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Abstract 

In this thesis we have evaluated the covariance forecasting ability of the simple moving 

average, the exponential moving average and the dynamic conditional correlation models. 

Overall we found that a dynamic portfolio can gain significant improvements by 

implementing a multivariate GARCH forecast. We further divided the global investment 

universe into sectors and regions in order to investigate the relative portfolio performance of 

several asset allocation strategies with both variance and conditional value at risk as a risk 

measure. We found that the choice of risk measure does not seem to heavily impact the asset 

allocation. As comparison to the dynamic portfolios we added regional/sector portfolios 

which where rebalanced after a 3% threshold rule. The regional portfolio was constructed to 

mimic the current strategy of the Norwegian Pension Fund Global. The max Sharpe portfolio 

for regions had the highest risk adjusted return, but suffered from a very high turnover. After 

being modified however, this strategy turned out to be superior even after transaction costs 

were imposed.   
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1. Introduction 

Portfolio diversification is typically achieved through investing in different asset classes, or 

different assets that are thought to have low or negative correlation. This is a strategy that 

has strong empirical evidence and theoretical justification, but an investor must be aware that 

the correlation between assets varies over time, which implies that the degree of portfolio 

diversification attainable in a given portfolio will be time dependent. A number of studies 

find that correlation between equity returns increase during bear markets, and decrease 

during bull markets (Ang and Bekaert (2001), Das and Uppal (2001), and Longin and Solnik 

(2001)). Another well-known stylized fact is volatility clustering, meaning that large 

deviation tends to be followed by large deviation i.e. autocorrelation in variance. In addition 

negative returns tend to be followed by larger increases in the volatility than positive returns. 

This is known as the “leverage effect”, however research suggests that the leverage effect 

observed in financial time series is not fully explained by the firm’s leverage. See Hens and 

Steude (2009) and Figlewski and Wang (2000)   

Modelling volatility in financial time series has of course been the object of much attention 

given stylized facts as those mentioned above. “The presence of volatility clusters suggests 

that it may be more efficient to use only the most recent observations to forecast volatility, or 

perhaps assign higher weight to the most recent observations” Daníelsson (2011). The first 

conditional volatility model introduced was the Autoregressive Conditional 

Heteroskedasticity (ARCH) model by Engle (1982). Subsequently, numerous variants and 

extensions of ARCH models have been proposed, as for example the generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model. For a review of volatility 

models see Lundbergh and Teräsvirta (2002).While modelling volatility of univariate returns 

is well understood, understanding the co-movements of financial assets is a much more 

complex problem. Construction of a variance optimized portfolio requires a forecast of the 

covariance matrix.  Such applications entail estimation and forecasting of large covariance 

matrices, potentially with thousands of assets. The search for reliable estimates of 

correlations between financial assets has been the subject of a lot of research and simple 

methods such as rolling historical correlations and exponential smoothing of historical 

returns are widely used. The univariate conditional volatility models have been extended to 

multivariate GARCH (MGARCH) models. But the multivariate GARCH models quickly get 
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too complex as the number of assets increases and are seldom estimated for more than five 

assets. The dynamic conditional correlation GARCH (DCC) model introduced by Engle 

(2001) has the flexibility of univariate GARCH models but not the complexity of 

conventional multivariate GARCH models. These models are estimated in two steps, the 

first is a series of univariate GARCH estimates and the second the correlation estimate. This 

method have a clear computational advantage over other multivariate GARCH models in 

that the number of parameters to be estimated in the second process is independent of the 

number of series to be correlated (Engle (2002)).  Thus potentially very large correlation 

matrices can be estimated. The simple parameterization of the model assumes the same 

dynamic correlation process, and can therefore be seen as a weakness. 

Markowitz (1952) introduced the mean-variance risk management framework. This is 

optimal if returns are normally distributed or the investor has a quadratic utility function. In 

the late 1980s Value at Risk (VaR) emerged as a distinct concept and has become a widely 

used and popular measure of risk (J.P. Morgan (1994)). The popularity of VaR is mostly 

related to its simple and easy to understand representation of high losses. VaR can be 

efficiently estimated when the underlying risk factors are normally distributed. However, for 

non-normal distributions, VaR may have undesirable properties (e.g Artzner at al. (1999)). 

Such a property is its lack of sub additivity, meaning that VaR of a portfolio with several 

instruments may be greater than the sum of the individual VaRs. Also Mauser and Rosen 

(1999) and many more have showed that VaR can be problematic in determining an optimal 

mix of assets, since it can exhibit multiple local extrema. Because of these weaknesses we 

will apply another percentile risk measure, Conditional Value at Risk (CVaR) instead of 

VaR. For continuous distributions, CVaR is defined as the conditional expected loss under 

the condition that it exceeds VaR, see Rockafellar and Uryasev (2000). CVaR has more 

attractive properties than VaR, because it is sub-additive and convex (Rockafellar and 

Uryasev, 2000). Moreover, CVaR is a coherent measure of risk in the sense of Artzner et al. 

(1999).  This measure is also able to incorporate higher moments of the return distribution; 

without placing any specific assumption on risk aversion. 

The goal of this thesis is two folded; first we will evaluate the simple moving average, 

exponentially weighted moving average (EWMA) and DCC covariance matrix forecasting 

methods by comparing unrestricted maximum Sharpe portfolios. The maximum Sharpe 

portfolio is of interest since the portfolio weights are determined by the estimated covariance 
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matrix, and has the best trade-off between risk and return. Hence we can compare covariance 

forecasts since the better forecast will give portfolio weights resulting in lower variance 

under certain assumptions.  

We will also investigate if the Norwegian Pension Fund Global (SPU) can benefit from 

dynamic portfolio optimization. The well-known 60/40 split between stocks and bonds 

respectively (excluding the real estate part), is designed to capture mean reversal effect. This 

implies that when equity markets decline, Norges Bank Investment Management (NBIM) 

will have to purchase stocks. The contrarian strategy is probably well suited for SPU (Ang et 

Al (2009)), (Fama & French (1996)). The strategy can also be derived as optimal under 

certain assumptions regarding return distribution and utility function.  These utility functions 

are known as Constant Relative Risk Aversion (CRRA), it can be shown that a constant 

allocation to risky assets is optimal. A more in depth discussion regarding this can be found 

in for instance Danthine et Al (2005). We do not wish to challenge the equity/fixed income 

rule, but to investigate the equity allocation strategy. Ang et Al (2009) have shown that there 

are several risk premia that SPU potentially can tilt their portfolio to capture, as for example 

the value-growth risk and small-large risk. These strategies can still be utilized in our 

framework, because we only consider regional and sector indices and not specific stocks. 

The Current strategy is targeting approximately: 15% Pacific, 35% America and 50% in 

Europe (NBIM 2012). The reason for this strategy is to maintain Norway’s purchasing 

power with our main trading partners. This may not be optimal for the beneficiaries if a 

better risk return can be achieved through another strategy. To test this we construct several 

portfolios with different risk and return characteristics. Theory suggests that all investors 

should hold the tangency portfolio and then adjust their risk exposure by holding a risk free 

asset. This is the portfolio that gives the best risk return ratio given that there exists a risk 

free asset and risk is measured with standard deviation. Under classical economic 

assumption this is the market portfolio, because everyone is rational and the sum of everyone 

owns the total market.  This has been shown to not always be the case, and the market 

portfolio is not even guaranteed to be on the efficient frontier (Gibbon et al (1989)), (Fama 

and Macbeth (1973)). The traditional analysis only considers the two first moments of the 

return distribution. Research has shown that investors have preferences regarding at least the 

four first moments. Fama & French’s portfolios with positive alphas have been shown to tilt 

towards recession sensitive stocks. This return characteristic is captured in the third and 
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fourth moment. We will therefore employ modified Conditional-Value-at-Risk to better take 

this into account. In this thesis modified CVaR and CVaR is used interchangeably. 

