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Abstract

Using a newly available dataset about the unauétlabf power plants and the in-feed of
renewable energies to forecast day-ahead elegtpdites at the German Power Exchange,
this work shows that the predictive power increasessiderably when including
exogenous variables. While a similar univariaterapph based on the year 2001 yielded a
Mean Absolute Percentage Error of 13.2%, the uskeopresented variables improved the
forecasting error to 8.3%. Other findings of thisriwinclude that a model based on 24
individual time series produces smaller forecastamgors than one time series which
includes all consecutive hours, that the selectbrthe in-sample and out-of-sample
periods varies greatly between different works dmak the use of OLS seems to be

underestimated in the existing forecasting liten@for electricity prices.
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1 Introduction

As electricity markets become deregulated, the rarmlmf market participants at the
power exchanges is increasing. To place reasoigdide the participants have to build an
own opinion about the future development of elettiriprices at the spot market. There
are several important factors which contribute e settlement of electricity prices, for
example the forecasted power consumption, the ifeeflyenewable energies as requested
by law, the price of input commodities like oil @mission certificates — and the
unavailability of power plants. This thesis aims work out the determinants of the
electricity price and then use them to forecasttataty prices for the day-ahead electricity
market. That way, the thesis also delivers an wtdeding for the importance of different
variables for the electricity price. The data that be used for this has to be published by
the major utility companies due to an order of tegulation authority since about mid-
2009. Since the data in question is rather new,th@sis is among the first scientific works

making use of it in an econometric context.

The precise forecasting of electricity prices is lwfh importance for the market
participants: First, market participants that owowpr plants have to adjust their bids to
optimize the profit from their power plants. Secpnthrket participants that have to buy
electricity capacities need to decide whether awdod markets or at the spot market.
Third, market participants are able to schedulddhd of their power plants depending on

the electricity prices that can be expected.

Following the modelling approach established by Box Jenkins, the thesis develops a
number of Time Series models, including an ARIMARIMAX, MGARCH and an OLS
model. The models will be estimated using two satmdes of the available dataset. The
explanatory power of the different models will thes discussed upon their prediction for
a respective off-sample subset of the dataset.

Chapter 2 will introduce the specialities of elaity markets in general and show why the
German electricity market is very relevant. The amant determinants for the electricity
price will be worked out. In Chapter 3, the availlyp of these variables will be checked
and basic properties of the data will be explairi@dhpter 4 starts with an overview of the
available methodologies to model electricity prigesl explain the chosen econometric
models. Chapter 5 then presents the developmdheahodels and the obtained results of

the analysis. Chapter 6 concludes.
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2 Determinants of the Electricity Price

2.1 Introduction on Energy Trading, European Power
Exchanges and Market Participants

As the aim of this work is to increase the underditag of electricity prices, this chapter
will review the theoretic concepts of power markgisgeneral and the German power
market in particular and draw conclusions on theatdes which are necessary to model

electricity prices with econometric methods.

Today, electricity is a traded commodity but isfetiént from other commodities like oil
and gas in a number of aspects. The generatiom@mlimption of electricity have to be
balanced at all times to have a constant frequéamdlye grid. A continued imbalance of
generation and consumption and the subsequenttidevfeom the grid’s target-frequency
of 50Hz would end with the consequence of malfumctof electrical machines and
blackouts. In addition, electricity can only berstb by means of converting it to another
form of energy which comes at the cost of efficiefasses and in any case, these storage
options are very limited. Because only one griceé®@nomically feasible for a society,
electricity transmission is a natural monopoly areeds to be controlled by regulatory
authorities in order to enable fair market mechasis

During the process of liberalisation, power tradegfivities across Europe have risen
considerably. Within Europe, Germany is the largestnomy and power market in terms
of electricity consumption. Germany’'s annual poe@nsumption 2010 amounted to about
590 TWh, with France taking the second place uaimgut 510 TWh of electricity (RTE

2011; BMWi 2012). The four largest electricity pumérs RWE, E.ON, Vattenfall and

EnBW hold a generation capacity of about 80% of @e&man market according to the
federal competition authority (Bundeskartellamt 201The high voltage grids are also
operated by only four transmission system operdi8©s). The relevant power exchange
for the spot market is the “EPEX Spot” which covéine markets Germany, France,
Switzerland and Austria and is connected to theiBe| Dutch and the Nordic market via
market coupling mechanisms. The borders to Poladdlze Czech Republic have explicit
auctions (Tarjei 2011). The EPEX Spot has 211 mesnfieEPEX SPOT 2011b), including

the major power utilities of central Europe, tramssion system operators, local energy

companies and municipalities as well as pure engegling companies and banks. Small
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companies which do not have direct access to tHeXHEEEX trading system can trade via
separate accounts of other trading members. One graup of market participants are
generators and retailers with intrinsic physicaligoor short positions, i.e. they have a
certain customer base and a certain generatiortitapad need to trade the difference on
the power exchange. A second main group of markeicgpants are pure traders and
banks who typically aim to exploit prices differescto gain profit from arbitraging and

take speculative positions.

Being the biggest power market in Europe, the lanfleaence of renewable energies along
with still large shares of conventional energy citbn and a diverse structure of market
participants makes the German electricity markeéry relevant one for an econometric

analysis of power exchanges.

2.2 Power Generation and Demand Characteristics in
Germany

In this section, important determinants for the powrice will be worked out for both the
supply and the demand side of the market. Germasyamumber of different technologies
In use to generate electricity, each with differelmdracteristics and dependencies towards
the electricity price. Because of the balancingdsethat have been described earlier,
production is characterised by a mixture of hetenegus types of power plants that have
varying costs structures reflecting the need fexibility. Base-load power plants usually
operate for most of the time of the year and agrattierised by high fixed costs and low
marginal costs, while peak-load power plants ardy amsed as needed and have
comparatively low fixed costs but typically high rgimal costs (Ockenfels et al. 2008).

Before going into the details of production, itimsportant to understand the concept of
marginal costs in the context of electricity protlme. The marginal costs of electricity
production include mainly the fuel costs and otvemiablecosts of production. In addition
to this, the marginal costs consist of the oppotyunosts that arise if the production
resources are not used in the manner with the &igphessible value. As Ockenfels
explains, occasionally the marginal costs cannaddismed clearly. For example, this can
be the case if there are so-called “complemenrgafitor “non-convexities”, which are
caused by start-up costs. Start-up costs are gatwrpon every re-start of a power plant.
These include costs for heating-up the power plaetywork synchronisation and the

increased wear and maintenance costs due to theetatare fluctuations (Ockenfels et al.
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2008). These cannot always be calculated preceetly thus marginal costs cannot be

defined clearly.

In the following, the different types of power planin the German market will be
presented as their properties are in turn an ilmpbdeterminant for the characteristics of
the market. The most important power plants areehgsing rivers, wind and solar power,
nuclear power, lignite and hard coal, gas and md @nally pump storage power plants.
When ordering power ascending order in terms ofgmat costs, run-of-the-river power
plants come first. These power plants are instaliddrge rivers like the Rhine River and
make use of the constant water flow. They have Vlieriged possibilities to store water
and usually are operational around the clock gpiadl base-load power plant. They have
no fuel costs and little maintenance costs as tleegot need constant supervision. These

power plants can become unavailable in the evelovofiver levels or maintenance.

Second, there are wind and solar power plants. tDu#tle marginal costs, these power
plants will also run whenever possible but as opgde run-of-the-river power plants they
have a much bigger variability in their power gextien due to fluctuating wind and cloud
coverage. The electricity companies employ metegists to predict wind speeds and
insolation and therefore the generated power. Tem@n law requires the power
suppliers to feed the electricity generated byrsafal wind power plants into the grid and
they can be disconnected only in the case of emergefor grid control. Therefore, wind
and solar energy cannot be put into either the-lmlageeak-load category. Germany’s wind
and solar capacities have grown considerably inakeyears due to high feed-in tariffs,

with jumps in capacity taking place prior to chamgethese tariffs (Tarjei 2011).

Third, nuclear power plants generate electricitythg fission of radioactive molecules.
Due to the high energy density of uranium they histtle marginal costs once they are
running, but it is considerably expensive and tenasuming to start and stop a nuclear
power plant. However, it is possible to moderate ribiclear reaction by using the control
rods and thereby control the power output to sorient. These characteristics make a
nuclear power plant a typical base-load power plaimavailabilities can occur due to
scheduled maintenances, which take about one mewvehy year, low river-levels in
summer and unscheduled shut downs out of securfigldical considerations.

Fourth, lignite and hard coal power plants fadiéitaoal combustion to generate electricity.

Through the oxidation of coal, G@ets produced which by itself is a natural climgas
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but contributes to the human-induced global warndug to the quantities humans exhaust
of it currently. So called Cg&Xxertificates are needed when one wants to rurabpmmver
plant in order to make its use less attractive mnadivate reduction of C9 Coal power
plants have less start-up and stop-costs thanarustever plants but also need a couple of
hours to reach full capacity. Modern coal powen@aieed less time than old ones as they
are already designed for greater controllabilitedse Also, coal power plants can be put
into a standby-mode from which it can produce elgty on shorter notice than from a
cold-start. Therefore, coal power plants have baite-load and to some extend peak-load
usability. Unavailabilities can occur due to manm#ece and also due to low river levels:
Given low river levels, cooling might not be podsiand ships might not be able to use the

rivers for the transport of coal.

Fifth, gas power plants are considered very efficipower plants as they have a high
efficiency-factor. They exhaust less £€@an coal power plants for a given amount of
electricity but are considered more expensive ttaal as per electricity produced, though
prices have declined in the last years due to nisaoderies in North America. They can
start very quickly and therefore have good peakHaapabilities. Because gas is
transported through pipelines, unavailabilitieswamostly due to maintenance. Transport
interruptions of gas due to e.g. political decisiorom Russia so far have not been an issue
yet in Germany as there are plenty storage cagpiabifor gas from both tanks and the grid:
Contrary to the electricity grid, the gas grid daa storage in itself as one can increase
the pressure of the gas. The gas price is oftdtedirto the oil price in the long-term
contracts between gas producers and the retavidnish was originally argued with the
possibility of substitution between the two (St@®07). Oil power plants are similar in
terms of usage to gas power plants but are onlgt useare cases for peak-load purposes
as oil is an expensive energy carrier and there amesiderable COZ2-emissions.

Unavailabilities can occur for maintenances.

Sixth, there are pump storage power plants whichal@ a free energy source but that can
come with considerable marginal costs: due to thgverior possibilities of both producing
electricity on very short notice within seconds &mel possibility to pump water up into the
basin, they can be sold as “Primary Reserve” igparate market, the market for ancillary
services, which is needed from TSOs for very sterrz generation capabilities. Pump
storage power plants are peak-load power plants ren little unavailabilities for

maintenance. Other generation facilities like biesmar geothermal energy do not play a
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significant role yet. With their unique ability tetore” generated electricity for later use,
they have the ability to smoothen prices: Eledlits used to pump up water to the top
basin during low prices and then used to genemaeepagain when prices are high. The
smoothing price effect of water power can be olesgtim Nord Pool’'s electricity prices,

which are less volatile than prices on the EPEX ttudigh capacities of water power
plants. The total composition of energy sources2fatl in Figure 1 shows, that energy
production is still dominated by fossil fuels wilignite having a share of 25% of total

production and coal and gas having 19% and 14%ectisply.

gas 14%
heating oil,

pump-storage and
coal 19% W
/ wind 8%

biomass 5%

solar 3%

lignite 25% \
garbage 1%

uranium 19%

Figure 1: composition of German Power Generation 201, adapted from: BDEW
(2012)

When shifting the focus from the supply side to deenand side of the electricity market,
Bourbonnais and Méritet (2008) work out severatdexcon why electricity demand has
characteristics that are different from most ot@nmodities. Electricity demand is highly
inelastic as it is a necessary product with veryted substitutes. In Addition, the demand
is highly dependent on unforeseeable factors likeate and weather conditions. Also,
electricity displays seasonal patterns due to eméma@ctivity and weather conditions.

Seasonality can occur on various levels, includanghourly, daily, weekly, or monthly

seasonality (Bourbonnais & Méritet 2008). Differeacin electricity demand between
countries can subsequently occur due to variatiortéimate and weather and also in the
composition of electricity buyers, namely how mutéctricity is needed from households
and from different kinds of industry. In Germangmiperature is less important for total
demand compared to other countries due to thevelptiarge dependence on industrial
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activity of around 45% of total demand, the relaelyvlittle dependence on electricity for

heating and few necessities for air conditioningrjd@ 2011).

As a last important determinant of electricity ps¢there are to mention congestion issues
that can occur at national or regional borders.geéshon means the limited grid capacities
between two adjacent networks. The more congegmres there are, the more important
issues about market power within a region will be #e electricity price will be higher.
The less important congestion issues become, ter lthe electricity price will be in areas

that originally had a high price (Lise et al. 2008)

Through this analysis of the generation charadtesiof the German electricity market,
important variables for the price settlement cobll determined: The composition of
different base- and peak-load power plants, wedfitrecasts, the demand forecast, the
amount of water power plants, interconnection ciigsc planned and unplanned
maintenance, the in-feed of renewable energiestangrice of input commodities. These
variables will be checked for availability and udifp in the econometric analysis in
Chapter 3.

2.3 Traded Products and Relevant Markets

For the purpose of this work, it is important téeseé the appropriate market and products
for the econometric analysis. The two main markegs for day-ahead trading in

Germany are represented by the power exchange EpBiXand electronic OTC trading.

Due to its liquidity and number of market partiaips the EPEX Spot is the central trading
point of the German day-ahead power market. Cuyrethie daily auction for the next day
takes place at 12.00 pm, on each day of the wealkdimg statutory holidays (EPEX
SPOT 2011a). Liquidity on the Intraday Market, whicovers the period after the day-
ahead auction and the actual delivery period, iy ansmall fraction of the day-ahead
auction and is only used for minor balancing pugsofeal time imbalances in the power
system are balanced using generation units thaprande positive or negative primary,
secondary and tertiary reserve energy under sugenvof the TSOs. TSOs procure these
types of reserve energy on separate markets (Jeb&@@il).

Contrary to exchange-based trading, OTC tradinggedaklaces directly between the
counterparties and is often facilitated by brokempanies. The transactions are either

executed via electronic broker platforms or bilaligr via telephone. According to
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Johannes, most day-ahead trading activities tekeedbetween 8 a.m. and 12 p.m. on the
day prior to the delivery day. Johannes points that the continuous OTC market is
important for market players to hedge larger volsipeor to the exchanged based auction
at 12 p.m. Thus, the OTC-market can be considerdzbtthe last forward market before
the final EPEX Spot exchange clears (Johannes 2@kttprding to Tarjei, most of the
trading volume of German power is in the OTC marl&tnilar to the trading on the
exchange, spot contracts require physical delivdmje the futures market can be physical
or financial (2011). However, even though a largkimne of the power trades are made via
OTC and thereby independently from the systemshef gower exchange, the price
settlement through the power exchange will serveaaseference point, from which
continued price data is available in a standardiwech. This is why an econometric

analysis should be based on EEX data and not on dat&C

There is a range of spot price products with defferhourly combinations that can be
traded during the daily auction. Out of arbitragmsiderations, the price of a product
which includes a set of hours, e.g. a Base, Pe@MfdPeak contract, has to be equal to the
sum of the individual hours. If this would not hdldie, there would be riskless arbitrage
opportunities for the market participants by shmayte.g. a high-priced product which has a
combination of contracts, and closing the positgain by buying the low-priced set of
contracts. This “value additivity” not only holdsué for the spot market, but also for the
Futures market when one also considers the timevail money (Bjerksund et al. 2010).
This means that by focusing on the individual hdorsforecasting, the same conclusions

can be drawn on the price of related products.

Besides the day-ahead and intraday markets whehirdeed to the physical delivery of

electricity, there are derivatives markets whicé purely financial and in which contracts
on future deliveries are traded. These consisutfrés contracts for weekly, monthly or
yearly delivery usually up to three years in adearnBesides regular futures contracts,
there is a wide range of other derivatives like &gropean, American and Asian Options
which are traded either on the EEX or OTC. Manyrgnesuppliers use the derivatives
market for hedging purposes and close open positsanas to limit risks and secure a
certain profit margin — giving up possible higheicps in return. The percentage of power
that is already hedged in advance is determinesugfr the individual hedging, where

conservative strategies involve hedging up to 100%.
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As Ockenfels et al. (2008) explain, even thougargd part of the energy is traded in long-
term contracts and only a comparatively small attaded day-ahead in the spot market
auctions, it is sensible to concentrate the ecotracrenalysis on the spot market. This is
due to the fact that the “prices in all upstrearacticity markets actually reflect the
expected spot market price” and hence it is the ppoe that determines “the costs of
electricity even in the long run”. This becomesreveore compelling when considering
the special conditions the spot price is subjectsoit is linked to the physical aspects of
electricity while the derivatives are not linked pbysical constraints considering their
purely financial nature. Because of the lack ofadity of electricity, power exchanges
require comparatively complex rules and regulatiailosig with a careful consideration of
numerous ancillary technical conditions in the gatien and transmission of electricity.
Ockenfels et al. (2008) point out that the spot ketrauction complies with these

demanding requirements.

