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Abstract 

We back-test a statistical arbitrage strategy, pairs trading, over the ten year 

period 01.01.2003 – 31.12.2012 at the Oslo Stock Exchange. We construct an 

unbiased dataset, where stocks are matched into pairs using a cointegration 

approach and traded according to a set of pre specified rules. The strategy 

yields consistent negative returns independent of parameterisation of entry- 

and exit thresholds. Our findings are in line with previous literature, where we 

support the view that absence of profits is not necessarily due to increased 

activity among hedge funds, but rather changes in fundamental factors 

governing the relationships between stocks. 
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Preface 

This thesis is divided into two parts. Part one outlines the background and 

theoretical framework of pairs trading. In addition we conduct a Monte Carlo 

simulation where we show that profits to a pairs trading strategy is negatively 

related to the correlation between the assets in a pair. Part two is an empirical 

back-test applying the theory discussed under part one. 

All data in this thesis may be made available upon request: chhoel@gmail.com 
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Part One 

1. Introduction 

1.1 Deterministic and Statistical Arbitrage 

The notion of arbitrage can perhaps be considered the Holy Grail of investing, as it is the 

possibility of a risk-free profit at zero cost due to mispricing of assets; construct a self-financed 

portfolio that has a positive probability of a positive payoff, and a zero probability of a 

negative payoff, for all future states in time. Such an arbitrage is often termed a deterministic 

or pure arbitrage, and is inconsistent with equilibrium pricing yet important for asset pricing 

theories such as the Arbitrage Pricing Theory (Huberman 1982). In contrast, a statistical 

arbitrage represents an opportunity in which there is a statistical relative mispricing between 

assets based on their expected values. A position can then be taken in order to capitalise on 

this relationship. However, unlike a deterministic arbitrage, such a position is not riskless. The 

expected payoff is positive, but so is also the probability of a negative payoff. Only when time 

approaches infinity and the trading strategy is continuously repeated will the probability of a 

negative payoff approach zero – much like a martingale betting system1. Hogan et al. (2004) 

defines a statistical arbitrage as having the following properties: 

 (1.1) 

 (1.2) 

 (1.3) 

 (1.4) 

(1.1) it is a zero cost self-financing portfolio, (1.2) it has positive expected discounted profits 

and (1.3) a probability of loss converging to zero in the limit, and (1.4) a time-averaged 

variance converging to zero if the probability of a loss does not become zero in finite time. The 

fourth condition only applies if there is a positive probability of a negative outcome. Consider 

the case of  for all  for some . That is, the probability of a loss is 

zero for , so that a deterministic arbitrage opportunity is available. The economic 

interpretation of this condition is that a statistical arbitrage opportunity will eventually return 

a risk free profit in the limit. In that sense, its properties will become similar to a deterministic 

arbitrage as time increases. 

                                                           

1 E.g. in a game of Roulette a gambler would double his stake after every loss so that the first win 
would cover all previous losses and leave him with a profit equal to the initial stake. 
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Let us give an example, following that of Hogan et al. (2004). 

Example – Assume that a trading strategy generates a profit over the time interval  

that can be written as 

 

where ,  and  is i.i.d. . For every time interval this strategy will have 

positive expected discounted profits with random noise; in other words, the profit will oscillate 

around the mean value. For simplicity assume a zero discount rate. Supposing that  the 

cumulative profits at time T is 

 

We notice that  and  converge to infinity as . Even 

so, the time averaged variance
�

�=1  will converge to zero as , precisely because 

the variance is a concave function of time. Hence, the example is a statistical arbitrage. 

Although we will thoroughly cover the strategy of pair trading later, an important question is 

whether or not it can be considered a statistical arbitrage according to the above definition. 

Firstly,  can be thought of as a long-short portfolio consisting of two stocks whose weights 

can be determined so that it is a self-financed position2. Secondly, it is clear that for a rational 

investor the expected value of an investment will be positive, if not she would not invest 

(assuming she is not a risk-seeker). For pairs trading, it is clear that when a position is entered 

into the expected profit is positive due to the mean reverting nature of which the strategy is 

defined. By these arguments we therefore state that requirements (1.1) and (1.2) are satisfied. 

Furthermore, requirements (1.3) and (1.4) are by Chiu and Wong (2012) proven to be fulfilled 

for a pairs trading strategy in an economy where assets are cointegrated. Because the basis of 

pairs trading relies on cointegration and error correctional behaviour of assets, we conclude 

that such a trading strategy may indeed be considered a statistical arbitrage. 

In practise, statistical arbitrage is often used synonymously with the term quantitative 

trading to describe any quantitative trading strategy that searches to mitigate risk almost 

entirely. A less stringent layman’s definition would be to say that statistical arbitrage is the 

process in which one uses heavily quantified techniques seeking to profit from the relative price 

discrepancies between assets, where risk is believed to be so small that it is negligible. 

However, because the statistical relationship between two or more assets may not necessarily 

continue to hold into the future due to possible changes in underlying fundamental variables, 

                                                           

2 In reality, it is seldom the case that the proceeds from the short sell can be used to cover the long 
position due to margin requirements. 
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statistical arbitrage is certainly not without risk. The 1998 bailout of Long Term Capital 

Management is evidence of just that3. 

1.2 The History of Pairs Trading 

In the early 1980’s the Wall Street quant Gerry Bamberger of Morgan Stanley had the idea 

that it could be profitable to hedge positions within an industry group according to a set of pre 

specified rules (Wilmott 2005). This idea was further developed by his colleague Nunzio 

Tartaglia who led a team of mathematicians, physicists and computer scientists, who 

developed algorithms for which trades could be automatically executed (Vidyamurthy 2007). 

This has later become known as the black box of Morgan Stanley, and proved highly profitable 

in the years that came. One of the strategies the team developed was rather simple intuitively, 

yet intricate: find two securities whose prices seem to move together due to an underlying 

relationship, and when an anomaly in the relationship is noticed the pair is traded believing 

that the relationship will restore itself. This strategy has since been named pairs trading. 

As a result of the interest in the quantitative work at Morgan Stanley and the group 

led by Tartaglia eventually dissolving, new hedge funds emerged. Together with increased 

academic interest, quantitative trading and statistical arbitrage became well known in the 

financial industry, and pairs trading is used extensively among institutional investors today 

(Pole 2007). 

1.3 Literature Review 

While statistical arbitrage and pairs trading have been around for over 30 years, few papers on 

the subject have been published in top tier academic journals. Here we give an overview of the 

most prominent literature. 

Gatev et al. (2006) is perhaps the most cited paper on pairs trading. They back test a 

simple trading algorithm with daily data in the period 1962-2002 using S&P 500 constituents 

and find average annualised returns of up to 11% for portfolios of pairs. Although the proposed 

strategy is profitable the authors note that returns have declined in recent years, possible due 

to increased competition among hedge funds and/or a reduction in the importance of an 

underlying common factor that drives the returns in a pairs trading strategy. Furthermore, a 

thorough analysis of the risk characteristics shows that returns have a high risk-adjusted alpha 

and an insignificant exposure to sources of systematic risk. 

Andrade et al. (2005) replicate the study of Gatev et al. (2006) (using their working 

paper from 2003) on the Taiwanese stock market from 1994 to 2002, which produces similar 

results with average annualised returns of 10%. Perlin (2009) tests a trading strategy much 

                                                           

3 LTCM was a Wall Street hedge fund using quantitative techniques to uncover statistical arbitrage 
opportunities in the bond and equity markets. 
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alike Gatev et al. (2006) on the Brazilian stock market using daily, weekly and monthly data, 

where daily data yields significantly higher returns than that of lower frequency strategies. 

Also, his results indicate that returns are sensitive to the parameterisation of entry and exit 

thresholds. 

Do and Faff (2010) reproduce the paper of Gatev et al. (2006) with near identical 

results as the original paper. Expanding the study to the first half of 2008, they find that 

returns to the strategy continue to decline at an accelerating rate. Contrary to the general 

belief that increased hedge fund activity reduces profit potential, they claim that it can be 

attributed to changes in the nature of the “Law of One Price” as an increasing proportion of 

pairs do not converge upon divergence; signalling a change in underlying common factors in 

which the trading algorithms are formed. This has the implication that pairs of stocks 

historically found to be close substitutes may no longer be so in forthcoming time periods. In a 

recent paper Do and Faff (2012) conclude that inclusion of trading costs severely impact 

profits, and together with narrowed trading opportunities have rendered pairs trading largely 

unprofitable after 2002.  

Bowen et al. (2010) back-test a pairs trading algorithm using intraday data over a 

twelve month period in 2007, and conclude that returns are highly sensitive to the speed of 

execution. Moreover, accounting for transaction costs and enforcing a ‘wait one period’ 

restriction, excess returns are complete eliminated. 

Engelberg et al. (2009) seek to explain the nature behind pairs trading profits, and find 

that possibilities for profit are greatest soon after equilibrium divergence, and that the 

divergence is strongly related to how information disperses through the stocks that form the 

pair. Idiosyncratic liquidity shocks result in higher profitability than idiosyncratic news and 

when there is information common to both legs of the pair, profit possibilities may arise when 

the information is more quickly incorporated into one stock than the other. 

Besides the works mentioned above, there are few papers addressing the actual 

performance of pairs trading. Most of the available literature is purely theoretical and deal 

with the underlying technicalities and modelling, not how the actual models would have 

performed in the long run. In this second category Vidyamurthy (2007), Lin et al. (2006) and 

Elliot et al. (2005) are noteworthy. While the first two give a thorough and detailed 

presentation of pairs trading from a cointegration viewpoint, the latter details how stochastic 

spread models can be useful in modelling the dynamics between assets in a pair. 

We will briefly comment further on the mentioned papers in the next section. 
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2. The Fundamentals of Pairs Trading 

2.1 The Basic Idea 

The essence of pairs trading is quite simple, and builds on the premise of relative pricing. If 

there exists equilibrium between two assets and an anomaly is observed in the relationship, 

one can seek to profit from the comparative mispricing by selling the relative overvalued asset 

and simultaneously buying the undervalued asset. When equilibrium is again restored both 

positions are unwound and the investor makes a profit. This profit can naturally stem from 

either the long or short leg of the trade, or both. 