Behavioral finance has emerged as an important field in finance. Academics within this field 

have discovered that people in general assign more weight on extremely large losses with 

small probabilities, than small probabilities of achieving large gains see for example 

Benartzi and Thaler (1995). SPU’s argument is that they are well suited to hold this kind of 

risk, because of their long investment horizon. We argue that SPU has substantial political 

risk and that the general opinion regarding risk tolerance may change at the worst possible 

time. This motivates us to apply a risk measure that takes short term risk into account. All 

calculations and modelling will be done through use of the statistical software R. 

We try to expand the literature of applied portfolio management in the following ways: First, 

to explicitly focus on constructing portfolios that mimic the return or risk characteristics of 

the Norwegian Pension Fund Global. Second, the modified CVaR estimator with risk 

budgets has to our knowledge only been applied by Boudt et al (2011), but their focus was 

more on the general properties of this risk measure. Third, we apply both CVaR and variance 

as risk measure in the portfolio optimization. This is of interest because a lot of the criticism 

regarding the mean-variance framework is due to its lack of focus on non-normality in the 

return distribution which CVaR takes into account. Finally we will try to reduce trading 

costs using a simple technique, which will make our results more suited for real life 

applications. 

This thesis is organized as follows: The second section derives the theoretical background 

for the DCC, simple moving average and the EWMA models. Section three presents the risk 

measures applied, followed by the covariance forecasting evaluation methodology and 

portfolio optimization theory in section four and five. In the sixth section we present the 

dataset applied followed by the results from the covariance and return evaluation in section 

seven. Section eight presents all portfolio optimization results, before we in section nine 

modify the best performing portfolio from the previous section. Finally section ten concludes 

based on our findings.  
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2. Covariance Matrix Forecasting Methods 

In addition to the more complex DCC model, we will also apply simple forecasting methods 

such as the simple moving average and the exponential weighted moving average (EWMA) 

to forecast the covariance matrix.  

2.1 Simple Moving Average 

When predicting the covariance matrix with a simple moving average (MA) model, each 

return in the estimation window    has equal weights. For univariate series, with mean zero, 

the moving average variance estimate is specified as: 

  ̂ 
  

 

  
 ∑     

 

   

   

 (1)  

where    is the estimation window,    is the observed return on day   and   
  is the variance 

at day   . The estimation window is set to 100 days, as in Engle (2002). 

                ̂     

where   denotes the date and    denotes asset   and   respectively. 

In a multivariate case the covariance matrix can be forecasted the following way (Daníelsson 

(2011)): 

  ̂  
 

  
 ∑               

 

   

   

     (2)  

  
 

2.2 EWMA 

Financial time series exhibit stylized facts which imply that one should assign greater 

weights to more recent observations. The EWMA (Risk Metrics (1996)) is based on 

modifying the MA so that the weights   exponentially decline into the past.  
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  ̂ 
  

   

 (     )
       

   
                            where         

(3)  

where the first part of the equation ensures the weights sum to one. 

The univariate EWMA can be rewritten as the weighted sum of the previous periods 

volatility forecast and squared returns (Daníelsson (2011)), where the sum of the weights is 

one: 

   ̂ 
           

    ̂   
  

(4)  

The multivariate form of the model is almost the same: 

                          
(5)  

where   is the covariance matrix, and      is a return vector lagged one period. 

With individual elements given by:  

                                 
                

(6)  

  
 

2.3 Univariate GARCH Model 

Returns of financial assets tend to be correlated, and the volatility of assets tends to cluster. 

Hence, modelling volatility, conditional on previous returns should give a better estimate of 

tomorrow’s volatility than an unconditional volatility forecast.  Understanding how the 

univariate generalized autoregressive conditional heteroskedasticity (GARCH) model works 

is important when working with the dynamic conditional correlation (DCC) model, since it 

basically is a nonlinear combination of univariate GARCH models.  

The error process is given by:      √   

   
    

 

 

      ∑  

 

   

    
  ∑      

 

   

 
(7)  
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     is a strict white noise process causing the conditional and unconditional means of    are 

equal to zero. 

            
      (8)  

The conditional variance is given by: 

       
     (9)  

Thus the conditional variance of   
  is the ARMA process given by   . 

 

2.4 DCC-GARCH  

2.4.1 The DCC-GARCH Model 

The DCC model introduced by Engle (2001) assumes that the time series has zero mean and 

no autocorrelation. If this is not the case, the data is prewhitened by an ARMA-model. In our 

study we have used the residuals from a fitted ARMA-model and the covariance matrix is 

specified as: 

Returns:     |             

Covariance matrix:            

where    is the     diagonal matrix of time varying standard deviations from univariate 

GARCH models with √    on the     diagonal, and    is the time varying correlation matrix.  

The elements of    can be written as univariate GARCH models: 

 

       ∑         
  ∑         

  

   

  

   

 

(10)  

For             with the GARCH restrictions such as non-negativity of variances and 

stationarity (            
  
   

  
    ) being imposed. The lag lengths for   and   do not 

need to be the same, and the univariate GARCH models can include any GARCH process 

with normally distributed errors which satisfies the stationarity and non-negativity 
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constraints, we have applied the traditional GARCH(1,1). The dynamic correlation structure 

is formulated as: 

 

      ∑    ∑     ̅  ∑            
   ∑       

 

   

 

   

 

   

 

   

 
(11)  

      
       

    (12)  

where  ̅ is the unconditional covariance of the standardized residuals from the first stage 

estimation. And    is the conditional correlation matrix where a typical element is on the 

form:       
     

√      
 

  
  

[
 
 
 
 √

          

 √         

      
     √     ]

 
 
 
 

 

where   
  is a diagonal matrix consisting of the square root of the diagonal elements of   . 

2.4.2 Estimation of the DCC(1,1) Model 

The DCC model can be estimated in two stages, where in the first stage univariate GARCH 

models are estimated for each series of residuals and in the second stage the transformed 

residuals from the first stage are used to estimate the dynamic correlation parameters. 

The log-likelihood of this estimator can be written: 

 

 

    
 

 
∑               |  |    

   
      

 

   

 (13)  

 

    
 

 
∑              |      |    

   
    

    
     

 

   

 
(14)  
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∑               |  |      |  |       

      

 

   

 
(15)  

 

where            are the residuals standardized by their conditional standard deviation. 

Step 1:  

The first stage estimation involves replacing    with   , an identity matrix of size k. The 

model parameters,  , is written in two groups                     , where the 

elements of    correspond to the parameters of the univariate GARCH model for the     

asset series,    (            
            

). The first step quasi likelihood function is 

then specified as: 

      |     
 

 
∑              |  |       |  |    
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∑          ∑          

   
 

   
  

 

   

 

 

   

 
 

 

   
 

 
∑          ∑          

   
 

   
  

 

   

 

 

   

 (16)  

 

This is the sum of the log likelihoods of the individual GARCH models for each asset. 

In the second step the correctly specified log-likelihood function is used to estimate the 

parameters, given the parameters estimates from the first stage likelihood. 
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Step 2: 

      | ̂      
 

 
∑               |  |      |  |    

   
    

    
     

 

   

 
 

 

   
 

 
∑               |  |      |  |       

      

 

   

 
(17)  

 

Since the two first terms are constants and we are conditioning on  ̂, only     |  |  

     
      will influence the parameter selection. So when estimating the DCC parameters 

the log likelihood function can be written: 

      | ̂      
 

 
∑     |  |    

   
      

 

   

 
(18)  

2.4.3 Forecasting the Covariance Matrix 

Maybe the most important application of the DCC model is to forecast the covariance 

matrix. Engle (2001) shows how the DCC model can be applied to do multi-steps-ahead 

forecasts, but since we will optimize the portfolio every period, we only consider the one-

step-ahead forecast. This can be computed in the following way: 

              ̅       
 
       

(19)  
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3. Measuring Risk 

 

3.1 Variance 

Variance is a measure that captures volatility, the logic behind this measure is that for series 

with higher variance, investors are more uncertain concerning tomorrows return, and thus 

investors wish to be compensated accordingly. One of the cornerstones in finance is that 

diversification gains can be obtained due to different price impacts to economic shocks. The 

portfolio’s variance is therefore not equal to the sum of individual asset’s variance. We use 

the conventional portfolio variance definition: 

     
     ( ̃   )     ∑          (20)  

where ∑ is the covariance matrix, and   is a weight vector. 

