of the presented variables improved the 

forecasting error to 8.3%. Other findings of this work include that a model based on 24 

individual time series produces smaller forecasting errors than one time series which 

includes all consecutive hours, that the selection of the in-sample and out-of-sample 

periods varies greatly between different works and that the use of OLS seems to be 

underestimated in the existing forecasting literature for electricity prices. 
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1 Introduction 

As electricity markets become deregulated, the numbers of market participants at the 

power exchanges is increasing. To place reasonable bids, the participants have to build an 

own opinion about the future development of electricity prices at the spot market. There 

are several important factors which contribute to the settlement of electricity prices, for 

example the forecasted power consumption, the feed-in of renewable energies as requested 

by law, the price of input commodities like oil or emission certificates – and the 

unavailability of power plants. This thesis aims to work out the determinants of the 

electricity price and then use them to forecast electricity prices for the day-ahead electricity 

market. That way, the thesis also delivers an understanding for the importance of different 

variables for the electricity price. The data that will be used for this has to be published by 

the major utility companies due to an order of the regulation authority since about mid-

2009. Since the data in question is rather new, this thesis is among the first scientific works 

making use of it in an econometric context. 

The precise forecasting of electricity prices is of high importance for the market 

participants: First, market participants that own power plants have to adjust their bids to 

optimize the profit from their power plants. Second, market participants that have to buy 

electricity capacities need to decide whether on forward markets or at the spot market. 

Third, market participants are able to schedule the load of their power plants depending on 

the electricity prices that can be expected. 

Following the modelling approach established by Box and Jenkins, the thesis develops a 

number of Time Series models, including an ARIMA, ARIMAX, MGARCH and an OLS 

model. The models will be estimated using two sub-samples of the available dataset. The 

explanatory power of the different models will then be discussed upon their prediction for 

a respective off-sample subset of the dataset.  

Chapter 2 will introduce the specialities of electricity markets in general and show why the 

German electricity market is very relevant. The important determinants for the electricity 

price will be worked out. In Chapter 3, the availability of these variables will be checked 

and basic properties of the data will be explained. Chapter 4 starts with an overview of the 

available methodologies to model electricity prices and explain the chosen econometric 

models. Chapter 5 then presents the development of the models and the obtained results of 

the analysis. Chapter 6 concludes. 
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2 Determinants of the Electricity Price 

2.1 Introduction on Energy Trading, European Power 

Exchanges and Market Participants 

As the aim of this work is to increase the understanding of electricity prices, this chapter 

will review the theoretic concepts of power markets in general and the German power 

market in particular and draw conclusions on the variables which are necessary to model 

electricity prices with econometric methods. 

Today, electricity is a traded commodity but is different from other commodities like oil 

and gas in a number of aspects. The generation and consumption of electricity have to be 

balanced at all times to have a constant frequency in the grid. A continued imbalance of 

generation and consumption and the subsequent deviation from the grid’s target-frequency 

of 50Hz would end with the consequence of malfunction of electrical machines and 

blackouts. In addition, electricity can only be stored by means of converting it to another 

form of energy which comes at the cost of efficiency losses and in any case, these storage 

options are very limited. Because only one grid is economically feasible for a society, 

electricity transmission is a natural monopoly and needs to be controlled by regulatory 

authorities in order to enable fair market mechanisms. 

During the process of liberalisation, power trading activities across Europe have risen 

considerably. Within Europe, Germany is the largest economy and power market in terms 

of electricity consumption. Germany’s annual power consumption 2010 amounted to about 

590 TWh, with France taking the second place using about 510 TWh of electricity (RTE 

2011; BMWi 2012). The four largest electricity producers RWE, E.ON, Vattenfall and 

EnBW hold a generation capacity of about 80% of the German market according to the 

federal competition authority (Bundeskartellamt 2011). The high voltage grids are also 

operated by only four transmission system operators (TSOs). The relevant power exchange 

for the spot market is the “EPEX Spot” which covers the markets Germany, France, 

Switzerland and Austria and is connected to the Belgian, Dutch and the Nordic market via 

market coupling mechanisms. The borders to Poland and the Czech Republic have explicit 

auctions (Tarjei 2011). The EPEX Spot has 211 members (EPEX SPOT 2011b), including 

the major power utilities of central Europe, transmission system operators, local energy 

companies and municipalities as well as pure energy trading companies and banks. Small 
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companies which do not have direct access to the EPEX/EEX trading system can trade via 

separate accounts of other trading members. One main group of market participants are 

generators and retailers with intrinsic physical long or short positions, i.e. they have a 

certain customer base and a certain generation capacity and need to trade the difference on 

the power exchange. A second main group of market participants are pure traders and 

banks who typically aim to exploit prices differences to gain profit from arbitraging and 

take speculative positions. 

Being the biggest power market in Europe, the large influence of renewable energies along 

with still large shares of conventional energy production and a diverse structure of market 

participants makes the German electricity market a very relevant one for an econometric 

analysis of power exchanges. 

2.2 Power Generation and Demand Characteristics in 

Germany 

In this section, important determinants for the power price will be worked out for both the 

supply and the demand side of the market. Germany has a number of different technologies 

in use to generate electricity, each with different characteristics and dependencies towards 

the electricity price. Because of the balancing needs that have been described earlier, 

production is characterised by a mixture of heterogeneous types of power plants that have 

varying costs structures reflecting the need for flexibility. Base-load power plants usually 

operate for most of the time of the year and are characterised by high fixed costs and low 

marginal costs, while peak-load power plants are only used as needed and have 

comparatively low fixed costs but typically high marginal costs (Ockenfels et al. 2008). 

Before going into the details of production, it is important to understand the concept of 

marginal costs in the context of electricity production. The marginal costs of electricity 

production include mainly the fuel costs and other variable costs of production. In addition 

to this, the marginal costs consist of the opportunity costs that arise if the production 

resources are not used in the manner with the highest possible value. As Ockenfels 

explains, occasionally the marginal costs cannot be defined clearly. For example, this can 

be the case if there are so-called “complementarities” or “non-convexities”, which are 

caused by start-up costs. Start-up costs are incurred upon every re-start of a power plant. 

These include costs for heating-up the power plant, network synchronisation and the 

increased wear and maintenance costs due to the temperature fluctuations (Ockenfels et al. 
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2008). These cannot always be calculated precisely and thus marginal costs cannot be 

defined clearly. 

In the following, the different types of power plants in the German market will be 

presented as their properties are in turn an important determinant for the characteristics of 

the market. The most important power plants are those using rivers, wind and solar power, 

nuclear power, lignite and hard coal, gas and oil and finally pump storage power plants. 

When ordering power ascending order in terms of marginal costs, run-of-the-river power 

plants come first. These power plants are installed in large rivers like the Rhine River and 

make use of the constant water flow. They have very limited possibilities to store water 

and usually are operational around the clock as a typical base-load power plant. They have 

no fuel costs and little maintenance costs as they do not need constant supervision. These 

power plants can become unavailable in the event of low river levels or maintenance. 

Second, there are wind and solar power plants. Due to little marginal costs, these power 

plants will also run whenever possible but as opposed to run-of-the-river power plants they 

have a much bigger variability in their power generation due to fluctuating wind and cloud 

coverage. The electricity companies employ meteorologists to predict wind speeds and 

insolation and therefore the generated power. The German law requires the power 

suppliers to feed the electricity generated by solar and wind power plants into the grid and 

they can be disconnected only in the case of emergencies for grid control. Therefore, wind 

and solar energy cannot be put into either the base- or peak-load category. Germany’s wind 

and solar capacities have grown considerably in the last years due to high feed-in tariffs, 

with jumps in capacity taking place prior to changes in these tariffs (Tarjei 2011). 

Third, nuclear power plants generate electricity by the fission of radioactive molecules. 

Due to the high energy density of uranium they have little marginal costs once they are 

running, but it is considerably expensive and time-consuming to start and stop a nuclear 

power plant. However, it is possible to moderate the nuclear reaction by using the control 

rods and thereby control the power output to some extent. These characteristics make a 

nuclear power plant a typical base-load power plant. Unavailabilities can occur due to 

scheduled maintenances, which take about one month every year, low river-levels in 

summer and unscheduled shut downs out of security or political considerations. 

Fourth, lignite and hard coal power plants facilitate coal combustion to generate electricity. 

Through the oxidation of coal, CO2 gets produced which by itself is a natural climate gas 
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but contributes to the human-induced global warming due to the quantities humans exhaust 

of it currently. So called CO2-certificates are needed when one wants to run a coal power 

plant in order to make its use less attractive and motivate reduction of CO2. Coal power 

plants have less start-up and stop-costs than nuclear power plants but also need a couple of 

hours to reach full capacity. Modern coal power plants need less time than old ones as they 

are already designed for greater controllability needs. Also, coal power plants can be put 

into a standby-mode from which it can produce electricity on shorter notice than from a 

cold-start. Therefore, coal power plants have both base-load and to some extend peak-load 

usability. Unavailabilities can occur due to maintenance and also due to low river levels: 

Given low river levels, cooling might not be possible and ships might not be able to use the 

rivers for the transport of coal. 

Fifth, gas power plants are considered very efficient power plants as they have a high 

efficiency-factor. They exhaust less CO2 than coal power plants for a given amount of 

electricity but are considered more expensive than coal as per electricity produced, though 

prices have declined in the last years due to new discoveries in North America. They can 

start very quickly and therefore have good peak-load capabilities. Because gas is 

transported through pipelines, unavailabilities occur mostly due to maintenance. Transport 

interruptions of gas due to e.g. political decisions from Russia so far have not been an issue 

yet in Germany as there are plenty storage capabilities for gas from both tanks and the grid: 

Contrary to the electricity grid, the gas grid can be a storage in itself as one can increase 

the pressure of the gas. The gas price is often linked to the oil price in the long-term 

contracts between gas producers and the retailers, which was originally argued with the 

possibility of substitution between the two (Stern 2007). Oil power plants are similar in 

terms of usage to gas power plants but are only used in rare cases for peak-load purposes 

as oil is an expensive energy carrier and there are considerable CO2-emissions. 

Unavailabilities can occur for maintenances. 

Sixth, there are pump storage power plants which do have a free energy source but that can 

come with considerable marginal costs: due to their superior possibilities of both producing 

electricity on very short notice within seconds and the possibility to pump water up into the 

basin, they can be sold as “Primary Reserve” in a separate market, the market for ancillary 

services, which is needed from TSOs for very short-term generation capabilities. Pump 

storage power plants are peak-load power plants and have little unavailabilities for 

maintenance. Other generation facilities like biomass or geothermal energy do not play a 
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significant role yet. With their unique ability to “store” generated electricity for later use, 

they have the ability to smoothen prices: Electricity is used to pump up water to the top 

basin during low prices and then used to generate power again when prices are high. The 

smoothing price effect of water power can be observed in Nord Pool’s electricity prices, 

which are less volatile than prices on the EPEX due to high capacities of water power 

plants. The total composition of energy sources for 2011 in Figure 1 shows, that energy 

production is still dominated by fossil fuels with lignite having a share of 25% of total 

production and coal and gas having 19% and 14% respectively. 

 

Figure 1: composition of German Power Generation 2011, adapted from: BDEW 

(2012) 

When shifting the focus from the supply side to the demand side of the electricity market, 

Bourbonnais and Méritet (2008) work out several factors on why electricity demand has 

characteristics that are different from most other commodities. Electricity demand is highly 

inelastic as it is a necessary product with very limited substitutes. In Addition, the demand 

is highly dependent on unforeseeable factors like climate and weather conditions. Also, 

electricity displays seasonal patterns due to economic activity and weather conditions. 

Seasonality can occur on various levels, including an hourly, daily, weekly, or monthly 

seasonality (Bourbonnais & Méritet 2008). Differences in electricity demand between 

countries can subsequently occur due to variations in climate and weather and also in the 

composition of electricity buyers, namely how much electricity is needed from households 

and from different kinds of industry. In Germany, temperature is less important for total 

demand compared to other countries due to the relatively large dependence on industrial 
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activity of around 45% of total demand, the relatively little dependence on electricity for 

heating and few necessities for air conditioning (Tarjei 2011).  

As a last important determinant of electricity prices, there are to mention congestion issues 

that can occur at national or regional borders. Congestion means the limited grid capacities 

between two adjacent networks. The more congestion issues there are, the more important 

issues about market power within a region will be and the electricity price will be higher. 

The less important congestion issues become, the lower the electricity price will be in areas 

that originally had a high price (Lise et al. 2008). 

Through this analysis of the generation characteristics of the German electricity market, 

important variables for the price settlement could be determined: The composition of 

different base- and peak-load power plants, weather forecasts, the demand forecast, the 

amount of water power plants, interconnection capacities, planned and unplanned 

maintenance, the in-feed of renewable energies and the price of input commodities. These 

variables will be checked for availability and usability in the econometric analysis in 

Chapter 3. 

2.3 Traded Products and Relevant Markets 

For the purpose of this work, it is important to select the appropriate market and products 

for the econometric analysis. The two main marketplaces for day-ahead trading in 

Germany are represented by the power exchange EPEX Spot and electronic OTC trading.  

Due to its liquidity and number of market participants, the EPEX Spot is the central trading 

point of the German day-ahead power market. Currently, the daily auction for the next day 

takes place at 12.00 pm, on each day of the weak including statutory holidays (EPEX 

SPOT 2011a). Liquidity on the Intraday Market, which covers the period after the day-

ahead auction and the actual delivery period, is only a small fraction of the day-ahead 

auction and is only used for minor balancing purposes. Real time imbalances in the power 

system are balanced using generation units that can provide positive or negative primary, 

secondary and tertiary reserve energy under supervision of the TSOs. TSOs procure these 

types of reserve energy on separate markets (Johannes 2011). 

Contrary to exchange-based trading, OTC trading takes places directly between the 

counterparties and is often facilitated by broker companies. The transactions are either 

executed via electronic broker platforms or bilaterally via telephone. According to 
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Johannes, most day-ahead trading activities take place between 8 a.m. and 12 p.m. on the 

day prior to the delivery day. Johannes points out that the continuous OTC market is 

important for market players to hedge larger volumes prior to the exchanged based auction 

at 12 p.m. Thus, the OTC-market can be considered to be the last forward market before 

the final EPEX Spot exchange clears (Johannes 2011). According to Tarjei, most of the 

trading volume of German power is in the OTC market. Similar to the trading on the 

exchange, spot contracts require physical delivery while the futures market can be physical 

or financial (2011). However, even though a large volume of the power trades are made via 

OTC and thereby independently from the systems of the power exchange, the price 

settlement through the power exchange will serve as a reference point, from which 

continued price data is available in a standardized form. This is why an econometric 

analysis should be based on EEX data and not on OTC data.  

There is a range of spot price products with different hourly combinations that can be 

traded during the daily auction. Out of arbitrage considerations, the price of a product 

which includes a set of hours, e.g. a Base, Peak or Off-Peak contract, has to be equal to the 

sum of the individual hours. If this would not hold true, there would be riskless arbitrage 

opportunities for the market participants by shorting e.g. a high-priced product which has a 

combination of contracts, and closing the position again by buying the low-priced set of 

contracts. This “value additivity” not only holds true for the spot market, but also for the 

Futures market when one also considers the time value of money (Bjerksund et al. 2010). 

This means that by focusing on the individual hours for forecasting, the same conclusions 

can be drawn on the price of related products. 

Besides the day-ahead and intraday markets which are linked to the physical delivery of 

electricity, there are derivatives markets which are purely financial and in which contracts 

on future deliveries are traded. These consist of futures contracts for weekly, monthly or 

yearly delivery usually up to three years in advance. Besides regular futures contracts, 

there is a wide range of other derivatives like e.g. European, American and Asian Options 

which are traded either on the EEX or OTC. Many energy suppliers use the derivatives 

market for hedging purposes and close open positions so as to limit risks and secure a 

certain profit margin – giving up possible higher prices in return. The percentage of power 

that is already hedged in advance is determined through the individual hedging, where 

conservative strategies involve hedging up to 100%. 
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As Ockenfels et al. (2008) explain, even though a large part of the energy is traded in long-

term contracts and only a comparatively small part is traded day-ahead in the spot market 

auctions, it is sensible to concentrate the econometric analysis on the spot market. This is 

due to the fact that the “prices in all upstream electricity markets actually reflect the 

expected spot market price” and hence it is the spot price that determines “the costs of 

electricity even in the long run”. This becomes even more compelling when considering 

the special conditions the spot price is subject to, as it is linked to the physical aspects of 

electricity while the derivatives are not linked to physical constraints considering their 

purely financial nature. Because of the lack of storability of electricity, power exchanges 

require comparatively complex rules and regulations along with a careful consideration of 

numerous ancillary technical conditions in the generation and transmission of electricity. 