Consider the two series of simulated stock prices depicted in figure 1.1 below. Even 

though they seem to follow a random walk process (with drift), they clearly share a common 

underlying factor thereby never drifting too far apart from each other.  

 
Figure 1.1. Simulated stock price series. 

The distance between the two stocks is referred to as the spread, and can be thought of as 

being a synthetic asset. The magnitude of the spread indicates the degree of relative mispricing 

between the stocks, thus generating buy and sell signals. As illustrated by a dummy variable 

in figure 1.1, positions are opened when the spread crosses a given threshold and is closed upon 

mean reversion. Figure 1.2 shows the modelled spread series associated with the simulated 

stock prices above, along with examples of entry thresholds specified by the stippled lines. How 

the spread can be modelled will be discussed in the next subsection. 
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Figure 1.2. Spread series from simulated stock prices. 

2.2 Various Approaches to Pairs Trading 

Broadly defined, there are three4 different approaches to pairs trading: the distance approach, 

the stochastic approach and the cointegration approach. These methods all vary with regard to 

how the spread of the stock pairs is defined. Below we give a short introduction. 

2.2.1 The Distance Approach 

The distance approach is used among others by Gatev et al. (2006), Andrade et al. (2005), 

Engelberg et al. (2009), Perlin (2009), Do and Faff (2010, 2012) and Bowen et al. (2010). By 

this approach the distance between two stocks, which is the squared difference between the 

two normalised price series, measures the co-movement in the pair. The normalised price series 

for a stock is given by its cumulative total returns index, as shown in equation (1.5): 

 
(1.5) 

The normalized series begin the observation period with a value equal to one, and increases or 

decreases each day given its return. Stocks are matched into pairs by computing the distance 

(D) according to equation (1.6): 

 
 (1.6) 

                                                           

4 A fourth approach, the Combined Forecast approach is suggested by Huck (2009, 2010) as the sole 
promoter.  
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When the distance measure has been computed for all stock pairs in question, one typically 

rank pairs based on minimum distance, where usually a certain number of pairs with the 

lowest value will be used for trading. The spread is simply defined as one stock price 

subtracted by the other, where trades are opened according to the rule in (1.7):  

 
 

 

short position  

long position 

 

(1.7) 

where  represents a threshold value. 

Notably, the distance approach is a model free approach and exploits a statistical 

relationship among two stocks at the return level. As Do et al. (2006, 4) notes, it therefore has 

the advantage that it is not prone to model misspecification or misestimation. However, it 

makes the assumption that the returns of the two stocks are in parity, or equivalently that the 

level distance is static through time, something that may hold true for only brief periods of 

time and “for a certain group of pairs whose risk-return profiles are close to identical”. 

Additionally, because it is parameter free, it also lacks forecasting capabilities. 

2.2.2 The Stochastic Approach 

Papers included in this category are Elliot et al. (2005), Do et al. (2006) and 

Mudchanatongsuk et al. (2008). The common approach is outlined by Elliot et al. (2005) 

where the price difference between two assets is modelled in continuous time, and assumed to 

be driven by a state process and some additional measurement error: 

  (1.8) 

where  represents the value of some variable at time  for ,  is i.i.d. 

Gaussian  and .  is assumed to follow the process given by (1.9): 

  (1.9) 

where , ,  and  is i.i.d. Gaussian  and independent of  from 

(1.8). The process described by (1.9) will mean revert around  with “power”   We 

denote  representing the information from observing . The 

conditional expectation 

  (1.10) 

will be the estimate of the hidden state process of (1.9) through the observed process of (1.8). 

Note that (1.9) can be rewritten as: 

  (1.11) 
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where ,  and . One can regard  where 

 satisfies the stochastic differential equation  

  (1.12) 

An Ornstein–Uhlenbeck process is then used as an approximation to (1.12) in order to 

estimate ,  and  so that an estimate of (1.10) can be obtained. The trading dynamic is 

similar to that of (1.7). A trade is opened when , as the spread is 

considered too large: the trader takes a short position, and profits when a correction occurs. 

Similarly, she takes a long position if . Again,  is the threshold value for when 

trades are opened. 

The advantages of using the stochastic approach is firstly that is captures mean 

reversion, the main building block of pairs trading, and secondly that it is convenient for 

forecasting. Specifically, expected holding period and expected return can be calculated 

explicitly using First Passage Time results for an Ornstein–Uhlenbeck process. Conversely, Do 

et al. (2006) argues that the model suggested by Elliot et al. (2005) has a fundamental issue, 

much like the distance approach, in that it restricts the long-run relationship between the 

securities to one of return parity. This problem may be overcome by using a transformed price 

series. 

2.2.3 The Cointegration Approach 

The cointegration approach is suggested by Lin et al. (2006), Vidyamurthy (2007) and 

Galenko et al. (2012). This approach uses a regression5 based framework to estimate the spread 

between two stocks as shown by equation (1.13): 

  (1.13) 

where  is the estimated coefficient from a regression of stock B on stock A,  is the estimated 

intercept6 and  is the estimated error term, i.e. the residuals from the regression. If the 

spread is found to be stationary it will fluctuate around the estimated long-run equilibrium . 

Trading thresholds can then be constructed such that trades are triggered in the same way as 

(1.7): if  a short position is taken. Likewise, if  a long 

position is taken.  

The cointegration approach has its strengths in that it is a relatively simple framework 

where parameters are easily estimated using regression analysis, and that it explicitly models 

the mean reverting properties of the spread. On the other hand, Do et al. (2006) states that it 

                                                           

5 Note that the Johansen (cointegration) test uses VAR (vector autoregressive) models instead of 
regression.  
6 A regression where the intercept is forced to equal zero is also possible. 
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is difficult to associate cointegration with asset pricing theories, although Vidyamurthy (2007) 

makes an attempt to link it to Arbitrage Pricing Theory. 

* 

Among academics the distance approach is the most widespread methodology, and Gatev et al. 

(2006, 803) claims that it “best approximates the description of how traders themselves choose 

pairs”. Even so, this thesis adopts a cointegration approach to pairs trading for three main 

reasons. Firstly, we cannot find any literature that back-test a long-term strategy based on 

cointegration, and it would therefore be interesting to see how its performance compares with 

the distance approach. Secondly, the stochastic approach seems to be little (if any at all) used 

in practice, and we cannot find a single paper that tests it on any actual data except simulated 

data. Thirdly, we will argue that cointegration is in fact, to some extent, the underlying basis 

for both the distance and the stochastic approach. Naturally, the pairs formed on the basis of 

the minimum distance criterion will most likely be cointegrated, namely because the spread 

oscillates about the equilibrium value. As we will later show, there is a clear resemblance 

between the state process in (1.9) and error correction models which can be deducted from 

cointegration. The next section details the cointegration based approach to pairs trading. 

3. A Cointegration Approach 

We begin this section by introducing the concepts of stationary time series and cointegration, 

before outlining in detail how these concepts can be used for trading pairs. 

3.1 Stationarity 

A stationary time series is characterised by the following properties for all  and : 

  

 

 

(1.14) 

(1.15) 

(1.16) 

where ,  and  are all constants. (1.14) through (1.16) therefore states that a stationary7 

series has a constant mean, variance and autocovariance (Enders 2010). Obviously, (1.14) is 

the most important property in terms of pairs trading, or any other spread trading regime for 

that matter. If the spread between two assets are found to have a constant mean any 

deviations from this value can be traded against, as we illustrated in figure 1.2. (1.15) and 

(1.16) is perhaps of lesser importance for pairs trading, although a changing variance may 

affect profit potential through the magnitude of the oscillations about the mean. In 

                                                           

7 Strictly speaking, this is the definition of a covariance-stationary time series. However, the terminology 
of stationarity and covariance-stationarity is often used interchangeably. 
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econometrics the notion of stationarity is important, because if we want to understand the 

relationship between variables using regression we need to assume stability over time: by 

allowing the relationship between variables to change randomly in each time period, we cannot 

hope to learn much about how a change in one variable affects the other(s) (Wooldridge 2009). 

Most non-stationary time series can be transformed into a stationary series. A common 

procedure is to difference the series, so that the values represent changes and not levels. A 

time series that becomes stationary after  times of differencing is referred to as an  series 

– integrated of order . For instance, stock prices are often assumed to be  series (see e.g. 

Lanne (2002) and Lo (1991)). 

There exist multiple statistical tests for determining whether a time series can be 

considered stationary, and this thesis adopts the framework of Said and Dickey (1984), namely 

the augmented Dickey-Fuller test (ADF-test). The ADF-test uses regression analysis in order 

to test for a unit root, i.e. non-stationarity, in an assumed underlying data generating process: 

  (1.17) 

(1.17) is a pth order autoregressive process: AR(p). Equation (1.17) can also be written as: 

 
 (1.18) 

 

where   and    

which is the equation used in the ADF-test8. Note that  and/or  can be set equal to zero 

depending on the assumptions behind the data generating process. The coefficient  is tested 

with regard to the two hypotheses 

  

  

non-stationary  

stationary 
(1.19) 

3.2 Cointegration 

Introduced by Granger (1981) and further developed by Engle and Granger (1987), 

cointegration is the property in which two or more time series share a common stochastic 

trend. Consider two  series,  and . It is generally true that a linear combination 

 will also be . Still, there is a possibility that  is , , though 

this is seldom the case. Now suppose , such that the two series are cointegrated: the 

long-run component of  and  cancels out so that  is stationary. The use of a constant 

                                                           

8 See Enders (2010, 215) for the transition from (1.17) to (1.18).  
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indicates that the relationship needs to be scaled so to attain  difference. Recall from 

equation (1.13) that if  is stationary it will consist of two parts 

   

so that it will oscillate around its equilibrium value . Engle and Granger (1987) suggested a 

two-step procedure to test for cointegration9. Consider two variables,  and . 

1) If both variables are integrated of the same order, say , the (possible) cointegration 

relationship can be estimated by a regression of the form 

   

The residual series , previously denoted as the spread, is the 

estimated values of the deviations from the long-run relationship.  