2.4 Auction & Price mechanisms

In the auction, both bid prices for an individualun and block bids comprising several
contiguous hours can be submitted. The maximum ssibée bid price has to be between
-3,000 EUR/MWh and 3,000 EUR/MWh for all contractéis wide range is used as the
power exchange does not want to constraint priomdton. Allowing negative prices is
due to the possibility of negative marginal cosis $ome power plants in times of low
demand. For instance, in a time of low demand dikeunday, most power is generated by
base-load power plants that run 24/7. For a limitee and in special cases, it might be
cheaper for the owner of a nuclear power planhtogase power consumption by offering
money to a consumer, rather than to shut down tizéear power plant and lose all the
profits for remaining time until it becomes opeoatl again. In this case, the owner of the
nuclear power plant is willing to pay a price tay@mne who can consume the energy.
Negative Prices have been observed on various ioosas the past. In the dataset that
will be used later on, 48 of 16,776 hours had gribelow 0 EUR/MWh. The market
participants making use of this opportunity will shdikely be the owners of pump storage
power plants, who will use the abundant power tmpup water into their storage basin.

The bids must be sent to EPEX Spot before 12PMhenday before delivery. Then, all
bids are aggregated into supply and demand furstiamd converted into linearly
interpolated sell or buy curves. The market priseestablished on the basis of the

intersection of these supply and demand functionsthereby a market clearing price for
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every hour of the following day is generated. Evemgrket participant who supplies
electricity during a given hour receives the resipeqrice for that hour and every market
participant who buys electricity during that hoayp that price. Since all participants have
the same price, this mechanism is also referregstthe “uniform price auction”. In case
the transmission capacity is not sufficient for géxecution of the schedules determined in
the auction, the market can be divided into prioees. However, this case has never
occurred so far as the transmission system capsaaitithin the trading area of EEX are

currently sufficient compared to the quantitieslé@a (Ockenfels et al. 2008).

In theory and in practice, the resulting pricehie targinal cost of the most expensive
power plant from the group of least expensive pgulents that are sufficient to cover the
power demand. Figure 2 shows this “merit order'wpp plants with the least marginal
costs will be offered to the market at first be@atisey will yield the highest profit. The
rank of different technologies in the merit ordanchange as fuel prices change, i.e., gas

and hard coal power plants may switch their respecanks in the merit order when fuel

prices change (Tarjei 2011).

>
>

examples for
price-setting
demand

Marginal Cost

>

Wind Nuclear Lignite Hard Gas Oil 2‘:,’,;‘:2?;"

Hydro Coal in MW

Figure 2: Merit Order of Power Plants, adapted fromSkrivarhaug (2010)

The merit order principle in theory allows for thessibility of exercising market power by
withholding generation capacities, which is an éssmidely discussed in public. By
withholding a power plant, a market player with mather power plants can increase the
profits of all other power plants on the markettas new settlement price increases
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(Ockenfels et al. 2008). That way, another aspeatadelling electricity prices can be the
concentration of market power among certain mapleaticipants. Market power can be
measured in numerical terms, e.g. through the tifeed_erner Index or the Concentration
Index (MOst & Genoese 2009). Other works use a ewispn of the marginal costs and
the electricity price (Musgens 2004). However, todble to determine the influence of
market power in an econometric setting, the timeizba of the dataset has to be
sufficiently large to cover different magnitudesmérket power. Such an analysis could
e.g. be done by using data from the years of telaied electricity market in which there
were monopolies and ranging to the times of theegldated energy market which
supposedly will exhibit more competition. A crogssonal analysis within a given point
in time over different industries will not yield ficient results for market power, as
different industries exhibit idiosyncrasies so tlcaimparative statistics will not reveal

information about market power (Vassilopoulos 2003)

2.5 Role of Forecasts

As Weron and Misiorek elaborate, extreme price tldlas have forced the market
participants of the electricity market to not orflgdge against volume risks but also
against price risks in the electricity market. Thoginions about future price movements
formed through forecasting have become a crucpltim decision making and strategy
development. This accelerated research in modedintyforecasting electricity prices with
differences in the used methodologies and the headon. Weron & Misiorek distinguish
between short-term, medium-term and long-term pffeeecasting (Rafat Weron &
Misiorek 2006). The objectives of the three catexgodiffer. While long-term forecasting
Is used for investment profitability analysis arldnming, like determining future sites or
fuel sources of power plants, medium-term or mgntimhe horizons are used for balance
sheet calculations, risk management and derivapviesng. Short term forecasts are e.g.
used by a company that adjusts its production sghatepending on the forecasted hourly
pool prices and its production costs and therebyimmaes profits. Accordingly, for spot
markets the short term forecasts are of main inapod (R. C. Garcia et al. 2005; Rafat
Weron & Misiorek 2006). Every major market partiipps who takes part in the auction of
the electricity price in one way or the other wied to form an opinion about the future
development of the prices so as to be able to mi@tera reasonable bidding behaviour.
Statkraft for example heavily bases its decisiars“Energy Management”, trading and
hedging on the findings from the analysis and faséiag unit (Skrivarhaug 2010).
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3 Data

In chapter two, the possible range of variables llaae an influence on electricity prices
have been worked out. Now, it is necessary to clieege variables for availability for the
public and to discuss their usability for econonegturposes. It will only be tried to obtain
publicly available data. That way, it can be sinetbwhat a %8 party or a possible market
entrant is capable of. Apparently, an existing teleity supplier will have superior data
concerning its customer base than what is pubheigilable and thereby will be able to
make more precise calculations on the electriaityep

3.1 Avalilable Data

3.1.1 EEX: Spot Prices and CO2-Certificates
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Figure 3: Spot Price EEX in the available datasetll values below -50 EUR/MWh
omitted

The spot prices are determined through the auciijpras described earlier and are
available from EPEX on a per-hour basis, quotddiR/MWh. The data is available since
2002, which was the start of the EEX after thednsif the power exchange Frankfurt and
Leipzig. Since other relevant data is only avagabihce November 2009, this work will
start using data on spot prices from this dateTdve available data reaches until thé'30
September 2011 and accordingly includes nearlyyars. This sample size is similar to

earlier works as can be seen e.g. in the compilaticAggarwal (2009). In the sample, the
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price ranges between -199.99 EUR and 131.79 EURhasdch mean of 46.48 EUR. Peak-
prices average at EUR 52.79 and off-peak pricestal6 EUR. Table 1 reveals
considerable differences between the hours, edfyettie high values for the kurtosis in

the morning hours will lead to interesting resuitshe forecasting performance.

Hour Mean Std. Dev. Skewness Kurtosis
1 39.1 10.9 -4.9 67.3
2 35.4 12.0 -3.7 42.0
3 32.1 13.4 -3.1 28.7
4 29.5 15.1 -4.2 44.6
5 30.3 13.0 -2.6 27.4
6 34.2 12.8 -3.1 32.0
7 40.2 17.3 -4.6 56.3
8 48.6 19.1 -3.7 43.6
9 52.1 16.4 -2.1 20.0
10 53.8 13.1 -0.9 6.5
11 54.7 11.7 -0.5 4.1
12 56.1 11.3 -0.3 3.8
13 54.3 10.5 -0.4 3.7
14 51.5 11.5 -0.6 3.9
15 48.2 12.1 -0.6 4.2
16 47.5 12.0 -0.6 4.4
17 47.9 11.8 -04 5.0
18 53.4 13.7 1.0 7.8
19 56.9 12.2 0.8 6.2
20 55.9 10.7 0.3 3.2
21 52.5 9.7 0.1 2.9
22 48.6 8.3 0.1 3.2
23 48.6 7.4 -0.1 3.4
24 42.8 8.6 -2.4 21.3

all hours 46.48 15.2 -1.5 19.5

Table 1: Summary Statistics for the 24 Spot Price blurs

The EEX also determines the price for CO2-certiisawhich is done on each weekday
since 2005. In the available dataset, the priceshaman of 14.24 EUR/t. For the use of
this work, the price of Fridays has been assumedStturday and Sunday as CO2-

certificates are not quoted on the weekend.

Electricity prices exhibit a phenomenon which iezhspikes or more general: outliers. In

some rare events, e.g. when cross-border capacigmarkably low due to maintenance,
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there is extraordinarily high wind in-feed or theme very low river levels, exceptionally

high or low prices might occur. Some works filtaetdata by removing outliers, thereby
reaching a smaller forecasting error. Since obsemns cannot be simply removed in a
time series dataset, outliers can be filtered lppowy the values at a certain threshold or
using an average value instead of the outlier. Otloeks specifically focus on forecasting

these exceptional events, like Christensen et@lPand Trueck (2007). In order to stay
comparable with earlier works, ensure reprodudibdind make the results more realistic,

outliers have not been removed in the current arsly

3.1.2 Transparency: Availability of Generation Capacity, Wind- and
Solar Feed-in

Due to European and national regulations, largegp@uppliers have to publish “market-
relevant” information considering generation anehstonption of electricity since 2009.

The EEX publishes this data as a service for tlvesepanies on a central website after
checking the data for plausibility, anonymizingatsome extent and aggregating it. Not all
the owners of power plants have to publish thisa,datut about 91% of all generation

capacity was available on this website at the tineedata was downloaded (EEX 2011). In
addition to being required by law to publish certdata, some power suppliers publish
more data on a voluntary basis. The published datithe transparency website contains:
the planned and unplanned unavailabilities of pgulents, the planned and actual in-feed
of solar/wind energy along with the planned andialcgeneration of conventional power

plants.

The planned unavailability of power plants can lge scheduled maintenances, which are
known up to several years in advance. Periods pfanned unavailability can be due to
emergency situations or low river levels that fer¢eermal power plants to shut down
because of environmental concerns and regulat®nsunavailability is stated as a time
frame, e.g. the data set contains the informatiab 144 MW of a coal power plant within
Germany is being unavailable between 4.11.09 18r@i09.11.09 5:00. To use the data in
this work, the amount of unavailable power for ttagious types has been calculated for
each individual hour of the dataset. In cases whieeailabilities are stated to start at
some point within an hour, e.g. 18:25, the unatbditg will be counted in the dataset from
the next full hour, i.e. 19:00. As has been diseds# will take some time for a power
plant to start and stop operation in practice sod#cline of power being generated will be
rather smooth than sudden. As an example, the cluedsled unavailabilities are shown
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for nuclear power for the whole data-sample in Fegd, which includes the decision to

shut down nuclear power plants in the aftermatthefrukushima-catastrophe.
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Figure 4: Non-scheduled unavailability for nuclearpower plants in MW

The solar and wind in-feed is stated as inducedep@ar each 15 minutes. To use the data
in this work, the 4 quarters have been averagethlitulate the amount of MWh that is
generated within one hour. The data for solar @i not available until the £%f July
2010 because the data has not been published dratisparency platform until that date

and is noted as zero in the current dataset inatilgoint in time.

As has been worked out in the preceding chapteredpected demand in a given hour is
an important variable in determining the electyigitice. The total demand itself is not
published on the transparency website. Howeveremggion has to follow demand in an
electricity grid and for that all the necessaryomnfiation is given on the transparency
website: There is the information about the totaker generated from conventional power
plants and the power generated from wind and sel&nown as well. Not known are
transmission and distribution losses, the poweegdad by smaller power producers that
are not obliged to publish data on the transparsredysite, and small, decentralised power
generation like industrial autogeneration, geotlarior block heat and power plants
(Burger et al. 2007). However, this shouldn’t hawajor consequences for the price
formation on the power exchange within the framéwair a statistic model as it can be

expected that the remaining demanded capacity dHolibw the same trends which the
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available data exhibits. Therefore, there are cleffit replacements for total power demand
in the transparency data.
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Figure 5: Comparison of Spot Prices, load and Feeut-of renewables

In total, the data published on the transparencdysie adds significant information that
can be used for econometric analyses that has eet lavailable for earlier works.
Actually, many earlier works recommend to re-estartheir findings with exactly the data
that has now been published on the transparencygiteek.g. Swider & Weber (2007) and
Garcia et al. (2005). Figure 5 shows an exampléhefexplanatory power of this data:
Periods of high wind are accompanied with dropgha generation of both conventional

power and the spot price.

3.1.3 Remainder: Weather, Oil-Price, Transmission Capaci and River

Levels

As weather plays an important role in energy consion, temperature is included in the
dataset (e.g. Huurman et al. 2010). The data has bbtained from DWD, Deutscher
Wetterdienst. Because the purpose of this work i®tecast day-ahead electricity prices,
forecasts should have been obtained: However, dusvailability reasons, only actual
temperature data has been incorporated. That Waymntplicit assumption is made that on

average, the forecasted temperatures for the ragxaie exact. Weron & Misiorek (2008)
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use the same assumption when they calculate d&metic average of big cities within the
examined market to have a proxy for the averagdeanperature of the whole region.
However, as only daily data for Frankfurt am Maiasaavailable for the use of this work,
it has become the weather-data that is used a®xy for the general temperature in
Germany. Still, this produces significant estimavdsich will be shown later because

Frankfurt is a rather central city.

In order to keep the number of variables that aeduor the econometric analysis in a
reasonable size, the oil price is used as a conpraxy for the price of the input energy
carriers like coal, gas, oil, and uranium. Thisrseeeasonable due to the connection of oil
and gas price through long-term contracts. For,cth@re are many different prices
depending on quality and origin and therefore thereo “one” price that can simply be
added. According to Tarjei (2011), “Brent” is tredavant oil price for Germany as it is the
crude oil blend from the North Sea. The oil priggadis obtained from Thomson Reuters
Datastream in USD per Barrel. Since the oil pricenly listed for weekdays, the oil-price

from Friday has been assumed to stay constantlogdollowing weekend.

Another important issue for the determination efcélicity prices can be congestion issues
within the market or at its connections to otherkats. Considering the auction of the
electricity price, the internal transmission capadias not yet lead to differences in
pricing, even though the limited transmission cégdoom Northern to Southern Germany
has already led to various challenges for the TS@®smission constraints are built into
the auctioning system of EPEX Spot and there isthieretic option of zonal prices but
this has not yet occurred in the auction for thente electricity market. Accordingly,
transmission constraints are not an issue right foova statistical approach considering
the forecasting of electricity prices but mightdreissue in future in case wind production
keeps increasing in northern Germany and the gajphcity cannot keep up with this
increase. However, collecting the respective dallabe difficult because congestions are
not part of the transparency-system so far and/éin@us congestion points differ in who

manages them and whether they are part of the ERIEXON or auctioned separately.

As McDermott & Nilsen (2011) show, the river levalso have an influence on electricity
prices. However, considering the sample size ofubllwo years and the number of
variables already included in this analysis, themrievels have not been obtained both due

to availability and also to reduce risks of oversfieation. As a proxy, temperature is



Data 25

included as it is somewhat correlated with the rrievels which are especially low in
summer (McDermott & Nilsen 2011).