Ockenfels et al. (2008) point out that the spot market auction complies with these 

demanding requirements.  

2.4 Auction & Price mechanisms 

In the auction, both bid prices for an individual hour and block bids comprising several 

contiguous hours can be submitted. The maximum admissible bid price has to be between  

-3,000 EUR/MWh and 3,000 EUR/MWh for all contracts. This wide range is used as the 

power exchange does not want to constraint price formation. Allowing negative prices is 

due to the possibility of negative marginal costs for some power plants in times of low 

demand. For instance, in a time of low demand like a Sunday, most power is generated by 

base-load power plants that run 24/7. For a limited time and in special cases, it might be 

cheaper for the owner of a nuclear power plant to increase power consumption by offering 

money to a consumer, rather than to shut down the nuclear power plant and lose all the 

profits for remaining time until it becomes operational again. In this case, the owner of the 

nuclear power plant is willing to pay a price to someone who can consume the energy. 

Negative Prices have been observed on various occasions in the past. In the dataset that 

will be used later on, 48 of 16,776 hours had prices below 0 EUR/MWh. The market 

participants making use of this opportunity will most likely be the owners of pump storage 

power plants, who will use the abundant power to pump up water into their storage basin. 

The bids must be sent to EPEX Spot before 12PM on the day before delivery. Then, all 

bids are aggregated into supply and demand functions and converted into linearly 

interpolated sell or buy curves. The market price is established on the basis of the 

intersection of these supply and demand functions and thereby a market clearing price for 
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every hour of the following day is generated. Every market participant who supplies 

electricity during a given hour receives the respective price for that hour and every market 

participant who buys electricity during that hour pays that price. Since all participants have 

the same price, this mechanism is also referred to as the “uniform price auction”. In case 

the transmission capacity is not sufficient for the execution of the schedules determined in 

the auction, the market can be divided into price zones. However, this case has never 

occurred so far as the transmission system capacities within the trading area of EEX are 

currently sufficient compared to the quantities traded (Ockenfels et al. 2008). 

In theory and in practice, the resulting price is the marginal cost of the most expensive 

power plant from the group of least expensive power plants that are sufficient to cover the 

power demand. Figure 2 shows this “merit order”: power plants with the least marginal 

costs will be offered to the market at first because they will yield the highest profit. The 

rank of different technologies in the merit order can change as fuel prices change, i.e., gas 

and hard coal power plants may switch their respective ranks in the merit order when fuel 

prices change (Tarjei 2011). 

 

Figure 2: Merit Order of Power Plants, adapted from Skrivarhaug (2010) 

The merit order principle in theory allows for the possibility of exercising market power by 

withholding generation capacities, which is an issue widely discussed in public. By 

withholding a power plant, a market player with many other power plants can increase the 

profits of all other power plants on the market as the new settlement price increases 
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(Ockenfels et al. 2008). That way, another aspect in modelling electricity prices can be the 

concentration of market power among certain market participants. Market power can be 

measured in numerical terms, e.g. through the use of the Lerner Index or the Concentration 

Index (Möst & Genoese 2009). Other works use a comparison of the marginal costs and 

the electricity price (Müsgens 2004). However, to be able to determine the influence of 

market power in an econometric setting, the time horizon of the dataset has to be 

sufficiently large to cover different magnitudes of market power. Such an analysis could 

e.g. be done by using data from the years of the regulated electricity market in which there 

were monopolies and ranging to the times of the deregulated energy market which 

supposedly will exhibit more competition. A cross-sectional analysis within a given point 

in time over different industries will not yield sufficient results for market power, as 

different industries exhibit idiosyncrasies so that comparative statistics will not reveal 

information about market power (Vassilopoulos 2003). 

2.5 Role of Forecasts 

As Weron and Misiorek elaborate, extreme price volatilities have forced the market 

participants of the electricity market to not only hedge against volume risks but also 

against price risks in the electricity market. Thus, opinions about future price movements 

formed through forecasting have become a crucial input in decision making and strategy 

development. This accelerated research in modelling and forecasting electricity prices with 

differences in the used methodologies and the used horizon. Weron & Misiorek distinguish 

between short-term, medium-term and long-term price forecasting (Rafał Weron & 

Misiorek 2006). The objectives of the three categories differ. While long-term forecasting 

is used for investment profitability analysis and planning, like determining future sites or 

fuel sources of power plants, medium-term or monthly time horizons are used for balance 

sheet calculations, risk management and derivatives pricing. Short term forecasts are e.g. 

used by a company that adjusts its production schedule depending on the forecasted hourly 

pool prices and its production costs and thereby maximizes profits. Accordingly, for spot 

markets the short term forecasts are of main importance (R. C. Garcia et al. 2005; Rafał 

Weron & Misiorek 2006). Every major market participants who takes part in the auction of 

the electricity price in one way or the other will need to form an opinion about the future 

development of the prices so as to be able to determine a reasonable bidding behaviour. 

Statkraft for example heavily bases its decisions for “Energy Management”, trading and 

hedging on the findings from the analysis and forecasting unit (Skrivarhaug 2010). 
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3 Data 

In chapter two, the possible range of variables that have an influence on electricity prices 

have been worked out. Now, it is necessary to check these variables for availability for the 

public and to discuss their usability for econometric purposes. It will only be tried to obtain 

publicly available data. That way, it can be simulated what a 3rd party or a possible market 

entrant is capable of. Apparently, an existing electricity supplier will have superior data 

concerning its customer base than what is publicly available and thereby will be able to 

make more precise calculations on the electricity price. 

3.1 Available Data 

3.1.1 EEX: Spot Prices and CO2-Certificates 

 

Figure 3: Spot Price EEX in the available dataset, 11 values below -50 EUR/MWh 

omitted 

The spot prices are determined through the auctioning as described earlier and are 

available from EPEX on a per-hour basis, quoted in EUR/MWh. The data is available since 

2002, which was the start of the EEX after the fusion of the power exchange Frankfurt and 

Leipzig. Since other relevant data is only available since November 2009, this work will 

start using data on spot prices from this date on. The available data reaches until the 30th 

September 2011 and accordingly includes nearly two years. This sample size is similar to 

earlier works as can be seen e.g. in the compilation of Aggarwal (2009). In the sample, the 
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price ranges between -199.99 EUR and 131.79 EUR and has a mean of 46.48 EUR. Peak-

prices average at EUR 52.79 and off-peak prices at 40.16 EUR. Table 1 reveals 

considerable differences between the hours, especially the high values for the kurtosis in 

the morning hours will lead to interesting results in the forecasting performance. 

 

Table 1: Summary Statistics for the 24 Spot Price Hours 

The EEX also determines the price for CO2-certificates, which is done on each weekday 

since 2005. In the available dataset, the price has a mean of 14.24 EUR/t. For the use of 

this work, the price of Fridays has been assumed for Saturday and Sunday as CO2-

certificates are not quoted on the weekend. 

Electricity prices exhibit a phenomenon which is called spikes or more general: outliers. In 

some rare events, e.g. when cross-border capacity is remarkably low due to maintenance, 

Hour Mean Std. Dev. Skewness Kurtosis

1 39.1 10.9 -4.9 67.3
2 35.4 12.0 -3.7 42.0
3 32.1 13.4 -3.1 28.7
4 29.5 15.1 -4.2 44.6
5 30.3 13.0 -2.6 27.4
6 34.2 12.8 -3.1 32.0
7 40.2 17.3 -4.6 56.3
8 48.6 19.1 -3.7 43.6
9 52.1 16.4 -2.1 20.0
10 53.8 13.1 -0.9 6.5
11 54.7 11.7 -0.5 4.1
12 56.1 11.3 -0.3 3.8
13 54.3 10.5 -0.4 3.7
14 51.5 11.5 -0.6 3.9
15 48.2 12.1 -0.6 4.2
16 47.5 12.0 -0.6 4.4
17 47.9 11.8 -0.4 5.0
18 53.4 13.7 1.0 7.8
19 56.9 12.2 0.8 6.2
20 55.9 10.7 0.3 3.2
21 52.5 9.7 0.1 2.9
22 48.6 8.3 0.1 3.2
23 48.6 7.4 -0.1 3.4
24 42.8 8.6 -2.4 21.3

all hours 46.48 15.2 -1.5 19.5
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there is extraordinarily high wind in-feed or there are very low river levels, exceptionally 

high or low prices might occur. Some works filter the data by removing outliers, thereby 

reaching a smaller forecasting error. Since observations cannot be simply removed in a 

time series dataset, outliers can be filtered by capping the values at a certain threshold or 

using an average value instead of the outlier. Other works specifically focus on forecasting 

these exceptional events, like Christensen et al (2011) and Trueck (2007). In order to stay 

comparable with earlier works, ensure reproducibility and make the results more realistic, 

outliers have not been removed in the current analysis. 

3.1.2 Transparency: Availability of Generation Capacity, Wind- and 

Solar Feed-in 

Due to European and national regulations, large power suppliers have to publish “market-

relevant” information considering generation and consumption of electricity since 2009. 

The EEX publishes this data as a service for these companies on a central website after 

checking the data for plausibility, anonymizing it to some extent and aggregating it. Not all 

the owners of power plants have to publish this data, but about 91% of all generation 

capacity was available on this website at the time the data was downloaded (EEX 2011). In 

addition to being required by law to publish certain data, some power suppliers publish 

more data on a voluntary basis. The published data on the transparency website contains: 

the planned and unplanned unavailabilities of power plants, the planned and actual in-feed 

of solar/wind energy along with the planned and actual generation of conventional power 

plants. 

The planned unavailability of power plants can be e.g. scheduled maintenances, which are 

known up to several years in advance. Periods of unplanned unavailability can be due to 

emergency situations or low river levels that forces thermal power plants to shut down 

because of environmental concerns and regulations. An unavailability is stated as a time 

frame, e.g. the data set contains the information that 144 MW of a coal power plant within 

Germany is being unavailable between 4.11.09 18:00 until 9.11.09 5:00. To use the data in 

this work, the amount of unavailable power for the various types has been calculated for 

each individual hour of the dataset. In cases where unavailabilities are stated to start at 

some point within an hour, e.g. 18:25, the unavailability will be counted in the dataset from 

the next full hour, i.e. 19:00. As has been discussed, it will take some time for a power 

plant to start and stop operation in practice so the decline of power being generated will be 

rather smooth than sudden. As an example, the non-scheduled unavailabilities are shown 
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for nuclear power for the whole data-sample in Figure 4, which includes the decision to 

shut down nuclear power plants in the aftermath of the Fukushima-catastrophe.  

 

Figure 4: Non-scheduled unavailability for nuclear power plants in MW 

The solar and wind in-feed is stated as induced power per each 15 minutes. To use the data 

in this work, the 4 quarters have been averaged to calculate the amount of MWh that is 

generated within one hour. The data for solar in-feed is not available until the 19th of July 

2010 because the data has not been published on the transparency platform until that date 

and is noted as zero in the current dataset until that point in time. 

As has been worked out in the preceding chapter, the expected demand in a given hour is 

an important variable in determining the electricity price. The total demand itself is not 

published on the transparency website. However, generation has to follow demand in an 

electricity grid and for that all the necessary information is given on the transparency 

website: There is the information about the total power generated from conventional power 

plants and the power generated from wind and solar is known as well. Not known are 

transmission and distribution losses, the power generated by smaller power producers that 

are not obliged to publish data on the transparency website, and small, decentralised power 

generation like industrial autogeneration, geothermal or block heat and power plants 

(Burger et al. 2007). However, this shouldn’t have major consequences for the price 

formation on the power exchange within the framework of a statistic model as it can be 

expected that the remaining demanded capacity should follow the same trends which the 
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available data exhibits. Therefore, there are sufficient replacements for total power demand 

in the transparency data. 

 

Figure 5: Comparison of Spot Prices, load and Feed-in of renewables 

In total, the data published on the transparency website adds significant information that 

can be used for econometric analyses that has not been available for earlier works. 

Actually, many earlier works recommend to re-estimate their findings with exactly the data 

that has now been published on the transparency website, e.g. Swider & Weber (2007) and 

Garcia et al. (2005). Figure 5 shows an example of the explanatory power of this data: 

Periods of high wind are accompanied with drops in the generation of both conventional 

power and the spot price. 

3.1.3 Remainder: Weather, Oil-Price, Transmission Capacity and River 

Levels 

As weather plays an important role in energy consumption, temperature is included in the 

dataset (e.g. Huurman et al. 2010). The data has been obtained from DWD, Deutscher 

Wetterdienst. Because the purpose of this work is to forecast day-ahead electricity prices, 

forecasts should have been obtained: However, due to availability reasons, only actual 

temperature data has been incorporated. That way, the implicit assumption is made that on 

average, the forecasted temperatures for the next day are exact. Weron & Misiorek (2008) 
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use the same assumption when they calculate an arithmetic average of big cities within the 

examined market to have a proxy for the average air temperature of the whole region. 

However, as only daily data for Frankfurt am Main was available for the use of this work, 

it has become the weather-data that is used as a proxy for the general temperature in 

Germany. Still, this produces significant estimates which will be shown later because 

Frankfurt is a rather central city. 

In order to keep the number of variables that are used for the econometric analysis in a 

reasonable size, the oil price is used as a common proxy for the price of the input energy 

carriers like coal, gas, oil, and uranium. This seems reasonable due to the connection of oil 

and gas price through long-term contracts. For coal, there are many different prices 

depending on quality and origin and therefore there is no “one” price that can simply be 

added. According to Tarjei (2011), “Brent” is the relevant oil price for Germany as it is the 

crude oil blend from the North Sea. The oil price data is obtained from Thomson Reuters 

Datastream in USD per Barrel. Since the oil price is only listed for weekdays, the oil-price 

from Friday has been assumed to stay constant over the following weekend.  

Another important issue for the determination of electricity prices can be congestion issues 

within the market or at its connections to other markets. Considering the auction of the 

electricity price, the internal transmission capacity has not yet lead to differences in 

pricing, even though the limited transmission capacity from Northern to Southern Germany 

has already led to various challenges for the TSOs. Transmission constraints are built into 

the auctioning system of EPEX Spot and there is the theoretic option of zonal prices but 

this has not yet occurred in the auction for the German electricity market. Accordingly, 

transmission constraints are not an issue right now for a statistical approach considering 

the forecasting of electricity prices but might be an issue in future in case wind production 

keeps increasing in northern Germany and the grid capacity cannot keep up with this 

increase. However, collecting the respective data will be difficult because congestions are 

not part of the transparency-system so far and the various congestion points differ in who 

manages them and whether they are part of the EPEX auction or auctioned separately. 

As McDermott & Nilsen (2011) show, the river levels also have an influence on electricity 

prices. However, considering the sample size of about two years and the number of 

variables already included in this analysis, the river levels have not been obtained both due 

to availability and also to reduce risks of overspecification. As a proxy, temperature is 
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included as it is somewhat correlated with the river levels which are especially low in 

summer (McDermott & Nilsen 2011). 

 

Table 2: Summary statistics for the dataset 

In total, the dataset compromises 16,776 observations from the 1st of November 2009 to 

30th September 2011 where each observation represents one hour and includes information 

about the spot price, the price for CO2-certificates, Crude Oil, temperature, planned wind 

and solar feed-in, the planned and unplanned non-availabilities for the different kinds of 

power plants and the total planned power generation for all other power plants that are part 

of the EEX transparency system. The resulting summary statistics are shown in Table 2. 

Three hours in the dataset are affected by the changes to and from Daylight Saving Time. 

In order to have a complete dataset without any gaps, the mean of the hour before and the 

hour after has been used for values that are missing during these hours. 