2) Test the -sequence for stationarity using the ADF-test. If the deviations are found to 

be stationary,  and  are cointegrated. 

As noted by MacKinnon (1991) it is not possible to use the ordinary Dickey-Fuller test 

statistics.  is generated from a regression equation and we do not know the true residual 

series , only its estimate. A problem arises because  and  are fitted so that they minimise 

the residual variance, thus making the procedure biased towards finding the most stationary 

relationship in the ADF equation. The test statistic used to test the magnitude of  in (1.18) 

needs to reflect this – fortunately MacKinnon (1991) provides the necessary values. 

3.3 Pairs Trading and Cointegration 

Now that the concepts of stationarity and cointegration have been introduced, let us further 

detail how cointegration can be used for pairs trading. 

3.3.1 Estimation Procedure 

As we have seen, the notion of cointegration rests on a long-run relationship between the 

stochastic trends of two time series. An important issue is therefore how the possible 

relationship should best be estimated. Engle and Granger (1987) suggest using Ordinary Least 

Squares (OLS) regression, which seems to be the workhorse of choice among all the literature 

on cointegration based pairs trading. However, there are a few problems regarding OLS, 

cointegration and pairs trading. Notice the two regression equations below, where the 

relationship between  and  have been modelled in two separate ways: 

                                                           

9 This is known as the Engle-Granger Two-Step Procedure. 
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(1.20) 

The OLS algorithm minimises the squared residuals of the dependent variable in the regression 

equation. This has the implication that the coefficients of the two regressions will not be the 

inverse of the other, i.e. . This in turn has two effects. Firstly, cointegration analysis 

using OLS will be sensitive to the ordering of variables. It is a possibility that one of the 

relationships in (1.20) will be cointegrated, while the other will not. This is troublesome 

because we would expect that if the variables are truly cointegrated the two equations will 

yield the same conclusion. Secondly, the unsymmetrical coefficients imply that a hedge of 

long  / short  is not the opposite of long  / short , i.e. the hedge ratios are 

inconsistent. Along with Teetor (2011) and Gregory et al. (2011) we propose that a better 

approach will be to use orthogonal regression – also referred to as Total Least Squares (TLS), 

deming and errors-in-variables (EIV) regression – in which the residuals of both dependent 

and independent variables are taken into account. That way, we incorporate the volatility of 

both legs of the spread when estimating the relationship so that hedge ratios are consistent, 

and thus the cointegration estimates will be unaffected by the ordering of variables. Appendix 

1.1 illustrates the difference between OLS and orthogonal regression. 

3.3.2 Price Series 

Cointegration tests can be applied to both untransformed and transformed price series. A 

straightforward approach is to simply use the raw price series for a set of assets to test for 

cointegration between pairs. Then again, Do et al. (2006) notes that the long-term level 

difference of two stocks should not be constant except when they trade at similar price points; 

rather, it should increase as they go up and decrease as they go down 10 . A simple 

transformation of the price series by taking the natural logarithm overcomes this problem. To 

see this, define the spread between the level prices of two stocks as 

   

The prices at time  can be expressed as 

           

where  is the discrete return. The spread at time  then becomes 

  
 

                                                           

10 Ref. the previous discussions relating to return parity with regard to the distance approach and the 
stochastic approach. 
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(1.21) 

so that  iff. . Imagine that . We now write 

 

 

 

indicating that the spread value will not be constant, but widens/narrows as prices 

increase/decrease. Rewriting (1.21) by forcing equality and substituting for  we see that 

 

 

 

 

 

 

 

(1.22) 

there is a specific relationship between the individual returns that is required if the long-term 

level distance between the two assets are to be constant. 

Now suppose that the spread is defined as the logarithm of prices and that at 

time  prices can be expressed as 

 �+1
�

        �+1
�

  

where  is the continuous return. 

The spread at time  now becomes 

 �+1
�

�+1
�

 

 

 

(1.23) 

so that  iff. , and the spread will be independent of the price levels. 

Log-transformation of prices is the approach used in part two of this thesis. 
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3.3.3 Trading Thresholds 

Logically, the construction of trading thresholds is crucial to the performance of a pairs trading 

strategy, as it dictates when positions are both entered into and unwound. Entry-thresholds 

decide when trades are triggered, and exit-thresholds decide when trades are unwound. For 

entry-thresholds there is generally a trade-off between profits per trade and the number of 

trades. Ceteris paribus, a high threshold will certainly yield higher profits per trade than a 

lower threshold because the purchase, or sell, of the synthetic asset occurs farther away from 

equilibrium than if the threshold had been set lower. Conversely, a low threshold will yield a 

higher number of trades, simply because there is an increased probability that the spread will 

hit the trigger value. Likewise, the farther away the exit-threshold is from the trigger value the 

higher the profit potential, but the number of trades will be lower as the probability of exiting 

a position decreases. 

The threshold can be constructed in a variety of ways where the most common method 

seems to be a static measure based on the historical standard deviation of the spread: 

  (1.24) 

Gatev et al. (2006), Andrade et al. (2005) and Do and Faff (2010) set  , whereas Perlin 

(2009) and Bowen et al. (2010) experiment with a range of values. It is also possible to let  be 

a variable by defining  as a rolling parameter with window size ; this may allow us to better 

capture the profit potential of periods with higher volatility in the spread. In part two of this 

thesis we will experiment with multiple estimates for both  and . Appendix 1.2 illustrates 

how various values for  impact number of trades and holding time. 

Lin et al. (2006) suggest a cointegration coefficient weighting rule (CCW), and show 

how the threshold values for entry and exit determines profit per trade. Let us assume that 

two stocks, A and B, are cointegrated with the following relationship: 

   

Where  is the raw price of stock A at time  and  is an  series. Now suppose that

, i.e. A is overvalued while B is undervalued, so a trade is opened. We sell one unit of A 

at price  and buy  units of B at price . The position is unwound upon mean reversion 

by buying back one unit of A at price  and selling  units of B at price . The 

minimum profit at time  can then be expressed as: 

   

By substituting for  we can write: 
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(1.25) 

So by trading the number of shares equal to the cointegration coefficient, the profit per trade 

will be at least . The derivation of minimum profit for a lower trade when  is 

analogous to the above. Lin et al. (2006) considers cointegration using the raw price data. By 

using log-transformed data the expression in (1.25) is interpreted differently: instead of 

minimum profit per trade it now yields a “return-like” expression: 

  

 

 

(1.26) 

Vidyamurthy (2007, 81) claims that (1.26) is the return to a long-short portfolio consisting of 

short one share of stock A and long  shares of stock B – this is clearly wrong because the 

individual returns are not proportionally weighted. However, the expression is useful when 

filtering possible pairs with respect to bid-ask spreads, as we will see in part two.  

3.3.4 Interpretation of the Hedge Ratio 

The proportion of shares bought to shares sold may vary depending on investor preference. 

Gatev et al. (2006) and papers following their approach construct capital neutral portfolios, by 

using the proceeds from the short sell to invest in the long leg of the spread. At the time of 

investment the trader is therefore unexposed with a zero value portfolio, though such a 

position is seldom achievable due to margin requirements. Lin et al. (2006) construct market 

neutral portfolios by using the cointegration coefficient as the hedge ratio, so that exposure to 

systematic risk is mitigated. The interpretation of the coefficient in terms of a hedge ratio will 

vary depending on the price series used in the cointegration relationship. Certainly, if one uses 

raw prices the coefficient  can simply be defined as the number of shares to go long or short. 

On the other hand, if the prices are log-transformed prior to estimation the coefficient cannot 

be interpreted as the number of shares in the hedge, but rather it should be viewed as the 

relative weight in capital. In a log-log regression the coefficients are interpreted as:  a one per 

cent increase in independent variable  transmits to a  per cent increase in dependent 

variable . Or put differently, the coefficient is the estimated elasticity of  with respect to  

(Wooldridge 2009). Let us give a simple example. 

Example – Assume we have estimated the following relationship: 

   

A price increase of 10% in stock B will result in a price increase of approximately 15% in 

stock A. Let  and . If the hedge ratio had been interpreted as the number of 
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shares, the weights would be 0.57 and

0.43 and our long-short portfolio would yield an expected return of 4.3%. If we instead define 

the coefficient as the relative weight in capital, i.e.  

 0.40 and 0.60 (1.27) 

the long-short portfolio would make an expected return of 0.0%. This clearly illustrates that 

when working with log-transformed prices series the cointegration coefficients must be seen as 

a relative capital weight. 

We would like to point out that if two stocks are negatively correlated, they will have a 

negative hedge ratio should they be cointegrated. If that is the case, the relationship 

becomes , so that the same position is taken in both stocks, i.e. both 

stocks are either bought or sold together. Still, this is seldom the case.  

4. Simulation – Correlation and Cointegration in Pairs 

In this section we illustrate a pairs trading example using simulated data under two 

conditions: 1) prices are cointegrated but returns are uncorrelated, and 2) prices are 

cointegrated and returns are correlated. Pairs of cointegrated stocks are simulated using an 

error correction model of the form: 

 
�
 

�
 

(1.28) 

Where the correction factors  and ,  is a cointegration coefficient, and 
�
 

and
�
 are white-noise error terms . Granger11 proves that for any pair of  

variables, cointegration is equivalent to an error correction model such as (1.28). As a side 

note, notice the similarity between the state process in (1.9) and the error correction model: 

both contain correction factors working to adjust the spread should it not be in equilibrium. 

The correlation between returns is modelled in the following way: 

 � �
 

� � �
 

 

where
�
 and

�
 are  and  is the correlation coefficient. 