Variable Obs Mean Std. Dev. Min Max
Spotprice 16,776 46.5 15.2 -200.0 131.8
emissionprice 16,776 14.2 1.4 10.4 16.8
CrudeOiBrent 16,752 91.7 17.4 70.7 125.4
temperature 16,776 11.0 7.9 -12.2 28.5
non-usabilty planned lignite 16,776 19153 1,220.8 0 0. 5,916.0
non-usability planned gas 16,776 1,639.5 1,024.1 0.0 9301
non-usability planned oil 16,776  230.9 239.3 0.0 1,658.0
non-usability planned pump-storage 16,776 537.0 4422 .0 0 2,320.4
non-usabilty planned coal 16,776 2,246.1 1,587.8 0.0 9635
non-usabilty planned uranium 16,776 2,2749 2,1199 0 0. 10,9784
planned non-usability total 16,776  8,926.0 4,878.8 0.0 3,0@2.5
non-sched. non-usability lignite 16,776 1,148.1 713.0 .0 0 4,684.0
non-sched. non-usabilty gas 16,776  486.2 415.8 0.0 42033
non-sched. non-usabilty oil 16,776 13.9 74.5 0.0 772.0
non-sched. non-usabilty pump-storage 16,776 65.0 9109. 0.0 900.0
non-sched. non-usabilty coal 16,776 1,059.7 628.9 0.0 ,1243
non-sched. non-usabilty uranium 16,776 1,077.6 1H47. 0.0 6,220.1
non-sched. non-usabiity total 16,776 3,852.7 2,122.4 .0 0 11,245.3
Planned Generation Capacity 16,776 44,667.4 8,342.1712@M 67,666.2
Actual Generation Capacity 16,776 41,621.2 7,868.3 5R#4 63,781.0
solar infeed plan 10,536 2,037.3 3,074.3 0.0 13,982.7
wind infeed plan 16,776 4,530.9 3,769.6 234.8 22,661.0

Table 2: Summary statistics for the dataset

In total, the dataset compromises 16,776 obsenatimm the I of November 2009 to
30" September 2011 where each observation represeatsaur and includes information
about the spot price, the price for CO2-certifisat€rude Oil, temperature, planned wind
and solar feed-in, the planned and unplanned naiadities for the different kinds of
power plants and the total planned power generdtioall other power plants that are part

of the EEX transparency system. The resulting sumistatistics are shown in Table 2.

Three hours in the dataset are affected by thegdsato and from Daylight Saving Time.
In order to have a complete dataset without anygédyge mean of the hour before and the

hour after has been used for values that are mgiskiring these hours.
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3.2 Properties of the Electricity Spot Price

In this section, the most relevant of the availaldeiables, the spot price data, will be
examined for a number of statistical properties tr@ important for econometric time
series modelling. Some of the variables like ,€Or oil-prices might exhibit special

properties as well but examining them as well appidy would be outside the scope of

this work.

3.2.1 Autocorrelation

Autocorrelation is the correlation of a given vate with itself, most commonly with
values earlier in time. This is an important feataf many time series compared to a cross
sectional analysis as, at least in an economicegtna value will often depend on its

earlier value and will not be randomly distributed.
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Figure 6: Correlogram of the spot price, full timehorizon

Autocorrelation can be visualised by using a cogedm which will plot the correlation of

a variable given its lagged values as can be seEigure 6, which shows a plot of the full
time series of the electricity prices against isidagged values. Clearly, electricity prices
have a strong autocorrelation towards the samestafuthe former days, which is why the
correlogram shows a peak at the marks at each @ .hall peaks lie outside the shaded
area that represents the 95% confidence interfarelare also high correlations within

the same day, which can be seen for the first ldgsvever, these correlations cannot be
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used for the purpose of forecasting electricitgsias they won't be known beforehand:

All 24 hours of one day are auctioned simultaneousl

3.2.2 Stationarity

A time series exhibits stationarity, when the jommbbability distribution remains stable
over time and consequently also mean and variane®tichange over time. A time series
which does not have these characteristics is callaustationary. The assumption of
stationarity is needed for time series analysisabse otherwise the relationship between
two variables would change arbitrarily and one doabt track correlations between the
two in a regression analysis. Using non-statioriging series in a regression analysis can
be risky as one might compute significant correladi even though there are none as both
variables increase independently from each othiis iE called a “Spurious Regression”.
Non-stationarity is especially problematic in condion with highly persistent time
series. A time series is highly persistent whehai$ a long memory towards even small
shocks and therefore does not return to its fonmean or variance, thereby becoming a

non-stationary process (Verbeek 2008).

To test for stationarity and highly persistent tisegies, one can use a graphical analysis, a
correlogram or the dickey fuller test. The dickelldr test has the HO that the time series
has a unit root and therefore is non-stationarys HO is rejected at the 99% level for all
24 hours of the dataset when tested with the ifmk thorizon, i.e. the time series does not
exhibit non-stationarity in general. However, whe@amining periods of a shorter length
of only about 50 days and for some off-peak hourshe dataset used for this thesis,
stationarity can be a problem as the HO of a didkégr test cannot always be rejected at
high confidence levels. This could be the reasory wbhme other authors explicitly
examine issues connected with non stationarity em@an electricity prices, as does Liebl

(2010) for example

3.2.3 Heteroscedasticity

A sample exhibits heteroskedasticity, when the arax¢ of the error term changes
depending on the explanatory variables. When esitigmdahe coefficient by the use of

OLS, one has to use heteroskedasticity-robust atenerrors so that the standard errors
and, consequently, the t- and F-scores remain .vale estimates of the coefficients

however will remain unbiased also in the occurreaotéeteroskedasticity (Wooldridge

2008).
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To test for heteroskedasticity, there are for eXartipe White test, the Breusch-Pagan test
or graphical tests. The White test basically caasi$ estimating the explanatory variables
against the error term u as the explained varigieuld any of the explanatory variables
turn out to be significant, one has to reject tie thiat the error term is homoscedastic.
Using the OLS-regression that will be presentedrlat conjunction with a white test for
the full time horizon, the HO of homoscedasticigsho be rejected for every individual
hour of the dataset at the 99% significance leesides hour 14, where the HO is rejected
with a 97% significance level according to the sfuare distribution. The Breusch-Pagan
| Cook-Weisberg test for heteroskedasticity yietde same conclusion with a 99%
significance for all hours. The difference in thgngficance level for the two tests could be
due to the fact that the White test uses a relgtiaege number of regressors and therefore
uses many degrees of freedom (White 1980; Wooldrkip8).

The findings match with those of earlier works ttascribe electricity prices to exhibit a
“nonconstant mean and variance” (R. C. Garcia et 2005) and significant
heteroeskedasticity (Swider & Weber 2007).
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4 Estimation Models and Methodology

4.1 Overview of available Models

Many different models are used in the literaturdot@cast electricity prices. Aggarwal et
al. (2009) describe Game Theory models, Simulatrmdels and Time Series models
which are divided between parsimonious stochastadets, regression models and

Artificial Intelligence models.

Game Theory Models try to model the strategiehefrharket participants and identify a
solution of those games. A key point is the analydithe strategic market equilibrium,
which can be based on models like the Nash equilibrthe Cournot model and others.
As Game Theory Models require many assumptionsitisas can vary widely between
different models (Haili Song et al. 2002; Cunninghet al. 2002; Aggarwal et al. 2009).

Simulation Models, also described as Fundamentalel4o try to build an exact model of
the system and the solution is found using algorihthat consider the physical
phenomena the process is bound to. This mimicac¢heal dispatch with system operating
requirements and constraints. As Tarjei (2011) arg| the supply and demand side of the
electricity market are described and the price &iclwv the two curves intersect is
calculated. This price then “equals the marginat ob the marginal power plant supplying
power”. Fundamental models are used by utility came@s as they have access to
extensive datasets, e.g. Statkraft uses purelyafuedtal modelling in the spot market and
forecasts the hourly dispatch for each of approiga2500 modelled power plants in
Europe (Skrivarhaug 2010). These models can prog@teailed insights into the system
prices though suffer two major drawbacks: Firsgytlequire detailed system operation
data and second, the simulation methods are coatgticto implement and the
computational cost are very high. Furthermore, &atmn models make the assumption

that a “fair” value will emerge, which can negletarket trends (Aggarwal et al. 2009).

Time Series analysis focuses on the past behawabtie observed variable. There are
models like multiple regression, autoregressive )ARnoving average (MA),
autoregressive moving average (ARMA), autoregressmtegrated moving average
(ARIMA) and generalized autoregressive conditiorfa@teroeskedasticity (GARCH)
models. Normally these are univariate, i.e. focgsanly on one variable and its passed

values but can also be extended with exogenouahblas, then being called multivariate
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models. Besides these “parsimonious stochastice tgmries models, there are also so
called Artificial Intelligence models. According téggarwal et al. (2009), these
nonparametric models “map input-output relationshipthout exploring the underlying
process”. Al models are said to have the ability léarn complex and nonlinear
relationships that are difficult to model with cemtional methods. However, as Weron &
Misiorek (2006) point out, these models are natitive and don’t have a simple physical

interpretation attached which makes understandiagpower market’'s behaviour difficult.

An additional method to forecast spot prices isngixad by Redl et al. (2009). In theory,
when assuming an efficient market hypothesis, tmesdrd price should be a reasonable
indicator for the upcoming spot price. However, stheapproaches do not allow the
development of an own opinion and can be influenogdpeculations. Redl et al. find
questionable results on the predictive power ofvéod prices as the trading strategies of
the market participants actually seem to rely angpot price: spot prices can be explained
well by their own lagged prices whereas lagged &wdwvprices do not significantly
influence spot prices. The weak predictive ab#itaf futures are supported by findings
from Hipolit Torré (2007). Accordingly, one of thether methods described earlier is
necessary to make an own forecast of spot pricesile.

For the purpose of this thesis, parsimonious timees models are the most suitable.
Contrary to Game Theory Models, they need fewenraptions because they can rely on
more actual data and are therefore easier rootdtetexamined circumstances. Yet, they
do not need as much data as fundamental modelshwiasically try to simulate the
complete market conditions. Compared to Artificiatelligence Models, the results of
time series models will still be intuitive and assible for interpretation. Drawbacks of
Time Series Models are the reliance on past datéofecasting: Per definition it is not
possible to forecast completely new market devekagm In Addition, it is unlikely to
precisely forecast extreme events, as a forecastidban past data will have a tendency

towards the mean. These two issues might be tatkledphisticated fundamental models.

Thus, a number of stochastic time series model$ gl used for this analysis and
discussed in more detail in the following. The mostnmon approaches for time series
modelling of electricity prices are a multiple regsion using Ordinary Least Squares, and
autoregressive moving average models along witldiional heteroskedasticity models

using Maximum Likelihood estimation.



Estimation Models and Methodology 31

4.2 Time Series

4.2.1 Multiple regression and Ordinary Least Squares

The most common method to analyse time seriesuuliiple regression analysis and
using “Ordinary Least Squares” (OLS) to estimate twefficients. OLS computes the
coefficients by minimizing the squared residualsMeen the observations and a fitted line.
In the following, a “multiple regression” is alwagseant to be estimated with OLS.

The Gauss-Markov Assumptions for time series regpas, which need to be met for a
multiple regression OLS analysis, are: First, tihat stochastic process follows the linear

model

Ve = Bo + Boxer + -+ BrXe + U,

where y is the explained variable for time periqdSt are the coefficients of the
explanatory variableg; andu; is the error term for t. Furthermore, the assuomsti
require that there is no perfect collinearity ahdttthe error term u has an expected value
of zero for any value of the explanatory variableany given time period. If these first
three assumptions hold, it can be shown that th§ €dtimators are unbiased (Wooldridge
2008). Additionally, if the variance of the errerin u is the same for all time periods and
does not depend on any of the explanatory variadoheisthe errors of two different time
periods are uncorrelated for all explanatory vdesfpthe OLS estimators can be shown to
are “BLUE", the best linear unbiased estimatorsedelpd on the explanatory variables
(Wooldridge 2008).

Electricity prices exhibit heteroscedasticity. Thigans that even though the estimation of
the coefficients will still be correct, the standlarrors and therefore the t-statistics will be
biased. This will be corrected by using “robustirstard errors.

4.2.2 ARMAX and Maximum Likelihood

Many works in the field of forecasting day-aheadcticity prices with econometric
methods rely on special time series models like ARWhich will be explained in this
chapter and GARCH, which will be explained in tlextn ARMAX is a special time series
model that includes both an autoregressive ternR{J)Aa moving average term (“MA”)
and additional exogenous variables (“X”). While thegure of autoregression has already

been explained in Chapter 3.2., it is necessanyoint out what the notion of a moving
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average is about: While autoregression capturaglations of the dependent variable with
its own former values, the moving average compooétiie ARMAX model captures past
deviations or shocks of the dependent variableisnown lagged values. These could be
e.g. due to trends, a seasonality, or variablesclwhare captured by neither the
autoregressive term nor the exogenous variablass,the moving average term is useful
in describing time series in which events haveramediate effect that only lasts a short
period of time (Wei 1990). Another addition thatnche done in this context is the
differencing of adjacent observations, which isphdlto in order to cope with stationarity
issues. Then, the incremental development of ti& idaobserved instead of the absolute
values. In this case, the model is called an ARIM#del, the “I” standing for
“integrated”, because after the estimation of thelefs the data needs to be integrated to

reverse the initial differencing.

An ARMA approach differs from a “standard” multiplegression in two ways: While an
AR term still can be explicitly modelled in a mplé regression analysis, the moving
average term cannot. In addition, the estimatiorthef coefficients is not done using
ordinary least squares but rather a maximum likeith routine, because a non-linear
fitting procedure is necessary. The reliance on ARANd related models by the existing
time series literature is believed to be also padle to historic reasons; when
autocorrelation was considered a nuisance whemastnwot modelled explicitly in the OLS
model and that way standard errors were wrong &aedestimates no longer efficient
(Golder 2007).

When looking at a more formal definition, there disturbances; which are defined to
be the error after fitting and can be calculatebubh &, = y, — y, where y; is the
predicted andy, the actual price at time stdp The ARMA model is based on the
assumption that the error term follows a white egmocess, generally assumed to be
normally distributed with the fornz, = i.i.d.N(u,0?). The time invariant parameters
meanu and standard deviatiom can be estimated by maximizing the log-likelihood
function. In the ARMA(p, q) model the relation be®n the observationg, and the

disturbances; is given by

q
Ye= Vet e = Z X, Vi—z + Zﬁzft—z + &
z=1
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(Swider & Weber 2007). The model is based on camsig previous values of the process
as a combination of an autoregressive (AR) and aingeaverage (MA) part, where the
AR part has the order p and the MA part the orddn dghis notation, p is referring to the
number of previous values @f and q is referring to the number of previous valagthe
disturbances;. The ARMA(p, q) model may then be extended by @oltkl consideration

of exogenous variables, ; with which the model then can be described as

p

q r
Ve= Vet & = Z X, Vi—z + Zﬁzgt—z + Z VeXzt + &
z=1 z=1

z=1

where r describes the number of exogenous variaibléshe model can then be referred to
as ARMAX(p, q, r). The parametess,, 5, andy, can then be estimated by maximizing
the log-likelihood function (Swider & Weber 2007).

As Enders explains, the Maximum Likelihood (ML) igsation uses the following
principle: If values ofe;} are drawn from a normal distribution with a me&zero and a
constant variance?, from standard distribution theory the likelihobdof any realisation

of &; would be

L= 1 —&f
“\Vzme?) T \207)

As the realisations; are independent from each other, the joint ret@disdor all values of
t is the product of the individual likelihoods. Hen given the same variance for all

realisations, the likelihood for the joint realisat is
T

[l ()

t=1

The method used in maximum-likelihood estimation tas select the distributional
parameters so as to maximize the probability ofvdrg the observed sample (Enders

2010). As a simple example, could be generated from the model

& = Ye — Bxt

Accordingly, maximizing the log-likelihood functiomould involve solving for the values

for o2 andp.
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Literature is not clear if one has to correct fatdnoscedasticity to get correct test
statistics, so as a precaution, robust standamtsewill be used in the following when
estimating the models. Earlier works that forecactricity prices using ARMA
techniques usually did not state explicitly thdiust standard errors are used. Even though
this does not influence the outcome of the foregastan be a factor in the development

of the forecasting models, when the significancthefcoefficients needs to be evaluated.

4.2.3 GARCH and Maximum Likelihood

Electricity prices have the special property thatgé price changes are often again
followed by large price changes. For example, endhse of little demand and large wind
in feed, prices will fall abruptly but when thisespal situation is gone, prices will change

by a similar magnitude to the original level agéiMean Reversion”).