 

3.2 Value at Risk 

We follow the notation used in Daníelsson (2011), and start with defining log return. 

                         

 

where    is the price 

     (      
             )  

     (      
             )  

           
                  

 
    (     

      

    
  ) 
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    (      ( 

      

    
  )) 

 

 
    (

  

 
    ( 

      

    
  ) (

 

 
) ) 

(21)  

 

since  
      

    
   the function is defined. The distribution of standardized returns     

   can be denoted       and the inverse distribution by   
      we have: 

    ( 
      

    
  )            

        (   (          )   )        

 

For small          the VaR is approximately given as: 

                   (22)  

For a more thorough derivation and definition of higher moments, please see appendix D. 

3.3 Conditional Value at Risk  

Conditional value at risk (CVaR) is unlike value at risk (VaR) a coherent risk measure and is 

also a convex function of the portfolio weights. (Rockafellar and Uryasev, (2000); Artzner et 

al. (1999). We chose to define CVaR in percentage returns since our goal is to compare 

portfolios based on assets returns.  

The Definition of CVaR is “Expected loss conditional on VaR being violated.” (Financial 

risk forecasting): 

We can define the expectation the following way: 

      ∫        
 

  

  

 

     is defined as the probability density function, and        has support on the interval  
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          |            

where Q is defined as the expected profit/loss. 

  ∫   ( |         )     
       

  

  

 

where  ( |         ) can be found the following way: 

   |              (   |         ) 
 

  
      

           
 

     

 
  

 

This implies that the derivative ( the pdf) is:  

  ( |         )  
     

 
 (23)  
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3.3.1 CVaR under Normality: 

 

       ∫         
       

  

  

      
 

 
∫   (

 

√    
)    [ 

 

 
 

  

  
]   

       

  

  

      
 

 
[ (

  

√    
)    [ 

 

 
 

  

  
]]

  

       

  

 

The bracket only needs to be evaluated at the boundaries, since the lower bound is 

approximately zero, the standard normal density function is:      
 

√  
      

  

 
  which 

gives us: 

       
   (       )

 
 (24)  

 

Financial returns are seldom normally distributed which implies that the risk contribution to 

CVaR should be calculated in a way that takes this into account. There are basically two 

ways to compute the non-normal risk contribution to CVaR. First one can find the expected 

CVaR contribution by using historical or simulated data. The downside of the historical data 

approach is that it demands a very large sample. For example, when computing the 1% 

CVaR one should have at least a sample size of 1000, the 1% CVaR is then calculated based 

on the 10 smallest observations, Daníelsson (2011). A more elegant approach to calculate the 

risk contributions is to derive an analytical formula which takes into account the non-normal 

distribution of the returns.  In this thesis we will apply the modified CVaR estimator of 

Boudt et al. (2008).  
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3.4 The Modified CVaR Estimator 

The modified CVaR estimator is based on the Cornish-Fisher expansion and is a function of 

the co-moments of the underlying asset returns, the estimator has been shown to give 

accurate estimates of the CVaR contributions. This allows for a more realistic approximation 

of the true distribution. The Cornish Fisher expansion will be identical to the normal 

distributions in the case were skewness is 0 and kurtosis equals 3. We have used historical 

estimation of the third and fourth co-moments, while the forecasted covariance is used as the 

second moment. Throughout this thesis we will set the loss probability   to 5% as is 

common in practice. Especially higher moments are very sensitive to extreme observations, 

and we therefore “cleaned” the dataset to get more robust estimates. For details, see 

Appendix A. 

 

3.4.1 The Cornish-Fisher Expansion 

The Cornish fisher expansion can be used to derive approximates to quantiles, utilizing 

higher moments of the actual distribution (Cornish and Fisher (1937)).   

        
   

     

 
 

   
       

  
 

    
        

  
 (25)  

 

   is the α percentile of the standard normal distribution. Using the Cornish Fisher 

expansion, CVaR can be approximated the following way: 

 

           (   
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(26)  

 

 

where    
 

 
∫       

       

  
 and      is the standard normal probability density function 

(Cao et. al. (2009)). This approximation fits best when kurtosis and skewness only deviates 
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moderately from the normal distribution. This approach also has wrong tail behaviour i.e. 

when α goes to 0, CVaR tends to zero (boutd et al (2008)).  

To avoid results where CVaR is smaller than mVaR the following definition of CVaR is 

used: 

                          (27)  
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4. Methodology for Covariance and Return Evaluation  

 

4.1 Covariance Forecast Evaluation 

In order to find out which of the methods (MA, EWMA and DCC) produced the best 

forecast. We employed the test developed by Engle and Colacito (2006) (EM-test). They 

proved that the covariance is smallest for the best specified covariance forecast.  

The test adopts the classical portfolio, that an investor minimizes the variance for a required 

rate of return. 

    
  

    ̂    
(28)  

 Subject to   
       

The solution to this problem is given by: 

    
 ̂ 

   

   ̂ 
    

     (29)  

where   is a vector of excess return over the risk free rate and    is the required return. Note 

that we do not require the weight’s to sum to one, because one minus the sum of the weights 

is allocated to the risk free asset. This is the classical portfolio optimization where part of the 

portfolio is invested in the tangency portfolio. If weights are rescaled to one, we would find 

an unconstrained tangency portfolio. In order to isolate the effect from the covariance 

forecast, the expected return is constant and equal to its historical average. The return target 

is set equal to the average excess return and as a proxy for risk free rate we have used the 

three months Treasury bill yield (0.09% 13 April 2012). 

Engle and Colacito (2006) showed that if we know the true covariance forecast    any 

weights constructed from another covariance forecast will produce higher or equal standard 

deviation standardized by required return. 
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√  

     

  
 

√   
       

 

  
 (30)  

  

  
  is optimal weights obtained from the  minimization procedure, given that we know the 

true covariance. This can be reduced to: 

      
             

(31)  

 

where   
   is the standard deviation obtained from the true forecast. Engle and Colacito 

(2006) expand this result to comparing two competing covariance matrix estimates, and 

prove that the covariance matrix that obtains the lowest variance is closest to the true 

covariance. 

The test computes portfolio return   
 
 by: 

   
 
 (  

 
)
 
     ̿  a.  

where   
   

=
  ̂ 

 
        

       ̂ 
 
     

   denotes the weights obtained from covariance forecast j.    is the 

return that,  ̿ is the mean return. 

       
       

      ,         
b.  

Given that the mean is zero the square of π can be viewed as the portfolio variance. The null 

hypothesis is that   
  is null for all k. This is a Diebold and Mariano (1995) and assess if    

is significantly different from zero. The test is to regress   
  on a constant using generalized 

method of moments with a Newey West covariance matrix. The reason for this is to correct 

for possible problems concerning heteroskedasticity, autocorrelation and non-normality.  

           
c.  

 

where   is a     vector, and    is a scalar.  
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4.2 Expected Return 

Our main focus in this thesis is on risk prediction, but the literature suggests there is a 

significant momentum effect (Scowcroft & Sefton (2005)). This is mainly found in sector 

indices, and suggests that the use of an ARMA model may be appropriate to predict expected 

return. The majority of the momentum effect in their portfolio was realized by long 

positions, so we should still be able to capture part of the momentum effect with a no 

shorting restriction. This can of course produce negative expected returns, which are counter 

intuitive, but the optimization will still seek to find the lowest risk given a return target. 

Given our myopic optimization; this is probably a better approach than a mean reversal 

strategy found over longer horizons (Cochrane (1999)). 

We employed the DM test in order to test if we can predict return better with an ARMA 

model than with a 12 month moving average model, which was shown to be the best 

momentum predictor.  