Variable Obs Mean Std. Dev. Min Max

Spotprice 16,776 46.5 15.2 -200.0 131.8
emissionprice 16,776 14.2 1.4 10.4 16.8
CrudeOilBrent 16,752 91.7 17.4 70.7 125.4
temperature 16,776 11.0 7.9 -12.2 28.5

non-usability planned lignite 16,776 1,915.3 1,220.8 0.0 5,916.0
non-usability planned gas 16,776 1,639.5 1,024.1 0.0 5,193.0
non-usability planned oil 16,776 230.9 239.3 0.0 1,658.0
non-usability planned pump-storage 16,776 537.0 442.2 0.0 2,320.4
non-usability planned coal 16,776 2,246.1 1,587.8 0.0 7,963.5
non-usability planned uranium 16,776 2,274.9 2,119.9 0.0 10,978.4
planned non-usability total 16,776 8,926.0 4,878.8 0.0 23,002.5

non-sched. non-usability lignite 16,776 1,148.1 713.0 0.0 4,684.0
non-sched. non-usability gas 16,776 486.2 415.8 0.0 2,334.0
non-sched. non-usability oil 16,776 13.9 74.5 0.0 772.0
non-sched. non-usability pump-storage 16,776 65.0 109.9 0.0 900.0
non-sched. non-usability coal 16,776 1,059.7 628.9 0.0 4,121.3
non-sched. non-usability uranium 16,776 1,077.6 1,647.1 0.0 6,220.1
non-sched. non-usability total 16,776 3,852.7 2,122.4 0.0 11,245.3

Planned Generation Capacity 16,776 44,667.4 8,342.1 20,714.0 67,666.2
Actual Generation Capacity 16,776 41,621.2 7,868.3 21,453.4 63,781.0
solar infeed plan 10,536 2,037.3 3,074.3 0.0 13,982.7
wind infeed plan 16,776 4,530.9 3,769.6 234.8 22,661.0
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3.2 Properties of the Electricity Spot Price 

In this section, the most relevant of the available variables, the spot price data, will be 

examined for a number of statistical properties that are important for econometric time 

series modelling. Some of the variables like CO2- or oil-prices might exhibit special 

properties as well but examining them as well apparently would be outside the scope of 

this work. 

3.2.1 Autocorrelation 

Autocorrelation is the correlation of a given variable with itself, most commonly with 

values earlier in time. This is an important feature of many time series compared to a cross 

sectional analysis as, at least in an economic context, a value will often depend on its 

earlier value and will not be randomly distributed.  

 

Figure 6: Correlogram of the spot price, full time horizon 

Autocorrelation can be visualised by using a correlogram which will plot the correlation of 

a variable given its lagged values as can be seen in Figure 6, which shows a plot of the full 

time series of the electricity prices against its own lagged values. Clearly, electricity prices 

have a strong autocorrelation towards the same hours of the former days, which is why the 

correlogram shows a peak at the marks at each 24 hours. All peaks lie outside the shaded 

area that represents the 95% confidence interval. There are also high correlations within 

the same day, which can be seen for the first lags. However, these correlations cannot be 
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used for the purpose of forecasting electricity prices as they won’t be known beforehand: 

All 24 hours of one day are auctioned simultaneously. 

3.2.2 Stationarity 

A time series exhibits stationarity, when the joint probability distribution remains stable 

over time and consequently also mean and variance do not change over time. A time series 

which does not have these characteristics is called non-stationary. The assumption of 

stationarity is needed for time series analysis because otherwise the relationship between 

two variables would change arbitrarily and one could not track correlations between the 

two in a regression analysis. Using non-stationary time series in a regression analysis can 

be risky as one might compute significant correlations even though there are none as both 

variables increase independently from each other. This is called a “Spurious Regression”. 

Non-stationarity is especially problematic in combination with highly persistent time 

series. A time series is highly persistent when it has a long memory towards even small 

shocks and therefore does not return to its former mean or variance, thereby becoming a 

non-stationary process (Verbeek 2008).  

To test for stationarity and highly persistent time series, one can use a graphical analysis, a 

correlogram or the dickey fuller test. The dickey fuller test has the H0 that the time series 

has a unit root and therefore is non-stationary. This H0 is rejected at the 99% level for all 

24 hours of the dataset when tested with the full time horizon, i.e. the time series does not 

exhibit non-stationarity in general. However, when examining periods of a shorter length 

of only about 50 days and for some off-peak hours in the dataset used for this thesis, 

stationarity can be a problem as the H0 of a dickey fuller test cannot always be rejected at 

high confidence levels. This could be the reason why some other authors explicitly 

examine issues connected with non stationarity on German electricity prices, as does Liebl 

(2010) for example  

3.2.3 Heteroscedasticity  

A sample exhibits heteroskedasticity, when the variance of the error term changes 

depending on the explanatory variables. When estimating the coefficient by the use of 

OLS, one has to use heteroskedasticity-robust standard errors so that the standard errors 

and, consequently, the t- and F-scores remain valid. The estimates of the coefficients 

however will remain unbiased also in the occurrence of heteroskedasticity (Wooldridge 

2008). 
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To test for heteroskedasticity, there are for example the White test, the Breusch-Pagan test 

or graphical tests. The White test basically consists of estimating the explanatory variables 

against the error term u as the explained variable. Should any of the explanatory variables 

turn out to be significant, one has to reject the H0 that the error term is homoscedastic. 

Using the OLS-regression that will be presented later in conjunction with a white test for 

the full time horizon, the H0 of homoscedasticity has to be rejected for every individual 

hour of the dataset at the 99% significance level besides hour 14, where the H0 is rejected 

with a 97% significance level according to the chi-square distribution. The Breusch-Pagan 

/ Cook-Weisberg test for heteroskedasticity yields the same conclusion with a 99% 

significance for all hours. The difference in the significance level for the two tests could be 

due to the fact that the White test uses a relatively large number of regressors and therefore 

uses many degrees of freedom (White 1980; Wooldridge 2008).  

The findings match with those of earlier works that describe electricity prices to exhibit a 

“nonconstant mean and variance” (R. C. Garcia et al. 2005) and significant 

heteroeskedasticity (Swider & Weber 2007). 
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4 Estimation Models and Methodology 

4.1 Overview of available Models 

Many different models are used in the literature to forecast electricity prices. Aggarwal et 

al. (2009) describe Game Theory models, Simulation models and Time Series models 

which are divided between parsimonious stochastic models, regression models and 

Artificial Intelligence models. 

Game Theory Models try to model the strategies of the market participants and identify a 

solution of those games. A key point is the analysis of the strategic market equilibrium, 

which can be based on models like the Nash equilibrium, the Cournot model and others. 

As Game Theory Models require many assumptions, solutions can vary widely between 

different models (Haili Song et al. 2002; Cunningham et al. 2002; Aggarwal et al. 2009). 

Simulation Models, also described as Fundamental Models, try to build an exact model of 

the system and the solution is found using algorithms that consider the physical 

phenomena the process is bound to. This mimics the actual dispatch with system operating 

requirements and constraints. As Tarjei (2011) explains, the supply and demand side of the 

electricity market are described and the price at which the two curves intersect is 

calculated. This price then “equals the marginal cost of the marginal power plant supplying 

power”. Fundamental models are used by utility companies as they have access to 

extensive datasets, e.g. Statkraft uses purely fundamental modelling in the spot market and 

forecasts the hourly dispatch for each of approximately 2500 modelled power plants in 

Europe (Skrivarhaug 2010). These models can provide detailed insights into the system 

prices though suffer two major drawbacks: First, they require detailed system operation 

data and second, the simulation methods are complicated to implement and the 

computational cost are very high. Furthermore, Simulation models make the assumption 

that a “fair” value will emerge, which can neglect market trends (Aggarwal et al. 2009). 

Time Series analysis focuses on the past behaviour of the observed variable. There are 

models like multiple regression, autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA), autoregressive integrated moving average 

(ARIMA) and generalized autoregressive conditional heteroeskedasticity (GARCH) 

models. Normally these are univariate, i.e. focusing only on one variable and its passed 

values but can also be extended with exogenous variables, then being called multivariate 
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models. Besides these “parsimonious stochastic” time series models, there are also so 

called Artificial Intelligence models. According to Aggarwal et al. (2009), these 

nonparametric models “map input-output relationships without exploring the underlying 

process”. AI models are said to have the ability to learn complex and nonlinear 

relationships that are difficult to model with conventional methods. However, as Weron & 

Misiorek (2006) point out, these models are not intuitive and don’t have a simple physical 

interpretation attached which makes understanding the power market’s behaviour difficult. 

An additional method to forecast spot prices is examined by Redl et al. (2009). In theory, 

when assuming an efficient market hypothesis, the forward price should be a reasonable 

indicator for the upcoming spot price. However, these approaches do not allow the 

development of an own opinion and can be influenced by speculations. Redl et al. find 

questionable results on the predictive power of forward prices as the trading strategies of 

the market participants actually seem to rely on the spot price: spot prices can be explained 

well by their own lagged prices whereas lagged forward prices do not significantly 

influence spot prices. The weak predictive abilities of futures are supported by findings 

from Hipòlit Torró (2007). Accordingly, one of the other methods described earlier is 

necessary to make an own forecast of spot prices possible. 

For the purpose of this thesis, parsimonious time series models are the most suitable. 

Contrary to Game Theory Models, they need fewer assumptions because they can rely on 

more actual data and are therefore easier rooted to the examined circumstances. Yet, they 

do not need as much data as fundamental models which basically try to simulate the 

complete market conditions. Compared to Artificial Intelligence Models, the results of 

time series models will still be intuitive and accessible for interpretation. Drawbacks of 

Time Series Models are the reliance on past data for forecasting: Per definition it is not 

possible to forecast completely new market developments. In Addition, it is unlikely to 

precisely forecast extreme events, as a forecast based on past data will have a tendency 

towards the mean. These two issues might be tackled by sophisticated fundamental models.  

Thus, a number of stochastic time series models will be used for this analysis and 

discussed in more detail in the following. The most common approaches for time series 

modelling of electricity prices are a multiple regression using Ordinary Least Squares, and 

autoregressive moving average models along with conditional heteroskedasticity models 

using Maximum Likelihood estimation.  
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4.2 Time Series 

4.2.1 Multiple regression and Ordinary Least Squares 

The most common method to analyse time series is a multiple regression analysis and 

using “Ordinary Least Squares” (OLS) to estimate the coefficients. OLS computes the 

coefficients by minimizing the squared residuals between the observations and a fitted line. 

In the following, a “multiple regression” is always meant to be estimated with OLS. 

The Gauss-Markov Assumptions for time series regressions, which need to be met for a 

multiple regression OLS analysis, are: First, that the stochastic process follows the linear 

model  

�� = �� + ����� +⋯+	����� + ��, 
where y is the explained variable for time period t, �� are the coefficients of the 

explanatory variables �� and �� is the error term for t. Furthermore, the assumptions 

require that there is no perfect collinearity and that the error term u has an expected value 

of zero for any value of the explanatory variable in any given time period. If these first 

three assumptions hold, it can be shown that the OLS estimators are unbiased (Wooldridge 

2008). Additionally, if the variance of the error term u is the same for all time periods and 

does not depend on any of the explanatory variables and the errors of two different time 

periods are uncorrelated for all explanatory variables, the OLS estimators can be shown to 

are “BLUE", the best linear unbiased estimators depended on the explanatory variables 

(Wooldridge 2008). 

Electricity prices exhibit heteroscedasticity. This means that even though the estimation of 

the coefficients will still be correct, the standard errors and therefore the t-statistics will be 

biased. This will be corrected by using “robust” standard errors. 

4.2.2 ARMAX and Maximum Likelihood 

Many works in the field of forecasting day-ahead electricity prices with econometric 

methods rely on special time series models like ARMA which will be explained in this 

chapter and GARCH, which will be explained in the next. ARMAX is a special time series 

model that includes both an autoregressive term (“AR”), a moving average term (“MA”) 

and additional exogenous variables (“X”). While the nature of autoregression has already 

been explained in Chapter 3.2., it is necessary to point out what the notion of a moving 
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average is about: While autoregression captures correlations of the dependent variable with 

its own former values, the moving average component of the ARMAX model captures past 

deviations or shocks of the dependent variable and its own lagged values. These could be 

e.g. due to trends, a seasonality, or variables which are captured by neither the 

autoregressive term nor the exogenous variables. Thus, the moving average term is useful 

in describing time series in which events have an immediate effect that only lasts a short 

period of time (Wei 1990). Another addition that can be done in this context is the 

differencing of adjacent observations, which is helpful to in order to cope with stationarity 

issues. Then, the incremental development of the data is observed instead of the absolute 

values. In this case, the model is called an ARIMA model, the “I” standing for 

“integrated”, because after the estimation of the models the data needs to be integrated to 

reverse the initial differencing.  

An ARMA approach differs from a “standard” multiple regression in two ways: While an 

AR term still can be explicitly modelled in a multiple regression analysis, the moving 

average term cannot. In addition, the estimation of the coefficients is not done using 

ordinary least squares but rather a maximum likelihood routine, because a non-linear 

fitting procedure is necessary. The reliance on ARMA and related models by the existing 

time series literature is believed to be also partly due to historic reasons; when 

autocorrelation was considered a nuisance when it was not modelled explicitly in the OLS 

model and that way standard errors were wrong and the estimates no longer efficient 

(Golder 2007).  

When looking at a more formal definition, there are disturbances 
� which are defined to 

be the error after fitting and can be calculated through 
� =	��� − �� where ��� 	is the 

predicted and �� the actual price at time step t. The ARMA model is based on the 

assumption that the error term follows a white noise process, generally assumed to be 

normally distributed with the form 
� = �. �. �. ���, ���. The time invariant parameters 

mean � and standard deviation � can be estimated by maximizing the log-likelihood 

function. In the ARMA(p, q) model the relation between the observations �� and the 

disturbances 
� is given by  

�� =	��� + 
� =	� ∝� �����
��� +	���
��� 

��� + 
� 



Estimation Models and Methodology 33 

 
(Swider & Weber 2007). The model is based on considering previous values of the process 

as a combination of an autoregressive (AR) and a moving-average (MA) part, where the 

AR part has the order p and the MA part the order q. In this notation, p is referring to the 

number of previous values of �� and q is referring to the number of previous values of the 

disturbances 
�. The ARMA(p, q) model may then be extended by additional consideration 

of exogenous variables ��,� with which the model then can be described as  

�� =	��� + 
� =	� ∝� �����
��� +	���
��� 

��� +�!���,�"
��� + 
� 

where r describes the number of exogenous variables and the model can then be referred to 

as ARMAX(p, q, r). The parameters ∝�, �� and !� can then be estimated by maximizing 

the log-likelihood function (Swider & Weber 2007).  

As Enders explains, the Maximum Likelihood (ML) estimation uses the following 

principle: If values of {
�} are drawn from a normal distribution with a mean of zero and a 

constant variance �², from standard distribution theory the likelihood &�	of any realisation 

of 
� would be 

&� = ' 1)2+�², -�. '−
��2�²,. 
As the realisations 
� are independent from each other, the joint realisation for all values of 

t is the product of the individual likelihoods. Hence, given the same variance for all 

realisations, the likelihood for the joint realisation is 

& =/' 1)2+�², -�. '−
��2�²,0
��� . 

The method used in maximum-likelihood estimation is to select the distributional 

parameters so as to maximize the probability of drawing the observed sample (Enders 

2010). As a simple example, 
� could be generated from the model  


� =	�� − ��� 
Accordingly, maximizing the log-likelihood function would involve solving for the values 

for �� and �. 
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Literature is not clear if one has to correct for heteroscedasticity to get correct test 

statistics, so as a precaution, robust standard errors will be used in the following when 

estimating the models. Earlier works that forecast electricity prices using ARMA 

techniques usually did not state explicitly that robust standard errors are used. Even though 

this does not influence the outcome of the forecasts, it can be a factor in the development 

of the forecasting models, when the significance of the coefficients needs to be evaluated. 

4.2.3 GARCH and Maximum Likelihood 

Electricity prices have the special property that large price changes are often again 

followed by large price changes. For example, in the case of little demand and large wind 

in feed, prices will fall abruptly but when this special situation is gone, prices will change 

by a similar magnitude to the original level again (“Mean Reversion”). 

By applying a GARCH approach, this conditional heteroscedasticity can be considered. 

Conditional heteroscedasticity means a time variant variance �� t in which large changes 

tend to follow large changes, and small changes tend to follow small changes, which is 

described as the volatility clustering. GARCH(p, q) models are designed to capture this 

changing volatility by calculating the variance in the following way: 

��� = 	1 +	� ∝� ������
��� +���
���� 

��� 	 
Accordingly, the time variant variance is described with a constant part ω, an AR-part of 

order p and a generalized MA-part of order q. A necessary condition is that the variance is 

positive at any time step t, i.e. that 1 > 0, 	4� ≥ 06	 and 	�� ≥ 0. The GARCH term will 

be included in a regular ARIMA model to model the white noise 
� and the parameters can 

then be estimated by maximizing the log-likelihood function. As the name indicates, 

GARCH is a more generalized version of the ARCH model for which Robert F. Engle 

received the Nobel Prize in Economics 2003. In the ARCH model, the volatility is only 

depended on the realisation of the error term in the previous period(s) and not also on its 

own realisation in the previous period(s). Accordingly, a GARCH(0,1) model is the same 

as an ARCH(1) model. A GARCH model that makes use of exogenous variables is called 

an MGARCH. In the estimation of the GARCH model, no heteroskedasticity-robust 

standard errors will be used as the model explicitly models the variance (Swider & Weber 

2007; Enders 2010). 
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4.3 Methodology for Model Estimation 

The usage of an ARIMA or GARCH model for forecasting can be facilitated by following 

the Box-Jenkins Methodology. This is a three-stage method which is divided into the 

identification stage, the estimation stage and the diagnostic checking stage. First, one will 

visually examine the time series by plotting the variables, the autocorrelation function and 

the partial correlation function. This will allow to check for trends and missing values and 

give a first grasp for plausible models, e.g. for the number of lags which will be necessary 

to develop a model with a good fit. Then the tentative models will be estimated and 

checked for a good fit, which will be done in this work by the forecasting performance for 

the two out-of-sample periods (Enders 2010). Forecasting time series has often been 

described as “more art than science”, since there are many different approaches and the 

aims for modelling can be very different (Burman & Shumway 2006). In this work, the 

focus will lie on developing a model that can be used for forecasting. 