                                                           

11 In Engle and Granger (1987) – The Granger Representation Theorem. 
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4.1 Model and Parameter Overview 

We conduct 500 simulations for each value of , with 250 observations for each series. We then 

use the last 125 observations, approximately six months of daily prices, for trading in order to 

avoid any possible bias resulting from the model being in equilibrium at . Simulation is 

done using natural logarithms to circumvent the possibility of negative stock prices; the 

cointegration coefficient must be interpreted thereafter. Trading thresholds are set to two 

times the historical standard deviation of the spread from the first 125 observations, with 

positions unwound at mean reversion. Positions are opened when the spread crosses down/up 

through the threshold towards equilibrium, and all open trades are forced closed at the last 

trading day, possibly with a loss. In addition, all profits are reinvested during the trading 

period. The parameter values used during the simulation experiments are: 

  

 

 

 

 

 

 

  

4.2 Results 

Table 1.1 below presents the results from the simulations. There seems to be a clear link 

between the return to a pair and the correlation between their individual returns: the higher 

the correlation the lower the returns. The number of roundtrips, that is the number of times a 

position is entered and subsequently exited, appears to be fairly independent of correlation. We 

also note that the standard deviation of the spread decreases as the correlation increases. 

Statistic 

 

    

Average return 22.49 % 16.41 % 13.41 % 9.60 % 
Maximum 

 
73.76 % 48.46 % 44.08 % 31.72 % 

Minimum 
 

-5.72 % -0.37 % -4.08 % -1.75 % 

Average # roundtrips 2.29 2.16 2.17 2.16 

Average # holding days 25.67 24.76 25.75 26.10 

Avg. holding time per trade  10.88 11.13 11.64 11.92 

% of pairs not open 11.20 % 12.80 % 9.60 % 10.80 % 

      Average return per trade12 9.25 % 7.29 % 5.98 % 4.33 % 

      Avg. correlation -0.0045 0.3978 0,5942 0.7987 

Avg. historical std.dev.13 0.1225 0.0960 0.0794 0.0564 
Avg. trading threshold 

 

0.2450 0.1919 0.1589 0.1129 

Table 1.1. Simulation results. 

                                                           

12 Computed as compounded return per trade: . 
13 The average of historical standard deviations of the spread, i.e. its first 125 observations. 
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Tests on the significance of the difference in means are presented in table 1.2. The relationship 

between return and correlation is statistically significant given any significance level – this is 

to be expected precisely as the standard deviation of the spread decreases with increased 

correlation, in that way reducing the magnitude of the mispricing and thus the profit 

potential. Furthermore, we see a tendency towards fewer roundtrips when the individual asset 

returns are correlated compared to uncorrelated. However, the degree of co-movement seems to 

be of little importance. Lastly, the average holding time per trade seems unaffected by 

correlation, although there is a significant difference between zero correlation and a correlation 

of 0.8. Even though cointegration does not necessarily imply correlation, in practise the vast 

majority of cointegrated pairs will also have high correlated returns. The results from this 

section indicate that traders searching for pairs using a correlation measure14 would instead be 

better off by focusing on cointegration and a low correlation. 

Table 1.2. One-tailed two-sample T-tests with assumed unequal variance 

                                                           

14 A quick Google search for “pairs trading correlation” shows that correlation is often used as a measure 
to identify possible pairs among practitioners. 

Variable         

Avg. return t-stat 7,18 11,56 17,57 4,73 11,97 8,08 
  p-value 0,00 0,00 0,00 0,00 0,00 0,00 
  

       # roundtrips t-stat 1,44 1,39 1,42 -0,07 -0,04 0,02 
  p-value 0,07 0,08 0,08 0,47 0,48 0,49 
  

       Avg. hold t-stat -0,46 -1,42 -1,81 -0,91 -1,33 -0,49 
time per trade p-value 0,32 0,08 0,04 0,18 0,09 0,31 

        Std. of spread t-stat 20,79 35,73 59,28 6,76 45,30 30,06 

  p-value 0,00 0,00 0,00 0,00 0,00 0,00 
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Part two 

Part two of this thesis back-tests a pairs trading strategy using a cointegration approach. We 

first sketch out the details, before presenting the results. Lastly, we discuss findings and 

compare our results with the aforementioned literature. 

5. An Applied Pairs Trading Strategy 

5.1 Introduction and Specifications 

We test a pairs trading strategy on the Oslo Stock Exchange (OSE) over the ten year period 

01.01.2003 – 31.12.2012, defining the space of available assets as all listed equities15. All stock 

price data is gathered from NHH Børsprosjektet through the Amadeus database, and is 

adjusted for both dividends and splits. The empirical studies mentioned in the literature 

review all use a formation period of one year followed by a trading period of six months16. 

Even so, seeing how we wish to ensure a long and stable cointegration relationship between 

pairs, we use a formation period twice as long; pairs are matched over a formation period of 

two years before being traded the next consecutive six months. Figure 2.1 illustrates the 

overlapping periods. The use of separate formation and trading periods ensures proper in- and 

out-of-sample data for the back-test, so that our results are not biased in terms of data 

snooping or survivorship. Stocks that are delisted in a trading period will still be included in 

both the formation and trading period; it is crucial that we behave as if we do not have any a 

posteriori information. 

 

Figure 2.1. Illustration of overlapping formation- and trading periods. 

                                                           

15 Excluding equity certificates. 
16 Except Bowen et al. (2010) who use intraday data. 
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We employ the cointegration framework presented in part one of the thesis. The relationship 

between two stocks is estimated by regression equation (2.1), before testing the residuals using 

the ADF-test with the test equation given by (2.2).  

  

 

(2.1) 

(2.2) 

Cointegration is modelled using the logarithm of the closing midprice, i.e. the average of 

closing bid and ask prices, whereas during the trading period we will use the actual bid-ask 

prices, so as to account for transaction costs (for simplicity we do not account for commission 

fees, which naturally would reduce profits). The lag length in the ADF-equation has been set 

to one. Although higher lag lengths could have been used to identify stationary series that 

would otherwise have been rejected at lower lag lengths, we only consider cointegration 

relationships that are “strong enough” to yield stationary residuals with lag length one. Also 

notice that in the test equation of (2.2) we have omitted both an intercept and a time trend. 

Because the residual series is from a regression and conversely should be stationary, there is no 

economic meaning in including these terms. 

5.1.1 Formation Period 

The formation period consists of a rigorous regime where we test for cointegration among all 

available assets. By considering all equities listed on OSE, this translates to 15.400 possible 

pairs for each period given an average number of listed stocks of 176 throughout the sample. 

We do some additional filtering before testing for cointegration by only considering liquid 

stocks. Specifically, we filter out stocks that have had one or more days where there has not 

been available both a bid and ask order at the end of the trading day. We therefore assume 

that we can trade at the closing bid-ask prices each day. After removing illiquid stocks we 

continue by testing for cointegration by following the steps below: 

1.1 Test for cointegration using two years of historical data. Test both equations of 

(1.20). Discard pairs not cointegrated using both relations at the 5%-level.17 

1.2 Test for cointegration using one year of historical data. Test both equations of 

(1.20). Discard pairs not cointegrated using both relations at the 5%-level. 

1.3 Discard pairs that are not cointegrated in both step 1.1 and 1.2. 

2.1 Filter out pairs based on transaction costs. Recall the “return like” expression in 

(1.26), where the magnitude of the spread could be interpreted as a measure of 

return to a pair. As suggested by Vidyamurthy (2007) we create a rule stating that 

for a given pair the following must hold true: 

                                                           

17 Note that by using orthogonal regression this will not be a problem. However, it is a good idea to 
estimate the parameters for later use in step 2.1 and 2.2. 
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  (2.3) 

where  is the standard deviation of the two year cointegration spread,  is the 

average bid-ask spread of stock A over the last two years and  is the 

cointegration coefficient. Put differently, a trading threshold of one standard 

deviation must yield a positive return after average trading slippage due to bid-ask 

prices. Discard pairs that do not satisfy equation (2.3). 

2.2 Filter out pairs based on trading possibilities by discarding the relation in equation 

(1.20) that has the weakest trading possibility, i.e. the lowest value of 

. 

3.1 For all remaining pairs, assess historical cointegration coefficients. Compute the 

mean of the 1 year rolling coefficients updated every five days. Discard pairs not 

cointegrated over the last one year using the average coefficient at the 10%-level. 

We propose that step 3.1 serves as an adequate test for the historical stability of the 

cointegration coefficient. A stable coefficient is important so that that there is a higher chance 

that the estimated parameters will hold during the trading period. An R code to the complete 

estimation routine above is given in Appendix 2.1.  

5.1.2 Trading Period 

Pairs that survive the testing procedure of the formation period will be used for trading. The 

spread is constructed as the residual series of equation (2.1) with a one year cointegration 

coefficient, with the CCW-rule discussed in part 1 used as the relative weights in each stock. 

Trades are triggered in the same way as equation (1.7), with the exception that positions are 

opened when the spread crosses down/up towards equilibrium, i.e. the second crossing. This 

might help alleviate risk as the spread is believed to be on a path towards equilibrium. We also 

pose the restriction that the spread must be at least larger/smaller than  in order to cover 

transaction costs, where  is set so the magnitude of the spread is at least one standard 

deviation. 

  

 
short position 

(2.4)   

 
long position 

The threshold is defined as before: . We will vary the value of  according to table 

2.1 in order to test for sensitivity of parameters. Values for entry- and exit points are shown 

for upper-trades only – inverse values will be used for lower-trades. The parameters for the  



Part Two – An Applied Strategy 

22 

 

entry 1,5 1,5 2 2 2,5 2,5 
exit 0 -1,5 0 -2 0 -2,5 

 1.0 0 1.0 0 1.0 0 

 Constant 

(125 days) 

6M 

(125 days) 

4M 

(80 days) 

2M 

(40 days) 

Table 2.1. Values for entry- and exit points, and window size of standard deviation calculations. 

standard deviation indicate the size of the rolling window, whereas constant refers to a 

constant standard deviation defined as the 125 last days of the formation period. Pairs may 

open multiple times during trading. At the end of the period, all open pairs are forced closed, 

possibly with a loss. Additionally, we place a restriction on the timeframe for when a trade can 

be opened. Denote  the average holding time per trade for the last 125 days of in-sample 

trading during the formation period, and . If the trading period has  

remaining days, a position can only be opened if . For simplicity we set no 

restrictions on short sales, although this may be unrealistic for some stocks and/or time 

periods18, and assume that fractional shareholding is possible. 