     
         ̂    

   
(1.1)  

where     
  is the mean squared error, of forecast k. We then construct: 

        
      

  
(1.2)  

The null hypothesis is that    is zero. We regress    on a constant, and use heteroskedastic, 

autocorrelation consistent standard errors in order to test this. 

          
d.  

 

where   is a     vector, and   is a scalar.  
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5. Portfolio Optimization Theory 

We will construct the following portfolios: Minimum variance, maximum Sharpe, risk 

budgets equal to SPUs strategic weights, risk budgets equal to sector market capitalization 

weights and minimum CVaR/variance with a return target equal to SPUs mean expected 

return. 

Extreme negative weights may occur in efficient portfolios, it would then appear that 

imposing a non-negativity portfolio weight constraint would lead to a loss in efficiency. 

However empirical findings in this area suggest that imposing these constraints on portfolio 

weights improve the efficiency. See Frost and Savarino (1988) for an excellent discussion. 

The unconstrained optimization is often shown to produce corner solutions, were an 

extremely large part of the portfolio is allocated to a single asset.  A common technique 

called shrinkage that is often applied, reduces the impact from extreme estimates.  

Jagannathan and Ma (2003) demonstrated that no shorting constrained portfolios work 

almost as well. We will therefore implement the realistic restriction of no shorting. Expected 

return is assumed to follow an ARMA process, and we further assume that there is no risk 

free asset, except for the max Sharpe portfolio. The last assumption has the implication that 

no tangency portfolio can be found, and thus the entire efficient frontier is optimal, and is 

only depending on the agent’s risk aversion. We do not wish to place any explicit 

assumptions regarding utility function or risk aversion, but instead assumes that The 

Norwegian Pension Fund Global`s strategic weights reflect their risk preference.  

 

5.1 Minimum Variance 

Minimum variance has recently prompted great interest both from academic researchers and 

market practitioners, as the construction does not rely on expected returns and is therefore 

assumed to be more robust. (Maillard et. Al. (2008)). Merton (1980) showed that small 

changes in expected returns, can lead to significant variations in the composition of the 

portfolio. This is of great interest for our study because large turnover is an unfeasible option 

for a fund which owns approximately 1% of the global stock market (Reuters 2009). 
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The standard criticism regarding minimum variance is that it tends to be biased toward value 

and small-firm effect (NBIM (2012)). This is not a feasible outcome because no individual 

stocks are considered.  

The Global mean variance portfolio (GMVP) is computed as the solution to: 

    
  

    ̂    
e.  

 Subject to   
     

f.  

 
       g.  

where   is a summation vector. 

 

5.2 Maximum Sharpe 

The classical model assumes that all investors would want to hold the maximum Sharpe 

portfolio (tangency portfolio)  (Sharpe (1964)). The optimization for max Sharpe is identical 

to that employed in EM test, but with a no shorting constraint. The portfolio is then divided 

by the sum of weights, to ensure that it’s fully invested in equity. Expected returns are 

allowed to change with the ARMA forecasts. 

5.3 Minimizing variance and CVaR with a Return Target 

The rational for this portfolio is to achieve the optimal asset allocation given the same return 

target as the Norwegian Pension Fund Global. The return target is thus designed as the 

expected return given the strategic weights, i.e. 

        (  
         

)
 
   (32)  
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where    is a weight vector, and    is the forecasted return from the ARMA process. All 

other constraints are equal to the minimum variance portfolio. For both return target 

portfolios we applied an r-code
1
 for constrained portfolio optimization. 

5.4 Risk Budgets with CVaR and Variance 

In this part we have constrained the risk budgets (RB) to be equal to the Norwegian Pension 

Fund Global strategic weights or market capitalization weights for sectors. This ensures that 

these portfolios have a risk exposure which is equal to the strategic weights. These portfolios 

also have the advantage of not depending on expected return. The benefit of this approach is 

that minimum variance often produces heavy weighting to some assets (Maillard et. Al. 

(2008). This can lead to overexposure to political (idiosyncratic) risk in certain regions or to 

certain industries. The RB ensures that the portfolio is well diversified across investment 

opportunities. Qian (2006) showed that the decomposition of risk can be a significant 

predictor of each asset (ex-post) losses. 

The optimization procedure is identical to minimum variance, with constraints on risk 

contribution and the derivation of the risk contribution for variances is straight forward, and 

can be done the following way because the covariance matrix is a symmetric matrix. 

    
 

  
            

The derivative of the standard deviation (σ) is then: 

 
  

  
                  

  

√ 
 

(33)  

The marginal percentage contribution from each asset is therefore:  

 
    ⁄  

 
    (34)  

The derivative of CVaR is more tedious, and we therefore refer interested readers to Boudt  

et al (2008) Appendix C.   

                                                 

1https://r-forge.r-

project.org/scm/viewvc.php/pkg/optimizer/R/optimize.portfolio.R?view=markup&root=returnanalytics&pathrev=1433 
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The marginal percentage contribution can be written the following way: 

 
         ⁄  

    
    (35)  

The risk budget portfolio usually outperforms the market index, due to low-volatility 

anomaly and business cycle component (NBIM (2012)).  

We applied an optimization method called Differential Evolution for both the CVaR and 

Variance risk contribution portfolios. This is because CVaR and variance with risk budgets 

is not necessarily a convex function of the portfolio weights, and may also be non-

differentiable. The DE algorithm is derivative free global optimizer, which allows for risk 

restrictions (Boudt et al (2009)). For details please see Appendix E. 

 

5.5 Regional and Sector Rebalancing Strategies 

As a benchmark for the more complex portfolios, we constructed portfolios which were 

rebalanced by a trigger strategy. For the regional investment universe this was done around 

SPUs current strategic regional weights (50% Europe, 35% North America, 15% Pacific) 

(NBIM (2011)). The trigger was set to 3 percentage points, meaning that every time a 

regional weight exceeds the strategic regional weights by this much, it will be rebalanced 

back to the strategic weights. For an overview of rebalancing strategies, see NBIM (2012). 

The trigger for the sector portfolio where also set to 3 percentage points.  

The Norwegian Global Pension Fund (SPU) is currently rebalanced around fixed regional 

weights, how this is exactly done is currently not public available information. From 1998-

2001 the fund where rebalanced back to the original regional weights every quarter, thus by 

a calendar-based rule (Norges Bank (2012)). Since 2001 the rebalancing regime has 

consisted of two elements, partly and full rebalancing. Partly rebalancing has followed the 

monthly supply of new capital and the regional weights have been adjusted in direction of 

the original regional weights. The full rebalancing has been a decision based on the current 

deviations from the regional weights. In a letter dated 26 of January 2012 the Norwegian 

Bank suggests that the rebalancing of the fund should be done based on the asset allocation 

between stocks and bonds with a threshold of three percent. Specifically this means that if 
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the equity value of the fund exceeds 63% or below 57%, the equity weight will be brought 

back to 60% in the end of the nearest quarter. The practice of partly rebalancing will be 

discontinued.  
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6. Description of the Dataset 

We will calculate all portfolios for two different investment universes, one where we divide 

the world into regions, and one where we separate the investment universe into different 

industry sectors. The data applied are all daily total return indices which are split into the in-

sample period; 15.06.1995-29.12.1999 for regions and 04.03.1996-31.12.2012 for sectors 

and the out-of-sample period 04.01.2000-12.04.2012 for both. The in sample estimation 

periods both consists of 1000 observation. Those observations where one or more indices 

were not updated were removed. All data used in our analysis is retrieved through 

Datastream and the indices applied are delivered by MSCI, for a thorough explanation of 

how the indices are put together, please visit MSCIs websites. 

6.1 Regions 

We chose to divide the world into seven different regions; Europe, Japan, Africa, North 

America, Latin America, India and Pacific.ex Japan. The rationale for this division is both 

good possibilities of diversification and that we seek to mimic the SPU strategy of regional 

rebalancing. See figure 2 for SPUs strategic weights. 