By applying a GARCH approach, this conditional heseedasticity can be considered.
Conditional heteroscedasticity means a time vawvaniances? t in which large changes
tend to follow large changes, and small changed terfollow small changes, which is
described as the volatility clustering. GAR@H€) models are designed to capture this

changing volatility by calculating the variancetie following way:

p q
2 _ 2 2
of = w+ Z Xz O¢t—y +Zﬁz£t—z
z=1 z=1

Accordingly, the time variant variance is descrilveith a constant pa, an AR-part of
orderp and a generalized MA-part of ordgrA necessary condition is that the variance is
positive at any time step i.e. thatw > 0, a, > 0z and 5, = 0. The GARCH term will
be included in a regular ARIMA model to model thkit® noises; and the parameters can
then be estimated by maximizing the log-likelihofathction. As the name indicates,
GARCH is a more generalized version of the ARCH aiddr which Robert F. Engle
received the Nobel Prize in Economics 2003. In ARCH model, the volatility is only
depended on the realisation of the error term éngrevious period(s) and not also on its
own realisation in the previous period(s). Accogiyn a GARCH(0,1) model is the same
as an ARCH(1) model. A GARCH model that makes Udsexogenous variables is called
an MGARCH. In the estimation of the GARCH model, heteroskedasticity-robust
standard errors will be used as the model expliatbdels the variance (Swider & Weber
2007; Enders 2010).
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4.3 Methodology for Model Estimation

The usage of an ARIMA or GARCH model for forecagtoan be facilitated by following
the Box-Jenkins Methodology. This is a three-staggthod which is divided into the
identification stage, the estimation stage anddiagnostic checking stage. First, one will
visually examine the time series by plotting theiakales, the autocorrelation function and
the partial correlation function. This will allow theck for trends and missing values and
give a first grasp for plausible models, e.g. for humber of lags which will be necessary
to develop a model with a good fit. Then the teméaimodels will be estimated and
checked for a good fit, which will be done in tinsrk by the forecasting performance for
the two out-of-sample periods (Enders 2010). Fatiog time series has often been
described as “more art than science”, since thexarany different approaches and the
aims for modelling can be very different (BurmanS&aumway 2006). In this work, the

focus will lie on developing a model that can bedufor forecasting.

The statistical hypothesis testing will mainly ngé the t and z-tests of the individual
variables. The t-test basically sets the estimatefficient in relation to the standard
deviation and in connection with an assumed distiom can make inferences on the
statistical significance of the coefficient. Theest is a quite similar test and is used
instead of the t-test for the ARIMA and MGARCH modee to slightly different

assumptions about the standard deviation (Gatef)200

To measure how well the model forecasts the spoé prhen it is out-of-sample, the Mean
Absolute Error (MAE) and the Mean Absolute Percgat&rror (MAPE) will be used. The

MAE is the average of the absolute Forecast Errors:

T
MAE =T™! Z|Pt,fc — P
t=1

wheret andT is referring to the number of hours that are fasted and t=1 is the first
hour of the out-of-sample period (Wooldridge 2008)cordingly, the MAPE is defined as

Pt,fc_Pt
)2

T
MAPE =T Z
t=1

Following other works, also the Root Mean SquareEHRMSE) will be shown:

t
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T
RMSE = |T-1 Z(Pt,fc -p,)’

t=1

Due to the quadratic term, the RMSE is usually meeesitive towards outliers and
therefore usually has a higher value then the MAkese three measures are widely used
in the corresponding literature and so both thesibdgy for evaluation of the results and
the comparability with other works is ensured (Agga et al. 2009).

4.4 Time Horizon

Since the purpose of this work is to develop adasting-model, in-sample and out-of-
sample subsets are created: The first subset @stasestimate the model parameters, and
the forecasting abilities of the model are thenlwatad using the out-of-sample subset.
There are different ways to define the estimatiandew. First, there is the “Rolling
Window” technique, in which a specified number dfservations is used to make the
model estimation. When one day passes, the estmaindow is moved one day forward
and the same number of observations is used tmastithe model and the new day
replaces the oldest day of the subsample. In tlidem both the starting date and the
ending date of the estimation window are variabte.the “Jackknife” model, the
estimation window is extended with each new day ¢laa be included in the dataset, i.e.
the starting date is fixed but the ending dateaisable. The third way is to have a fixed
calibration period and use the estimates fromdaigration period to estimate all the days
of the out-of-sample period. The existing researsbs mostly this last way because the
forecasting periods normally are not longer thamanth and the estimates of the
coefficients should not change drastically by chagghe sampling size by a small
number of days. The tests that have been donethgtlilataset showed that changing the
sample size was leading to fluctuations in the areabout 0.4%-points regarding the
average MAPE. As a optimization of this magnitudeegh't justify the extensive
additional computation time necessary for “Jack&knor “Rolling Window” estimations,
the third way of a fixed sampling will also be usedhis work, as it has been used in other
works before (Dias 2010).

Another question that arises considering the timezbn of the data is how to model the
individual hours of the day. In the spot price aucbf the daily prices, the prices for each

hour are simultaneously determined on the day befar noon. Accordingly, the
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participants get to know the prices for all hourswdtaneously — That means that it is not
possible to forecast e.g. hour 10 by using inforomafrom hour 9, since the prices for hour
9 and 10 will be published together. Accordinglyey model that will be used in this

work has to be refined in a way that only the staally available data is considered in
order to effectively simulate the forecasting psecelo include this consideration into the
econometric model, one could either use lags thatlarger than the number of the
currently estimated hour or it could be done bynesting each hour dependently and using
lags of one, thereby referring to the day beforee Becond option which produces 24
independent time series has been used by Cuaresala (2004) and, as it turns out,

produced more precise forecasts than modellingetietricity prices as one single time
series. This could be confirmed in preliminary data with this sample and additionally it
has been found that the computation time decrea$en only individual hours and

autoregressive lags in the magnitude of 1 are agtighagainst the estimation of the
complete sample and the respective lags in the iuagnof 24, which might also be due
to the amount of exogenous variables that are dieclu\While the estimation time on the
used system, an Intel i7 processor with 2.7 GHaguSITATA, is a few minutes for the

individual hours, all hours taken together neededenthan 60 Minutes estimation time for

a similar model.

4.5 Existing Forecasting Results from Time Series Modsl

There is a number of other works who employed ARGBARCH models on the spot

prices of EEX in the past for the purpose of fostica:

« Keles et al. (2011) use Mean Reversion, ARMA, a®tRGH models on the full
hourly time series and try to explicitly model nega prices. The time range for
the Calibration Period is 2002-2005 and the sinmutais run for 2006-2009. They
state a MAPE for this time from 16.02% to 21.06%etaling on the model and a
RMSE of 8.43 to 23.53.

e Swider & Weber 2007: With ARMAX and GARCH Models, MAPE from
12.92% to 13.49% and a MAE of 4.33 to 4.51 is redcfor the different models
and for an in-sample subset which ranges from RO@2 to May 2004. As
exogenous variables, known price information froimeo markets like the reserve
market for ancillary energy is used. In anothemilgir article from one of the
authors, a MAPE between 17.96% and 19.22% is repavhere the hour 12 was
modelled individually for an out-of-sample subs®&iv{der 2006).



Estimation Models and Methodology 38

e Cuaresma et al. 2004: With an univariate approacMAPE of down to about
13.2% and a MAE between 2.60 to 7.13 with a cdlibnasample ranging from
June 2000 to September 2001 and a number of diffé&i@(1) and ARMA models
is achieved. The out-of-sample period ranges frept&nber to mid October 2001.
These authors also specifically employ the apprazfcinodelling the 24 hours
individually. Spikes have been removed in this work

In Addition to the works based on the EEX, there arany articles that focus on other

markets:

« Rafal Weron & Misiorek 2008: The authors examin® tmarkets using a wide
range of advanced Time Series models: For the Moidmarket, they report an
MAPE of only 3.2%. The other market they examinghis Californian market
where a MAPE of 12.96% is the best result for a ehad which spikes have been
pre-processed in a way that they are dampened.

* Gianfreda & Grossi 2011: In a recent study of ttadidn Electricity market, the
authors report a MAPE between 10.69% and 12.63%aa&RMSE of 9.57 to 12.17
for the different zones of the Italian System. Towecasting was done with a Reg-
ARFIMA-GARCH model and included exogenous variabfes technologies,
market power and network congestion using a rolmydow approach.

* Aggarwal et al list a compilation of papers on f@gting for different markets and
methods and state that the reported MAPE is usuatlye range of about 3% up to
about 20% (2009).

These earlier works show that there are considerdilferences regarding the precision of
the forecasts that can be reached in the differerkets. Especially a heavy influence of
hydropower plants reduces the volatility of thecps, as the owners of the power plants
have few marginal costs besides the opportunityscasd will try to only use water to

generate power in times of sufficient prices, thgrigmiting the range the electricity prices

can have. The EEX spot price is harder to pretian the prices from other markets, as it
exhibits more fluctuations than other markets. Tdan be due to its size on the one hand
and on special production characteristics on therdbdand that lead to more price changes

than e.g. water-dependent Nordpool.
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5 Analysis of the Results

5.1 Obtained Models and influence of Transparency-Data

5.1.1 Model Development

5.1.1.1 General Procedure

During the development of the models that will lsdi for forecasting, several findings
have been made. As already described, the modelsetermined using a Box-Jenkins

approach. To generate suitable models, the follgwieps have been used:

1. The average MAPE/MAE that are achieved by the dsanoadjusted model are
compared to the model that has been used before
2. second in order to determine how the MAPE/MAE caniricreased further, the

significance tests are used to determine whichatsées might have to be dropped

For each model category (i.e. ARIMAX, ARIMA, MGARCHDLS) the same model is
used for all individual 24 hours. Since however diagaset is slightly different for all those
24 hours, the estimates will vary. The 24 estinmatesults for the complete time horizon

for all 4 model categories can be found in the Ajlbe

Only variables that are “known” at the point in #inwhere the auction is conducted are
included. That way, the forecasting process is kKtad just like a market participant
would experience it because he will not have acteshe actual information ex ante.
Accordingly, forecasts are used, like the plannedegation capacity for the next day or
the forecasted wind in-feed. In case there areorecésts available, a lagged variable will

be used. This is why the oil price and the emisgioce are used in lagged form.

An important principle of the Box-Jenkins appro@&parsimony, which means sparseness
or stinginess. While additional coefficients ingeahe fit, they lead to a reduction of
degrees of freedom. A parsimonious model will fi¢ tmodel well without incorporating
needless coefficients — and these needless cesifscwill not be projected into the future
by using them for forecasting. Consequently, itre&commended to eliminate weak
coefficients or coefficients with strong correlatibetween each other for the purpose of
forecasting. This is not only true for ARIMA and ®&H models but also for multiple

regression models (Enders 2010).
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5.1.1.2 Specific Adjustments

Many of the variables that have been discussetiapter 3 also are included in the model.
Even though economic reasoning can explain that #ine important determinants of the
electricity price, some of these variables are statistically significant in the current
dataset and therefore will not be used in the atigetting to reduce issues associated with
overspecification and accordingly stick to the aptcof parsimony. The same decisions
have been made for all models simultaneously ierta keep the results comparable. The

following variables have been dropped in the preagtshe model development:

e The variables for the unavailability of oil and ppistorage power plants have been
dropped: As they have very few periods of unavditspit is difficult to reliably
estimate price effects — which is why they turnetto be very insignificant in the
estimated models.

* The data for solar power is only available from whwalfway through the dataset —
it wasn't made public before — and only reachesdam magnitude on a few
summer days. Both effects taken together also tiead low significance of solar
power given the amount of other exogenous variabhed are used in this

examination and therefore also the coefficientsfiar power has been dropped.

For periods of high wind and little demand, relalwhigh MAE and MAPE have been
discovered and therefore, different variations riolide the wind data have been used
during the development phase of the models. Howewsther the use of dummies for
different wind levels, quadratic forms nor combiaas of those could significantly
improve the forecasting errors. Possibly forecgstan improve when one can facilitate a

larger sample which exhibits more of these extrsituations.

Electricity prices exhibit seasonality besides tivairly basis. At first, dummies for each
weekday have been included in the model. Howewemndies for each day have turned
out to be insignificant for the working days, besauhere are only few differences
between them. There are substantial differencewdaet the working days and the
weekends though. Accordingly, a weekend-dummy heentused to keep the balance
between the significance of additional variablesl garsimony. Public holidays are

included through an additional dummy and includédays where the majority of the

German federal states have statutory holidays.
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Many earlier works that have been conducted foctebtity price forecasting use a
logarithmic form for all the variables, becauset tway, a more homogenous variance and
smoother volatility is reached (R. C. Garcia et24l05; Nogales et al. 2002). However,
using the current dataset and the explained modelsyel-log form generated the best
forecasting performance. “Level-log” form meansttti@ explanatory variables are in log-
form, while the explained variable remains in lefa@in, i.e. not using a logarithmic
transformation. It turned out that while MAPE and\il of course were lower for the log-
log-form when comparing the logarithmic price atsl logarithmic forecast, MAPE and
MAE were inferior when calculating the results backhe level-form. For both selected
periods, the forecasting of a level-log model yeeldbetter performance measurements
than the respective log-log model. Taking MAPE asgample, in the September Period
the MAPE for a log-log model was 9.9% while it wady 8.3% for the level-log model.
This is why a level-log form was used in this worke logarithmic form was used for all
explanatory variables. To calculate the logarithforen of the temperature, a constant has
been added to all values in order to avoid negatwvms. Other variables do not have

negative values and therefore did not need an tzaigun.

For the ARIMAX and MGARCH models, there is a widage of possibilities to include
the autoregressive and moving average terms. Thar®PAC suggest the use of several
lags. As it turns out, for both the AR and the Maknh, significance for lags higher than
one is very low. Since the aim of the model deweiept is to identify the smallest and
most simplistic model that still adequately desesilihe data, both the AR and the MA
terms have been added for one lag, which, as dwauny is modelled individually, then
refers back to the same hour of the day beforesdlfieadings match the results of earlier
works. Including more lags in the ARIMAX and MGARQHodels needed considerable
more computation time and only marginally improtbed MAPE error, by around 0.1%-

points.

The ARIMAX and ARIMA model are used in a first difenced form, which seems to
avoid possible weak stationarity issues as the MARIpped by a few percentage-points.
Using a first differenced form was not possible foe MGARCH model, because the
model gets to complex and finding an iterative 8ofu for the maximum likelihood

operation is not possible anymore.

As for the third step in the Box-Jenkins Methodglothe models are checked that the

residuals follow a white noise process. To do tEailers speaks of the option to use the
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out-of-sample forecast performance as a measurentech is convenient given the focus
of this work (Enders 2010).

To be able to compare the results of the multiv@rsgproach that has been conducted in
this work with a univariate approach, a simple anate ARIMA model with an AR(1)
and a MA(1) term has been included. It is diffeehcone time, making it an
ARIMA(1,1,1) model.

5.1.2 Model Results

Since every hour is estimated individually, andrfowodels are estimated for each hour,
there are in total 96 estimation results. Howethex,general picture of the coefficients will
be similar — the same model is estimated usingl#te of the various hours. Therefore, the
coefficients will be explained on the example ofurdd3, going from 12:00 to 13:00, for
the four estimated models, since it is the houhlie highest traded volume. In order to
show the complete picture, the remaining hoursgiven in the Appendix. While the
magnitude of the coefficients might change in otimuirs, the tendency and the sign of the

coefficient is very similar
explained by referring to
forecasting errors and be

appropriate.

in most cases for abbuins. The results will normally be
the ARIMAX results as ig the model with the lowest

supplemented with inftionafrom the other models where

Variable

explanation

log_PlannedGeneration
log_windplangermany

L1.log_emissionprice
L1.log CrudeOiBrent
log_temperature
log_unav_lignite_planned
log_unav_Gas_planned
log_unav_coal planned
log_unav_uranium_planned
log_unav_lignite_nonsched
log_unav_Gas_nonsched
log_unav_coal nonsched
log_unav_uranium_nonsched
d_weekend

d_holiday

the total amount of elegtgeineration from conventional power plants
that is planned in Germany for the next day forghsicular hour, in
the planned amount of elegtigeinerated from wind energy, based on
wind forecasts, in MW; log-form
the current price for CO2-beates, in EUR/; log-form
the current price for the raletvoll sort, in $/BBL; log-form
the actual temperature for thedsxfor a particular hour in °C; log-
planned unavailabiltylifgite power plants for each hour in MW, log-
planned unavailability forggaser plants for each hour in MW, log-
planned unavailabilty forl poaver plants for each hour in MW, log-
planned unavailabilitynfarlear power plants for each hour in MW, log-
unplanned unavailability for lignite power plards €ach hour in MW, lo
unplanned unavailabiltydfsrgpwer plants for each hour in MW, log-
unplanned unavailabiitgdal power plants for each hour in MW, log-
unplanned unavailabiitpdiclear power plants for each hour in MW,
weekend-dummy variable, 1 if the houitiina weekend
holidy-dummy variable, 1 if the hour ighivi a statutory holidy

Table 3: Explanation of used variable names
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Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 34.18101*** 33.803052***  19.6885*
log_windplangermany -2.5541961*** -2.5246853*** -2, 7XG24***
L1.log_emissionprice 12.39411000 14.43999900 9.5818852
L1.log_CrudeOiBrent 13.73995600 16.923396** 12.7667**
log_temperature -4.23377800 -3.787267* -3.7443177*
log_unav_lignite_planned 0.24994634 0.23895162 507836
log_unav_Gas_planned -0.29971647 -0.20663191 -0.283946
log_unav_coal planned .49334207** .50889382** 5588077
log_unav_uranium_planned 0.11255363 0.08470135 274699
log_unav_lignite_nonsched 0.09749453 0.05122216 P EYYes]
log_unav_Gas_nonsched -0.04550184 -0.03018660 0.082381
log_unav_coal nonsched .52797819** .36739753* 5072737
log_unav_uranium_nonsched .4153203* .39921933** .39678*
d_weekend -4.3652562** -4.6244609***  -7.5259589***
d_holday -5.7572398*** -5.2969489***  -6.0687815***
_cons -380.48493**  0.02381044 -398.78192***  -225.68903
ARMA
L1. ar .96447413**  .31991917**  .96002614*** 21239769
L1.ma -.75071009*** -1.0488318*** -.71037717***
sigma
_cons 5.2337186***  8.3331067***
ARCH
L1.arch .22118258***
_cons 21.857504***

legend: * p<0.05; ** p<0.01; *** p<0.001
Table 4: Estimation Results ARIMAX, ARIMA, MGARCH a nd OLS for hour 13,
whole data sample, level-log form

As heteroeskedasticity has been described as aartamp characteristic of electricity

prices, one has to use heteroeskedasticity-robarstiard errors for the t- and z-statistics to

remain valid. This is done for all models besides MGARCH model where the volatility

is modelled explicitly. Many other works on the doasting of electricity price do not

explicitly describe taking this step. Hence, that &atistics for the following results could

be considered as being rather conservative comparetther works. The significance tests
are only important for interpreting the model résand to make decisions about whether
or not include a variable; a low significance ha#self no effect on the forecasting.