A stop/loss-rule is also incorporated, stating that any position is unwound if a loss of 

25% or greater occurs. This is done so that we may exit an unprofitable position that is 

believed to continue to generate losses, that is, the cointegration relationship has broken down 

so the spread will not revert to equilibrium but instead keep widening. If a trade is stopped the 

pair cannot be reopened during the remainder of the trading period. Return calculations are 

done according to equation (2.5) following Hong and Susmel (2004). Consider a long position 

in stock A and a short position in stock B: 

 
 (2.5) 

For simplicity we have dropped the notation of bid-ask prices. The variable  represents a 

scale of the capital needed to trade on a margin account. In Norway, this requirement may 

vary daily from asset to asset based on its volatility. We therefore set  and compute a 

more conservative, but consistent return on all pairs – the return on overall capital exposed. 

Note that when  equation (2.5) can be written in the familiar sense of 

 
 

 

 

 

 

(2.6) 

                                                           

18 During the late financial crisis some financial stocks were restricted from short selling. 
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which is simply the weighted return of each leg of the pair. The return to the overall portfolio 

is computed as a simple mean of the return to each individual pair, thereby assuming that all 

pairs are equally weighted. Positions are marked-to-market daily, with all profits being 

reinvested during the trading period. The strategy may therefore be interpreted as a buy-and-

hold strategy in terms of returns. 

Corrections are made for any missing data for each stock in a pair during the trading 

period. For example, if the ask price of stock A is missing, it is estimated using the 

corresponding bid price together with the average bid-ask-spread from the formation period. 

Correcting for missing data is only done so that we can always have an estimate of the 

midprice. If both the bid and ask price is missing, the midprice is assumed unchanged from the 

previous day. Obviously, we do no trade using estimated prices, but actual prices. If the ask 

price of stock A is missing, we cannot enter a long position in stock A (and consequently we 

will not enter a short position in stock B) and the trade is put on hold until a price is available 

(and the spread still signals a trade). 

5.2 Results 

5.2.1 Unrestricted Portfolio 

Below we present the results from a portfolio where pairs are allowed to be formed both inside 

and outside of industry sectors. Every trading period consists of the 20 pairs that were found 

to yield the most stationary spread series from step 3.1 in the preceding formation period, i.e. 

the pairs with the lowest ADF test-statistic using the mean of the one year rolling coefficients. 

However, in order to maintain a certain degree of diversification, we restrict all stocks to only 

be included a total of three times in each leg of a pair. Table 2.2 gives the statistics (see 

Appendix 2.2 for a short description). Note that panel a, column three, is the parameterisation 

used by Gatev et al. (2006) which we call the unrestricted baseline case. 

Even though the strategy performs exceptionally well in-sample, it makes significant 

losses out-of-sample with highly negative mean returns. This occurs not because of high 

transaction costs, but because the estimated cointegration relationships break down rather 

quickly out-of-sample, as is shown by the descriptive statistics. Firstly, the low number of 

trades per pair indicates a weak mean reverting behaviour of the estimated spreads, as the 

number of relevant zero-crossings will be low. Secondly, we see a low percentage of completed 

trades, signalling that the relationships break down and the spreads wander away from the 

estimated equilibrium. Also notice that the parameter values for entry and exit thresholds 

seem to have little impact on the profitability. Figure 2.2 shows monthly cumulative return of 

the unrestricted baseline case together with an index of Oslo Stock Exchange19, as well as a 

Kernel density estimate.  

                                                           

19 See Appendix 2.3 for a short description of pricing factors. 
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entry 1.5 
 

2 
 

2.5 

exit 0 -1.5 

 

0 -2 

 

0 -2.5 

          

  

Panel a): constant standard deviation 

          Total return -51.9 % -50.7 % 

 

-48.4 % -41.6 % 

 

-55.8 % -46.5 % 

Monthly returns Average -0.60 % -0.56 % 

 

-0.54 % -0.44 % 

 

-0.67 % -0.51 % 

 

Std. deviation 1.40 % 2.20 % 

 

1.49 % 1.47 % 

 

1.37 % 1.40 % 

 

Skewness -0.144 3.108 

 

0.109 0.305 

 

-0.150 0.650 

 

Kurtosis 1.116 22.071 

 

0.139 0.774 

 

0.255 1.481 

 

Minimum -5.25% -5.64%  -4.76% -4.94%  -5.17% -3.83% 

 

Maximum 3.86% 15.31%  3.00% 3.69%  2.62% 4.72% 

Annualised SR -2.13 -1.30 

 

-1.86 -1.64 

 

-2.36 -1.90 

Avg. % open pairs 83.67 % 83.42 % 

 

81.36 % 69.83 % 

 

78.44 % 68.19 % 

Avg. # trades per pair 1.61 1.37 

 

1.48 1.20 

 

1.33 1.13 

Avg. % completed trades 62.05 % 44.85 % 

 

55.40 % 34.63 % 

 

44.40 % 21.54 % 

          

  

Panel b): rolling 6M standard deviation 

          Total return -54.4 % -47.0 % 

 

-61.5 % -34.1 % 

 

-61.9 % -53.5 % 

Monthly returns Average -0.64 % -0.50 % 

 

-0.78 % -0.33 % 

 

-0.79 % -0.62 % 

 

Std. deviation 1.57 % 2.19 % 

 

1.69 % 1.98 % 

 

1.71 % 1.62 % 

 

Skewness 0.334 2.331 

 

0.061 2.400 

 

0.165 0.110 

 

Kurtosis 0.476 12.881 

 

0.576 12.327 

 

0.136 0.593 

 

Minimum -3.93% -4.90%  -5.99% -4.40%  -5.00% -5.24% 

 

Maximum 4.82% 13.42%  3.94% 11.95%  3.87% 4.01% 

Annualised SR -1.98 -1.21 

 

-2.12 -1.03 

 

-2.12 -1.88 

Avg. % open pairs 88.2 % 89.2 % 

 

92.2 % 76.7 % 

 

88.9 % 75.1 % 

Avg. # trades per pair 1.63 1.38 

 

1.41 1.14 

 

1.21 1.07 

Avg. % completed trades 57.6 % 40.9 % 

 

48.2 % 26.2 % 

 

37.3 % 10.1 % 

          

  

Panel c): rolling 4M standard deviation 

          Total return -60.47 % -58.56 % 

 

-63.05 % -55.66 % 

 

-61.60 % -49.21 % 

Monthly returns Average -0.76 % -0.71 % 

 

-0.81 % -0.66 % 

 

-0.78 % -0.54 % 

 

Std. deviation 1.50 % 1.87 % 

 

1.84 % 2.04 % 

 

1.74 % 2.07 % 

 

Skewness -0.071 0.541 

 

-0.170 1.348 

 

-0.085 1.249 

 

Kurtosis -0.237 1.696 

 

0.943 6.917 

 

0.592 6.297 

 

Minimum -4.73% -4.07%  -7.28% -6.30%  -6.71% -5.55% 

 

Maximum 2.91% 7.18%  4.17% 10.33%  3.71% 10.44% 

Annualised SR -2.35 -1.81 

 

-2.02 -1.56 

 

-2.07 -1.35 

Avg. % open pairs 88.72 % 89.72 % 

 

94.22 % 83.47 % 

 

89.94 % 79.44 % 

Avg. # trades per pair 1.64 1.35 

 

1.50 1.16 

 

1.24 1.09 

Avg. % completed trades 59.28 % 40.12 % 

 

51.66 % 27.12 % 

 

40.38 % 14.01 % 

          

  

Panel d): rolling 2M standard deviation 

          Total return -65.71 % -63.13 % 

 

-64.62 % -51.89 % 

 

-63.75 % -55.84 % 

Monthly returns Average -0.87 % -0.81 % 

 

-0.85 % -0.59 % 

 

-0.82 % -0.66 % 

 

Std. deviation 1.61 % 1.87 % 

 

1.73 % 1.89 % 

 

1.87 % 1.73 % 

 

Skewness -0.189 -0.169 

 

-0.468 0.020 

 

-0.363 0.025 

 

Kurtosis 0.154 0.929 

 

1.505 1.653 

 

0.670 0.574 

 

Minimum -5.47% -6.66%  -7.32% -6.53%  -6.71% -5.18% 

 

Maximum 3.14% 4.27%  3.79% 5.69%  3.98% 4.21% 

Annualised SR -2.44 -1.98 

 

-2.22 -1.56 

 

-2.01 -1.86 

Avg. % open pairs 87.47 % 90.47 % 

 

94.75 % 86.75 % 

 

91.47 % 82.69 % 

Avg. # trades per pair 1.82 1.52 

 

1.61 1.22 

 

1.41 1.14 

Avg. % completed trades 62.62 % 46.87 % 

 

56.06 % 36.76 % 

 

48.62 % 24.62 % 

Table 2.2. Unrestricted pairs portfolio, descriptive statistics. 
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Figure 2.2. Return and distribution of unrestricted baseline portfolio. 

As mentioned, Do and Faff (2010) finds that an increasing proportion of pairs do not converge 

upon divergence. Appendix 2.4 shows the development in the percentage of trades that are 

complete roundtrips, for each period. In contrast to their findings, we see no specific pattern in 

the data, indicating that the share of cointegration relationships that break down is 

moderately stable. An important question is therefore why the estimated relationships 

deteriorate so quickly, when they historically have been strong. Numerous reasons may exist. 

Firstly, two stocks that are found to be close substitutes in one period may cease to be so in 

forthcoming periods due to changes in fundamental factors affecting e.g. profit margins. The 

vast majority of pairs are formed with stocks belonging to different industrial sectors, so that 

any industry specific shocks might render a spread non-stationary, and consequently generate 

losses as the spread widens. Secondly, the cointegration coefficients may change; two stocks 

could still be cointegrated, but with different parameter values, so that the spread will oscillate 
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around a new mean value. This is called a structural break, and may generate losses if a 

position has been opened at divergence from the ‘old’ equilibrium value. 