The statistical hypothesis testing will mainly include the t and z-tests of the individual 

variables. The t-test basically sets the estimated coefficient in relation to the standard 

deviation and in connection with an assumed distribution can make inferences on the 

statistical significance of the coefficient. The z-test is a quite similar test and is used 

instead of the t-test for the ARIMA and MGARCH mode due to slightly different 

assumptions about the standard deviation (Gaten 2000). 

To measure how well the model forecasts the spot price when it is out-of-sample, the Mean 

Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) will be used. The 

MAE is the average of the absolute Forecast Errors: 

789 = :���;<�,=> − <�;0
���  

where t and T is referring to the number of hours that are forecasted and t=1 is the first 

hour of the out-of-sample period (Wooldridge 2008). Accordingly, the MAPE is defined as 

78<9 = :���?<�,=> − <�<� ?0
���  

Following other works, also the Root Mean Square Error (RMSE) will be shown: 
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@7A9 = B:���C<�,=> − <�D�0
���  

Due to the quadratic term, the RMSE is usually more sensitive towards outliers and 

therefore usually has a higher value then the MAE. These three measures are widely used 

in the corresponding literature and so both the possibility for evaluation of the results and 

the comparability with other works is ensured (Aggarwal et al. 2009). 

4.4 Time Horizon 

Since the purpose of this work is to develop a forecasting-model, in-sample and out-of-

sample subsets are created: The first subset is used to estimate the model parameters, and 

the forecasting abilities of the model are then evaluated using the out-of-sample subset. 

There are different ways to define the estimation window. First, there is the “Rolling 

Window” technique, in which a specified number of observations is used to make the 

model estimation. When one day passes, the estimation window is moved one day forward 

and the same number of observations is used to estimate the model and the new day 

replaces the oldest day of the subsample. In this model, both the starting date and the 

ending date of the estimation window are variable. In the “Jackknife” model, the 

estimation window is extended with each new day that can be included in the dataset, i.e. 

the starting date is fixed but the ending date is variable. The third way is to have a fixed 

calibration period and use the estimates from this calibration period to estimate all the days 

of the out-of-sample period. The existing research uses mostly this last way because the 

forecasting periods normally are not longer than a month and the estimates of the 

coefficients should not change drastically by changing the sampling size by a small 

number of days. The tests that have been done with the dataset showed that changing the 

sample size was leading to fluctuations in the area of about 0.4%-points regarding the 

average MAPE. As a optimization of this magnitude doesn’t justify the extensive 

additional computation time necessary for “Jackknife” or “Rolling Window” estimations, 

the third way of a fixed sampling will also be used in this work, as it has been used in other 

works before (Dias 2010). 

Another question that arises considering the time horizon of the data is how to model the 

individual hours of the day. In the spot price auction of the daily prices, the prices for each 

hour are simultaneously determined on the day before at noon. Accordingly, the 
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participants get to know the prices for all hours simultaneously – That means that it is not 

possible to forecast e.g. hour 10 by using information from hour 9, since the prices for hour 

9 and 10 will be published together. Accordingly, every model that will be used in this 

work has to be refined in a way that only the realistically available data is considered in 

order to effectively simulate the forecasting process. To include this consideration into the 

econometric model, one could either use lags that are larger than the number of the 

currently estimated hour or it could be done by estimating each hour dependently and using 

lags of one, thereby referring to the day before. The second option which produces 24 

independent time series has been used by Cuaresma et al. (2004) and, as it turns out, 

produced more precise forecasts than modelling the electricity prices as one single time 

series. This could be confirmed in preliminary datasets with this sample and additionally it 

has been found that the computation time decreases when only individual hours and 

autoregressive lags in the magnitude of 1 are estimated against the estimation of the 

complete sample and the respective lags in the magnitude of 24, which might also be due 

to the amount of exogenous variables that are included. While the estimation time on the 

used system, an Intel i7 processor with 2.7 GHz using STATA, is a few minutes for the 

individual hours, all hours taken together needed more than 60 Minutes estimation time for 

a similar model. 

4.5 Existing Forecasting Results from Time Series Models 

There is a number of other works who employed ARMA/GARCH models on the spot 

prices of EEX in the past for the purpose of forecasting: 

• Keles et al. (2011) use Mean Reversion, ARMA, and GARCH models on the full 

hourly time series and try to explicitly model negative prices. The time range for 

the Calibration Period is 2002-2005 and the simulation is run for 2006-2009. They 

state a MAPE for this time from 16.02% to 21.06% depending on the model and a 

RMSE of 8.43 to 23.53.  

• Swider & Weber 2007: With ARMAX and GARCH Models, a MAPE from 

12.92% to 13.49% and a MAE of 4.33 to 4.51 is reached for the different models 

and for an in-sample subset which ranges from June 2002 to May 2004. As 

exogenous variables, known price information from other markets like the reserve 

market for ancillary energy is used. In another, similar article from one of the 

authors, a MAPE between 17.96% and 19.22% is reported where the hour 12 was 

modelled individually for an out-of-sample subset (Swider 2006). 
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• Cuaresma et al. 2004: With an univariate approach, a MAPE of down to about 

13.2% and a MAE between 2.60 to 7.13 with a calibration sample ranging from 

June 2000 to September 2001 and a number of different AR(1) and ARMA models 

is achieved. The out-of-sample period ranges from September to mid October 2001. 

These authors also specifically employ the approach of modelling the 24 hours 

individually. Spikes have been removed in this work. 

In Addition to the works based on the EEX, there are many articles that focus on other 

markets: 

• Rafał Weron & Misiorek 2008: The authors examine two markets using a wide 

range of advanced Time Series models: For the Nordpool market, they report an 

MAPE of only 3.2%. The other market they examine is the Californian market 

where a MAPE of 12.96% is the best result for a model in which spikes have been 

pre-processed in a way that they are dampened.  

• Gianfreda & Grossi 2011: In a recent study of the Italian Electricity market, the 

authors report a MAPE between 10.69% and 12.63% and a RMSE of 9.57 to 12.17 

for the different zones of the Italian System. The forecasting was done with a Reg-

ARFIMA-GARCH model and included exogenous variables for technologies, 

market power and network congestion using a rolling window approach. 

• Aggarwal et al list a compilation of papers on forecasting for different markets and 

methods and state that the reported MAPE is usually in the range of about 3% up to 

about 20% (2009). 

These earlier works show that there are considerable differences regarding the precision of 

the forecasts that can be reached in the different markets. Especially a heavy influence of 

hydropower plants reduces the volatility of the prices, as the owners of the power plants 

have few marginal costs besides the opportunity costs and will try to only use water to 

generate power in times of sufficient prices, thereby limiting the range the electricity prices 

can have. The EEX spot price is harder to predict than the prices from other markets, as it 

exhibits more fluctuations than other markets. This can be due to its size on the one hand 

and on special production characteristics on the other hand that lead to more price changes 

than e.g. water-dependent Nordpool. 
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5 Analysis of the Results 

5.1 Obtained Models and influence of Transparency-Data 

5.1.1 Model Development 

5.1.1.1 General Procedure 

During the development of the models that will be used for forecasting, several findings 

have been made. As already described, the models are determined using a Box-Jenkins 

approach. To generate suitable models, the following steps have been used: 

1. The average MAPE/MAE that are achieved by the use of an adjusted model are 

compared to the model that has been used before 

2. second in order to determine how the MAPE/MAE can be increased further, the 

significance tests are used to determine which variables might have to be dropped 

For each model category (i.e. ARIMAX, ARIMA, MGARCH, OLS) the same model is 

used for all individual 24 hours. Since however the dataset is slightly different for all those 

24 hours, the estimates will vary. The 24 estimation results for the complete time horizon 

for all 4 model categories can be found in the Appendix.  

Only variables that are “known” at the point in time where the auction is conducted are 

included. That way, the forecasting process is simulated just like a market participant 

would experience it because he will not have access to the actual information ex ante. 

Accordingly, forecasts are used, like the planned generation capacity for the next day or 

the forecasted wind in-feed. In case there are no forecasts available, a lagged variable will 

be used. This is why the oil price and the emission price are used in lagged form. 

An important principle of the Box-Jenkins approach is parsimony, which means sparseness 

or stinginess. While additional coefficients increase the fit, they lead to a reduction of 

degrees of freedom. A parsimonious model will fit the model well without incorporating 

needless coefficients – and these needless coefficients will not be projected into the future 

by using them for forecasting. Consequently, it is recommended to eliminate weak 

coefficients or coefficients with strong correlation between each other for the purpose of 

forecasting. This is not only true for ARIMA and GARCH models but also for multiple 

regression models (Enders 2010).  
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5.1.1.2 Specific Adjustments 

Many of the variables that have been discussed in chapter 3 also are included in the model. 

Even though economic reasoning can explain that they are important determinants of the 

electricity price, some of these variables are not statistically significant in the current 

dataset and therefore will not be used in the current setting to reduce issues associated with 

overspecification and accordingly stick to the concept of parsimony. The same decisions 

have been made for all models simultaneously in order to keep the results comparable. The 

following variables have been dropped in the process of the model development: 

• The variables for the unavailability of oil and pump storage power plants have been 

dropped: As they have very few periods of unavailability, it is difficult to reliably 

estimate price effects – which is why they turned out to be very insignificant in the 

estimated models.  

• The data for solar power is only available from about halfway through the dataset – 

it wasn’t made public before – and only reaches a certain magnitude on a few 

summer days. Both effects taken together also lead to a low significance of solar 

power given the amount of other exogenous variables that are used in this 

examination and therefore also the coefficient for solar power has been dropped. 

For periods of high wind and little demand, relatively high MAE and MAPE have been 

discovered and therefore, different variations to include the wind data have been used 

during the development phase of the models. However, neither the use of dummies for 

different wind levels, quadratic forms nor combinations of those could significantly 

improve the forecasting errors. Possibly forecasting can improve when one can facilitate a 

larger sample which exhibits more of these extreme situations. 

Electricity prices exhibit seasonality besides the hourly basis. At first, dummies for each 

weekday have been included in the model. However, dummies for each day have turned 

out to be insignificant for the working days, because there are only few differences 

between them. There are substantial differences between the working days and the 

weekends though. Accordingly, a weekend-dummy has been used to keep the balance 

between the significance of additional variables and parsimony. Public holidays are 

included through an additional dummy and include holidays where the majority of the 

German federal states have statutory holidays. 
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Many earlier works that have been conducted for electricity price forecasting use a 

logarithmic form for all the variables, because that way, a more homogenous variance and 

smoother volatility is reached (R. C. Garcia et al. 2005; Nogales et al. 2002). However, 

using the current dataset and the explained models, a level-log form generated the best 

forecasting performance. “Level-log” form means that the explanatory variables are in log-

form, while the explained variable remains in level-form, i.e. not using a logarithmic 

transformation. It turned out that while MAPE and MAE of course were lower for the log-

log-form when comparing the logarithmic price and its logarithmic forecast, MAPE and 

MAE were inferior when calculating the results back to the level-form. For both selected 

periods, the forecasting of a level-log model yielded better performance measurements 

than the respective log-log model. Taking MAPE as an example, in the September Period 

the MAPE for a log-log model was 9.9% while it was only 8.3% for the level-log model. 

This is why a level-log form was used in this work. The logarithmic form was used for all 

explanatory variables. To calculate the logarithmic form of the temperature, a constant has 

been added to all values in order to avoid negative terms. Other variables do not have 

negative values and therefore did not need an adjustment. 

For the ARIMAX and MGARCH models, there is a wide range of possibilities to include 

the autoregressive and moving average terms. The AC and PAC suggest the use of several 

lags. As it turns out, for both the AR and the MA term, significance for lags higher than 

one is very low. Since the aim of the model development is to identify the smallest and 

most simplistic model that still adequately describes the data, both the AR and the MA 

terms have been added for one lag, which, as every hour is modelled individually, then 

refers back to the same hour of the day before. These findings match the results of earlier 

works. Including more lags in the ARIMAX and MGARCH models needed considerable 

more computation time and only marginally improved the MAPE error, by around 0.1%-

points.  

The ARIMAX and ARIMA model are used in a first differenced form, which seems to 

avoid possible weak stationarity issues as the MAPE dropped by a few percentage-points. 

Using a first differenced form was not possible for the MGARCH model, because the 

model gets to complex and finding an iterative solution for the maximum likelihood 

operation is not possible anymore. 

As for the third step in the Box-Jenkins Methodology, the models are checked that the 

residuals follow a white noise process. To do that, Enders speaks of the option to use the 
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out-of-sample forecast performance as a measurement which is convenient given the focus 

of this work (Enders 2010). 

To be able to compare the results of the multivariate approach that has been conducted in 

this work with a univariate approach, a simple univariate ARIMA model with an AR(1) 

and a MA(1) term has been included. It is differenced one time, making it an 

ARIMA(1,1,1) model.  

5.1.2 Model Results 

Since every hour is estimated individually, and four models are estimated for each hour, 

there are in total 96 estimation results. However, the general picture of the coefficients will 

be similar – the same model is estimated using the data of the various hours. Therefore, the 

coefficients will be explained on the example of Hour 13, going from 12:00 to 13:00, for 

the four estimated models, since it is the hour with the highest traded volume. In order to 

show the complete picture, the remaining hours are given in the Appendix. While the 

magnitude of the coefficients might change in other hours, the tendency and the sign of the 

coefficient is very similar in most cases for all hours. The results will normally be 

explained by referring to the ARIMAX results as it is the model with the lowest 

forecasting errors and be supplemented with information from the other models where 

appropriate. 

 

Table 3: Explanation of used variable names 

Variable explanation

log_PlannedGeneration the total amount of electricity generation from conventional power plants 
that is planned in Germany for the next day for the particular hour, in 

log_windplangermany the planned amount of electricity generated from wind energy, based on 
wind forecasts, in MW; log-form

L1.log_emissionprice the current price for CO2-certificates, in EUR/t; log-form
L1.log_CrudeOilBrent the current price for the relevant oil sort, in $/BBL; log-form
log_temperature the actual temperature for the next day for a particular hour in °C; log-
log_unav_lignite_planned planned unavailability for lignite power plants for each hour in MW, log-
log_unav_Gas_planned planned unavailability for gas power plants for each hour in MW, log-
log_unav_coal_planned planned unavailability for coal power plants for each hour in MW, log-
log_unav_uranium_planned planned unavailability for nuclear power plants for each hour in MW, log-
log_unav_lignite_nonsched unplanned unavailability for lignite power plants for each hour in MW, log-
log_unav_Gas_nonsched unplanned unavailability for gas power plants for each hour in MW, log-
log_unav_coal_nonsched unplanned unavailability for coal power plants for each hour in MW, log-
log_unav_uranium_nonsched unplanned unavailability for nuclear power plants for each hour in MW, 
d_weekend weekend-dummy variable, 1 if the hour is within a weekend
d_holiday holidy-dummy variable, 1 if the hour is within a statutory holidy
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Table 4: Estimation Results ARIMAX, ARIMA, MGARCH a nd OLS for hour 13, 

whole data sample, level-log form 

As heteroeskedasticity has been described as an important characteristic of electricity 

prices, one has to use heteroeskedasticity-robust standard errors for the t- and z-statistics to 

remain valid. This is done for all models besides the MGARCH model where the volatility 

is modelled explicitly. Many other works on the forecasting of electricity price do not 

explicitly describe taking this step. Hence, the test statistics for the following results could 

be considered as being rather conservative compared to other works. The significance tests 

are only important for interpreting the model results and to make decisions about whether 

or not include a variable; a low significance has in itself no effect on the forecasting. 