As the Estimation Results in Table 4 show, windeied lowers the price at the power
exchange. On average, a 10% increase in wind oh-fb@anges the electricity price by -
0.255 EUR/MWh following the ARIMAX model (MGARCH0-252 EUR/MWh, OLS: -

2.78 EUR/MWNh). The interpretation of the coeffid®ns done using the template by
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Wooldridge, which states the interpretation of eaficient in level-log form to be

Ay = (1‘%) %Ax (Wooldridge 2008). While wind is significant atett®.01%-level, this

was not the case for solar in-feed. For Solar, gasitive estimates were within the 95%
confidence interval of all the model results — whaf course is against the economic logic.
To avoid overspecification issues, the solar irdfeas therefore been dropped. The low
significance can be due to the limited time for eththe data on solar energy is available,
which does not start until mid-July 2010 and als® amount of solar in-feed during this
period was lower than wind in-feed, with solar gyeamounting only to about 43% of the
electricity generation from wind. This makes it mdaifficult for the estimation routines to
calculate significant estimates. The finding of at@ge coefficients is consistent with
earlier findings that discussed the price effectrafewables. Recent studies about the
impact of wind energy on market prices in Denmavtorthorst 2007) and Germany
(Neubarth et al. 2006) observed price reductiorsbolut 12—15% in the long run. Sensful3
et al state that the so called “merit-order effezdtised by renewables for the year 2006
reached a volume in the magnitude of 3-5 billiorRE2008).

Both the oil-price and the price for CO2-certifieaitare positive, which intuitively makes
sense as they are input-factors for electricityegation. A 10% increase in the oil-price
increases the electricity price by about 1.37 EURMusing the ARIMAX estimates
(MGARCH: 1.69 EUR/MWh, OLS: 1.28 EUR/MWh). The rdétsuare significant at high
confidence levels for all models, though the sigaiice is somewhat lower for the
ARIMA and MGARCH models. In the ARIMAX model, thestamate for the influence of
the oil price is only significant at the 72%-lev€he difference in the significance between
the MGARCH model and the ARIMAX model is probablyedto the robust standard-
errors for the ARIMAX model while the volatility isiodelled explicitly for the MGARCH
model and therefore the standard errors can belatdéd more precisely. The picture is
similar for the estimate of the emission-price @ogfnt, where a 10% increase is
estimated to increase the electricity price by 1E224R/MWh for the ARIMAX model
(MGARCH: 1.44 EUR/MWh, OLS: 0.96 EUR/MWh). The sificance is above the 90%
significance level for ARIMA and MGARCH and abov@% for OLS.

Even though temperature will not be as importanGermany as it is for other electricity
markets, it still remains statistically significam the MGARCH and OLS model. On
average, a 10%-temperature increase will decréaseléctricity price by 0.42 EUR/MWh
following the ARIMAX model (MGARCH: -0.38 EUR/MWHOLS: -3.7 EUR/MWHh). The
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reason for this coefficient is probably that hegtimith electricity is still done in some

instances and apparently outweighs the use of Amd@ioning in the warmer months.

Because one could expect electricity prices tq mgeen a lot of energy is needed for air
conditioning when river levels are low, a quadrdten of temperature has also been
estimated. However, the calculated turning poing Yeat above normal temperature levels
(Wooldridge 2008), so a quadratic form of the terapge does not improve the model.
This is probably due to the case that in the sarppteod of the two years, the summers
haven't been particularly hot and there hasn’t be@nsignificant outages due to low river
levels, so when extending the dataset to times higher temperatures and the resulting
impacts on the electricity price a quadratic forintemperature could be considered —
which however won'’t be easily possible yet as thagparency data is only available after

a certain point in time.

Concerning the unavailabilities, only the estimdta#scoal power plants, both for planned
and non-scheduled outages and uranium power plantson-scheduled outages can be
considered statistically significant for the ARIMAXNd MGARCH model. All their
estimates are positive, which makes sense sinaeia supply should increase prices. The
other estimates cannot be considered statistisalyificant at high significance levels for
ARIMAX and MGARCH which may be due to the relatiydimited and the complexity of
the model. However, the other estimates are alsitiyp® within their respective 95%

confidence intervals.

A finding that has been expected is that the coefits of the different types of power
plants line up in the way they also align in therimerder that has been explained in
Chapter 2, i.e. that the price effect of an unadd nuclear power plant is the highest,
while the coefficient then gradually decreasestlier power plants which are higher up in
the merit order and therefore have a lesser pffeete This expectation however, cannot
be proven with this data as the significance lewass too weak: right now actually the
price effect of a coal power plant seems to be drighan that of a nuclear power plant.
However, the theory that the coefficients line ophe merit order might still be true, as
the confidence intervals of the estimates stithalfor this possibility. Further research and

a more extensive dataset will be necessary to aithe coefficients with more precision.

The weak significance of the coefficients can s a sign of competition: a high
significance would indicate a lot of power for thewer plant owner as he could be sure

about the price effect when turning off a powernpla which, as the current analysis
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shows, he can only be for the large base-load ppleerts which are further down in the
merit order and that way definitely will cut suppl®n the other side, he cannot easily
influence prices by not offering a power plant @ tmarket which has higher marginal
costs and is easy to control. When one marketqgyaaitit does not offer a gas power plant
on the market, the others might just balance cait tlove by offering more of their own
available capacities or even going above the ovadty for some time by e.g. running a

power plant at over 100% capacity if profitable.

For the gas-based peak power plant, also negatieffigents are in the range of the
confidence interval — which is understandable ay #re on top of the merit order. Power
suppliers might even schedule maintenance periodsnies with expectedly low prices.
The iteration routing that estimates the model witinnect the low price with the
unavailability and that way generates the possjbif a negative coefficient, even though
a negative coefficient should not occur when supglgut considering basic economic

theory.

When researching the use of dummies for the weekdasing individual dummies for
each day yielded a weak significance for the wegkdad only Saturday and Sunday were
considered statistically significant at a high #igance level. Probably the variations
within the weekdays are not large enough as theyddoe assigned to a certain day. To
reduce the impact of overspecification, only a vesek dummy has been utilised. The
weekday dummy is statistically significant at th@¥®level and the ARIMAX model
predicts that prices for the weekend are abouEUR/MWh lower when controlling for
all other factors (MGARCH: -4.62 EUR/MWh, OLS: -2.5EUR/MWh). However,
demand is already explicitly controlled for throuiife use of the total planned generation,
so it remains unclear why there is an additionstaiint on the prices for the weekend that
goes above the limits that are set by total demand.

All the models seem to be consistent with econoraasoning in both magnitude and
significance. In total, the OLS model seems to finkigher significance in the exogenous
variables but does not have the moving average térith is estimated for the ARIMAX
and MGARCH model. This moving average term possdaynes on cost of degrees of
freedom, thereby reducing the significance of sainthe other estimated coefficients. A
comparison of the out-of-sample forecasting pertoroe will yield answers on which

model is most suited for forecasting.
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5.2 Forecasting Performance

The forecast that is being undertaken is a conwitiforecast: some information from the

future like the planned generation capacity is kmoand can be used for forecasting
(Wooldridge 2008). The forecasts for the out-of-plarperiod are calculated based on the
estimates made in the in-sample period. This isedon two different periods to check

how the approach works in different seasons, fdh I&eptember 2011 and for February
2011. In both cases, the sample size has beeegleftl so that differences can only be due
to the differences in season and not due to therdiices in the time horizon. Again, each

hour is modelled individually.
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Figure 7: Forecasted and actual Spot Price for fifsstwo weeks September 2011, based

on estimation period from June 2010 to August 2011

Table 5 shows the forecasting Errors for Septeribéd for the different models that have
been developed. All models share a relatively lovedasting error for the time between
7am until midnight, but are significantly higherrfthe early morning hours. This is
another indication why hourly forecasts are bdattan modelling all hours together: Hours
with a high unpredictability will not influence hmu with a better predictability. A

common characteristic of those hours with high aéwns are little demand and lots of
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wind-in-feed. As already pointed out, a number afiations for the modelling have been
tried but did not yield significant improvementstive forecasting performance, so possibly
also other factors play a role which are not cagatun this dataset, like congestion or

different bidding strategies by the market paracits.

ARIMAX ARIMA OLS MGARCH
Hour MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

1 14.1% 4.4 6.5 20.6% 6.1 9.1 15.4% 4.9 6.8 15.4% 4.9 7.0
2 13.5% 4.3 5.7 21.3% 6.0 8.4 15.1% 4.6 6.2 14.5% 4.5 5.7
3 16.4% 4.6 6.1 26.7% 6.6 8.9 19.4% 51 6.4 18.6% 4.9 6.1
4 19.5% 5.0 6.3 30.9% 7.2 9.9 24.3% 5.8 7.2 20.5% 51 6.2
5 17.8% 4.8 6.0 29.1% 7.0 9.5 20.2% 5.0 6.4 20.9% 6.7 9.6
6 14.2% 4.4 6.1 19.5% 5.8 8.0 14.3% 4.6 5.7 14.5% 4.8 5.9
7 8.1% 3.9 5.7 18.2% 8.4 10.7 11.3% 5.7 7.4 8.8% 4.4 6.1
8 7.9% 4.3 5.0 20.9% 111 13.6 9.1% 53 7.0 22.0% 121 16.0
9 4.8% 2.8 3.6 17.5% 9.8 11.7 6.5% 3.9 5.2 12.6% 7.3 9.8
10 5.0% 2.9 3.9 13.0% 7.6 9.6 6.2% 3.9 5.4 14.5% 8.7 11.5
11 57% 3.4 4.3 12.0% 7.1 9.0 6.0% 3.9 5.5 12.4% 1.7 10.8
12 5.4% 3.5 4.8 10.8% 6.7 8.8 5.5% 3.6 5.5 13.7% 8.6 11.9
13 5.5% 3.4 4.4 9.9% 6.0 7.7 5.7% 3.6 4.9 11.5% 7.1 10.2
14 5.7% 3.3 3.9 12.1% 6.9 8.5 5.4% 3.1 4.2 11.9% 6.8 9.7
15 6.7% 3.6 4.2 12.4% 6.6 8.1 5.9% 3.2 3.9 10.9% 6.0 9.1
16 7.0% 3.6 4.4 10.9% 5.7 7.1 5.9% 3.1 3.8 14.3% 7.4 10.7
17 6.6% 3.3 3.9 9.2% 4.8 6.0 5.9% 3.0 3.7 15.7% 8.0 11.3
18 5.6% 3.0 3.8 8.5% 4.8 6.0 5.1% 2.8 3.4 10.1% 5.6 7.9
19 4.9% 2.9 3.4 6.9% 4.3 51 4.8% 2.9 3.5 5.6% 3.5 4.1
20 4.8% 3.2 4.0 6.1% 4.1 51 6.6% 4.5 5.6 5.7% 3.8 4.8
21 5.3% 3.5 4.2 5.8% 3.9 53 10.5% 7.3 8.1 5.3% 3.6 4.6
22 5.8% 3.3 3.8 6.6% 3.7 4.4 7.1% 4.2 4.7

23 4.3% 2.2 2.6 5.0% 2.6 3.2 4.0% 21 2.6 3.7% 1.9 2.4
24 5.4% 2.3 3.5 7.8% 3.4 4.5 5.4% 2.3 3.4 5.0% 2.1 3.5
[4] 8.3% 3.6 4.6 14.2% 6.1 7.8 9.4% 4.1 5.3 12.5% 5.9 8.0

Table 5: Forecasting Errors for September 2011

The results for the February period are considgraigher for the MAPE figure, for which
a number of reasons has been identified. First, Rbleruary-period exhibits a lot of
extreme prices with very small spot prices at alsbut a few cents, while the forecasting
models predict prices of about 20 EUR/MWh, whictcofirse leads to large deviations. In
the case of MAPE, the deviations for those houesirmthe magnitude of several hundred
percent. This shows the importance of using noy dhe MAPE, but rather several
measurements and that the MAPE has weaknessesdept®nally low prices as the
percentage deviations can get very large. Sechedo estimation periods differ in terms
of their volatility and also the “representativesiesf the in-sample period for the out-of-
sample period differs. Third, the stated “plannedegation” seems to be flawed in some

instances. There are cases in which the statete8gre not consistent: This can be seen in
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periods of high wind in-feed and the amount of pkh generation is stated, as an
example, it is unrealistic that a generation caygaafiabout 40.000 MW is necessary from
conventional power plants when the forecasted visndbout 22.000 MW on a Sunday.
The actual generation for this example then resblie be at around 30.000 MW.
Examples like that can be found in dozens of césethe February period, while there
seem to be no cases in the September period irmvitgcplanned generation capacity was
so far off compared to the actual generation thelalr. It seems that the data quality of
the planned generation capacity improved considieiatbetween the two periods: While
the mean difference between planned and actualaedecapacity was 5,387 MW for the
February period, it was only -124 MW for the Sepbtemperiod.