5.2.2 Restricted Portfolio 

In order to reduce the risk of cointegration break-down we construct a new portfolio where 

pairs are restricted to belong to the same broad industry group as defined by the OSE: 

consumer discretionary, consumer staples, energy, financials, healthcare, industrials, IT, 

materials, telecommunications and utilities. Unlike the unrestricted portfolio, we trade all 

significant pairs from the formation period: on average we consider ten pairs per trading 

period, although this number greatly varies as shown in Appendix 2.5. Furthermore, about 

90% of the pairs belong to the energy, industrials or IT sector – which is natural as these are 

the three major sectors on the stock exchange. Table 2.3 presents the descriptive statistics of 

the restricted portfolio. Again, panel a, column three, is the parameterisation used by Gatev et 

al. (2006) and is referred to as the restricted baseline case. 

We see no specific improvement over the unrestricted portfolio. There are still 

relatively few trades per pair, together with a low percentage of completed trades. The 

restricted portfolio also suffers from the fact that most of the estimated cointegration 

relationships break down out-of-sample, thereby producing losses as the spreads keep widening 

throughout the trading period. The standard deviation of returns have increased slightly, 

which is natural seeing that we trade fewer pairs on average per period than in the 

unrestricted case, thereby reducing the effect of diversification. Although profitability seems to 

be sensitive to entry and exit points, this is in fact not true. Some cases outperform others 

simply because of one single period with extremely high return, which is to some extent 

evident by the higher standard deviations. The ‘slope’ of the cumulative return indices is still 

clearly negative for all cases. By trading a restricted pair portfolio we would have thought that 

there would be a lower fraction of pairs that would break down, due to the fact that industry 

specific risk would be reduced in each pair of stocks. When cointegration then do break down 

it is most likely due to other fundamental factors affecting only one stock in a pair, or affecting 

one stock heavier than the other.  

Interestingly, we would be better off trading against the estimated relationships in the 

sense that the spread value could be seen as a momentum signal, so that one stock would 

continue to outperform the other. Put simply, profits would be positive if we were to bet 

against mean reversion – something that would be completely contradictory to the formation 

period. 

Figure 2.3 shows monthly cumulative return of the restricted baseline case together 

with an index of Oslo Stock Exchange, and a Kernel estimate of the density of returns. 
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Entry 1.5 

 

2 

 

2.5 

Exit 0 -1.5 

 

0 -2 

 

0 -2.5 

          

  

Panel a): constant standard deviation 

          Total return -51.7 % -14.3 % 

 

-49.7 % -36.2 % 

 

-45.6 % -29.8 % 

Monthly returns Average -0.58 % 0.02 %a 

 

-0.55 % -0.35 % 

 

-0.49 % -0.27 % 

 

Std. deviation 2.08 % 6.40 % 

 

2.05 % 2.30 % 

 

2.01 % 2.21 % 

 

Skewness -0.432 8.871 

 

0.381 -0.053 

 

0.855 1.439 

 

Kurtosis 1.431 90.819 

 

2.327 8.210 

 

3.944 6.147 

 

Minimum -6.79% -10.75%  -6.18% -11.65%  -6.09% -5.39% 

 

Maximum 4.85% 64.95%  7.48% 10.40%  8.75% 10.85% 

Annualised SR -1.41 -0.13 

 

-1.37 -0.91 

 

-1.29 -0.83 

Avg. % open pairs 90.14 % 85.71 % 

 

89.10 % 73.84 % 

 

81.92 % 70.09 % 

Avg. # trades per pair 1.57 1.38 

 

1.48 1.20 

 

1.37 1.20 

Avg. % completed trades 58.20 % 43.82 % 

 

50.74 % 32.35 % 

 

46.55 % 25.39 % 

          

  

Panel b): rolling 6M standard deviation 

          Total return -49.9 % -9.0 % 

 

-54.0 % -1.7 % 

 

-38.0 % -38.9 % 

Monthly returns Average -0.55 % 0.08 %a 

 

-0.61 % 0.15 %a 

 

-0.38 % -0.39 % 

 

Std. deviation 2.09 % 6.47 % 

 

2.64 % 6.64 % 

 

1.93 % 2.00 % 

 

Skewness -0.132 8.534 

 

0.959 8.805 

 

0.135 -0.183 

 

Kurtosis 0.609 86.344 

 

5.207 89.668 

 

2.735 2.252 

 

Minimum -6.35% -11.80%  -6.40% -11.13  -7.26% -8.86% 

 

Maximum 4.90% 64.94%  12.58% 67.34%  7.28% 4.62% 

Annualised SR -1.35 -0.10 

 

-1.14 -0.06 

 

-1.15 -1.12 

Avg. % open pairs 95.9 % 93.7 % 

 

95.5 % 78.1 % 

 

89.1 % 74.2 % 

Avg. # trades per pair 1.63 1.37 

 

1.45 1.18 

 

1.23 1.08 

Avg. % completed trades 57.3 % 42.0 % 

 

48.3 % 25.0 % 

 

42.3 % 10.1 % 

          

  

Panel c): rolling 4M standard deviation 

          Total return -63.09 % -55.11 % 

 

-52.61 % -12.57 % 

 

-32.68 % 31.62 %a 

Monthly returns Average -0.80 % -0.63 % 

 

-0.59 % 0.03 %a 

 

-0.30 % 0.40 %a 

 

Std. deviation 2.28 % 2.57 % 

 

2.39 % 6.10 % 

 

2.66 % 6.89 % 

 

Skewness -0.611 -0.518 

 

-0.147 8.634 

 

2.024 8.803 

 

Kurtosis 2.004 3.971 

 

1.871 87.810 

 

9.871 88.746 

 

Minimum -9.87% -11.08%  -8.29% -12.67%  -6.61% -9.57% 

 

Maximum 5.45% 8.71%  7.31% 61.41%  14.73% 69.97% 

Annualised SR -1.61 -1.20 

 

-1.23 -0.13 

 

-0.72 0.07 

Avg. % open pairs 95.16 % 94.60 % 

 

96.36 % 83.96 % 

 

94.75 % 81.77 % 

Avg. # trades per pair 1.66 1.39 

 

1.51 1.17 

 

1.33 1.12 

Avg. % completed trades 57.19 % 44.18 % 

 

51.26 % 28.38 % 

 

46.18 % 22.54 % 

          

  

Panel d): rolling 2M standard deviation 

          Total return -60.19 % -57.62 % 

 

-56.26 % -43.04 % 

 

-50.85 % -31.99 % 

Monthly returns Average -0.74 % -0.68 % 

 

-0.66 % -0.44 % 

 

-0.55 % -0.27 % 

 

Std. deviation 2.06 % 2.63 % 

 

2.34 % 2.29 % 

 

2.73 % 3.21 % 

 

Skewness -0.619 -0.059 

 

-0.197 0.862 

 

0.679 1.437 

 

Kurtosis 0.919 3.588 

 

1.269 3.640 

 

5.091 7.503 

 

Minimum -6.96% -11.02%  -7.39% -7.29%  -10.55% -10.55% 

 

Maximum 3.75% 10.11%  6.16% 9.37%  10.38% 16.23% 

Annualised SR -1.68 -1.23 

 

-1.36 -1.06 

 

-1.04 -0.57 

Avg. % open pairs 93.12 % 93.86 % 

 

97.26 % 87.10 % 

 

95.11 % 85.33 % 

Avg. # trades per pair 1.88 1.47 

 

1.63 1.20 

 

1.42 1.16 

Avg. % completed trades 62.02 % 47.37 % 

 

57.05 % 35.21 % 

 

48.74 % 24.50 % 

Table 2.3. Restricted pairs portfolio, descriptive statistics. 
a) Return is positive due to a single period with extremely high return. 
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Figure 2.3. Return and distribution of restricted baseline portfolio. 

5.2.3 Risk Decomposition 

In order to provide insight on the risk and characteristics of the trading strategies, we 

decompose the return series by estimating the following regression equation: 

 � � � � �
 (2.7) 

where
�
 is the excess return on the pairs portfolio,

�
 is the excess market return, 

�
 

and
�
 is the excess return on the two Fama-French factors High Minus Low and Small 

Minus Big, and
�
 is the excess return on Carhart’s momentum factor. See Appendix 2.3 

for more details on the pricing factors.  
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Panel a): unrestricted baseline case 

 

SS df MS 

 
Number of obs. 120 

     
F(4, 115) 3.08 

Model 0.00263 4 0.00066 
 

Prob. > F 0.0188 
Residual 0.02450 115 0.00021 

 
R-squared 0.0968 

     
Adj. R-squared 0.0654 

Total 0.02713 119 0.00023 

 

Root MSE 0.0146 

       

 

Coef. Std. Err. t P>|t|    [95% Conf. Interval] 

       Market 0.03655 0.02910 1.26 0.212 -0.02110 0.09420 
HML 0.00441 0.03482 0.13 0.899 -0.06456 0.07339 
SMB 0.06790 0.04288 1.58 0.116 -0.01705 0.15284 
PR1YR -0.09917 0.03027 -3.28 0.001 -0.15913 -0.03922 
Intercept -0.00805 0.00140 -5.77 0.000 -0.01081 -0.00528 

Panel b): restricted baseline case 

 

SS df MS 

 
Number of obs. 120 

     
F(4, 115) 0.87 

Model 0.00150 4 0.00037 
 

Prob. > F 0.4844 
Residual 0.04951 115 0.00043 

 
R-squared 0.0294 

     
Adj. R-squared -0.0044 

Total 0.05101 119 0.00043 

 

Root MSE 0.0208 

       

 

Coef. Std. Err. t P>|t|     [95% Conf. Interval] 

       Market 0.05648 0.04137 1.37 0.175 -0.02547 0.13843 
HML -0.01152 0.04950 -0.23 0.816 -0.10956 0.08653 
SMB 0.01703 0.06096 0.28 0.780 -0.10372 0.13778 
PR1YR -0.03326 0.04303 -0.77 0.441 -0.11849 0.05197 
Intercept -0.00893 0.00198 -4.50 0.000 -0.01285 -0.00500 

Table 2.4. Monthly risk exposure for unrestricted and restricted portfolios of pairs, baseline case. 