As the Estimation Results in Table 4 show, wind in-feed lowers the price at the power 

exchange. On average, a 10% increase in wind in-feed changes the electricity price by -

0.255 EUR/MWh following the ARIMAX model (MGARCH: -0.252 EUR/MWh, OLS: -

2.78 EUR/MWh). The interpretation of the coefficients is done using the template by 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 34.18101*** 33.803052*** 19.633506***
log_windplangermany -2.5541961*** -2.5246853*** -2.7752924***
L1.log_emissionprice 12.39411000 14.43999900 9.5815852***
L1.log_CrudeOilBrent 13.73995600 16.923396** 12.7667***
log_temperature -4.23377800 -3.787267* -3.7443177*
log_unav_lignite_planned 0.24994634 0.23895162 .5076965***
log_unav_Gas_planned -0.29971647 -0.20663191 -0.28694623
log_unav_coal_planned .49334207** .50889382** .55880774***
log_unav_uranium_planned 0.11255363 0.08470135 .27669921**
log_unav_lignite_nonsched 0.09749453 0.05122216 -0.05375778
log_unav_Gas_nonsched -0.04550184 -0.03018660 0.03438182
log_unav_coal_nonsched .52797819** .36739753* .50797372**
log_unav_uranium_nonsched .4153203* .39921933** .39678567***
d_weekend -4.3652562** -4.6244609*** -7.5259589***
d_holiday -5.7572398*** -5.2969489*** -6.0687815***
_cons -380.48493*** 0.02381044 -398.78192*** -225.68903***

ARMA
L1. ar .96447413*** .31991917*** .96002614*** .21239769***
L1.ma -.75071009*** -1.0488318*** -.71037717***
sigma
_cons 5.2337186*** 8.3331067***

ARCH
L1.arch .22118258***
_cons 21.857504***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Wooldridge, which states the interpretation of a coefficient in level-log form to be ∆� = F G���H%∆� (Wooldridge 2008). While wind is significant at the 0.01%-level, this 

was not the case for solar in-feed. For Solar, even positive estimates were within the 95% 

confidence interval of all the model results – which of course is against the economic logic. 

To avoid overspecification issues, the solar in-feed has therefore been dropped. The low 

significance can be due to the limited time for which the data on solar energy is available, 

which does not start until mid-July 2010 and also the amount of solar in-feed during this 

period was lower than wind in-feed, with solar energy amounting only to about 43% of the 

electricity generation from wind. This makes it more difficult for the estimation routines to 

calculate significant estimates. The finding of negative coefficients is consistent with 

earlier findings that discussed the price effect of renewables. Recent studies about the 

impact of wind energy on market prices in Denmark (Morthorst 2007) and Germany 

(Neubarth et al. 2006) observed price reductions of about 12–15% in the long run. Sensfuß 

et al state that the so called “merit-order effect” caused by renewables for the year 2006 

reached a volume in the magnitude of 3–5 billion EUR (2008). 

Both the oil-price and the price for CO2-certificates are positive, which intuitively makes 

sense as they are input-factors for electricity generation. A 10% increase in the oil-price 

increases the electricity price by about 1.37 EUR/MWh using the ARIMAX estimates 

(MGARCH: 1.69 EUR/MWh, OLS: 1.28 EUR/MWh). The results are significant at high 

confidence levels for all models, though the significance is somewhat lower for the 

ARIMA and MGARCH models. In the ARIMAX model, the estimate for the influence of 

the oil price is only significant at the 72%-level. The difference in the significance between 

the MGARCH model and the ARIMAX model is probably due to the robust standard-

errors for the ARIMAX model while the volatility is modelled explicitly for the MGARCH 

model and therefore the standard errors can be calculated more precisely. The picture is 

similar for the estimate of the emission-price coefficient, where a 10% increase is 

estimated to increase the electricity price by 1.24 EUR/MWh for the ARIMAX model 

(MGARCH: 1.44 EUR/MWh, OLS: 0.96 EUR/MWh). The significance is above the 90% 

significance level for ARIMA and MGARCH and above 99% for OLS. 

Even though temperature will not be as important in Germany as it is for other electricity 

markets, it still remains statistically significant in the MGARCH and OLS model. On 

average, a 10%-temperature increase will decrease the electricity price by 0.42 EUR/MWh 

following the ARIMAX model (MGARCH: -0.38 EUR/MWh, OLS: -3.7 EUR/MWh). The 
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reason for this coefficient is probably that heating with electricity is still done in some 

instances and apparently outweighs the use of Air Conditioning in the warmer months. 

Because one could expect electricity prices to rise, when a lot of energy is needed for air 

conditioning when river levels are low, a quadratic form of temperature has also been 

estimated. However, the calculated turning point was far above normal temperature levels 

(Wooldridge 2008), so a quadratic form of the temperature does not improve the model. 

This is probably due to the case that in the sample period of the two years, the summers 

haven’t been particularly hot and there hasn’t been any significant outages due to low river 

levels, so when extending the dataset to times with higher temperatures and the resulting 

impacts on the electricity price a quadratic form of temperature could be considered – 

which however won’t be easily possible yet as the transparency data is only available after 

a certain point in time. 

Concerning the unavailabilities, only the estimates for coal power plants, both for planned 

and non-scheduled outages and uranium power plants for non-scheduled outages can be 

considered statistically significant for the ARIMAX and MGARCH model. All their 

estimates are positive, which makes sense since a cut in supply should increase prices. The 

other estimates cannot be considered statistically significant at high significance levels for 

ARIMAX and MGARCH which may be due to the relatively limited and the complexity of 

the model. However, the other estimates are also positive within their respective 95% 

confidence intervals. 

A finding that has been expected is that the coefficients of the different types of power 

plants line up in the way they also align in the merit order that has been explained in 

Chapter 2, i.e. that the price effect of an unavailable nuclear power plant is the highest, 

while the coefficient then gradually decreases for the power plants which are higher up in 

the merit order and therefore have a lesser price effect. This expectation however, cannot 

be proven with this data as the significance levels are too weak: right now actually the 

price effect of a coal power plant seems to be higher than that of a nuclear power plant. 

However, the theory that the coefficients line up in the merit order might still be true, as 

the confidence intervals of the estimates still allow for this possibility. Further research and 

a more extensive dataset will be necessary to estimate the coefficients with more precision. 

The weak significance of the coefficients can also be a sign of competition: a high 

significance would indicate a lot of power for the power plant owner as he could be sure 

about the price effect when turning off a power plant – which, as the current analysis 
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shows, he can only be for the large base-load power plants which are further down in the 

merit order and that way definitely will cut supply. On the other side, he cannot easily 

influence prices by not offering a power plant to the market which has higher marginal 

costs and is easy to control. When one market participant does not offer a gas power plant 

on the market, the others might just balance out that move by offering more of their own 

available capacities or even going above the own capacity for some time by e.g. running a 

power plant at over 100% capacity if profitable. 

For the gas-based peak power plant, also negative coefficients are in the range of the 

confidence interval – which is understandable as they are on top of the merit order. Power 

suppliers might even schedule maintenance periods in times with expectedly low prices. 

The iteration routing that estimates the model will connect the low price with the 

unavailability and that way generates the possibility of a negative coefficient, even though 

a negative coefficient should not occur when supply is cut considering basic economic 

theory. 

When researching the use of dummies for the weekdays, using individual dummies for 

each day yielded a weak significance for the weekdays and only Saturday and Sunday were 

considered statistically significant at a high significance level. Probably the variations 

within the weekdays are not large enough as they could be assigned to a certain day. To 

reduce the impact of overspecification, only a weekend dummy has been utilised. The 

weekday dummy is statistically significant at the 99%-level and the ARIMAX model 

predicts that prices for the weekend are about 4.4 EUR/MWh lower when controlling for 

all other factors (MGARCH: -4.62 EUR/MWh, OLS: -7.52 EUR/MWh). However, 

demand is already explicitly controlled for through the use of the total planned generation, 

so it remains unclear why there is an additional discount on the prices for the weekend that 

goes above the limits that are set by total demand. 

All the models seem to be consistent with economic reasoning in both magnitude and 

significance. In total, the OLS model seems to find a higher significance in the exogenous 

variables but does not have the moving average term which is estimated for the ARIMAX 

and MGARCH model. This moving average term possibly comes on cost of degrees of 

freedom, thereby reducing the significance of some of the other estimated coefficients. A 

comparison of the out-of-sample forecasting performance will yield answers on which 

model is most suited for forecasting. 
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5.2 Forecasting Performance 

The forecast that is being undertaken is a conditional forecast: some information from the 

future like the planned generation capacity is known and can be used for forecasting 

(Wooldridge 2008). The forecasts for the out-of-sample period are calculated based on the 

estimates made in the in-sample period. This is done for two different periods to check 

how the approach works in different seasons, for both September 2011 and for February 

2011. In both cases, the sample size has been left equal so that differences can only be due 

to the differences in season and not due to the differences in the time horizon. Again, each 

hour is modelled individually. 

 

Figure 7: Forecasted and actual Spot Price for first two weeks September 2011, based 

on estimation period from June 2010 to August 2011 

Table 5 shows the forecasting Errors for September 2011 for the different models that have 

been developed. All models share a relatively low forecasting error for the time between 

7am until midnight, but are significantly higher for the early morning hours. This is 

another indication why hourly forecasts are better than modelling all hours together: Hours 

with a high unpredictability will not influence hours with a better predictability. A 

common characteristic of those hours with high deviations are little demand and lots of 
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wind-in-feed. As already pointed out, a number of variations for the modelling have been 

tried but did not yield significant improvements in the forecasting performance, so possibly 

also other factors play a role which are not captured in this dataset, like congestion or 

different bidding strategies by the market participants. 

 

Table 5: Forecasting Errors for September 2011 

The results for the February period are considerably higher for the MAPE figure, for which 

a number of reasons has been identified. First, the February-period exhibits a lot of 

extreme prices with very small spot prices at just about a few cents, while the forecasting 

models predict prices of about 20 EUR/MWh, which of course leads to large deviations. In 

the case of MAPE, the deviations for those hours are in the magnitude of several hundred 

percent. This shows the importance of using not only the MAPE, but rather several 

measurements and that the MAPE has weaknesses for exceptionally low prices as the 

percentage deviations can get very large. Second, the two estimation periods differ in terms 

of their volatility and also the “representativeness” of the in-sample period for the out-of-

sample period differs. Third, the stated “planned generation” seems to be flawed in some 

instances. There are cases in which the stated figures are not consistent: This can be seen in 

Hour MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

1 14.1% 4.4 6.5 20.6% 6.1 9.1 15.4% 4.9 6.8 15.4% 4.9 7.0
2 13.5% 4.3 5.7 21.3% 6.0 8.4 15.1% 4.6 6.2 14.5% 4.5 5.7
3 16.4% 4.6 6.1 26.7% 6.6 8.9 19.4% 5.1 6.4 18.6% 4.9 6.1
4 19.5% 5.0 6.3 30.9% 7.2 9.9 24.3% 5.8 7.2 20.5% 5.1 6.2
5 17.8% 4.8 6.0 29.1% 7.0 9.5 20.2% 5.0 6.4 20.9% 6.7 9.6
6 14.2% 4.4 6.1 19.5% 5.8 8.0 14.3% 4.6 5.7 14.5% 4.8 5.9
7 8.1% 3.9 5.7 18.2% 8.4 10.7 11.3% 5.7 7.4 8.8% 4.4 6.1
8 7.9% 4.3 5.0 20.9% 11.1 13.6 9.1% 5.3 7.0 22.0% 12.1 16.0
9 4.8% 2.8 3.6 17.5% 9.8 11.7 6.5% 3.9 5.2 12.6% 7.3 9.8
10 5.0% 2.9 3.9 13.0% 7.6 9.6 6.2% 3.9 5.4 14.5% 8.7 11.5
11 5.7% 3.4 4.3 12.0% 7.1 9.0 6.0% 3.9 5.5 12.4% 7.7 10.8
12 5.4% 3.5 4.8 10.8% 6.7 8.8 5.5% 3.6 5.5 13.7% 8.6 11.9
13 5.5% 3.4 4.4 9.9% 6.0 7.7 5.7% 3.6 4.9 11.5% 7.1 10.2
14 5.7% 3.3 3.9 12.1% 6.9 8.5 5.4% 3.1 4.2 11.9% 6.8 9.7
15 6.7% 3.6 4.2 12.4% 6.6 8.1 5.9% 3.2 3.9 10.9% 6.0 9.1
16 7.0% 3.6 4.4 10.9% 5.7 7.1 5.9% 3.1 3.8 14.3% 7.4 10.7
17 6.6% 3.3 3.9 9.2% 4.8 6.0 5.9% 3.0 3.7 15.7% 8.0 11.3
18 5.6% 3.0 3.8 8.5% 4.8 6.0 5.1% 2.8 3.4 10.1% 5.6 7.9
19 4.9% 2.9 3.4 6.9% 4.3 5.1 4.8% 2.9 3.5 5.6% 3.5 4.1
20 4.8% 3.2 4.0 6.1% 4.1 5.1 6.6% 4.5 5.6 5.7% 3.8 4.8
21 5.3% 3.5 4.2 5.8% 3.9 5.3 10.5% 7.3 8.1 5.3% 3.6 4.6
22 5.8% 3.3 3.8 6.6% 3.7 4.4 7.1% 4.2 4.7
23 4.3% 2.2 2.6 5.0% 2.6 3.2 4.0% 2.1 2.6 3.7% 1.9 2.4
24 5.4% 2.3 3.5 7.8% 3.4 4.5 5.4% 2.3 3.4 5.0% 2.1 3.5

ø 8.3% 3.6 4.6 14.2% 6.1 7.8 9.4% 4.1 5.3 12.5% 5.9 8.0

ARIMA MGARCHARIMAX OLS
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periods of high wind in-feed and the amount of planned generation is stated, as an 

example, it is unrealistic that a generation capacity of about 40.000 MW is necessary from 

conventional power plants when the forecasted wind is about 22.000 MW on a Sunday. 

The actual generation for this example then resolved to be at around 30.000 MW. 

Examples like that can be found in dozens of cases for the February period, while there 

seem to be no cases in the September period in which the planned generation capacity was 

so far off compared to the actual generation the day later. It seems that the data quality of 

the planned generation capacity improved considerably in between the two periods: While 

the mean difference between planned and actual generated capacity was 5,387 MW for the 

February period, it was only -124 MW for the September period. 

 

Table 6: Forecasting Errors for February 2011 

The large difference between February and September might also give an indication about 

the temptation some scientists must have for selecting a “good” out-of-sample window. 

Because the existing literature is about different market, time horizons and sample sizes, 

among the wide range of models it seems to be difficult to judge which model actually is 

the superior one. 

Hour MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

1 40.0% 6.3 8.4 46.1% 7.7 10.1 38.5% 5.3 7.7 37.6% 8.8 10.0
2 32.1% 6.2 7.7 41.0% 7.9 9.4 36.8% 5.7 7.5 39.9% 6.1 7.7
3 22.6% 6.0 7.3 30.6% 8.2 10.0 25.8% 5.7 7.1 30.2% 6.8 8.7
4 138.8% 5.3 6.2 638.5% 7.7 9.1 145.6% 5.4 6.4 343.9% 5.9 6.6
5 574.9% 5.4 6.9 1721.1% 7.6 9.3 675.4% 5.2 6.2 895.5% 5.2 6.8
6 458.8% 6.5 7.9 1137.4% 7.9 10.3 802.2% 5.4 6.9 709.2% 6.1 7.7
7 20.7% 6.6 8.8 39.5% 11.0 15.1 21.3% 6.0 8.4 17.4% 6.2 8.6
8 755.5% 5.3 7.4 2457.2% 14.4 18.0 865.7% 4.8 6.6 794.4% 4.9 6.7
9 8.4% 4.4 5.8 27.5% 12.2 14.2 9.4% 4.0 5.2 8.8% 3.9 5.1
10 6.1% 3.2 4.4 18.0% 9.0 10.6 6.8% 3.3 4.4 6.2% 3.0 4.1
11 7.0% 3.6 4.9 15.9% 7.9 9.7 7.9% 3.8 5.0 6.9% 3.2 4.6
12 7.2% 3.6 5.1 14.9% 7.3 9.1 8.2% 3.9 5.2 6.9% 3.2 4.7
13 7.5% 3.5 5.1 14.5% 6.9 8.9 8.0% 3.6 5.1 7.3% 3.2 4.9
14 6.9% 3.0 4.2 16.7% 7.5 9.5 7.2% 3.1 4.1 6.7% 2.8 4.1
15 8.3% 3.3 4.3 19.0% 7.8 10.0 9.5% 3.5 4.5 7.9% 3.0 4.2
16 8.4% 3.2 4.5 18.2% 7.3 9.3 9.4% 3.6 4.6 8.5% 3.5 4.5
17 7.8% 3.3 4.5 15.3% 6.4 8.4 12.8% 5.8 6.7 8.6% 3.8 4.9
18 7.4% 4.3 5.9 8.1% 4.5 5.8 9.6% 5.8 6.9 6.3% 3.7 5.0
19 7.5% 4.9 8.7 9.0% 6.1 10.3 6.9% 4.6 5.9 5.8% 3.8 5.0
20 5.9% 3.6 5.1 8.0% 5.0 6.6 6.8% 4.1 5.4 5.1% 3.1 4.5
21 9.8% 4.7 6.6 13.3% 6.5 8.6 9.9% 4.4 6.6 9.4% 4.5 6.1
22 9.7% 3.7 5.7 13.6% 5.3 7.7 9.5% 3.4 5.7 8.6% 3.1 5.2
23 9.6% 3.9 6.0 12.6% 5.1 7.6 9.6% 3.7 5.7 9.8% 4.3 5.7
24 21.4% 8.9 16.2 28.2% 11.4 18.9 18.0% 6.0 14.8 16.0% 8.7 15.0

ø 90.9% 4.7 6.6 265.2% 7.9 10.3 115.0% 4.6 6.4 124.9% 4.6 6.3

MGARCHARIMAARIMAX OLS
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The comparison of the univariate ARIMA Time Series model and the multivariate models 

shows a substantial improvement of forecasting performance when more relevant variables 

are accessible. The MAE could be reduced on average by more than 2 EUR/MWh from the 

univariate to the multivariate ARIMAX model. Given the value of the transparency data, 

their inclusion should clearly be considered in future works about forecasting as well. 