ARIMAX ARIMA OoLS MGARCH

Hour MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

1 40.0% 6.3 8.4 46.1% 7.7 10.1 38.5% 5.3 7.7 37.6% 8.8 10.0
2 32.1% 6.2 7.7 41.0% 7.9 9.4 36.8% 5.7 7.5 39.9% 6.1 7.7
3 22.6% 6.0 7.3 30.6% 8.2 10.0 25.8% 5.7 7.1 30.2% 6.8 8.7
4 138.8% 5.3 6.2 638.5% 7.7 9.1 1456% 5.4 6.4 343.9% 59 6.6
5 5749% 5.4 6.9 1721.1% 7.6 9.3 675.4% 5.2 6.2 895.5% 5.2 6.8
6  458.8% 6.5 7.9 1137.4% 7.9 10.3 802.2% 5.4 6.9 709.2% 6.1 7.7
7 20.7% 6.6 8.8 39.5% 11.0 15.1 21.3% 6.0 8.4 17.4% 6.2 8.6
8 755.5% 5.3 7.4 2457.2% 144 18.0 865.7% 4.8 6.6 794.4% 49 7 6.
9 8.4% 4.4 5.8 27.5% 122 14.2 9.4% 4.0 52 8.8% 3.9 51
10 6.1% 3.2 4.4 18.0% 9.0 10.6 6.8% 3.3 4.4 6.2% 3.0 4.1
11 7.0% 3.6 4.9 15.9% 7.9 9.7 7.9% 3.8 5.0 6.9% 3.2 4.6
12 7.2% 3.6 51 14.9% 7.3 9.1 8.2% 3.9 5.2 6.9% 3.2 4.7
13 7.5% 3.5 51 14.5% 6.9 8.9 8.0% 3.6 51 7.3% 3.2 4.9
14 6.9% 3.0 4.2 16.7% 7.5 9.5 7.2% 3.1 4.1 6.7% 2.8 4.1
15 8.3% 3.3 4.3 19.0% 7.8 10.0 9.5% 3.5 4.5 7.9% 3.0 4.2
16 8.4% 3.2 4.5 18.2% 7.3 9.3 9.4% 3.6 4.6 8.5% 3.5 4.5
17 7.8% 3.3 4.5 15.3% 6.4 8.4 12.8% 5.8 6.7 8.6% 3.8 4.9
18 7.4% 4.3 5.9 8.1% 4.5 5.8 9.6% 5.8 6.9 6.3% 3.7 5.0
19 7.5% 4.9 8.7 9.0% 6.1 10.3 6.9% 4.6 5.9 5.8% 3.8 5.0
20 5.9% 3.6 51 8.0% 5.0 6.6 6.8% 4.1 5.4 5.1% 3.1 4.5
21 9.8% 4.7 6.6 13.3% 6.5 8.6 9.9% 4.4 6.6 9.4% 4.5 6.1
22 9.7% 3.7 5.7 13.6% 53 7.7 9.5% 3.4 5.7 8.6% 3.1 5.2
23 9.6% 3.9 6.0 12.6% 5.1 7.6 9.6% 3.7 5.7 9.8% 4.3 5.7
24 21.4% 8.9 16.2 282% 11.4 18.9 18.0% 6.0 14.8 16.0% 8.7 15.0

2 90.9% 4.7 6.6 265.2% 7.9 10.3 115.0% 4.6 6.4 1249% 4.6 6.3

Table 6: Forecasting Errors for February 2011

The large difference between February and Septemigit also give an indication about
the temptation some scientists must have for setge “good” out-of-sample window.
Because the existing literature is about diffeneatrket, time horizons and sample sizes,
among the wide range of models it seems to becdiffto judge which model actually is

the superior one.
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The comparison of the univariate ARIMA Time Senmesdel and the multivariate models
shows a substantial improvement of forecastingoperdnce when more relevant variables
are accessible. The MAE could be reduced on avdrageore than 2 EUR/MWh from the
univariate to the multivariate ARIMAX model. Givehe value of the transparency data,
their inclusion should clearly be considered irufatworks about forecasting as well.

When regarding the forecasting performance for hmthods together, the ARIMAX
model performs best, as it performs best in theté®elper period and quite good in the
February period. This can be seen in all chosefopeance measurements. However, the
fact of a changing volatility of Electricity prices a good fundamental reason to explicitly
model it — which is done in the conditional het&exasticity model. Given a larger
sample size, this model might perform better agilitbe easier to find iterative solutions
for the maximum likelihood function. Knowing thesrdts of the OLS approach, it is
surprising to what extent former works rely only ARMA(X) and (M) GARCH models to
forecast electricity prices, considering the fostitey errors of OLS are quite similar to the
other models. In addition, the iterations for OL8 asually done so quickly by a statistical

program that it requires much less computation tnestimate a multiple regression.

5.3 Discussion

When considering the results of this work, it isazlthat they are within the range of other
researchers who were conducting similar kinds séaech. Moreover, one needs to keep in
mind that the German electricity market has becomeh more volatile in recent years:
While Cuaresma et al (2004) report a standard tewiaof 9.50 EUR/MWh for their
whole sample ranging between June 2000 to Septedil@dr before the spikes have been
removed, the dataset used in this work exhibitaadsard deviation of 15.22 EUR/MWh.
This is mainly due to the addition of large quaesitof renewable power plants and in the
reduction of nuclear power after political decisofonsequently, given that Cuaresma et
al. have chosen the same month for the out-of-saipgliod, exhibited less volatility and
achieved a MAPE of about 13% with a univariate apph, a significant improvement
could be reached by using the newly published exoge variables that have been
described in this work since for the Septembergoerthe MAPE achieved with the
ARIMAX model is 8.6%.

While there is a considerable improvement in theedasting quality by the use of

exogenous variables, there are still a number pé@s that could improve the forecasting
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performance. In the current work, outliers or spikave not been considered in a special
way. Spikes can be particular interesting when tiegarices are observed, which are
unlikely to be forecasted with the model employedthis work. Keles et al. (2011)

specifically model the possibility of negative mscand thereby reach an improvement in
the forecasting precision. A possible solution dotlier treatment could be to have one
model for prediction during regular time periods,the models presented here work fairly
precise as long as there are no extreme situa#oascond model would be used to detect
the possibility of extreme events, for example bgluding data about grid capacities,

congestion issues and river levels.

Timing-Issues have not been examined exhaustivéllyirwthis data, i.e. the question
about what length of calibration period yields besst results as the focus of this work also
was to compute reliable estimates for the coefitsi®f the transparency data. Also, there
Is the question of the comparability of the in-séemgnd out-of-sample period: Prediction
will work best if the model has been estimated ocomparable time period — but the
question remains how this comparable time periodbzm selected. This topic also is not
exhaustively covered in other works. A common séaddor the selection of time periods
would mean that different works can be comparedeneasily and the presentation of

“good” out-of-sample time windows can be avoided.

This work is focused on using the transparency daththe newly available exogenous
variables only on Time Series models, but thera vgide range of different models that
have been presented in Chapter 3.1 that could ée& wgh the same data. However, a
more complex model doesn’t necessarily improvefdinecasting results: As the use of the
MGARCH model in the current work has shown, mormptex models also need a certain

amount of data to produce reliable results.
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6 Conclusion

To the author’'s knowledge, this is the first avalégawork which makes use of the data on
the EEX transparency platform for forecasting. Adoagly, it is also the first work which
includes exogenous variables like the in-feed akveables, the unavailabilities of power

plants and total generation for the forecastinthefGerman electricity price.

First, based on energy market characteristics &istirgy literature, important determinants
for the electricity price have been worked out. Mhetatistical methods have been
discussed that can be used to forecast the daygtahectricity prices. After the discussion
of those models, a selection of those has beentosactually make this prediction. This
has been done using the Box-Jenkins Approach withmaber of important econometric

models.

This work shows that the predictive power increasessiderably when including the
transparency data that is published by the EEX @vetpto former works that did not have
access to this data. While a similar univariaterapgh based on the year 2001 yielded a
MAPE of 13.2%, the use of the presented varialmigsaved the forecasting error to 8.3%.
Other findings of this work are that also for treage with exogenous variables, a model
based on 24 individual time series works bettentbae time series which includes all
consecutive hours because computation time isefa for the former and because hours
with high volatilities like the early morning houds not interfere with other hours. Also, it
has been shown that using MAPE as a measuremetfiddprecasting performance has
weaknesses especially in the occurrence of pritespAs a fourth major point, it can be
concluded that OLS has not been used exhaustimeigrmer scientific works while this
work shows that OLS does actually not perform worseforecasting and uses less

computation time.

Further research should make use of the transpargai@a to make judgements about
market power and the potential to control priceswithholding capacity, include other

important determinants of the electricity priceelikver levels, transmission capacities and
prices or load from neighbouring markets. The rewai of the wide range of available
models should also be used on this dataset and somsensus should be found for
standardized time horizons. Considering the ineed@senewables and the coupling of the
different European markets, the forecasting oftat@ty price will remain an important

topic in future and will experience a lot of exedi development
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Appendix 1: Detailed regression results for Hour 13or the various models
Detailed ARIMAX regression results for Hour 13:
ARI MA regression
Sanmple: 3 - 699 Nunber of obs = 697
wal d chi2(17) = 11923.43
Log pseudol i kel i hood = -2157. 617 Prob > chi2 = 0. 0000
Sem r obust
Spot pri ce Coef . Std. Err. z P>| z| [95% Conf. Interval]
Spot pri ce
| og_Pl annedGener ati onQuantity 34.18101 5.415336 6. 31 0. 000 23.56715 44.79487
| og_wi ndpl anger many -2.554196 . 285294 -8.95 0. 000 -3.113362 -1. 99503
| og_emi ssi onprice
L1. 12. 39411 7.356297 1.68 0.092 -2.023968 26.81219
| og_CrudeQ | Brent
L1. 13. 73996 14. 01328 0.98 0. 327 -13. 72557 41. 20548
| og_tenperature -4.233778 2.807919 -1.51 0.132 -9.737199 1.269643
I og_unav_lignite_pl anned . 2499463 . 1757632 1.42 0. 155 -.0945432 . 5944359
| og_unav_Gas_pl anned -. 2997165 . 236123 -1.27 0.204 -. 762509 . 163076
| og_unav_coal _pl anned . 4933421 . 183229 2.69 0. 007 . 1342198 . 8524643
| og_unav_ur ani um pl anned . 1125536 . 2087093 0.54 0. 590 -. 2965092 . 5216164
I og_unav_lignite_nonsched . 0974945 . 1763535 0.55 0. 580 -. 248152 . 4431411
| og_unav_Gas_nonsched -. 0455018 . 1076619 -0.42 0.673 -. 2565154 . 1655117
| og_unav_coal _nonsched . 5279782 . 1811315 2.91 0. 004 . 172967 . 8829894
| og_unav_urani um nonsched . 4153203 . 1673355 2.48 0.013 . 0873488 . 7432918
d_weekend -4.365256  1.366925 -3.19 0.001 -7.044379 -1.686133
d_hol i day -5.75724  1.487348 -3.87 0.000 -8.672388  -2.842092
_cons -380.4849  71.77356 -5.30 0.000 -521.1585  -239.8113
ARVA
ar
L1. . 9644741 . 0409611 23.55 0. 000 . 8841918 1. 044756
ma
L1. -. 7507101 . 0714538 -10.51 0. 000 -.890757 -.6106632
/sigma 5.233719 . 2186925 23.93 0. 000 4.805089 5.662348
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Detailed ARIMA regression results for Hour 13:
ARI MA regression
Sanple: 2 - 699 Nunber of obs = 698
Val d chi 2(2) = 2058.10
Log pseudoli kel i hood = -2519. 935 Prob > chi 2 = 0. 0000
Semi r obust
D. Spot price Coef . Std. Err. z P>| z| [95% Conf. Interval]
Spot price
_cons . 0238104 . 0239817 0.99 0.321 -.0231929 . 0708138
ARVA
ar
L1. . 3199192 . 064986 4.92 0. 000 . 192549 . 4472893
m
L1. -1. 048832 . 0343039 -30. 57 0. 000 -1.116066  -.9815973
/signa 8. 333107 . 45808 18. 19 0. 000 7.435286 9. 230927
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Detailed MGARCH regression results for Hour 13
ARCH family regression -- ARMA di sturbances
Sanple: 3 - 699 Nunmber of obs = 697
Di stri bution: Gaussian Wal d chi 2(17) = 6146. 84
Log li kel i hood = -2132.537 Prob > chi 2 = 0. 0000
OoPG
Spot price Coef Std. Err. z P>| z| [95% Conf. Interval]
Spot price
| og_Pl annedGener ati onQuantity 33. 80305 2.603696 12.98 0. 000 28. 6999 38. 9062
| og_wi ndpl anger many -2.524685 . 2355351 -10.72 0. 000 -2.986326 -2.063045
| og_em ssionprice
L1. 14.44  7.978441 1.81 0. 070 -1.197458 30.07746
| og_CrudeQ | Brent
L1. 16.9234  5.612953 3.02 0. 003 5.92221 27.92458
| og_tenperature -3.787267 1.71237 -2.21 0. 027 -7.14345 -.4310836
| og_unav_Ilignite_pl anned . 2389516 . 1683776 1.42 0. 156 -. 0910625 . 5689657
| og_unav_Gas_pl anned -.2066319 . 1742228 -1.19 0. 236 -.5481023 . 1348384
| og_unav_coal _pl anned . 5088938 . 1738502 2.93 0. 003 . 1681538 . 8496339
| og_unav_ur ani um pl anned . 0847013 . 1264888 0. 67 0. 503 -.1632122 . 3326149
I og_unav_|ignite_nonsched . 0512222 . 1534323 0.33 0.738 -. 2494996 . 3519439
| og_unav_Gas_nonsched -.0301866 . 1027026 -0.29 0. 769 -.23148 . 1711068
| og_unav_coal _nonsched . 3673975 . 1793762 2.05 0. 041 . 0158267 . 7189684
| og_unav_ur ani um nonsched . 3992193 . 1224033 3.26 0. 001 . 1593133 . 6391254
d_weekend -4.624461 . 7208901 -6.41 0. 000 -6.037379 -3.211542
d_hol i day -5.296949 . 9955526 -5.32 0. 000 -7.248196 - 3.345702
_cons -398. 7819 49. 05024 -8.13 0. 000 -494.9186 -302. 6452
ARMA
ar
L1. . 9600261 . 0158963 60. 39 0. 000 . 92887 . 9911822
me
L1. -.7103772 . 0387339 -18.34  0.000 -. 7862941 -. 6344602
ARCH
arch
L1. . 2211826 . 0473925 4.67 0. 000 . 128295 . 3140701
_cons 21. 8575 1.328156 16. 46 0. 000 19. 25437 24. 46064
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Detailed OLS regression results for Hour 13
Li near regression Nunber of obs = 697
F( 16, 680) = 85.58
Prob > F = 0.0000
R- squar ed = 0.6859
Root MSE = 5.9727
Robust
Spot price Coef . Std. Err. t P> t| [95% Conf. Interval]
Spot price
L1. . 2123977 . 0308277 6. 89 0. 000 . 1518689 . 2729265
| og_Pl annedGener ati onQuantity 19. 63351 3.586481 5.47 0. 000 12. 5916 26. 67541
| og_wi ndpl anger nany -2.775292 . 2621152 -10.59 0. 000 - 3.289945 -2.26064
| og_emi ssionprice
L1. 9. 581585 2.400833 3.99 0. 000 4.867649 14. 29552
| og_CrudeQ | Brent
L1. 12.7667 1.772105 7.20 0. 000 9. 287245 16. 24615
| og_t enperature -3.744318 1.468842 -2.55 0.011 -6.628329 -.8603062
| og_unav_lignite_planned . 5076965 . 143979 3.53 0. 000 . 2249997 . 7903933
| og_unav_Gas_pl anned -.2869462 . 1677846 -1.71 0. 088 -.6163844 . 0424919
| og_unav_coal _pl anned . 5588077 . 1570458 3.56 0. 000 . 2504549 . 8671606
| og_unav_urani um pl anned . 2766992 . 0939863 2.94 0. 003 . 092161 . 4612374
| og_unav_lignite_nonsched -. 0537578 . 160686 -0.33 0.738 -. 3692581 . 2617425
| og_unav_Gas_nonsched . 0343818 . 0955414 0. 36 0.719 -.1532098 . 2219735
| og_unav_coal _nonsched . 5079737 . 1537535 3.30 0. 001 . 2060851 . 8098623
| og_unav_ur ani um nonsched . 3967857 . 0896811 4.42 0. 000 . 2207006 . 5728707
d_weekend -7.525959 . 9251198 -8.14 0. 000 -9. 342393 -5.709524
d_hol i day -6.068781 1. 809998 -3.35 0. 001 -9.622639 -2.514924
_cons -225.689  40. 14157 -5.62 0. 000 -304.5053  -146.8727
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Appendix 2: combined regression results of all how for the various models

Hour 1:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 37.80228*** 24.60817*** 20.9166%
log_windplangermany -3.6566649*** -3.0279332*** -4, 1@485***
L1.log_emissionprice 17.75903900 12.661732**  12.32804
L1.log_CrudeOiBrent 0.11464695 22.445524* 21115508
log_temperature -6.3437269*** -5.108219** -4.4434372**
log_unav_lignite_planned 0.16834868 .72492924*+*  HR@RG**
log_unav_Gas_planned -0.20518605 -0.26056873 -0.232108
log_unav_coal planned -0.22786173 .48305174**  -0.BBZ
log_unav_uranium_planned  0.22725293 35978447 FRIB***
log_unav_lignite_nonsched 0.82739322 -.32907417* ao8g3
log_unav_Gas_nonsched 0.00582665 0.04533547 0.00745567
log_unav_coal nonsched 0.27371378 -0.05327172 0.283576
log_unav_uranium_nonsched .41787369** .39189076***  45H888***
d_weekend 2.2950937** .90145721** 0.75365787
d_holday -4.59595190 2.2160996***  -5.02879310
_cons -356.90043***  0.02112581 -322.41129**  -278.3315*
ARMA
L1. ar .99654808***  0.28446055 77775005%**  0.15434763
L1.ma -.90645213***  -.95431379***  -.36924355***
sigma
_cons 7.4538292**  9.015391***