The regions exhibit quite different characteristics when measured by mean and risk, where 

risk is defined as both CVaR and standard deviations. See figure 1 and table 1. All regional 

returns are almost symmetrical distributed but they generally exhibit large positive Kurtosis, 

indicating that the possibilities of extreme negative and positive outcomes exceeding those 

of the normal distribution.  Table 2 shows that the correlation between the regions are in the 

range between 0,2 and 0,64.  We also notice that mean return in this period for the developed 

world (i.e. Nort America, Europe and Japan) is negative over this period, demonstrating that 

a strategy were SPU is heavily weighted in these regions may not always be optimal. South 

Africa is used as a proxy for Africa, and show an high Sharpe ratio. 
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Figure 1: Cumulative returns for all regions for the entire period; 1995.01.04 – 2012.04.12. 

The red line marks the transition from in to out-of-sample. The shaded area indicates a 

period of economic contraction (NBER (2012)). 

  Europe Japan Africa 
North 

America 
Latin 

America India 
Pacific ex. 

Japan 

Annual Mean -1.04 % -6.58 % 11.80 % -0.41 % 12.14 % 11.24 % 5.06 % 

Standard Deviation 26.35 % 24.48 % 23.18 % 22.86 % 32.89 % 29.79 % 25.01 % 

Annual Sharpe -0.07 -0.30 0.47 -0.06 0.34 0.35 0.17 

Skewness 0.00 -0.26 -0.06 -0.21 -0.12 -0.03 -0.06 

Kurtosis 8.09 5.98 4.14 7.81 10.58 6.18 11.39 

CVaR -3.50 % -4.28 % -3.51 % -3.75 % -4.14 % -4.35 % -2.65 % 
Table 1: Descriptive statistics for all regional returns for the out of sample period; 

04.01.2000 – 04.01.2012. 

  Europe Japan Africa 
North 

America 
Latin 

America India 
Pacific ex. 

Japan 

Europe 1.00 
      Japan 0.38 1.00 

     Africa 0.57 0.37 1.00 
    North America 0.59 0.22 0.36 1.00 

   Latin America 0.64 0.31 0.48 0.66 1.00 
  India 0.33 0.32 0.34 0.20 0.30 1.00 

 Pacific ex. Japan 0.60 0.61 0.52 0.34 0.48 0.43 1.00 
Table 2: Unconditional correlations for all regional returns for the entire 

sample period; 04.01.1995 – 04.01.2012. 
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Figure 2: The figure shows SPUs strategic regional weights (50% in 
Europe, 35% in America and Africa and a total of 15% in India, Japan and 
Pacific ex Japan). 

 

6.2 Sectors 

We further divided the global investment universe into ten different sectors; Consumer, 

Discretionary, Conumer Staples, Energy, Financials, Health Care, Industrials, Information 

Technology, Materials, Telecommunication Services and Others. See figure 4 for actual 

market capitalization weights. The reason for choosing this subdivision was to test if this 

could deliver better diversification possibilities, but from table 4 there seems obvious that the 

sectors exhibit higher correlation than the regional subdivision (between 0,44 -0,9 versus 

0,2-0,64 for regions). 

The different sectors also display quite different characteristics when measured by mean and 

risk, where risk is defined as both CVaR and standard deviations. See figure 3 and table 3. 

There seems to some differences in skewness, where negative skewness increases the 

probability for extreme negative outcomes. The indices have high kurtosis (peaked 

distribution). This motivates a risk measure that is able to capture non normality in the return 

distribution. 
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Figure 3: Cumulative returns for all sectors for the entire period; 1995.01.04 – 

2012.04.12.The red line marks the transition from in to out-of-sample. 
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Consumer 
Discretionary 

Consumer 
Staples Energy Financials Health Care 

Annual Mean -0.44 % 4.95 % 5.69 % -2.96 % 2.25 % 

Standard Deviation 19.01 % 13.53 % 25.39 % 24.00 % 16.07 % 

Annual Sharpe -0.07 0.30 0.19 -0.16 0.08 

Skewness 0.12 -0.27 -0.55 -0.10 -0.11 

Kurtosis 7.33 8.61 8.99 8.98 7.41 

CVaR -2.33 % -2.27 % -5.18 % -3.38 % -2.45 % 

      

  Industrials 
Information 
technology Materials 

Telecommunication 
Services Other 

Annual Mean 1.40 % -5.47 % 5.08 % -7.89 % 1.43 % 

Standard Deviation 19.54 % 26.95 % 23.63 % 20.79 % 16.02 % 

Annual Sharpe 0.03 -0.24 0.18 -0.42 0.03 

Skewness -0.37 0.11 -0.47 -0.02 -0.14 

Kurtosis 4.97 3.98 7.54 4.12 12.39 

CVaR -3.55 % -3.73 % -4.65 % -3.15 % -1.72 % 
Table 3: Descriptive statistics for all sector returns for the out of sample period sample 

period; 04.01.2000 – 04.01.2012. 

  
Consumer 

Discretionary 

Consumer 

Staples Energy Financials 

Health 

Care Industrials 

Info-

tech Materials 

Telecom 

Services Other 

Consumer 

Discretionary 
1 

         
Consumer Staples 0.67 1 

        Energy 0.59 0.61 1 

       Financials 0.83 0.7 0.64 1 

      Health Care 0.64 0.77 0.56 0.66 1 

     Industrials 0.9 0.71 0.67 0.87 0.67 1 

    Information 

technology 
0.74 0.45 0.43 0.62 0.5 0.71 1 

   
Materials 0.75 0.64 0.72 0.77 0.55 0.84 0.51 1 

  Telecommunicaiton 

Services 
0.72 0.59 0.53 0.7 0.57 0.7 0.63 0.6 1 

 Other 0.65 0.71 0.69 0.69 0.64 0.7 0.44 0.69 0.64 1 

Table 4: Unconditional correlations for all regional returns for the entire sample period; 

04.03.1996 – 04.01.2012. 
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Figure 4: The figure shows the global market capitalization of different sectors. 
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7. Results from the Covariance and Return Evaluation 

7.1 Fitting Models 

As input in the DCC model one has to obtain the residuals from a fitted time series model, 

also known as prewhitening the time series. This is important because the model assumes no 

linear autocorrelation. We will apply the Autoregressive moving average (ARMA) model, 

introduced by Box and Jenkins (1976) to obtain residuals used in the covariance forecast, 

and to predict expected returns. The model is specified as (Walter Enders (2010)): 

If one combines a moving average process with a linear difference equation one obtains the 

ARMA model. 

      ∑       ∑       

 

   

 

   

 

where the first part is the autoregressive terms and the second is the moving average terms. 

Appropriate lag length for the AR and MA part were determined by BIC information criteria 

which has been shown to be more asymptotically correct than AIC. 

After the ARMA models were fitted based on the BIC information we investigated the 

autocorrelation plots, and found there to be some significant autocorrelation in the residuals.  

However there is a trade-off between parsimony (i.e. robust forecasts) and models with more 

parameters (produces residuals closer to white noise) (Walter Enders (2010)) where the first 

is important for the expected return prediction. See appendix C for diagnostic plots of 

residuals. 

Secondly we fitted univariate GARCH(1,1) models in order to capture the volatility, which 

is used in the first step of the DCC model. Standardized returns from these models should 

not exhibit any kind of autocorrelation. The white noise process is not directly observable so 

we used the estimated counterpart   ̂  
 ̂

√  ̂
.  The ACF plots are found in appendix C and 

confirm that this is in fact the case. This is essential to ensure that we utilize all information 

in past returns,   ̂ should also have mean 0 and variance 1. These statistics are reported in the 

table below. 
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  Europe Japan Africa 
North 
America 

Latin 
America India 

Pacific ex. 
Japan 

Mean 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 

Variance 0.99 1.00 1.00 0.99 1.00 0.99 1.00 
Table 5: Mean and variance for standardized residuals. 

We notice that all means and variance are close to 0 and 1 respectively.     and it’s estimated 

counterpart  ̂  is  assumed to be normally distributed.  