Table 2.4 demonstrates why pairs trading can be considered market neutral. Whereas the 

restricted portfolio loads insignificantly on all five risk factors, the unrestricted portfolio only 

loads on the momentum factor with a negative sign, although the magnitude of the coefficient 

is severely small. Both portfolios have a significant negative alpha, as we would expect from 

eyeballing the time series plots.  

As is commonly known, hedge ratios, or simply betas, tend to vary over time. We tried 

to capture the variability of the cointegration coefficients by requiring all pairs to cointegrate 

at a certain significance level using the average of historical rolling estimates (see point 3.2 

under the estimation routine for the formation period). Even so, the relationships may 

significantly change out-of-sample, and the longer the trading period the more likely this is to 

happen. A shorter trading period, and consequently a higher frequency of parameter re-

estimation, may help alleviate this problem. In figure 2.4 below we have constructed two 

portfolios for both the unrestricted and restricted case: one portfolio consists of the first two 

months of returns for each trading period (2F) whereas the second portfolio consists of the last  
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Figure 2.4. Synthetic portfolios of first and last month returns from each trading period. 

four months (4L). If there are any gains to be made from a more frequent model re-estimation, 

we would expect that portfolio 2F would outperform portfolio 4L. Evidently, the 2F portfolio 

outperforms 4L, more so for the restricted baseline case. This indicates that a high share of the 

negative returns to the strategy occurs in the later months of trading, so that shorter trading 

periods could produce better results. Moreover, it serves to show how the forecasting ability of 

historical data diminishes as the time horizon increases.  

 Table 2.5 shows the share of returns smaller than zero, in addition to the maximum 

drawdown measured in both per cent and number of months. Maximum drawdown is defined 

as the peak-to-trough decline over the sample period, measured on monthly returns. This gives 

us a good identification of the downside risk associated with the portfolio, especially since the 

mean portfolio return could be biased upwards due to extreme outliers (as is the case with 

some of the restricted portfolio configurations). As suspected based on the negative alpha 

values, maximum drawdown is high for both portfolios regardless of entry and exit thresholds, 

clearly illustrating the unprofitability of the pairs trading strategy. 
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Entry 1,5 

 

2 

 

2,5 

Exit 0 -1,5 

 

0 -2 

 

0 -2,5 

          

 

Panel a) Unrestricted baseline case 

          
  

Constant standard deviation 

          Percentage of returns < 0 70,00 % 69,17 % 
 

67,50 % 70,83 % 
 

72,50 % 70,83 % 
Maximum drawdown -51,87 % -52,01 % 

 
-48,44 % -41,60 % 

 
-55,84 % -46,52 % 

Months of drawdown 120 100 

 

120 112 

 

120 120 

          

  
Rolling 6M standard deviation 

          Percentage of returns < 0 65,8 % 69,2 % 
 

74,2 % 66,7 % 
 

70,8 % 68,3 % 
Maximum drawdown -54,88 % -47,53 % 

 
-61,47 % -39,21 % 

 
-61,87 % -53,61 % 

Months of drawdown 118 92 

 

120 97 

 

120 119 

          
  

Rolling 4M standard deviation 

          Percentage of returns < 0 68,33 % 67,50 % 
 

72,50 % 73,33 % 
 

68,33 % 65,00 % 
Maximum drawdown -60,47 % -58,56 % 

 
-63,05 % -55,96 % 

 
-61,60 % -49,63 % 

Months of drawdown 120 120 

 

120 97 

 

120 119 

          
  

Rolling 2M standard deviation 

          Percentage of returns < 0 71,67 % 70,83 % 
 

69,17 % 64,17 % 
 

64,17 % 67,50 % 
Maximum drawdown -65,71 % -63,13 % 

 
-64,62 % -52,07 % 

 
-63,75 % -55,84 % 

Months of drawdown 120 120 

 

120 119 

 

120 120 

          

  

Panel b) Restricted baseline case 

          
  

Constant standard deviation 

          Percentage of returns < 0 60,83 % 65,00 % 
 

60,00 % 59,17 % 
 

62,50 % 61,67 % 
Maximum drawdown -52,13 % -40,75 % 

 
-50,06 % -36,98 % 

 
-45,57 % -32,11 % 

Months of drawdown 105 106 

 

105 118 

 

120 82 

          
  

Rolling 6M standard deviation 

          Percentage of returns < 0 57,5 % 61,7 % 
 

60,8 % 59,2 % 
 

63,3 % 61,7 % 
Maximum drawdown -51,57 % -41,68 % 

 
-56,20 % -38,56 % 

 
-38,03 % -39,05 % 

Months of drawdown 105 84 

 

110 106 

 

120 120 

          
  

Rolling 4M standard deviation 

          Percentage of returns < 0 60,00 % 61,67 % 
 

62,50 % 60,00 % 
 

57,50 % 59,17 % 
Maximum drawdown -63,27 % -55,65 % 

 
-53,03 % -40,40 % 

 
-43,13 % -28,14 % 

Months of drawdown 119 119 

 

119 106 

 

106 106 

          
  

Rolling 2M standard deviation 

          Percentage of returns < 0 59,17 % 65,00 % 
 

65,00 % 62,50 % 
 

62,50 % 60,83 % 
Maximum drawdown -60,41 % -58,07 % 

 
-56,82 % -43,63 % 

 
-50,85 % -36,47 % 

Months of drawdown 119 119 

 

116 119 

 

120 106 

Table 2.5. Percentage of returns smaller than zero and maximum drawdown, for unrestricted and 
restricted portfolio of pairs.  
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5.3 Discussion of Findings and Concluding Remarks 

Our findings coincide well with Do and Faff (2012) who conclude that pairs trading is largely 

unprofitable after 2002, seeing that our cointegration approach produces consistent negative 

returns independent of how entry and exit parameters are specified. While Gatev et al. (2006) 

claim that the significant decline in profits since the early 1990’s might be due to increased 

activity among arbitrageurs, and therefore tighter spreads and less trading opportunities, our 

results suggest that it might be attributed to changes in fundamental factors governing the 

relationships between stocks. We seem to be unable to exploit historical statistical properties 

going forward, precisely as these properties change over time and are unpredictable. This is 

exactly in line with Do and Faff (2010), namely that a fairly high fraction of pairs will not 

converge upon divergence, thereby eroding profits completely. This may to some extent give 

support for the efficient-market hypothesis (weak-form efficiency), namely that we cannot 

achieve excess risk-adjusted market returns given past information. 

However, because the back-test is done using daily data, we will not write off pairs 

trading entirely; there may still be potential for profit using higher frequency data, e.g. tick-

by-tick, together with drastically shorter formation and trading periods – as practised by hedge 

funds. Any statistical relationships that are uncovered must quickly be exploited before they 

cease to exist, because, as we have shown, these relationships are not necessarily stable. 

Moreover, as we have employed a purely statistical framework for trading pairs, we 

have not taken any fundamental aspects of the stocks into consideration during trading. In 

reality, a portfolio manager would continuously analyse company specific news so that she 

would have an idea of whether or not the spread will converge. The results in this thesis may 

consequently suffer from the fact that assumed trading behaviour is not fully realistic.  

For future research it would be interesting to back-test a long-run strategy based on 

intraday data to compare with our results.  
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Appendices 

Appendix 1.1 – OLS vs. Orthogonal Regression (TLS) 

To illustrate the difference between OLS and TLS we use the stock prices of two companies 

listed on the Oslo Stock Exchange: Deep Sea Supply (DESSC) and Solstad Offshore (SOFF). 

The data is from the period 04.07.2012-28.12.2012 – consisting of 125 trading days – and 

constitute the average of bid and ask prices, i.e. the midprice. 

Figure 1.1 a) and 1.1 b) below depict OLS regressions between the logarithm of prices. 

In a) the dependent variable is DESSC, whereas in b) it is SOFF. The optimisation algorithm 

is illustrated by vertical lines connecting the residuals to the regression equation. 

 
Figure 1.1 a). OLS regression: DESSC ~ SOFF. 

 
Figure 1.1 b). OLS regression: SOFF ~ DESSC. 

As can be seen, the two slopes are not the inverse of the other. This occurs because the OLS 

optimization algorithm only considers the variability of the dependent variable. Consider now 

the output from the same two regressions, this time using a TLS optimization procedure. 
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Figure 1.1 c). TLS regression: DESSC ~ SOFF. 

 
Figure 1.1 d). TLS regression: SOFF ~ DESSC. 

The TLS optimisation algorithm minimises the perpendicular residuals of the regression line20. 

The slopes are now invertible: , producing consistent hedge ratios. Figure 1.1 

e) and f) below show the estimated spreads and their absolute differences. 

 

Figure 1.1 e). OLS regression residuals (spread). 

                                                           

20 The aspect ratios of the plots are set to 0.35, so that the lines between the observations and the 
regression lines will not visually be right angles. 
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Figure 1.1 f). TLS regression residuals (spread). 

The differences in the absolute values of the spreads show how TLS produce a more consistent 

hedge ratio. Note that for the purpose of this example the OLS and TLS spreads have been 

scaled, in the sense that the number of units of SOFF is equal in both regression equations. 

 

Appendix 1.2 – Trading Thresholds 

To illustrate how trading thresholds impact the number of trades and holding time we use two 

simulated cointegrated stock price series. We vary both entry- and exit-thresholds. 

Figure 1.2 a) illustrates entry-thresholds of 0.20 and exit upon mean reversion. We 

count a total of six trades and an average holding time of 23 days. 

 

Figure 1.2 a). Entry points: 0.2. Exit point: 0.0. 

In figure 1.2 b) we have reduced the entry points to 0.10. This increases the number of trades 

to 10 and lowers the average holding time to 18 days.  
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Figure 1.2 b). Entry points: 0.1. Exit point: 0.0. 

Figure 1.2 c) illustrates the impact of changing the exit points. If a trade is entered at 0.20 it 

will be unwound at -0.10. Number of trades is reduced from 6 to 5, and the average holding 

period increases to 38 days. 

 
Figure 1.2 c). Entry points: 0.2. Exit points: -0.10. 