When regarding the forecasting performance for both periods together, the ARIMAX 

model performs best, as it performs best in the September period and quite good in the 

February period. This can be seen in all chosen performance measurements. However, the 

fact of a changing volatility of Electricity prices is a good fundamental reason to explicitly 

model it – which is done in the conditional heteroskedasticity model. Given a larger 

sample size, this model might perform better as it will be easier to find iterative solutions 

for the maximum likelihood function. Knowing the results of the OLS approach, it is 

surprising to what extent former works rely only on ARMA(X) and (M)GARCH models to 

forecast electricity prices, considering the forecasting errors of OLS are quite similar to the 

other models. In addition, the iterations for OLS are usually done so quickly by a statistical 

program that it requires much less computation time to estimate a multiple regression.  

5.3 Discussion 

When considering the results of this work, it is clear that they are within the range of other 

researchers who were conducting similar kinds of research. Moreover, one needs to keep in 

mind that the German electricity market has become much more volatile in recent years: 

While Cuaresma et al (2004) report a standard deviation of 9.50 EUR/MWh for their 

whole sample ranging between June 2000 to September 2001 before the spikes have been 

removed, the dataset used in this work exhibits a standard deviation of 15.22 EUR/MWh. 

This is mainly due to the addition of large quantities of renewable power plants and in the 

reduction of nuclear power after political decisions. Consequently, given that Cuaresma et 

al. have chosen the same month for the out-of-sample period, exhibited less volatility and 

achieved a MAPE of about 13% with a univariate approach, a significant improvement 

could be reached by using the newly published exogenous variables that have been 

described in this work since for the September period, the MAPE achieved with the 

ARIMAX model is 8.6%. 

While there is a considerable improvement in the forecasting quality by the use of 

exogenous variables, there are still a number of aspects that could improve the forecasting 
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performance. In the current work, outliers or spikes have not been considered in a special 

way. Spikes can be particular interesting when negative prices are observed, which are 

unlikely to be forecasted with the model employed in this work. Keles et al. (2011) 

specifically model the possibility of negative prices and thereby reach an improvement in 

the forecasting precision. A possible solution for outlier treatment could be to have one 

model for prediction during regular time periods, as the models presented here work fairly 

precise as long as there are no extreme situations. A second model would be used to detect 

the possibility of extreme events, for example by including data about grid capacities, 

congestion issues and river levels. 

Timing-Issues have not been examined exhaustively within this data, i.e. the question 

about what length of calibration period yields the best results as the focus of this work also 

was to compute reliable estimates for the coefficients of the transparency data. Also, there 

is the question of the comparability of the in-sample and out-of-sample period: Prediction 

will work best if the model has been estimated on a comparable time period – but the 

question remains how this comparable time period can be selected. This topic also is not 

exhaustively covered in other works. A common standard for the selection of time periods 

would mean that different works can be compared more easily and the presentation of 

“good” out-of-sample time windows can be avoided. 

This work is focused on using the transparency data and the newly available exogenous 

variables only on Time Series models, but there is a wide range of different models that 

have been presented in Chapter 3.1 that could be used with the same data. However, a 

more complex model doesn’t necessarily improve the forecasting results: As the use of the 

MGARCH model in the current work has shown, more complex models also need a certain 

amount of data to produce reliable results. 
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6 Conclusion 

To the author’s knowledge, this is the first available work which makes use of the data on 

the EEX transparency platform for forecasting. Accordingly, it is also the first work which 

includes exogenous variables like the in-feed of renewables, the unavailabilities of power 

plants and total generation for the forecasting of the German electricity price. 

First, based on energy market characteristics and existing literature, important determinants 

for the electricity price have been worked out. Then, statistical methods have been 

discussed that can be used to forecast the day-ahead electricity prices. After the discussion 

of those models, a selection of those has been used to actually make this prediction. This 

has been done using the Box-Jenkins Approach with a number of important econometric 

models.  

This work shows that the predictive power increases considerably when including the 

transparency data that is published by the EEX compared to former works that did not have 

access to this data. While a similar univariate approach based on the year 2001 yielded a 

MAPE of 13.2%, the use of the presented variables improved the forecasting error to 8.3%. 

Other findings of this work are that also for the usage with exogenous variables, a model 

based on 24 individual time series works better than one time series which includes all 

consecutive hours because computation time is far less for the former and because hours 

with high volatilities like the early morning hours do not interfere with other hours. Also, it 

has been shown that using MAPE as a measurement for the forecasting performance has 

weaknesses especially in the occurrence of price spikes. As a fourth major point, it can be 

concluded that OLS has not been used exhaustively in former scientific works while this 

work shows that OLS does actually not perform worse in forecasting and uses less 

computation time. 

Further research should make use of the transparency data to make judgements about 

market power and the potential to control prices by withholding capacity, include other 

important determinants of the electricity price like river levels, transmission capacities and 

prices or load from neighbouring markets. The remainder of the wide range of available 

models should also be used on this dataset and some consensus should be found for 

standardized time horizons. Considering the increase of renewables and the coupling of the 

different European markets, the forecasting of electricity price will remain an important 

topic in future and will experience a lot of exciting development 
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Appendix 1: Detailed regression results for Hour 13 for the various models 

Detailed ARIMAX regression results for Hour 13: 

 
 

  

                                                                                               

                       /sigma     5.233719   .2186925    23.93   0.000     4.805089    5.662348

                                                                                               

                          L1.    -.7507101   .0714538   -10.51   0.000     -.890757   -.6106632

                           ma  

                               

                          L1.     .9644741   .0409611    23.55   0.000     .8841918    1.044756

                           ar  

ARMA                           

                                                                                               

                        _cons    -380.4849   71.77356    -5.30   0.000    -521.1585   -239.8113

                    d_holiday     -5.75724   1.487348    -3.87   0.000    -8.672388   -2.842092

                    d_weekend    -4.365256   1.366925    -3.19   0.001    -7.044379   -1.686133

    log_unav_uranium_nonsched     .4153203   .1673355     2.48   0.013     .0873488    .7432918

       log_unav_coal_nonsched     .5279782   .1811315     2.91   0.004      .172967    .8829894

        log_unav_Gas_nonsched    -.0455018   .1076619    -0.42   0.673    -.2565154    .1655117

    log_unav_lignite_nonsched     .0974945   .1763535     0.55   0.580     -.248152    .4431411

     log_unav_uranium_planned     .1125536   .2087093     0.54   0.590    -.2965092    .5216164

        log_unav_coal_planned     .4933421    .183229     2.69   0.007     .1342198    .8524643

         log_unav_Gas_planned    -.2997165    .236123    -1.27   0.204     -.762509     .163076

     log_unav_lignite_planned     .2499463   .1757632     1.42   0.155    -.0945432    .5944359

              log_temperature    -4.233778   2.807919    -1.51   0.132    -9.737199    1.269643

                               

                          L1.     13.73996   14.01328     0.98   0.327    -13.72557    41.20548

            log_CrudeOilBrent  

                               

                          L1.     12.39411   7.356297     1.68   0.092    -2.023968    26.81219

            log_emissionprice  

                               

          log_windplangermany    -2.554196    .285294    -8.95   0.000    -3.113362    -1.99503

log_PlannedGenerationQuantity     34.18101   5.415336     6.31   0.000     23.56715    44.79487

Spotprice                      

                                                                                               

                    Spotprice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                            Semirobust

                                                                                               

Log pseudolikelihood = -2157.617                Prob > chi2        =    0.0000

                                                Wald chi2(17)      =  11923.43

Sample:  3 - 699                                Number of obs      =       697

ARIMA regression
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Detailed ARIMA regression results for Hour 13: 

 

                                                                               

      /sigma     8.333107     .45808    18.19   0.000     7.435286    9.230927

                                                                              

         L1.    -1.048832   .0343039   -30.57   0.000    -1.116066   -.9815973

          ma  

              

         L1.     .3199192    .064986     4.92   0.000      .192549    .4472893

          ar  

ARMA          

                                                                              

       _cons     .0238104   .0239817     0.99   0.321    -.0231929    .0708138

Spotprice     

                                                                              

 D.Spotprice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                           Semirobust

                                                                              

Log pseudolikelihood = -2519.935                Prob > chi2        =    0.0000

                                                Wald chi2(2)       =   2058.10

Sample:  2 - 699                                Number of obs      =       698

ARIMA regression
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Detailed MGARCH regression results for Hour 13 

 

  
                                                                                               

                        _cons      21.8575   1.328156    16.46   0.000     19.25437    24.46064

                               

                          L1.     .2211826   .0473925     4.67   0.000      .128295    .3140701

                         arch  

ARCH                           

                                                                                               

                          L1.    -.7103772   .0387339   -18.34   0.000    -.7862941   -.6344602

                           ma  

                               

                          L1.     .9600261   .0158963    60.39   0.000       .92887    .9911822

                           ar  

ARMA                           

                                                                                               

                        _cons    -398.7819   49.05024    -8.13   0.000    -494.9186   -302.6452

                    d_holiday    -5.296949   .9955526    -5.32   0.000    -7.248196   -3.345702

                    d_weekend    -4.624461   .7208901    -6.41   0.000    -6.037379   -3.211542

    log_unav_uranium_nonsched     .3992193   .1224033     3.26   0.001     .1593133    .6391254

       log_unav_coal_nonsched     .3673975   .1793762     2.05   0.041     .0158267    .7189684

        log_unav_Gas_nonsched    -.0301866   .1027026    -0.29   0.769      -.23148    .1711068

    log_unav_lignite_nonsched     .0512222   .1534323     0.33   0.738    -.2494996    .3519439

     log_unav_uranium_planned     .0847013   .1264888     0.67   0.503    -.1632122    .3326149

        log_unav_coal_planned     .5088938   .1738502     2.93   0.003     .1681538    .8496339

         log_unav_Gas_planned    -.2066319   .1742228    -1.19   0.236    -.5481023    .1348384

     log_unav_lignite_planned     .2389516   .1683776     1.42   0.156    -.0910625    .5689657

              log_temperature    -3.787267    1.71237    -2.21   0.027     -7.14345   -.4310836

                               

                          L1.      16.9234   5.612953     3.02   0.003      5.92221    27.92458

            log_CrudeOilBrent  

                               

                          L1.        14.44   7.978441     1.81   0.070    -1.197458    30.07746

            log_emissionprice  

                               

          log_windplangermany    -2.524685   .2355351   -10.72   0.000    -2.986326   -2.063045

log_PlannedGenerationQuantity     33.80305   2.603696    12.98   0.000      28.6999     38.9062

Spotprice                      

                                                                                               

                    Spotprice        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                OPG

                                                                                               

Log likelihood = -2132.537                         Prob > chi2     =    0.0000

Distribution: Gaussian                             Wald chi2(17)   =   6146.84

Sample: 3 - 699                                    Number of obs   =       697

ARCH family regression -- ARMA disturbances
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Detailed OLS regression results for Hour 13 

 
 

 
 
 
  

                                                                                               

                        _cons     -225.689   40.14157    -5.62   0.000    -304.5053   -146.8727

                    d_holiday    -6.068781   1.809998    -3.35   0.001    -9.622639   -2.514924

                    d_weekend    -7.525959   .9251198    -8.14   0.000    -9.342393   -5.709524

    log_unav_uranium_nonsched     .3967857   .0896811     4.42   0.000     .2207006    .5728707

       log_unav_coal_nonsched     .5079737   .1537535     3.30   0.001     .2060851    .8098623

        log_unav_Gas_nonsched     .0343818   .0955414     0.36   0.719    -.1532098    .2219735

    log_unav_lignite_nonsched    -.0537578    .160686    -0.33   0.738    -.3692581    .2617425

     log_unav_uranium_planned     .2766992   .0939863     2.94   0.003      .092161    .4612374

        log_unav_coal_planned     .5588077   .1570458     3.56   0.000     .2504549    .8671606

         log_unav_Gas_planned    -.2869462   .1677846    -1.71   0.088    -.6163844    .0424919

     log_unav_lignite_planned     .5076965    .143979     3.53   0.000     .2249997    .7903933

              log_temperature    -3.744318   1.468842    -2.55   0.011    -6.628329   -.8603062

                               

                          L1.      12.7667   1.772105     7.20   0.000     9.287245    16.24615

            log_CrudeOilBrent  

                               

                          L1.     9.581585   2.400833     3.99   0.000     4.867649    14.29552

            log_emissionprice  

                               

          log_windplangermany    -2.775292   .2621152   -10.59   0.000    -3.289945    -2.26064

log_PlannedGenerationQuantity     19.63351   3.586481     5.47   0.000      12.5916    26.67541

                               

                          L1.     .2123977   .0308277     6.89   0.000     .1518689    .2729265

                    Spotprice  

                                                                                               

                    Spotprice        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                              Robust

                                                                                               

                                                       Root MSE      =  5.9727

                                                       R-squared     =  0.6859

                                                       Prob > F      =  0.0000

                                                       F( 16,   680) =   85.58

Linear regression                                      Number of obs =     697
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Appendix 2: combined regression results of all hours for the various models 

Hour 1: 

 
Hour 2: 

 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 37.80228*** 24.60817*** 20.916045***
log_windplangermany -3.6566649*** -3.0279332*** -4.1276485***
L1.log_emissionprice 17.75903900 12.661732*** 12.321046***
L1.log_CrudeOilBrent 0.11464695 22.445524*** 21.115508***
log_temperature -6.3437269*** -5.108219** -4.4434372**
log_unav_lignite_planned 0.16834868 .72492924*** .52885935**
log_unav_Gas_planned -0.20518605 -0.26056873 -0.22210832
log_unav_coal_planned -0.22786173 .48305174*** -0.21456920
log_unav_uranium_planned 0.22725293 .35978447*** .54277278***
log_unav_lignite_nonsched 0.82739322 -.32907417* 0.42810613
log_unav_Gas_nonsched 0.00582665 0.04533547 0.00745567
log_unav_coal_nonsched 0.27371378 -0.05327172 0.28957681
log_unav_uranium_nonsched .41787369** .39189076*** .54411888***
d_weekend 2.2950937** .90145721** 0.75365787
d_holiday -4.59595190 2.2160996*** -5.02879310
_cons -356.90043*** 0.02112581 -322.41129*** -278.3315***

ARMA
L1. ar .99654808*** 0.28446055 .77775005*** 0.15434763
L1.ma -.90645213*** -.95431379*** -.36924355***
sigma
_cons 7.4538292*** 9.015391***