ARCH
Ll.arch 1.2691595*+*
_cons 14.457272%*
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 2:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 51.268699*** 38.624666*** 22 9BT***
log_windplangermany -4.3530186*** -3.5321575** -4 99B1***
L1.log_emissionprice 15.93829900 3.61206150 10.931225*
L1.log_CrudeOiBrent 0.53715505 28.554133**  22.444739
log_temperature -5.3154141* -1.99926910 -4.0162398*
log_unav_lignite_planned 0.11387944 AT747303** SR
log_unav_Gas_planned -0.54276517 0.09009744 -0.2650055
log_unav_coal_planned -0.12116890 .59944476**  -0.188b
log_unav_uranium_planned  0.20057586 .31874499* 568039
log_unav_lignite_nonsched 0.79296257 -.58856378* 925490
log_unav_Gas_nonsched 0.00418757 -0.02645743 0.0497052
log_unav_coal nonsched 0.28917394 -0.00311807 0.3072485
log_unav_uranium_nonsched .35089265* -0.02595310 FRRB*
d_weekend 2.167644** 0.02096275 -0.58144236
d_holiday -5.47942760 2.8626649***  -6.40672130
_cons -494.89983**  0.02409850 -480.66562***  -301.71745
ARMA
L1. ar .99553433***  .36761154** .920006*** .22310482**
Ll.ma -.86671126*** -.96365859***  -.63962275***
sigma
_cons 7.7701201**  9.7861842***

ARCH
Ll.arch .91978579***
_cons 20.128158***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 3:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 36.927526*** 45.568891***  22.983***
log_windplangermany -6.1356262*** -3.9078869*** -5 70826***
L1.log_emissionprice 11.57011* 11.786076* 9.3120262**
L1.log_CrudeQiBrent 33.793153*** 36.524938***  23.3990***
log_temperature -5.71325020 -3.15291300 -6.9702452***
log_unav_lignite_planned 0.40772919 .32246663* .658604
log_unav_Gas_planned -0.30314538 0.06799320 -0.1858210
log_unav_coal_planned -0.15597248 0.25185147 -0.3016196
log_unav_uranium_planned 1.0747426*** .53428318**  GABT734***
log_unav_lignite_nonsched 0.06328409 49969187**  B6EUB56
log_unav_Gas_nonsched 0.14038775 -0.11897479 0.0638435
log_unav_coal_nonsched 0.33230188 0.05319753 0.2452152
log_unav_uranium_nonsched .60111705*** 0.04337756 69894+
d_weekend 0.52561005 1.0335905** -1.44529000
d_holiday -4.97532620 1.21701100 -6.16794300
_cons -483.05997***  0.02509617 -611.90496***  -283.83727
ARMA
L1. ar .38250675***  .4521076*** .92376494** . 28664573*
L1.ma -0.00000146 -.96975869***  -.70497316***
sigma
_cons 8.4847182**  10.670406***

ARCH
Ll.arch 1.1630967***
_cons 18.742712***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 4.

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 63.674478*** 50.774207***  22.693***
log_windplangermany -5.4987738*** -4.3764272%*  -6.18868***
L1.log_emissionprice 10.36984800 -6.86870290 8.2791905
L1.log_CrudeQiBrent 14.83263600 39.427998**  25.873%t
log_temperature -11.237169*** -2.96436570 -9.8476668**
log_unav_lignite_planned 0.04952267 -.65129285** . CRRH*
log_unav_Gas_planned -0.21293191 0.07868574 0.07316870
log_unav_coal planned -0.07065987 .7251534**+* -0.283M
log_unav_uranium_planned .84121729* -.70581962***  BE25***
log_unav_lignite_nonsched 0.72766808 -0.14493857 02285
log_unav_Gas_nonsched 0.02523161 0.09826230 0.07178556
log_unav_coal_nonsched 0.46905336 0.19820639 0.4026769
log_unav_uranium_nonsched 0.04954287 .27003663* 038Rl
d_weekend 2.7791196** 2.1627335**  -1.49495820
d_holiday -3.37227290 3.139345** -5.29553180
_cons -663.02891**  0.02973405 -615.23589***  -284.143%1
ARMA
L1. ar .99046159***  .43798596** .93026803***  .28300698*
L1.ma -.83092656***  -.96837735***  -.50940756***
sigma
_cons 9.971369*** 12.080276***

ARCH
L1.arch 92161441 ***
_cons 25.102053***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 5:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 63.758967*** 64.306959** 22 .6Q0*
log_windplangermany -4.5757852*** -3.713386*** -5.10007***
L1.log_emissionprice 9.17774730 -15.02923900 11.689514
L1.log_CrudeQiBrent 13.92112700 36.790448***  23.01852
log_temperature -7.8567158** -3.80147810 -6.9110599***
log_unav_lignite_planned 0.25271863 -0.10200086 .5805%
log_unav_Gas_planned -0.22165543 0.00453733 0.04227868
log_unav_coal_planned -0.12209879 .46902251** -0.203286
log_unav_uranium_planned .51572046* -0.10038672 .72165*
log_unav_lignite_nonsched 0.84378690 -0.20186775 0G9B6
log_unav_Gas_nonsched 0.01715034 0.08456934 0.12734362
log_unav_coal_nonsched 0.38771838 0.21913979 0.2885745
log_unav_uranium_nonsched 0.13215262 0.06171226 3326
d_weekend 0.97591389 1.4083245* -3.505816%**
d_holiday -2.36607150 4.223811%** -4.75181000
_cons -674.54611**  0.02513085 -736.02659**  -301.615%7
ARMA
L1. ar .99089033***  .45468125***  .96447902***  .2931018%
L1.ma -.79142144%*  -96154129***  -.63872163***
sigma
_cons 7.5936844***  9,9838979***

ARCH
Ll.arch .7508098***
_cons 22.903099***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 6:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 31.890981*** 25.758191***  19.738*
log_windplangermany -4.0039117*** -3.5282224*** -3, 737 3***
L1.log_emissionprice 14.972124%** 13.237325**  11.3502**
L1.log_CrudeQiBrent 31.457239*** 30.23428*** 21.93389*
log_temperature -3.65495550 -5.293696** -5.3262337***
log_unav_lignite_planned .46358935** 0.43380091 SEAg**
log_unav_Gas_planned -0.22188133 0.02967436 -0.0627809
log_unav_coal planned -0.09193868 0.24270836 -0.19181816
log_unav_uranium_planned .79316077*** .48603893***  8BR702***
log_unav_lignite_nonsched 0.07959116 -.93072354*** 9647389
log_unav_Gas_nonsched 0.00929201 0.06231792 -0.0624488
log_unav_coal_nonsched .3725523* 0.35461165 0.30927164
log_unav_uranium_nonsched .60770705*** .39834759*** 3587048***
d_weekend -6.3273826*** -6.7400165**  -8.3256056***
d_holiday -7.0830099* -1.08401700 -8.24396710
_cons -449.17731**  0.02407188 -366.7947*** -267.1991%*
ARMA
L1. ar .3347955%+* 41153775%*  .44531337**  .28818207*
L1.ma -0.00000556 -1.0327318**  -0.13246604
sigma
_cons 7.6613091***  9.9025245***

ARCH
Ll.arch .61299041***
_cons 25.352831***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 7

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 30.981299*** 25.843225%* 22 Z3g8***
log_windplangermany -3.637164*** -2.6725533***  -3.40875***
L1.log_emissionprice 16.598153*** 8.0224427* 14.06104*
L1.log_CrudeOiBrent 26.775754*** 26.603745**  22.33@4***
log_temperature -0.06519959 -5.1769029***  -2.62972580
log_unav_lignite_planned .5534098* 0.27822873 4606648
log_unav_Gas_planned 0.04999313 .77484682**  0.2868493
log_unav_coal_planned -0.26759541 0.16184572 -0.199554
log_unav_uranium_planned .8545118*** .69836513*** AQF 64+
log_unav_lignite_nonsched 0.72263232 0.00698214 012a3
log_unav_Gas_nonsched -0.20380398 -0.07815967 -0.38817
log_unav_coal_nonsched 0.24502345 .65290839***  (0.22882
log_unav_uranium_nonsched .65220581*** .27471308** 5B0632***
d_weekend -15.849297*** -14.084379**  -16.912671***
d_holiday -15.644461* -4,9500317** -17.659031*
_cons -434.91486*** .03092117* -349.20147*+*  -320.1254%
ARMA
L1. ar .22179916* .33282536** .91434271**  17394995*
L1.ma -0.00002098 -.98413693***  -.84449164***
sigma
_cons 10.222899***  15.171687***

ARCH
L1.arch 77739932%**
_cons 28.887622*+*
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 8:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 27.437818** 26.819609***  26.329%*
log_windplangermany -4.0968684*** -4.2105717**  -3.7ABG5***
L1.log_emissionprice 18.32708500 17.61682900 14.95%266
L1.log_CrudeOiBrent 21.26459200 27.586021** 23.103796
log_temperature -3.99073210 -3.90410190 -3.35162570
log_unav_lignite_planned -0.23648321 -0.02218590 @3821
log_unav_Gas_planned -1.1684211* -1.2107645** -.530680
log_unav_coal planned -0.69038883 -0.72534209 -0.38%r1
log_unav_uranium_planned  0.20952151 0.33336862 .6@B54
log_unav_lignite_nonsched 0.95199959 .89797834** 008308
log_unav_Gas_nonsched -0.19518237 -0.23478274 -0.27009
log_unav_coal _nonsched 0.72567639 0.70686218 0.3302952
log_unav_uranium_nonsched .67808041** .63002404* .840@***
d_weekend -17.980773*** -18.300898***  -19.157447***
d_holiday -17.836673* -17.659959***  -18.464179*
_cons -335.67291* .02956952***  -356.82328***  -344.62383
ARMA
L1. ar .97451633***  .29361451**  .96404924***  .1163208%
L1.ma -.88426866***  -.99985374***  -.86832256***
sigma
_cons 10.611107***  17.350794***

ARCH
L1.arch 0.00153706
_cons 112.5788***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 9:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 33.325601*** 32.925618**  25.869***
log_windplangermany -3.480623*** -2.7286204***  -3.49927***
L1.log_emissionprice 17.609448* 6.69889300 15.715741**
L1.log_CrudeQiBrent 22.86275500 20.842713** 19.794732
log_temperature -5.91883270 -9.916298*** -5.6712351**
log_unav_lignite_planned 0.43157606 .7220324*** .85@3Fp+*+*
log_unav_Gas_planned -1.1151446* -.92980309***  -0.£818B
log_unav_coal_planned -0.45165769 -0.21762200 -0.53051
log_unav_uranium_planned  0.23802905 -0.04602932 GBD23*
log_unav_lignite_nonsched 0.52010453 -0.30867947 0333
log_unav_Gas_nonsched -0.05230753 0.08701385 0.0035886
log_unav_coal_nonsched 0.49289164 -0.06015702 0.184482
log_unav_uranium_nonsched .62144292** .55740902**  7@OB65***
d_weekend -12.682528*** -12.663772**  -15.365571***
d_holiday -14.03927** -5.0207615**  -14.973846**
_cons -404.84011** .0270713* -349.86478**  -322.288%6*
ARMA
L1. ar .96608567***  .32058857***  .9800337*** 14801179
L1.ma -.84381875**  -.98689119*** -.83810203***
sigma
_cons 8.2591872*** 14.506515***

ARCH
Ll.arch .71909549***
_cons 30.100324***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 10:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 34.697186*** 36.603719***  24.262***
log_windplangermany -2.8896977*** -2.7288763**  -2.92702***
L1.log_emissionprice 14.198691* 10.71038500 12.309271*
L1.log_CrudeQiBrent 20.536988*** 19.585462***  16.0838***
log_temperature -4.04309450 -1.57285560 -5.7430137***
log_unav_lignite_planned .52624091* .82842401***  .89082***
log_unav_Gas_planned -.67779612* 0.00141164 -0.314B216
log_unav_coal planned -0.07992700 0.12350853 0.0334440
log_unav_uranium_planned  0.26213942 0.16813236 A9%E68
log_unav_lignite_nonsched 0.37047942 0.13958606 (0] ;1508
log_unav_Gas_nonsched -0.03947824 -0.05533374 0.085023
log_unav_coal_nonsched .64770906* 7457873+ 0.41@®378
log_unav_uranium_nonsched .56754123*** .27156826* BBBI***
d_weekend -8.1664451*** -8.5766926***  -10.97828***
d_holiday -8.9102773*** -5.9301091**  -9.6915023***
_cons -418.16812***  0.02532470 -441.27301**  -293.508%1
ARMA
L1. ar .9409465%+* .32016592***  .94435148** . 1751604%*
L1.ma -.76299542*  -1.0246643*** - 72774551***
sigma
_cons 6.1858224***  10.964992***

ARCH
L1.arch A4475248%**
_cons 25.757948***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 11:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 35.177559*** 36.262636**  21.986***
log_windplangermany -2.5167581*** -2.4814507**  -2.72889***
L1.log_emissionprice 14.384388* 14.79252300 10.775%511*
L1.log_CrudeOiBrent 18.401183** 16.387599** 13.1156%7
log_temperature -4.88143430 -5.529277** -5.7583534***
log_unav_lignite_planned 0.46565688 .54593863** 66X
log_unav_Gas_planned -0.36645697 -0.24247199 -0.2B2351
log_unav_coal_planned 0.17027138 0.08605519 0.30125174
log_unav_uranium_planned  0.30815815 0.21829180 A28K15
log_unav_lignite_nonsched 0.30109992 0.34417986 08%8D
log_unav_Gas_nonsched -0.00975044 -0.01506676 0.097382
log_unav_coal_nonsched .60052802* .7008965*** 5042965
log_unav_uranium_nonsched .4423993* .3524047* 4358990
d_weekend -6.1688315*** -6.0792513**  -9.4464456***
d_holiday -7.4464026*** -7.4112522**  -8.1870527***
_cons -417.04394**  0.02360769 -420.37944**  -250.8986*
ARMA
L1. ar .94263265***  .33077111**  .95787339*** 2056021
L1.ma -.73425562**  -1.0255604*** -.72316567***
sigma
_cons 5.6739135**  9.7205983***

ARCH
Ll.arch .18745459***
_cons 27.09925***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 12:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 33.599894*** 34.749486***  18.32B***
log_windplangermany -2.596942*** -2.6172395%* -2 82PB3***
L1.log_emissionprice 15.34800600 13.66038000 11.19%814
L1.log_CrudeQiBrent 13.90772800 11.57915500 10.448787
log_temperature -5.76333870 -6.7993139**  -5.1450751**
log_unav_lignite_planned 0.32827067 .49211397** SEBEB**
log_unav_Gas_planned -0.29841231 -0.16107622 -0.269989
log_unav_coal planned .45819136* .48832315* .55264215*
log_unav_uranium_planned  0.06754711 0.13041624 341559
log_unav_lignite_nonsched 0.29777397 0.26043201 0 78RR
log_unav_Gas_nonsched 0.03533158 0.05737000 0.13932431
log_unav_coal_nonsched .63081801** .59137513** H8BEE™
log_unav_uranium_nonsched .41095864* .31860946* 3837+
d_weekend -6.0124916*** -6.0957779**  -9.4665231***
d_holiday -5.3516249*** -5.3868685***  -6.1490245**
_cons -377.85158**  0.02363891 -374.87096***  -199.918%1
ARMA
L1. ar .95937327**  .32138863**  .96408188** 22210209
L1.ma -.73440745**  -1.0487175*** -.71060183***
sigma
_cons 5.7175239***  9.1149445%**

ARCH
L1.arch .21481738***
_cons 26.726738***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 13:

Variable ARIMAX MGARCH OoLS
log_PlannedGeneration 34.18101*** 33.803052***  19.6685**
log_windplangermany -2.5541961*** -2.5246853*** -2, 77 4***
L1.log_emissionprice 12.39411000 14.43999900 9.5815852
L1.log_CrudeOiBrent 13.73995600 16.923396** 12.7667**
log_temperature -4.23377800 -3.787267* -3.7443177*
log_unav_lignite_planned 0.24994634 0.23895162 507896
log_unav_Gas_planned -0.29971647 -0.20663191 -0.28946
log_unav_coal_planned .49334207** .50889382** 5588077
log_unav_uranium_planned  0.11255363 0.08470135 2748699
log_unav_lignite_nonsched 0.09749453 0.05122216 -0BbB3
log_unav_Gas_nonsched -0.04550184 -0.03018660 0.082381
log_unav_coal_nonsched .52797819** .36739753* .5079737
log_unav_uranium_nonsched .4153203* .39921933* .39678*

d_weekend -4.3652562** -4.6244609***  -7.5259589***
d_holiday -5.7572398*** -5.2969489***  -6.0687815***
_cons -380.48493*** -398.78192**  -225.68803
ARMA
L1. ar 96447413+  .31991917**  .96002614*** 21239769
L1.ma -.75071009***  -1.0488318*** -.71037717**
sigma
_cons 5.2337186***  8.3331067***
ARCH
Ll.arch .22118258***
_cons 21.857504***

legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 14:

Variable ARIMAX MGARCH OLS
log_PlannedGeneration 41.271177%* 42.917016***  23.862***
log_windplangermany -2.3229732*** -2.3382799%* -2 8ABH1***
L1.log_emissionprice 16.34489* 15.493621* 9.0338762***
L1.log_CrudeQiBrent -3.90753400 4.62742440 14.71026**
log_temperature -4.5010305* -4.3806625** -2.9320166*
log_unav_lignite_planned 0.18370317 0.18353848 452397
log_unav_Gas_planned -0.38452104 -0.27219880 -.3927713
log_unav_coal planned .34241262* 40748741* .64250844*
log_unav_uranium_planned  0.23853290 0.21371025 .3R30
log_unav_lignite_nonsched 0.08659657 0.07459799 -03889
log_unav_Gas_nonsched -0.04983668 -0.06058410 0.028777
log_unav_coal_nonsched .46518167* .43365839** 4138399
log_unav_uranium_nonsched 0.23709350 0.15565349 50837
d_weekend -5.3179597*** -5.505127**  -9.6124266***
d_holiday -5.9596348*** -5.1458196***  -7.0663897***
_cons -384.30593*** -448.88625***  -269.5503*
ARMA
L1. ar .99319155**  .34820818***  .9900392*** .15851905*
L1.ma -.82392967***  -.98002474***  -.79834258***
sigma
_cons 5.2828821**  9.7998416***

ARCH
L1l.arch .24900033***
_cons 21.989072***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 15:

Variable ARIMAX MGARCH OoLS
log_PlannedGeneration 44.284846*** 45.514854***  23.838***
log_windplangermany -2.3633724*** -2.3893342**  -3.08&1***
L1.log_emissionprice 13.92668200 12.19222400 9.1469797
L1.log_CrudeOiBrent -3.79139210 5.80810470 15.045163*
log_temperature -5.0312937* -4.6514866** -1.54989260
log_unav_lignite_planned 0.13235115 0.18533498 408380
log_unav_Gas_planned -.52608194* -.46551518** -.5489%59
log_unav_coal_planned 0.21074055 0.23169781 .60473567*
log_unav_uranium_planned  0.08635531 0.10337648 368331
log_unav_lignite_nonsched 0.17484839 0.16263812 -Qe1R
log_unav_Gas_nonsched -0.00153649 0.00183183 0.0532831
log_unav_coal_nonsched .60316101** .4171801* .54038%99
log_unav_uranium_nonsched 0.20404042 0.11391070 B3B3%

d_weekend -5.1366576*** -5.515561*** -10.078288***
d_holiday -6.5200476*** -5.1128798***  -8.0185987***
_cons -407.32381*** -470.53853**  -280.63057
ARMA
L1. ar .99466561***  .37654034***  .98920023***  .1662955%
L1.ma -.82545149**  -.08488751***  -.79275879***
sigma
_cons 5.3750809***  10.185259***
ARCH
Ll.arch .2439576***
_cons 23.065092***

legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 16:

Variable ARIMAX MGARCH OLS
log_PlannedGeneration 47.68508*** 48.162981***  25.,1002*
log_windplangermany -2.1314987*** -2.1938913** -2 8BAR9***
L1.log_emissionprice 13.31817800 12.31161500 6.988%852
L1.log_CrudeQiBrent -8.07006900 -2.05565640 15.081602
log_temperature -5.2870359** -4.7081323** -1.26191740
log_unav_lignite_planned 0.05572936 0.16435615 .316217
log_unav_Gas_planned -.55721187* -.4030958* -.7226%355
log_unav_coal planned 0.11134154 0.09657613 .56906403*
log_unav_uranium_planned  0.06006284 0.03093016 373348
log_unav_lignite_nonsched 0.30067901 0.21786109 0.0
log_unav_Gas_nonsched -0.06889492 -0.08779958 0.023556
log_unav_coal _nonsched .52857787* 43824146* 4768897
log_unav_uranium_nonsched 0.22769303 0.14231329 BT
d_weekend -3.671807** -4.3357836**  -8.9267637***
d_holiday -5.1266488** -4.1523223**  -6.5030635**
_cons -420.15931*** -469.04309***  -295.978%2
ARMA
L1. ar .99639641***  .37942466***  .99454385*** . 1833057*
L1.ma -.83506007*** -.97688883*** -.81179358***
sigma
_cons 5.4163213***

ARCH
Ll.arch .25893165***
_cons 23.477231**

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 17:

Variable ARIMAX MGARCH OoLS
log_PlannedGeneration 40.638738*** 41.421586***  23.908***
log_windplangermany -2.4522639*** -2.4882927** -2 86802***
L1.log_emissionprice 13.42008400 12.31276900 6.1671559
L1.log_CrudeOiBrent -5.64370880 4.60219560 15.507098*
log_temperature -5.1524258** -4.592941* -1.72040910
log_unav_lignite_planned 0.05775033 0.17649329 0.17p11
log_unav_Gas_planned -.7192883** -.59492771*** -1 21BB**
log_unav_coal_planned -0.00676847 0.01372686 .55022923
log_unav_uranium_planned  0.15103815 0.15574275 0.178815
log_unav_lignite_nonsched .50251888* 46459724 0371958
log_unav_Gas_nonsched 0.13670987 0.10534177 0.11595972
log_unav_coal_nonsched 0.17312209 0.14921940 0.2187488
log_unav_uranium_nonsched 0.07917150 0.05550424 B145Y
d_weekend -4.1724104*** -4.403471*** -7.602702***
d_holiday -4.1891316* -3.8408972***  -4.923577*
_cons -355.68101**  0.01543064 -418.91713**  -270.53558
ARMA
L1. ar .99520915***  .35830721**  .99069522***  .2181119%
L1.ma -.83582277**  -.94340281***  -.80559593***
sigma
_cons 5.4625426*** 9.5154166***

ARCH
L1.arch .11660317**
_cons 26.818613***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 18:

Variable ARIMAX MGARCH OLS
log_PlannedGeneration 30.06911*** 36.742532***  21.2839*
log_windplangermany -3.2806397*** -2.3653539%** -2 8P@51***
L1.log_emissionprice 12.46726700 3.75163740 5.4780641*
L1.log_CrudeOiBrent 9.82196380 -11.52795200 14.444378
log_temperature -7.24878* 0.36557777 -5.0178927**
log_unav_lignite_planned 0.03394862 44131711%**  -@80062
log_unav_Gas_planned -1.1732223** -.75046624*** -1 BEFBL***
log_unav_coal planned -0.09736947 0.04804238 60222448
log_unav_uranium_planned  0.07768616 0.27657607 -0
log_unav_lignite_nonsched .52648229* 0.18693973 0.5138
log_unav_Gas_nonsched 0.15764834 0.16217672 .24255861*
log_unav_coal _nonsched 0.16294469 0.13816838 0.3583682
log_unav_uranium_nonsched 0.01725223 0.04019839 20307
d_weekend -4.640001*** -3.2502941**  -55069347***
d_holiday -3.7499774* -2.8227736**  -3.40094670
_cons -291.82991000 0.00032849 -284.80757**  -223.37#45
ARMA
L1. ar .98003303***  .36648483**  .98797071***  .2980563%
L1.ma -.7937967*** -.91215372*** - 78652419***
sigma
_cons 6.4775887**  9.4751676***

ARCH
L1.arch .79039885***
_cons 18.188574***

legend: * p<0.05; ** p<0.01; *** p<0.001



Appendix

72

Hour 19:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 28.193226*** 28.178825**  29.619***
log_windplangermany -3.5973472*** -3.5095759*** -2, 720)78***
L1.log_emissionprice 7.22426010 6.81751160 5.4592005*
L1.log_CrudeOiBrent 22.905954*** 6.36720420 15.540737
log_temperature -9.8518305*** -10.058907***  -8.47053%32
log_unav_lignite_planned 0.12846274 .37203245* 0.12891
log_unav_Gas_planned -.84955378** -.45001962** -.94BBB**
log_unav_coal_planned 0.12007899 0.06019070 0.41856752
log_unav_uranium_planned  0.13992850 0.22662520 0.@P08
log_unav_lignite_nonsched 0.32102231 0.17216836 -33285
log_unav_Gas_nonsched 0.19414148 .20802739* .31923308*
log_unav_coal_nonsched 0.19308875 -0.05934701 4762098
log_unav_uranium_nonsched 0.12069721 0.21576612 ABEBS
d_weekend -2.7324007** -2.8381191**  -1.9180469*
d_holiday -2.06213950 -1.14733450 -1.29803110
_cons -307.09253***  0.00637866 -235.83055**  -305.55835
ARMA
L1. ar .95367983***  .31100961***  .98344353***  .244732%F
L1.ma -.74816528**  -.90106759*** -.82961523***
sigma
_cons 5.7548101**  8.2358031***

ARCH
Ll.arch .63145715***
_cons 18.189706***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 20:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 25.715961*** 25.299293***  28.638***
log_windplangermany -3.0607893*** -3.0529566*** -2 .116G67***
L1.log_emissionprice 9.18120330 7.70374740 5.6968784**
L1.log_CrudeQiBrent 22.766466* 26.29774%** 14.517485*
log_temperature -6.1966927** -5.9511253**  -5.78165%6*
log_unav_lignite_planned 0.19129693 0.21092476 578938
log_unav_Gas_planned -0.08918054 0.00873314 0.09497032
log_unav_coal planned 0.30052445 0.14830518 0.12043278
log_unav_uranium_planned  0.11523631 -0.03635797 W
log_unav_lignite_nonsched 0.31080500 0.16153774 -03a8s
log_unav_Gas_nonsched .21996355* .23703039* .2716052**
log_unav_coal_nonsched 0.11068868 0.07893555 0.2634593
log_unav_uranium_nonsched 0.09551349 0.16570254 85399
d_weekend -1.48600730 -1.6037619* 0.13755218
d_holiday -1.45454420 -1.73294380 1.08138640
_cons -308.45472**  0.03174329 -316.91514**  -322.42%5%4
ARMA
L1. ar .97340542***  .31455477**  95317371** 3599452
L1.ma -.74610488***  -.87208057***  -.67423994***
sigma
_cons 5.0143335**  6.7090862***

ARCH
L1l.arch .38826014***
_cons 16.880663***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 21:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 22.362283*** 23.606601**  23.920***
log_windplangermany -2.7941831*** -2.7277516**  -2.1B&71***
L1.log_emissionprice 5.90447860 4.56865630 5.541163*
L1.log_CrudeQiBrent 23.96739700 27.603183**  19.89620
log_temperature -4.2447985* -4.6014834**  -2.355185*
log_unav_lignite_planned .35908002* .39245992** 68398+
log_unav_Gas_planned -0.07274793 -0.03370575 0.1221170
log_unav_coal_planned 0.09571129 0.09000431 0.09563243
log_unav_uranium_planned  0.16439223 0.19641233 386426
log_unav_lignite_nonsched .44158985** .3568285* 0.1328%
log_unav_Gas_nonsched 0.12177323 0.11462531 0.03969395
log_unav_coal_nonsched -0.00528526 -0.02613711 -01e8EBL
log_unav_uranium_nonsched 0.12096985 0.07948632 3348
d_weekend -1.37120950 -1.292373* -0.29710317
d_holiday -0.65841586 -0.82363163 1.12641630
_cons -280.13063***  0.04231088 -308.39874**  -310.102%#7
ARMA
L1. ar .98236088***  .31743725***  .98190404***  .305114**
L1.ma - 7876479** -.89775074***  -.76239495***
sigma
_cons 4.3106161***  5,7299813***

ARCH
Ll.arch .14415241*
_cons 15.987987***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 22:

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 19.968679*** 19.75627*** 12.0937*
log_windplangermany -2.3720006*** -2.378019*** -2.32B29%**
L1.log_emissionprice 9.86545760 8.93927900 10.053267**
L1.log_CrudeQiBrent 19.07745800 26.274299**  19.4438%
log_temperature -3.19902040 -3.0176058** -1.85577150
log_unav_lignite_planned .29238464* .32824174** 5308+
log_unav_Gas_planned -0.09131124 -0.06826825 0.0324584
log_unav_coal planned 0.12832493 0.11493520 0.15158070
log_unav_uranium_planned  0.11444437 0.18719973 .296063
log_unav_lignite_nonsched .28698897* .26613183* 0.1602
log_unav_Gas_nonsched 0.07768405 0.06784163 -0.0284480
log_unav_coal _nonsched 0.01069450 0.00235299 -0.085270
log_unav_uranium_nonsched 0.11114793 0.09034521 32843
d_weekend -0.29516407 -0.35383576 -.95735448*
d_holiday 0.96040159 1.01538640 1.47688590
_cons -251.75125**  0.03226369 -282.57532**  -190.51798
ARMA
L1. ar .98391742**  .33076319**  .97567022*** 25959668
L1.ma -.77559602***  -.90026561*** -.75781638***
sigma
_cons 3.6009939***  4,6342181***

ARCH
L1.arch 0.03492667
_cons 12.600915***

legend: * p<0.05; ** p<0.01; *** p<0.001
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Hour 23:

Variable ARIMAX ARIMA MGARCH OoLS
log_PlannedGeneration 14.263912*** 13.891256***  8.8B3B***
log_windplangermany -2.3886777*** -2.3987591*** -2 3BL05***
L1.log_emissionprice 4.41656620 4.67286560 11.016525**
L1.log_CrudeOiBrent 7.43353240 4.26962920 17.017938**
log_temperature -3.7004528** -3.9214285*** -1.53617600
log_unav_lignite_planned 0.22955066 0.23806056 448595
log_unav_Gas_planned -0.03500992 -0.03947944 -0.082260
log_unav_coal_planned 0.05785177 0.02091638 0.06793111
log_unav_uranium_planned  0.06186226 0.07891398 189813
log_unav_lignite_nonsched .30893659* .31036834* (02115455]0)
log_unav_Gas_nonsched .14928417* 0.15005041 0.07866142
log_unav_coal_nonsched 0.07172104 0.07230006 0.10%7247
log_unav_uranium_nonsched 0.10546854 0.08387247 . 93360
d_weekend 1.04207650 1.0221909* 0.62141964
d_holiday 2.2565445* 2.0617488** 3.0467432**
_cons -121.54707000 0.02346748 -114.03937*  -147.75868*
ARMA
L1. ar .98989467***  0.15504584 9991723+ .27854674***
L1.ma -.82338492**  -.84604587***  -.82648903***
sigma
_cons 3.5354617*** 4,285184 1 ***

ARCH
L1.arch 0.02881849
_cons 12.191944***
legend: * p<0.05; ** p<0.01; *** p<0.001
Hour 24

Variable ARIMAX ARIMA MGARCH OLS
log_PlannedGeneration 14.396106*** 11.203437**  13.298***
log_windplangermany -3.6947543*** -3.4995838***  -3.4@862***
L1.log_emissionprice 15.968828*** 12.205486***  12.673B**
L1.log_CrudeOiBrent 23.809716*** 20.522193***  18.99@4***
log_temperature -2.20560000 -3.6701909**  -2.0287939*
log_unav_lignite_planned .43420307*** 0.31650979 AEDE3*+*
log_unav_Gas_planned -0.13072817 -.58593874**  -0.Ad948
log_unav_coal planned -0.08095092 -0.13714903 -0.18%963
log_unav_uranium_planned  0.36709827 .81886499*** ABPER*
log_unav_lignite_nonsched 0.07154900 .78517307**  G6EN02
log_unav_Gas_nonsched 0.02504886 -0.03923612 0.0122844
log_unav_coal_nonsched 0.08568627 0.09751121 0.1072737
log_unav_uranium_nonsched 0.25685276 .38179914**  92736**
d_weekend 0.04524810 -0.24428238 0.04218470
d_holiday -1.41249510 -0.36549002 -0.18893381

_cons -228.43738**  0.02283126 -170.32832**  -197.17885
ARMA

L1. ar 7427567 .29044574**  76005563*** 18575654
L1.ma -.55740662***  -.93533213*** -.52081989***

sigma

_cons 5.2351134***  6.2720355***

ARCH

L1.arch 1.2267741***

_cons 10.05351***

legend: * p<0.05; ** p<0.01; *** p<0.001