  
Consumer 

Discretionary 
Consumer 

Staples Energy Financials 
Health 

Care 

Mean -0.01 -0.01 -0.01 -0.01 -0.01 

Variance 1.00 0.99 0.99 1.00 0.99 

  Industrials 
Information 
technology Materials 

Telecom. 
Services Other 

Mean -0.01 -0.01 -0.01 -0.01 -0.01 

Variance 1.00 0.99 0.99 1.00 0.99 
Table 6: Mean and Variance for standardized residuals. 

The same seems to be true for sectors. 

7.2 Expected Return 

We clearly see a much higher tendency for a significant first lag autocorrelation in sectors 

than when the world is divided into regions. This is consistent with the momentum theory. 

And the process does not seem to be a complete random walk. 

Results Regions: 

  Estimate t value 

Europe 9.20E-07 0.722 

Japan 1.26E-07 0.114 

Africa -1.22E-06 -1.377 

North America 1.24E-06 0.568 

Latin America -5.23E-06 -2.462 

India -3.13E-06 -1.755 

Pacific ex. Japan -2.33E-06 -1.612 
Table 7: Results from the DM test, a negative and significant estimate indicates that the 

ARMA model gives a better forecast of the return than the moving average model. 

Significant Coefficients are marked with two stars at the 5% significance level, and, and one 

at the 10%. 
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Results Sector: 

  Estimate t value 

Consumer Discretionary -4.36E-06 -4.074** 

Consumer Staples -6.54E-07 -1.708* 

Energy -6.05E-07 -0.243 

Financials -1.80E-06 -0.738 

Health Care -1.54E-06 -2.152** 

Industrials -1.71E-06 -1.605 

Information technology -2.95E-07 -0.203 

Materials -7.57E-06 -2.420** 

Telecommunication Services -4.21E-07 -0.381 

Other -6.47E-07 -1.408 
Table 8: Results from the DM test, a negative and significant estimate indicates that the 

ARMA model gives a better forecast of the return than the moving average model. 

Significant Coefficients are marked with two stars at the 5% significance level, and, and one 

at the 10%. 

As we can see most of the betas are negative, and for the sector subdivision, four of them are 

statistically significant, indicating that we can capture momentum better with an ARMA 

forecast, than with a 12 month moving average model. 

We will thus use ARMA forecast as expected return throughout the rest of this thesis. 

7.3 Evaluating the Performance of Different Covariance 

Forecastsing Methods 

The table reports coefficients and t-statistcs, and indicates that the DCC forecasted 

covariance matrices are superior to simpler models. We will therefore in the remaining part 

of this thesis apply the covariance matrix forecast produced by the DCC method. 

 
DCC - Rolling window DCC- EWMA 

  Beta t-statistic Beta t-statistic 

Regional -1.24E-05  -5.03** -2.74E-05  -8.24** 

Sector -1.19E-05  -6.28** -2.61E-05  -11.39** 

Table 9: t-statistics for EM test. HAC T-values are reported, two stars indicate 95% 

significance level. 
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7.4 Stationarity 

A time series {  } is stationary, if it’s mean, variance and autocorrelations can be 

approximated as an average of a sufficiently long series of realizations. It is important to 

ensure that the series are stationary since the framework implemented here requires this. The 

time series are first converted by the logarithmic difference before the Augmented Dickey 

Fuller test where conducted on all series. All null hypotheses are rejected; hence we consider 

the diff-log return series stationary. For details concerning stationarity and the augmented 

Dickey Fuller test, see Appendix B. 
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8. Portfolio Optimization Results 

We suspected that dividing our investment universe into sectors might give better 

possibilities for diversification than dividing the world into regions. From the correlation 

plots of returns (see table 2 and 4) this seems to not be the case. However it will be 

interesting to compare properties of portfolios calculated from the two investment universes. 

The previous chapter also suggested that we can get a forecast of expected return using 

ARMA models, that captures autocorrelation in returns i.e. the momentum effect, this seems 

to be stronger for sectors, than for regions. (see table 7 and 8).  

 

8.1 The Minimum Variance and Max Sharpe Portfolios 

We found that the max Sharpe portfolio outperformed the Regional rebalancing strategy for 

both the sector and regional investment universe when measured by both average return and 

risk adjusted return before transaction costs. However, after transaction costs the situation is 

turned around. The Max Sharpe portfolio suffers from very unstable portfolio weights, and 

thus when optimized daily this results in very high turnover and transaction costs which 

leads to negative returns. Our hypothesis was that by dividing the investment universe into 

sectors instead of region we could achieve lower portfolio risk, due to increasing cross 

country globalization. After observing that the different sectors where more correlated than 

the regions we thought that this hypothesis would be rejected. However the minimum 

variance portfolio for sectors exhibited the lowest variance. On the other hand the two 

investment universes are not directly comparable, because there are three more sectors than 

there are regions. We further notice that the minimum variance portfolios allocate a large 

part to indices which exhibit low unconditional variance, as for instance to North America 

and consumer staples. (see figure 12 and 13).  The variance plot (figure 7 and 8) clearly 

shows that the minimum variance portfolio achieves lower risk throughout the out of sample 

period. The max Sharpe portfolio for sectors achieve only about one fourth of the return the 

regional max Sharpe portfolio offers, making a regional subdivision of the global investment 

universe the preferred method, at least measured by the risk return offered by the max 

Sharpe portfolio. CVaR is also considerably more negative for the max Sharpe portfolios, 
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indicating higher losses in the case were the 5% threshold is breached. Transaction costs are  

set to 0.258% as estimated in NBIM (2003). 

 

  Sector Regional 

  

Regional 

Rebalancing 

Min 

Variance 

Max 

Sharpe 

Min 

Variance 

Max 

Sharpe 

Pre cost annual mean 1.42 % 0.94 % 3.17 % -0.32 % 12.85 % 

Post cost annual  mean 1.40 % -11.73 % -99.05 % -9.03 % -69.00 % 

Annual Std.Dev 20.17 % 13.17 % 22.39 % 15.54 % 21.07 % 

Annual Sharpe pre cost 0.03 0.00 0.10 -0.07 0.57 

Anual Sharpe ex cost 0.03 -0.96 -4.43 -0.63 -3.28 

Daily turnover
2
 0.00 0.19 1.53 0.15 1.40 

Skewness 0.00 -0.49 -0.52 -0.13 0.06 

Kurtosis 10.40 11.53 9.25 9.44 11.17 

CVaR -3.38 % -1.93 % -3.38 % -2.53 % -3.17 % 

Table 10: Summary statistics of daily out-of-sample returns for comparable portfolios over 

the period 04.01.2000-12.04.2012. 

 

                                                 

2  Turnover=   
 

 
  |             |

 
   

   
    

where         is the weight of asset i at the start of rebalancing period  t+1,       is the weight of that asset before 

rebalancing at t+1 , T is the total number of rebalancing periods (days). 
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Figure 5: Cumulative portfolio returns before transaction costs over the period 

04.01.2000-12.04.2012. Shaded area indicates a period of economic contraction. 

 

Figure 6 Cumulative portfolio returns before transaction costs over the period 

04.01.2000-12.04.2012. Shaded area indicates a period of economic contraction. 
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Figure 7: Monthly portfolio standard deviations over the period 04.01.2000-

12.04.2012. Shaded area indicates a period of economic contraction. 

 

Figure 8: Monthly portfolio standard deviations over the period 04.01.2000-

12.04.2012. Shaded area indicates a period of economic contraction. 
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Figure 9: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 10: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 

 

Figure 11: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 12: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 

 

 

Figure 13: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 
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8.2 Regional Portfolios with Additional Constraints 

We found that changing the risk measure from standard deviation to CVaR had a marginal 

impact on the portfolio risk, measured by both standard deviation and CVaR for both the 

return target and risk budget portfolios. However the portfolios optimized with standard 

deviation as risk measure gave slightly higher returns and in turn higher risk adjusted return 

(Sharpe); this was true also after transaction costs. CVaR optimized portfolios had slightly 

lower kurtosis and skewness which were closer to zero. Optimizing with CVaR seems to 

give more unstable portfolio weights and thus higher turnover turnover. See table 11 and 

figure 15-18. Before trading costs both return target portfolios outperformed the regional 

rebalancing strategy but the regional rebalancing portfolio outperformed the risk budget 

portfolios. After trading costs however, the regional rebalancing portfolio again offered the 

best risk return payoff.   