ARCH
L1.arch 1.2691595***
_cons 14.457272***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 51.268699*** 38.624666*** 22.977551***
log_windplangermany -4.3530186*** -3.5321575*** -4.993511***
L1.log_emissionprice 15.93829900 3.61206150 10.931225***
L1.log_CrudeOilBrent 0.53715505 28.554133*** 22.444739***
log_temperature -5.3154141** -1.99926910 -4.0162398*
log_unav_lignite_planned 0.11387944 .47747303** .57618282**
log_unav_Gas_planned -0.54276517 0.09009744 -0.26500555
log_unav_coal_planned -0.12116890 .59944476*** -0.16610405
log_unav_uranium_planned 0.20057586 .31874499* .56903945***
log_unav_lignite_nonsched 0.79296257 -.58856378** 0.34925190
log_unav_Gas_nonsched 0.00418757 -0.02645743 0.04970529
log_unav_coal_nonsched 0.28917394 -0.00311807 0.30748571
log_unav_uranium_nonsched .35089265* -0.02595310 .49365531***
d_weekend 2.167644** 0.02096275 -0.58144236
d_holiday -5.47942760 2.8626649*** -6.40672130
_cons -494.89983*** 0.02409850 -480.66562*** -301.71745***

ARMA
L1. ar .99553433*** .36761154** .920006*** .22310482**
L1.ma -.86671126*** -.96365859*** -.63962275***
sigma
_cons 7.7701201*** 9.7861842***

ARCH
L1.arch .91978579***
_cons 20.128158***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 3: 

 
Hour 4: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 36.927526*** 45.568891*** 22.387963***
log_windplangermany -6.1356262*** -3.9078869*** -5.7550826***
L1.log_emissionprice 11.57011* 11.786076* 9.3120262**
L1.log_CrudeOilBrent 33.793153*** 36.524938*** 23.399087***
log_temperature -5.71325020 -3.15291300 -6.9702452***
log_unav_lignite_planned 0.40772919 .32246663* .65360481*
log_unav_Gas_planned -0.30314538 0.06799320 -0.18182105
log_unav_coal_planned -0.15597248 0.25185147 -0.30149646
log_unav_uranium_planned 1.0747426*** .53428318*** .71548734***
log_unav_lignite_nonsched 0.06328409 .49969187*** 0.34661356
log_unav_Gas_nonsched 0.14038775 -0.11897479 0.06384351
log_unav_coal_nonsched 0.33230188 0.05319753 0.24121525
log_unav_uranium_nonsched .60111705*** 0.04337756 .42469594**
d_weekend 0.52561005 1.0335905** -1.44529000
d_holiday -4.97532620 1.21701100 -6.16794300
_cons -483.05997*** 0.02509617 -611.90496*** -283.83727***

ARMA
L1. ar .38250675*** .4521076*** .92376494*** .28664573***
L1.ma -0.00000146 -.96975869*** -.70497316***
sigma
_cons 8.4847182*** 10.670406***

ARCH
L1.arch 1.1630967***
_cons 18.742712***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 63.674478*** 50.774207*** 22.197633***
log_windplangermany -5.4987738*** -4.3764272*** -6.1408358***
L1.log_emissionprice 10.36984800 -6.86870290 8.2791905*
L1.log_CrudeOilBrent 14.83263600 39.427998*** 25.873117***
log_temperature -11.237169*** -2.96436570 -9.8476668***
log_unav_lignite_planned 0.04952267 -.65129285** .69355104*
log_unav_Gas_planned -0.21293191 0.07868574 0.07316870
log_unav_coal_planned -0.07065987 .7251534*** -0.28344164
log_unav_uranium_planned .84121729* -.70581962*** .96150825***
log_unav_lignite_nonsched 0.72766808 -0.14493857 0.41872205
log_unav_Gas_nonsched 0.02523161 0.09826230 0.07178556
log_unav_coal_nonsched 0.46905336 0.19820639 0.40267699
log_unav_uranium_nonsched 0.04954287 .27003663* 0.36511810
d_weekend 2.7791196** 2.1627335*** -1.49495820
d_holiday -3.37227290 3.139345** -5.29553180
_cons -663.02891*** 0.02973405 -615.23589*** -284.14341***

ARMA
L1. ar .99046159*** .43798596** .93026803*** .28300698*
L1.ma -.83092656*** -.96837735*** -.50940756***
sigma
_cons 9.971369*** 12.080276***

ARCH
L1.arch .92161441***
_cons 25.102053***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 5: 

 
Hour 6: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 63.758967*** 64.306959*** 22.60092***
log_windplangermany -4.5757852*** -3.713386*** -5.1001707***
L1.log_emissionprice 9.17774730 -15.02923900 11.680514***
L1.log_CrudeOilBrent 13.92112700 36.790448*** 23.018528***
log_temperature -7.8567158** -3.80147810 -6.9110599***
log_unav_lignite_planned 0.25271863 -0.10200086 .59754605**
log_unav_Gas_planned -0.22165543 0.00453733 0.04227868
log_unav_coal_planned -0.12209879 .46902251** -0.20286231
log_unav_uranium_planned .51572046* -0.10038672 .72155776***
log_unav_lignite_nonsched 0.84378690 -0.20186775 0.59890036
log_unav_Gas_nonsched 0.01715034 0.08456934 0.12734362
log_unav_coal_nonsched 0.38771838 0.21913979 0.28257456
log_unav_uranium_nonsched 0.13215262 0.06171226 .46320927***
d_weekend 0.97591389 1.4083245* -3.505816***
d_holiday -2.36607150 4.223811*** -4.75181000
_cons -674.54611*** 0.02513085 -736.02659*** -301.61527***

ARMA
L1. ar .99089033*** .45468125*** .96447902*** .29310181***
L1.ma -.79142144*** -.96154129*** -.63872163***
sigma
_cons 7.5936844*** 9.9838979***

ARCH
L1.arch .7508098***
_cons 22.903099***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 31.890981*** 25.758191*** 19.13872***
log_windplangermany -4.0039117*** -3.5282224*** -3.7123873***
L1.log_emissionprice 14.972124*** 13.237325*** 11.359272***
L1.log_CrudeOilBrent 31.457239*** 30.23428*** 21.933093***
log_temperature -3.65495550 -5.293696** -5.3262337***
log_unav_lignite_planned .46358935** 0.43380091 .50049971***
log_unav_Gas_planned -0.22188133 0.02967436 -0.06278090
log_unav_coal_planned -0.09193868 0.24270836 -0.15631688
log_unav_uranium_planned .79316077*** .48603893*** .56862702***
log_unav_lignite_nonsched 0.07959116 -.93072354*** 0.29547389
log_unav_Gas_nonsched 0.00929201 0.06231792 -0.06244881
log_unav_coal_nonsched .3725523* 0.35461165 0.30927164
log_unav_uranium_nonsched .60770705*** .39834759*** .43597048***
d_weekend -6.3273826*** -6.7400165*** -8.3256056***
d_holiday -7.0830099* -1.08401700 -8.24396710
_cons -449.17731*** 0.02407188 -366.7947*** -267.19914***

ARMA
L1. ar .3347955*** .41153775*** .44531337*** .28818207***
L1.ma -0.00000556 -1.0327318*** -0.13246604
sigma
_cons 7.6613091*** 9.9025245***

ARCH
L1.arch .61299041***
_cons 25.352831***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 7 

 
Hour 8: 

 
  

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 30.981299*** 25.843225*** 22.728432***
log_windplangermany -3.637164*** -2.6725533*** -3.4087475***
L1.log_emissionprice 16.598153*** 8.0224427* 14.06104***
L1.log_CrudeOilBrent 26.775754*** 26.603745*** 22.334494***
log_temperature -0.06519959 -5.1769029*** -2.62972580
log_unav_lignite_planned .5534098* 0.27822873 .46006485*
log_unav_Gas_planned 0.04999313 .77484682*** 0.28634938
log_unav_coal_planned -0.26759541 0.16184572 -0.19955485
log_unav_uranium_planned .8545118*** .69836513*** .79444764***
log_unav_lignite_nonsched 0.72263232 0.00698214 0.74231240
log_unav_Gas_nonsched -0.20380398 -0.07815967 -0.30217785
log_unav_coal_nonsched 0.24502345 .65290839*** 0.21562244
log_unav_uranium_nonsched .65220581*** .27471308** .50521532***
d_weekend -15.849297*** -14.084379*** -16.912671***
d_holiday -15.644461** -4.9500317*** -17.659031*
_cons -434.91486*** .03092117* -349.20147*** -320.12544***

ARMA
L1. ar .22179916* .33282536** .91434271*** .17394995*
L1.ma -0.00002098 -.98413693*** -.84449164***
sigma
_cons 10.222899*** 15.171687***

ARCH
L1.arch .77739932***
_cons 28.887622***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 27.437818** 26.819609*** 26.327475***
log_windplangermany -4.0968684*** -4.2105717*** -3.7487765***
L1.log_emissionprice 18.32708500 17.61682900 14.951266***
L1.log_CrudeOilBrent 21.26459200 27.586021** 23.103796***
log_temperature -3.99073210 -3.90410190 -3.35162570
log_unav_lignite_planned -0.23648321 -0.02218590 0.38122321
log_unav_Gas_planned -1.1684211* -1.2107645** -.53466005*
log_unav_coal_planned -0.69038883 -0.72534209 -0.34671691
log_unav_uranium_planned 0.20952151 0.33336862 .60865465**
log_unav_lignite_nonsched 0.95199959 .89797834** 0.85406308
log_unav_Gas_nonsched -0.19518237 -0.23478274 -0.17009279
log_unav_coal_nonsched 0.72567639 0.70686218 0.33729520
log_unav_uranium_nonsched .67808041** .63002404* .64062792***
d_weekend -17.980773*** -18.300898*** -19.157447***
d_holiday -17.836673* -17.659959*** -18.464179*
_cons -335.67291* .02956952*** -356.82328*** -344.62383***

ARMA
L1. ar .97451633*** .29361451*** .96404924*** .11632081***
L1.ma -.88426866*** -.99985374*** -.86832256***
sigma
_cons 10.611107*** 17.350794***

ARCH
L1.arch 0.00153706
_cons 112.5788***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 9: 

 
Hour 10: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 33.325601*** 32.925618*** 25.809265***
log_windplangermany -3.480623*** -2.7286204*** -3.4932607***
L1.log_emissionprice 17.609448* 6.69889300 15.715741***
L1.log_CrudeOilBrent 22.86275500 20.842713** 19.794732***
log_temperature -5.91883270 -9.916298*** -5.6712351**
log_unav_lignite_planned 0.43157606 .7220324*** .85242637***
log_unav_Gas_planned -1.1151446* -.92980309*** -0.42035603
log_unav_coal_planned -0.45165769 -0.21762200 -0.24951508
log_unav_uranium_planned 0.23802905 -0.04602932 .58023897***
log_unav_lignite_nonsched 0.52010453 -0.30867947 0.41675378
log_unav_Gas_nonsched -0.05230753 0.08701385 0.00458863
log_unav_coal_nonsched 0.49289164 -0.06015702 0.18448234
log_unav_uranium_nonsched .62144292** .55740902*** .60790365***
d_weekend -12.682528*** -12.663772*** -15.365571***
d_holiday -14.03927** -5.0207615*** -14.973846**
_cons -404.84011*** .0270713* -349.86478*** -322.28816***

ARMA
L1. ar .96608567*** .32058857*** .9800337*** .14801179***
L1.ma -.84381875*** -.98689119*** -.83810203***
sigma
_cons 8.2591872*** 14.506515***

ARCH
L1.arch .71909549***
_cons 30.100324***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 34.697186*** 36.603719*** 24.702462***
log_windplangermany -2.8896977*** -2.7288763*** -2.9277702***
L1.log_emissionprice 14.198691* 10.71038500 12.309271***
L1.log_CrudeOilBrent 20.536988*** 19.585462*** 16.087858***
log_temperature -4.04309450 -1.57285560 -5.7430137***
log_unav_lignite_planned .52624091* .82842401*** .82069672***
log_unav_Gas_planned -.67779612* 0.00141164 -0.31432167
log_unav_coal_planned -0.07992700 0.12350853 0.03544408
log_unav_uranium_planned 0.26213942 0.16813236 .49916876***
log_unav_lignite_nonsched 0.37047942 0.13958606 0.31540242
log_unav_Gas_nonsched -0.03947824 -0.05533374 0.03502365
log_unav_coal_nonsched .64770906* .7457873*** 0.41007868
log_unav_uranium_nonsched .56754123*** .27156826* .51339833***
d_weekend -8.1664451*** -8.5766926*** -10.97828***
d_holiday -8.9102773*** -5.9301091*** -9.6915023***
_cons -418.16812*** 0.02532470 -441.27301*** -293.50371***

ARMA
L1. ar .9409465*** .32016592*** .94435148*** .17516049***
L1.ma -.76299542*** -1.0246643*** -.72774551***
sigma
_cons 6.1858224*** 10.964992***

ARCH
L1.arch .44475248***
_cons 25.757948***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 68 

 
Hour 11: 

 
Hour 12: 

 
  

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 35.177559*** 36.262636*** 21.989716***
log_windplangermany -2.5167581*** -2.4814507*** -2.7269989***
L1.log_emissionprice 14.384388* 14.79252300 10.775511***
L1.log_CrudeOilBrent 18.401183** 16.387599** 13.115677***
log_temperature -4.88143430 -5.529277** -5.7583534***
log_unav_lignite_planned 0.46565688 .54593863** .66805253***
log_unav_Gas_planned -0.36645697 -0.24247199 -0.21735131
log_unav_coal_planned 0.17027138 0.08605519 0.30125174
log_unav_uranium_planned 0.30815815 0.21829180 .42611543***
log_unav_lignite_nonsched 0.30109992 0.34417986 0.19108581
log_unav_Gas_nonsched -0.00975044 -0.01506676 0.09738297
log_unav_coal_nonsched .60052802* .7008965*** .50499653*
log_unav_uranium_nonsched .4423993* .3524047* .43509905***
d_weekend -6.1688315*** -6.0792513*** -9.4464456***
d_holiday -7.4464026*** -7.4112522*** -8.1870527***
_cons -417.04394*** 0.02360769 -420.37944*** -250.8986***

ARMA
L1. ar .94263265*** .33077111*** .95787339*** .20560212***
L1.ma -.73425562*** -1.0255604*** -.72316567***
sigma
_cons 5.6739135*** 9.7205983***

ARCH
L1.arch .18745459***
_cons 27.09925***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 33.599894*** 34.749486*** 18.125378***
log_windplangermany -2.596942*** -2.6172395*** -2.8226178***
L1.log_emissionprice 15.34800600 13.66038000 11.194814***
L1.log_CrudeOilBrent 13.90772800 11.57915500 10.448787***
log_temperature -5.76333870 -6.7993139*** -5.1450751**
log_unav_lignite_planned 0.32827067 .49211397** .58565519***
log_unav_Gas_planned -0.29841231 -0.16107622 -0.26998913
log_unav_coal_planned .45819136* .48832315* .55264215**
log_unav_uranium_planned 0.06754711 0.13041624 .3415591***
log_unav_lignite_nonsched 0.29777397 0.26043201 0.09092553
log_unav_Gas_nonsched 0.03533158 0.05737000 0.13932431
log_unav_coal_nonsched .63081801** .59137513*** .58855116**
log_unav_uranium_nonsched .41095864* .31860946* .38344973***
d_weekend -6.0124916*** -6.0957779*** -9.4665231***
d_holiday -5.3516249*** -5.3868685*** -6.1490245**
_cons -377.85158*** 0.02363891 -374.87096*** -199.91891***

ARMA
L1. ar .95937327*** .32138863*** .96408188*** .22210209***
L1.ma -.73440745*** -1.0487175*** -.71060183***
sigma
_cons 5.7175239*** 9.1149445***

ARCH
L1.arch .21481738***
_cons 26.726738***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 69 

 
Hour 13: 

 
Hour 14: 

 
  

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 34.18101*** 33.803052*** 19.633506***
log_windplangermany -2.5541961*** -2.5246853*** -2.7752924***
L1.log_emissionprice 12.39411000 14.43999900 9.5815852***
L1.log_CrudeOilBrent 13.73995600 16.923396** 12.7667***
log_temperature -4.23377800 -3.787267* -3.7443177*
log_unav_lignite_planned 0.24994634 0.23895162 .5076965***
log_unav_Gas_planned -0.29971647 -0.20663191 -0.28694623
log_unav_coal_planned .49334207** .50889382** .55880774***
log_unav_uranium_planned 0.11255363 0.08470135 .27669921**
log_unav_lignite_nonsched 0.09749453 0.05122216 -0.05375778
log_unav_Gas_nonsched -0.04550184 -0.03018660 0.03438182
log_unav_coal_nonsched .52797819** .36739753* .50797372**
log_unav_uranium_nonsched .4153203* .39921933** .39678567***
d_weekend -4.3652562** -4.6244609*** -7.5259589***
d_holiday -5.7572398*** -5.2969489*** -6.0687815***
_cons -380.48493*** 0.02381044 -398.78192*** -225.68903***