  Regional 

  

Regional 

rebalancing 

Return 

Target 

Return Target 

CVaR 

Std.Dev Risk 

Budgets 

Risk Budgets 

CVaR 

Pre cost annual mean 1.42 % 1.76 % 1.54 % 0.33 % -0.16 % 

Post cost annual  mean 1.40 % -26.58 % -30.80 % -1.32 % -7.59 % 

Annual Std.Dev 20.17 % 16.35 % 16.58 % 19.34 % 19.40 % 

Annual Sharpe pre cost 0.032 0.06 0.05 -0.02 -0.05 

Anual Sharpe ex cost 0.031 -1.67 -1.90 -0.11 -0.43 

Daily turnover 0.00 0.48 0.55 0.03 0.13 

Skewness 0.00 -0.56 -0.50 -0.04 -0.03 

Kurtosis 10.40 10.95 10.15 11.15 10.98 

CVaR -3.38 % -2.76 % -2.71 % -3.30 % -3.32 % 

Table 11: Summary statistics of daily out-of-sample returns for several portfolios 

over the period 04.01.2000-12.04.2012. 
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Figure 14: Cumulative portfolio returns before trading costs over the period 

04.01.2000-12.04.2012. Shaded area indicates a period of economic contraction. 
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Figure 15: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 

 

Figure 16: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 17: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 

 

Figure 18: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 
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8.3 Sector Results with Additional Constraints 

We arrived at the same conclusion regarding the risk measure; changing it from standard 

deviation to CVaR has a marginal impact on portfolio characteristics. For instance one can 

look at figure 21 and 22 which clearly show close resemblance. In contrast to the regional 

results, the portfolios optimized with CVaR as risk measure instead of variance gave slightly 

higher returns and in turn higher risk adjusted return; this was true also after trading costs. 

The sector rebalancing portfolio outperformed all other portfolios measured by return and 

Sharpe ratio both before and after trading costs. We again notice a slight reduction in 

skewness and kurtosis and higher turnover with CVaR as risk measure.  

 

  Sector 

  

Sector 

Weights 

Return 

Target 

Return Target 

CVaR 

Std.Dev Risk 

budgets 

Risk Budgets 

CVaR 

Pre cost annual mean 1.96 % 0.42 % 0.96 % 0.69 % 0.86 % 

Post cost annual  mean 1.94 % -51.92 % -55.14 % -1.16 % -6.61 % 

Annual Std.Dev 17.62 % 14.30 % 14.50 % 16.57 % 16.84 % 

Annual Sharpe pre cost 0.06 -0.03 0.00 -0.01 0.00 

Anual Sharpe ex cost 0.06 -3.68 -3.85 -0.12 -0.45 

Daily Turnover 0.00 0.78 0.84 0.03 0.11 

Skewness -0.30 -0.52 -0.50 -0.35 -0.33 

Kurtosis 7.28 10.12 9.51 8.19 7.68 

CVaR -2.69 % -2.18 % -2.18 % -2.56 % -2.57 % 

Table 12: Summary statistics of daily out-of-sample returns for several portfolios 

over the period 04.01.2000-12.04.2012. 
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Figure 19: Cumulative portfolio returns over the period 04.01.2000-12.04.2012. 

Shaded area indicates a period of economic contraction. 

 

Figure 20: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 21: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 

 

Figure 22: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 23: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 

 

Figure 24: Stacked average monthly sector portfolio weights over the period 

04.01.2000-12.04.2012. 
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9. The modified Regional Max Sharpe Portfolio 

In part eight we found the max Sharpe regional portfolio to give the best pre cost results 

measured by the Sharpe ratio. However the portfolio suffered from an extremely high 

turnover which made the portfolio more of a theoretical exercise than a strategy suited for 

real life applications. Judging by the weight plot for maximum Sharpe (figure 10) a lot of 

persistence (autocorrelation) is present in the weights. It therefore seems sensible to smooth 

the series to create less volatile weights. To reduce the volatility in portfolio weights we 

calculated the portfolio weights as the mean of the optimal daily weights for 20-, 40-, 60- 

and 80 days in the past. We found this to substantially reduce the portfolio turnover and 

hence the trading costs, which in turn made this portfolio to outperform the regional 

rebalancing strategy also after transaction costs were imposed. Judging by figure 25 the 

reallocation during the financial crisis (fig 10 and 27) is less rapid, and some of the max 

Sharpe portfolio’s benefit seems to have been lost. In table 13 it is interesting to notice that 

returns seems to increase with the number of days, and at the same time risk is increased, 

measured by CVaR and standard deviation. These portfolios also have higher kurtosis and 

are more skewed, indicating that they accumulate other kinds of risk than the regional 

rebalancing strategy. Figure 28 illustrates that the max Sharpe with 80 days smoothed 

weights average does not outperform the other portfolios during bull markets, but have 

consequently higher Sharpe ratio during bear markets. For SPU a max Sharp portfolio 

without further restrictions on regional weights would not be a possible equity allocation 

strategy. This is due to the size of the fund which would cause huge market impact costs in 

periods where the max Sharpe strategy allocates large parts of the capital to regions with 

relatively low market capitalization compared to the size of SPU. See figure 27. 
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Regional 

Rebalancing 

Max 

Sharpe 

Max 

Sharpe 20 

Max 

Sharpe 40 

Max 

Sharpe 60 

Max 

Sharpe 80 

Pre cost mean 1.42 % 12.85 % 5.05 % 5.35 % 5.39 % 5.56 % 

Post Cost Mean 1.40 % -69.00 % 0.89 % 3.01 % 3.65 % 4.13 % 

Standard Deviation 20.17 % 21.07 % 18.69 % 18.81 % 18.89 % 18.96 % 

Sharpe pre Cost 0.0316 0.5729 0.2282 0.2428 0.2438 0.2522 

Sharpe ex Cost (0.258%) 0.0308 -3.2804 0.0059 0.1182 0.1516 0.1762 

Sharpe ex Cost (0.5%)
3
 0.0301 -6.7678 -0.2022 0.0016 0.0653 0.1051 

Daily turnover 0.000 1.3977 0.071 0.040 0.030 0.025 

Skewness -0.005 0.0623 -0.306 -0.290 -0.246 -0.239 

Kurtosis 10.396 11.1680 10.465 11.313 11.654 11.633 

CVaR -3.38 % -3.17 % -2.97 % -3.01 % -3.07 % -3.13 % 

Table 13: Summary statistics of daily out-of-sample returns for realistic portfolios 

over the period 04.01.2000-12.04.2012. 

 

Figure 25: Cumulative portfolio returns over the period 04.01.2000-12.04.2012. 

Shaded area indicates a period of economic contraction. 

                                                 

3 Used in NBIM (2012) – Empirical Analysis of Rebalancing Strategies.  



 57 

 

Figure 26: Monthly portfolio standard deviations over the period 04.01.2000-

12.04.2012. Shaded area indicates a period of economic contraction. 

 

Figure 27: Stacked average monthly regional portfolio weights over the period 

04.01.2000-12.04.2012. 
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Figure 28: Annual Sharpe ratios ex cost (0,5%) over the period 2000-2012. 
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10. Conclusion 

This thesis has evaluated the covariance forecasting ability of the moving average, EWMA 

and DCC model by comparing the unconstrained maximum Sharpe portfolios. We found the 

DCC model to give significantly better covariance forecasts than the other methods, and thus 

all portfolio optimization were based on covariance forecasts from the DCC method.  

We further computed several portfolios based on both a sector and a regional subdivision of 

the investment universe and found that the main differences where that a sector subdivision 

produced the minimum variance portfolio with the lowest variance, but the regional 

subdivision gave a much better max Sharpe portfolio. For both investment universes, 

changing the risk measure from variance to CVaR had a marginal impact on the out of 

sample performance. 

The regional max Sharpe portfolio exhibited the highest mean and risk return payoff, but 

suffered from extremely high turnover. After modifying the portfolio by determining the 

portfolio weights as an average of optimal portfolio weights in a given number of days in the 

past, this asset allocation outperformed the regional rebalancing portfolio also after 

transaction costs.  

Based on our results we recommend optimizing the asset allocation according to a maximum 

Sharpe objective with a regional subdivision of the global investment universe combined 

with a method of reducing the transaction costs. However, to reduce market impact costs this 

requires that the amount of capital under management is relatively small compared to the 

market capitalization of the regions invested in. 

Further research with longer forecasting horizon and out of sample period would be an 

interesting extension of our thesis. It would also be interesting to evaluate different methods 

of creating stable weights for the regional max Sharpe portfolio.  
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12. Appendix  

12.1 Appendix A: Data Cleaning 

Portfolio moments and especially higher moments are extremely sensitive to data spikes, for 

this reason we will “clean” the data in the CVaR portfolio optimization, using the cleaning 

method “Boudt”. This is a robust method that does not remove data from the series, but only 

decreases the magnitude of extreme events. When estimating the downside risk with loss 

probability  , observations that belongs to the       last observations will not be cleaned. 

The time series is cleaned in three steps as specified in Peterson et al. (2010).  First suppose 

that we have an  -dimensional vector time series of length           . 

1. Ranking the observations based on their extremeness: Let   and    is the mean and 

covariance matrix of the bulk of the data and let ⌊ ⌋ be the operator that takes the 

integer part of its argument. The squared Mahalanobis distance   
      

             is used as a measure of the extremeness of the return observation    . 

  and   are estimated as the mean and covariance matrix of the subset size ⌊   

   ⌋ for which the determinant of the covariance matrix of the elements in that 

subset is the smallest. These estimates are then robust against the   most extreme 

returns. Let     
        

  be the ordered sequence of the estimated squared 

Mahalanobis distances such that     
         

   

2. Outlier identification: Returns are categorized as outliers if their estimated squared 

Mahalanobis distance   
  is greater than the       quantile   ⌊      ⌋ 

  and exceeds 

an extreme quantile of the Chi-square distribution function with   degrees of 

freedom, which is the distribution function of   
  when the returns are normally 

distributed. In this application the 99,9% quantile is denoted         
 .  

3. Data cleaning: The returns    that are identified as outliers in step 2 are replaced by: 

  √(
   (  ⌊      ⌋ 

          
 )

  
 )   

The cleaned return vector has the same orientation as the original return vector, but 

its magnitude is smaller.  
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12.2 Appendix B: Stationarity 

If a time series      is a stationary series, this means that the mean, variance and 

autocorrelations can be approximated as an average of sufficiently long series of realizations. 

A stochastic process having a finite mean and variance is covariance stationary for all   and 

   : 

                

                          
                       

   

                   [(      )(        )]     

                 (           )      

  is equivalent to the variance of   . A time series is thus covariance stationary if its mean 

and all autocovariances are unaffected by a change in time origin. In this thesis we will only 

consider weakly stationary series, so a series denoted as stationary means that the series is a 

weakly stationary series. 

Test of stationarity: If the series contain a unit root an ARMA model will not fit the dataset, 

and thus we will have to make the series stationary. To test this we applied the Dickey-Fuller 

test (Dickey and Fuller (1979)) this is a test used to find out whether a time series contains a 

unit root. We applied the extended version called the augmented Dickey-Fuller (ADF) test, 

which for many time series gives a better fit than the simpler version of the test. The 

appropriate number of differentiated lags was decided based on Aikaikes information 

criteria. 

          ∑            

 

   

 

             ∑            

 

   

 

                 ∑            
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The difference between the three regressions is the deterministic elements    and    . The 

null hypothesis is      ,   is defined as       , hence the null hypothesis is that the time 

series contains an unit root. Under null hypothesis    , the first regression is a random 

walk model, the second with a drift term, and the third includes both a drift and a linear time 

trend. Each specification of the test has its own test statistics, denoted         respectively. 

The time series are first converted by the logarithmic difference before the test specified 

without a drift or a trend term where conducted, all null hypothesis could be rejected, hence 

we consider the diff-log return series stationary.  

 

  Europe Japan Africa 
North 

America 
Latin 

America India 
Pacific ex. 

Japan 

T-statistics -46 -47 -44 -46 -44 -43 -45 
Table 14: T-values from ADF test, conducted at regions at the entire sample 

period. 

 

  
Consumer 

Discretionary 
Consumer 

Staples Energy Financials 
Health 

Care 

T-statistics -46 -49 -50 -45 -48 

      

T-statistics Industrials 
Information 
technology Materials 

Telecommunication 
Services Other 

  -46 -47 -46 -48 -49 
Table 15: T-values from ADF test, conducted at sectors for the entire sample 

period. 
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12.3 Appendix C: Diagnostic Plots 

12.3.1 Regions 

Original series ACF and ACF for squared return: 
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Diagnostic plots of residulas: 
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Autocorrelation in univariate Garch plots: 
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12.3.2 Sector  

Original series ACF and ACF for squared return: 
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Diagnostic plots of residulas: 
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Autocorrelation in univariate Garch plots: 
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12.4 Appendix D: Deriving VaR 

Deriving VaR for continuously compounded returns: 

                       

    (               ) 

    (      
             ) 

    (      
             )   

          
                  |Dividing with      

    (     
      

    
  )   | Taking the logarithm. 

    (      ( 
      

    
  ))  |diving with standard deviation on both sides 

    (
  

 
    ( 

      

    
  ) (

 

 
) ) 

Since  
      

    
  . Then the distribution of standardized returns        can be denoted 

      and the inverse distribution by        
      we have: 

   ( 
      

    
  )           

       (   (          )   )       

For small          the VaR is approximately given this way: 

                  

Definition of higher moments: 

Skewness: 

The skewness coefficient is given by: 

  
 [  

 ]

  
 

The co-skewness is then      matrix: 
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  is the kronecker product. 

Kurtosis: 

 =
 [  

 ]

  
 

The co kurtosis      matrix and is defined the following way: 
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12.5 Appendix E: Differential Evolution Algorithm 

The differential evolution algorithm, introduced by Storn and Price (1997) optimize a 

problem by maintaining a population of candidate solutions and creating new candidate 

solutions by combining existing ones, and then keeping the candidate solution which has the 

best score or fitness on the optimization problem at hand. DE is particularly well suited to 

find the global optimum of a real-valued function of real-valued parameters, and does not 

require that the function is neither continuous nor differentiable. There is also easy to add 

constraints, both linear and non-linear. 

The DE algorithm consists of three main steps; mutation, crossover and selection. One set of 

optimization parameters, called an individual, is represented by a  -dimensional vector. A 

population consists of       –dimensional parameter vectors                   for 

each generation  . 

Mutation: For each target vector       a mutant vector is generated according to         

               (           ) with randomly chosen indexes 

                       Note that smaller differences between parameters of parent    and 

  , the smaller the difference vector will be, and therefore the perturbation will be smaller. 

This means that if the population gets close to optimum, the step length is automatically 

decreased. The vector generating process can be done in many different ways, called 

strategies. The strategy we will apply is called the “DE/local-to-best/1/bin” and is specified 

as follow: 

                                 (           ) 

where        and       are the     member and best member respectively, of the previous 

population. 

Crossover: The target vector is mixed with the mutated vector using the following scheme 

to yield the trial vector        (                          ) where  

        {
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For                        is the     evaluation of a uniform random number 

generator.    is the crossover constant             means no crossover.       

          is a randomly chosen index which ensures that          gets at least one element 

from       . Otherwise no new parent vector would be produced and the population would 

not alter. 

Selection: A greedy selection scheme is used: If and only if the trial vector yields a better 

cost function value compared to the parameter vector     , is it accepted as a new parent 

vector for the following generation    . Otherwise, the target vector is retained to serve as 

a parent vector for generation     once again.  

 