ARMA
L1. ar .96447413*** .31991917*** .96002614*** .21239769***
L1.ma -.75071009*** -1.0488318*** -.71037717***
sigma
_cons 5.2337186*** 8.3331067***

ARCH
L1.arch .22118258***
_cons 21.857504***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 41.271177*** 42.917016*** 23.064352***
log_windplangermany -2.3229732*** -2.3382799*** -2.8489351***
L1.log_emissionprice 16.34489* 15.493621* 9.0338762***
L1.log_CrudeOilBrent -3.90753400 4.62742440 14.71026***
log_temperature -4.5010305* -4.3806625** -2.9320166*
log_unav_lignite_planned 0.18370317 0.18353848 .452397**
log_unav_Gas_planned -0.38452104 -0.27219880 -.3927713*
log_unav_coal_planned .34241262* .40748741* .64250644***
log_unav_uranium_planned 0.23853290 0.21371025 .35103002***
log_unav_lignite_nonsched 0.08659657 0.07459799 -0.09893779
log_unav_Gas_nonsched -0.04983668 -0.06058410 0.04677774
log_unav_coal_nonsched .46518167* .43365839** .41363993*
log_unav_uranium_nonsched 0.23709350 0.15565349 .40937585***
d_weekend -5.3179597*** -5.505127*** -9.6124266***
d_holiday -5.9596348*** -5.1458196*** -7.0663897***
_cons -384.30593*** 0.02184959 -448.88625*** -269.5503***

ARMA
L1. ar .99319155*** .34820818*** .9900392*** .15851905***
L1.ma -.82392967*** -.98002474*** -.79834258***
sigma
_cons 5.2828821*** 9.7998416***

ARCH
L1.arch .24900033***
_cons 21.989072***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 70 

 
Hour 15: 

 
Hour 16: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 44.284846*** 45.514854*** 23.454875***
log_windplangermany -2.3633724*** -2.3893342*** -3.033221***
L1.log_emissionprice 13.92668200 12.19222400 9.1469797***
L1.log_CrudeOilBrent -3.79139210 5.80810470 15.045163***
log_temperature -5.0312937* -4.6514866** -1.54989260
log_unav_lignite_planned 0.13235115 0.18533498 .40536085**
log_unav_Gas_planned -.52608194* -.46551518** -.54595947**
log_unav_coal_planned 0.21074055 0.23169781 .60473567***
log_unav_uranium_planned 0.08635531 0.10337648 .36083118***
log_unav_lignite_nonsched 0.17484839 0.16263812 -0.01316782
log_unav_Gas_nonsched -0.00153649 0.00183183 0.05328312
log_unav_coal_nonsched .60316101** .4171801* .54038999***
log_unav_uranium_nonsched 0.20404042 0.11391070 .43734335***
d_weekend -5.1366576*** -5.515561*** -10.078288***
d_holiday -6.5200476*** -5.1128798*** -8.0185987***
_cons -407.32381*** .02278912* -470.53853*** -280.63057***

ARMA
L1. ar .99466561*** .37654034*** .98920023*** .16629552***
L1.ma -.82545149*** -.98488751*** -.79275879***
sigma
_cons 5.3750809*** 10.185259***

ARCH
L1.arch .2439576***
_cons 23.065092***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 47.68508*** 48.162981*** 25.170207***
log_windplangermany -2.1314987*** -2.1938913*** -2.8912969***
L1.log_emissionprice 13.31817800 12.31161500 6.9881852**
L1.log_CrudeOilBrent -8.07006900 -2.05565640 15.081602***
log_temperature -5.2870359** -4.7081323** -1.26191740
log_unav_lignite_planned 0.05572936 0.16435615 .3162176*
log_unav_Gas_planned -.55721187* -.4030958* -.72261355***
log_unav_coal_planned 0.11134154 0.09657613 .56906403***
log_unav_uranium_planned 0.06006284 0.03093016 .37394823***
log_unav_lignite_nonsched 0.30067901 0.21786109 0.02897763
log_unav_Gas_nonsched -0.06889492 -0.08779958 0.01355622
log_unav_coal_nonsched .52857787* .43824146** .47683974**
log_unav_uranium_nonsched 0.22769303 0.14231329 .5171144***
d_weekend -3.671807** -4.3357836*** -8.9267637***
d_holiday -5.1266488** -4.1523223*** -6.5030635**
_cons -420.15931*** 0.02151146 -469.04309*** -295.97812***

ARMA
L1. ar .99639641*** .37942466*** .99454385*** .1833057***
L1.ma -.83506007*** -.97688883*** -.81179358***
sigma
_cons 5.4163213*** 10.02995***

ARCH
L1.arch .25893165***
_cons 23.477231***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 71 

 
Hour 17: 

 
Hour 18: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 40.638738*** 41.421586*** 23.434908***
log_windplangermany -2.4522639*** -2.4882927*** -2.8664892***
L1.log_emissionprice 13.42008400 12.31276900 6.1671559*
L1.log_CrudeOilBrent -5.64370880 4.60219560 15.507098***
log_temperature -5.1524258** -4.592941* -1.72040910
log_unav_lignite_planned 0.05775033 0.17649329 0.17011721
log_unav_Gas_planned -.7192883** -.59492771*** -1.2195777***
log_unav_coal_planned -0.00676847 0.01372686 .55022923***
log_unav_uranium_planned 0.15103815 0.15574275 0.14315786
log_unav_lignite_nonsched .50251888* .46459724** 0.11837968
log_unav_Gas_nonsched 0.13670987 0.10534177 0.11595972
log_unav_coal_nonsched 0.17312209 0.14921940 0.21974886
log_unav_uranium_nonsched 0.07917150 0.05550424 .41459611***
d_weekend -4.1724104*** -4.403471*** -7.602702***
d_holiday -4.1891316* -3.8408972*** -4.923577*
_cons -355.68101*** 0.01543064 -418.91713*** -270.53558***

ARMA
L1. ar .99520915*** .35830721*** .99069522*** .21811192***
L1.ma -.83582277*** -.94340281*** -.80559593***
sigma
_cons 5.4625426*** 9.5154166***

ARCH
L1.arch .11660317**
_cons 26.818613***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 30.06911*** 36.742532*** 21.267973***
log_windplangermany -3.2806397*** -2.3653539*** -2.8921851***
L1.log_emissionprice 12.46726700 3.75163740 5.4780641*
L1.log_CrudeOilBrent 9.82196380 -11.52795200 14.444378***
log_temperature -7.24878** 0.36557777 -5.0178927**
log_unav_lignite_planned 0.03394862 .44131711*** -0.11860062
log_unav_Gas_planned -1.1732223** -.75046624*** -1.8737651***
log_unav_coal_planned -0.09736947 0.04804238 .60222448**
log_unav_uranium_planned 0.07768616 0.27657607 -0.23050829
log_unav_lignite_nonsched .52648229* 0.18693973 0.11535176
log_unav_Gas_nonsched 0.15764834 0.16217672 .24255861*
log_unav_coal_nonsched 0.16294469 0.13816838 0.35636828
log_unav_uranium_nonsched 0.01725223 0.04019839 .40507243***
d_weekend -4.640001*** -3.2502941*** -5.5069347***
d_holiday -3.7499774* -2.8227736*** -3.40094670
_cons -291.82991000 0.00032849 -284.80757*** -223.37445***

ARMA
L1. ar .98003303*** .36648483*** .98797071*** .29805638***
L1.ma -.7937967*** -.91215372*** -.78652419***
sigma
_cons 6.4775887*** 9.4751676***

ARCH
L1.arch .79039885***
_cons 18.188574***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 72 

 
Hour 19: 

 
Hour 20: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 28.193226*** 28.178825*** 29.017619***
log_windplangermany -3.5973472*** -3.5095759*** -2.7202578***
L1.log_emissionprice 7.22426010 6.81751160 5.4592005*
L1.log_CrudeOilBrent 22.905954*** 6.36720420 15.540737***
log_temperature -9.8518305*** -10.058907*** -8.4705332***
log_unav_lignite_planned 0.12846274 .37203245* 0.14791285
log_unav_Gas_planned -.84955378** -.45001962** -.94835241***
log_unav_coal_planned 0.12007899 0.06019070 0.41856752
log_unav_uranium_planned 0.13992850 0.22662520 0.05298892
log_unav_lignite_nonsched 0.32102231 0.17216836 -0.12838305
log_unav_Gas_nonsched 0.19414148 .20802739* .31923308**
log_unav_coal_nonsched 0.19308875 -0.05934701 .47620985*
log_unav_uranium_nonsched 0.12069721 0.21576612 .47185465***
d_weekend -2.7324007** -2.8381191*** -1.9180469*
d_holiday -2.06213950 -1.14733450 -1.29803110
_cons -307.09253*** 0.00637866 -235.83055*** -305.55835***

ARMA
L1. ar .95367983*** .31100961*** .98344353*** .24473227***
L1.ma -.74816528*** -.90106759*** -.82961523***
sigma
_cons 5.7548101*** 8.2358031***

ARCH
L1.arch .63145715***
_cons 18.189706***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 25.715961*** 25.299293*** 28.128639***
log_windplangermany -3.0607893*** -3.0529566*** -2.1151667***
L1.log_emissionprice 9.18120330 7.70374740 5.6968784**
L1.log_CrudeOilBrent 22.766466* 26.29774*** 14.517465***
log_temperature -6.1966927** -5.9511253*** -5.7816526***
log_unav_lignite_planned 0.19129693 0.21092476 .57893611***
log_unav_Gas_planned -0.08918054 0.00873314 0.09497032
log_unav_coal_planned 0.30052445 0.14830518 0.12043278
log_unav_uranium_planned 0.11523631 -0.03635797 .35511848***
log_unav_lignite_nonsched 0.31080500 0.16153774 -0.01873075
log_unav_Gas_nonsched .21996355* .23703039* .2716052**
log_unav_coal_nonsched 0.11068868 0.07893555 0.26745935
log_unav_uranium_nonsched 0.09551349 0.16570254 .35399053***
d_weekend -1.48600730 -1.6037619* 0.13755218
d_holiday -1.45454420 -1.73294380 1.08138640
_cons -308.45472*** 0.03174329 -316.91514*** -322.42504***

ARMA
L1. ar .97340542*** .31455477*** .95317371*** .35994521***
L1.ma -.74610488*** -.87208057*** -.67423994***
sigma
_cons 5.0143335*** 6.7090862***

ARCH
L1.arch .38826014***
_cons 16.880663***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 73 

 
Hour 21: 

 
Hour 22: 

 
 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 22.362283*** 23.606601*** 23.920223***
log_windplangermany -2.7941831*** -2.7277516*** -2.1361971***
L1.log_emissionprice 5.90447860 4.56865630 5.541163*
L1.log_CrudeOilBrent 23.96739700 27.603183*** 19.896204***
log_temperature -4.2447985* -4.6014834*** -2.355185*
log_unav_lignite_planned .35908002* .39245992** .68714896***
log_unav_Gas_planned -0.07274793 -0.03370575 0.12211702
log_unav_coal_planned 0.09571129 0.09000431 0.09563243
log_unav_uranium_planned 0.16439223 0.19641233 .34742636***
log_unav_lignite_nonsched .44158985** .3568285* 0.19353306
log_unav_Gas_nonsched 0.12177323 0.11462531 0.03969395
log_unav_coal_nonsched -0.00528526 -0.02613711 -0.09211456
log_unav_uranium_nonsched 0.12096985 0.07948632 .38948819***
d_weekend -1.37120950 -1.292373* -0.29710317
d_holiday -0.65841586 -0.82363163 1.12641630
_cons -280.13063*** 0.04231088 -308.39874*** -310.10247***

ARMA
L1. ar .98236088*** .31743725*** .98190404*** .305114***
L1.ma -.7876479*** -.89775074*** -.76239495***
sigma
_cons 4.3106161*** 5.7299813***

ARCH
L1.arch .14415241*
_cons 15.987987***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 19.968679*** 19.75627*** 12.091723***
log_windplangermany -2.3720006*** -2.378019*** -2.3254129***
L1.log_emissionprice 9.86545760 8.93927900 10.053267***
L1.log_CrudeOilBrent 19.07745800 26.274299*** 19.447815***
log_temperature -3.19902040 -3.0176058** -1.85577150
log_unav_lignite_planned .29238464* .32824174** .53100082***
log_unav_Gas_planned -0.09131124 -0.06826825 0.03245842
log_unav_coal_planned 0.12832493 0.11493520 0.15158070
log_unav_uranium_planned 0.11444437 0.18719973 .29600312***
log_unav_lignite_nonsched .28698897* .26613183* 0.10131502
log_unav_Gas_nonsched 0.07768405 0.06784163 -0.02744808
log_unav_coal_nonsched 0.01069450 0.00235299 -0.06127085
log_unav_uranium_nonsched 0.11114793 0.09034521 .32843425***
d_weekend -0.29516407 -0.35383576 -.95735448*
d_holiday 0.96040159 1.01538640 1.47688590
_cons -251.75125*** 0.03226369 -282.57532*** -190.51708***

ARMA
L1. ar .98391742*** .33076319*** .97567022*** .25959668***
L1.ma -.77559602*** -.90026561*** -.75781638***
sigma
_cons 3.6009939*** 4.6342181***

ARCH
L1.arch 0.03492667
_cons 12.600915***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix 74 

 
Hour 23: 

 
Hour 24: 

 

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 14.263912*** 13.891256*** 8.8588427***
log_windplangermany -2.3886777*** -2.3987591*** -2.3503405***
L1.log_emissionprice 4.41656620 4.67286560 11.016525***
L1.log_CrudeOilBrent 7.43353240 4.26962920 17.017938***
log_temperature -3.7004528** -3.9214285*** -1.53617600
log_unav_lignite_planned 0.22955066 0.23806056 .44859507***
log_unav_Gas_planned -0.03500992 -0.03947944 -0.09226035
log_unav_coal_planned 0.05785177 0.02091638 0.06793111
log_unav_uranium_planned 0.06186226 0.07891398 .18961352*
log_unav_lignite_nonsched .30893659* .31036834** 0.06680460
log_unav_Gas_nonsched .14928417* 0.15005041 0.07866142
log_unav_coal_nonsched 0.07172104 0.07230006 0.10772475
log_unav_uranium_nonsched 0.10546854 0.08387247 .16860921**
d_weekend 1.04207650 1.0221909* 0.62141964
d_holiday 2.2565445* 2.0617488** 3.0467432**
_cons -121.54707000 0.02346748 -114.03937** -147.75668***

ARMA
L1. ar .98989467*** 0.15504584 .9991723*** .27854674***
L1.ma -.82338492*** -.84604587*** -.82648903***
sigma
_cons 3.5354617*** 4.2851841***

ARCH
L1.arch 0.02881849
_cons 12.191944***

legend: * p<0.05; ** p<0.01; *** p<0.001

Variable ARIMAX ARIMA MGARCH OLS

log_PlannedGeneration 14.396106*** 11.203437*** 13.274795***
log_windplangermany -3.6947543*** -3.4995838*** -3.4306552***
L1.log_emissionprice 15.968828*** 12.205486*** 12.677937***
L1.log_CrudeOilBrent 23.809716*** 20.522193*** 18.993467***
log_temperature -2.20560000 -3.6701909*** -2.0287939*
log_unav_lignite_planned .43420307*** 0.31650979 .46966943***
log_unav_Gas_planned -0.13072817 -.58593874*** -0.05764743
log_unav_coal_planned -0.08095092 -0.13714903 -0.12063854
log_unav_uranium_planned 0.36709827 .81886499*** .40158692*
log_unav_lignite_nonsched 0.07154900 .78517307*** 0.00368402
log_unav_Gas_nonsched 0.02504886 -0.03923612 0.01128442
log_unav_coal_nonsched 0.08568627 0.09751121 0.10127377
log_unav_uranium_nonsched 0.25685276 .38179914*** .27391146**
d_weekend 0.04524810 -0.24428238 0.04218470
d_holiday -1.41249510 -0.36549002 -0.18893381
_cons -228.43738*** 0.02283126 -170.32832*** -197.17905***

ARMA
L1. ar .77427567*** .29044574*** .76005563*** .18575654***
L1.ma -.55740662*** -.93533213*** -.52081989***
sigma
_cons 5.2351134*** 6.2720355***

ARCH
L1.arch 1.2267741***
_cons 10.05351***

legend: * p<0.05; ** p<0.01; *** p<0.001