Lastly we illustrate the use of a rolling window threshold. Entry points are 1.25 times the 20 

day rolling std.dev, exit at mean reversion. 10 trades and an average holding time of 16 days. 

 

Figure 1.2 d). Entry points: . Exit point: 0.0. 
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Appendix 2.1 – Selecting Pairs 

Below is a code written in R that identifies pairs of stocks suitable for trading. 

################################################################################### 

# This script finds pairs of stocks that are cointegrated. 

# Written by Christoffer Hoel 

################################################################################### 

# Install packages if necessary (remove # before the command) 

#install.packages("mcr") 

#install.packages("tseries") 

#install.packages("zoo") 

#install.packages("urca") 

#install.packages("fUnitRoots") 

#install.packages("gtools") 

#install.packages("Matrix") 

 

rm(list = ls(all = TRUE)) 

  

################################################################################### 

### PART 0 - Preparations 

# Load the libraries 

library(mcr) 

library(tseries) 

library(zoo) 

library(urca) 

library(fUnitRoots) 

library(gtools) 

library(Matrix) 

 

# Read sample files 

read.csv2("midprice2y.csv", header = TRUE) -> stocks 

stocks <- log(stocks) 

stocks <- zoo(stocks) 

stocks <- as.ts(stocks) 

nrStocks = length(stocks[1,]) 

nDays <- length(stocks[,1]) 

half <- nDays/2 

halfround <- round(nDays/2, digits = 0) 

 

if (half > halfround){ 

   half <- halfround 

}else    

half <- half 

 

read.csv2("bidaskspread.csv", header = TRUE) -> bidaskspread 

bidaskspread <- zoo(bidaskspread) 

bidaskspread <- as.data.frame(bidaskspread) 

 

# Prepare matrices to store output information 

ht2 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

ht1 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

htt <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

beta2 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

const2 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

beta1 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 
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const1 <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

betas <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

consts <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

betar <- numeric() 

betat <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

constt <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks) 

baspread <- matrix(data = NA, ncol = nrStocks, nrow = 1) 

spread <- list() 

 

# This determines the critical value for the ADF-tests that will be performed. 

# The critical values are based on MacKinnon (1991), as presented by Enders (2010).  

# Critical values at the 5-pct and 10-pct levels. 

crit52 <- 0 

crit102 <- 0 

crit51 <- 0 

crit101 <- 0 

if (nDays <= 49){ 

   crit52 <- -3.461 

   crit102 <- -3.130 

  } 

if (74 < nDays & nDays < 149){ 

   crit52 <- -3.398 

   crit102 <- -3.087 

  } 

if (149 < nDays & nDays < 350){ 

   crit52 <- -3.368 

   crit102 <- -3.067 

  } 

if (349 < nDays){ 

   crit52 <- -3.350 

   crit102 <- -3.054 

  } 

if (half <= 49){ 

   crit51 <- -3.461 

   crit101 <- -3.130 

  } 

if (74 < half & half < 149){ 

   crit51 <- -3.398 

   crit101 <- -3.087 

  } 

if (149 < half & half < 350){ 

   crit51 <- -3.368 

   crit101 <- -3.067 

  } 

if (349 < half){ 

   crit51 <- -3.350 

   crit101 <- -3.054 

  } 

# We now supply input to the baspread matrix, namely the average bid-ask spread for each stock. 

# Because the spread (in this thesis) was defined as percentage spread (ie. (A-B)/A), we 

# recalculate it using logarithms (ie. log(A)-log(B)). 

for (j in 1:(nrStocks)) { 

  baspread[, j] <- mean(log(1)-log(1-bidaskspread[,j])) 

} 
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##################################################################################### 

### PART 1 - Finding pairs 

# 

# Ready, set, go! We now try to find the cointegrated pairs using the Engle-Granger  

# two step procedure with orthogonal regression and MacKinnon critical values. 

#################### 

# 2 year horizon 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

   deming <- mcreg(stocks[, i], stocks[, j], method.reg = "Deming") 

  const2[j,i] <- MCResult.getCoefficients(deming)[1,1] 

  beta2[j,i] <- MCResult.getCoefficients(deming)[2,1] 

 

  spread <- stocks[, j] - beta2[j,i]*stocks[, i] - const2[j,i] 

  ht2[j,i] <- adfTest(spread, type = "nc", lags = 1)@test$statistic 

  } 

} 

for (i in 1:(nrStocks-1)) { 

 for (j in (i+1):nrStocks) { 

  deming <- mcreg(stocks[, i], stocks[, j], method.reg = "Deming") 

  const2[j,i] <- MCResult.getCoefficients(deming)[1,1] 

  beta2[j,i] <- MCResult.getCoefficients(deming)[2,1] 

 

  spread <- stocks[, j] - beta2[j,i]*stocks[, i] - const2[j,i] 

  ht2[j,i] <- adfTest(spread, type = "nc", lags = 1)@test$statistic 

  } 

} 

# We now filter out insignificant pairs. 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

if (ht2[j,i] > crit52 & ht2[i,j] > crit52 || ht2[j,i] > crit52 & ht2[i,j] < 

crit52 || ht2[j,i] < crit52 & ht2[i,j] > crit52){ 

   beta2[j,i] <- NA 

   const2[j,i] <- NA 

   beta2[i,j] <- NA 

   const2[i,j] <- NA 

   next 

  } 

 } 

} 

#################### 

# 1 year horizon 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

  

  stock1 <- stocks[, i][half:nDays] 

  stock2 <- stocks[, j][half:nDays] 

   deming <- mcreg(stock1, stock2, method.reg = "Deming") 

   const1[j,i] <- MCResult.getCoefficients(deming)[1,1] 

   beta1[j,i] <- MCResult.getCoefficients(deming)[2,1] 

  spread <- stock2 - beta1[j,i]*stock1 - const1[j,i] 

  ht1[j,i] <- adfTest(spread, type = "nc", lags = 1)@test$statistic 

  } 

} 
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for (i in 1:(nrStocks-1)) { 

 for (j in (i+1):nrStocks) { 

 

  stock1 <- stocks[, i][half:nDays] 

  stock2 <- stocks[, j][half:nDays] 

   deming <- mcreg(stock1, stock2, method.reg = "Deming") 

   const1[j,i] <- MCResult.getCoefficients(deming)[1,1] 

   beta1[j,i] <- MCResult.getCoefficients(deming)[2,1] 

  spread <- stock2 - beta1[j,i]*stock1 - const1[j,i] 

  ht1[j,i] <- adfTest(spread, type = "nc", lags = 1)@test$statistic 

  } 

} 

# We now filter out insignificant pairs. 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

  

if (ht1[j,i] > crit51 & ht1[i,j] > crit51 || ht1[j,i] > crit51 & ht1[i,j] < 

crit51 || ht1[j,i] < crit51 & ht1[i,j] > crit51){ 

   beta1[j,i] <- NA 

   const1[j,i] <- NA 

   beta1[i,j] <- NA 

   const1[i,j] <- NA 

   next 

  } 

 } 

} 

#################### 

# 2 year vs. 1 year 

# We now filter out pairs that are not cointegrated in both periods. 

 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

  

  if (invalid(beta2[j,i]) || invalid(beta1[j,i])){ 

  next 

  }else 

   betas[j,i] <- beta2[j,i] 

   consts[j,i] <- const2[j,i] 

 } 

} 

 

for (i in 1:(nrStocks-1)) { 

 for (j in (i+1):nrStocks) { 

  

  if (invalid(beta2[j,i]) || invalid(beta1[j,i])){ 

  next 

  }else 

   betas[j,i] <- beta2[j,i] 

   consts[j,i] <- const2[j,i] 

 } 

} 
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##################################################################################### 

### PART 2.1 - Selecting pairs - cointegration spread and bid-ask prices 

# We now filter stock pairs based on the average bid-ask spread for each stock pair, 

# in relation to a trading threshold of one standard deviation. In other words, if 

# the average trading slippage is greater than the standard deviation of the spread, 

# we will not trade the pair. We use the two year data as a proxy. 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

   if (invalid(betas[j,i])) { 

  next 

  }else 

if (sd(stocks[, j] - stocks[, i]*betas[j,i] - consts[j,i]) < (baspread[, j] + 

abs(betas[j,i])*baspread[, i])){ 

   betas[j,i] <- NA 

   consts[j,i] <- NA 

   next 

  } 

 } 

} 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

   if (invalid(betas[i,j])) { 

  next 

  }else 

if (sd(stocks[, i] - stocks[, j]*betas[i,j] - consts[i,j]) < (baspread[, i] + 

abs(betas[i,j])*baspread[, j])){ 

   betas[i,j] <- NA 

   consts[i,j] <- NA 

   next 

  } 

 } 

} 

##################################################################################### 

### PART 2.2 - Selecting pairs - trading possibilities 

# We now filter symmetrical pairs based on the spread with the highest standard 

# deviation ABOVE the average trading slippage, i.e. A~B vs. B~A. The relationship 

# with the highest standard deviation above the average trading slippage yields the 

# best trading possibilities. We use the two year data as a proxy. 

for (j in 1:(nrStocks-1)) { 

 for (i in (j+1):nrStocks) { 

   if (invalid(betas[j,i]) || invalid(betas[i,j])) { 

  next 

  }else 

if ((sd(stocks[, j] - stocks[, i]*betas[j,i] - consts[j,i]) - (baspread[, j] + 

abs(betas[j,i])*baspread[, i])) > (sd(stocks[, i] - stocks[, j]*betas[i,j] - 

consts[i,j]) - (baspread[, i] + abs(betas[i,j])*baspread[, j]))){ 

   betas[i,j] <- NA 

   consts[i,j] <- NA 

   next 

   }else { 

    betas[j,i] <- NA 

    consts[j,i] <- NA 

    next 

  } 

 } 

} 
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##################################################################################### 

### PART 3 - Assessing historical hedge ratios (coefficients) 

# We now assess the historical hedge ratios for the stocks in a given pair. 

# Specifically, we calculate a rolling window of hedge ratios between the stocks. 

# The calculation horizon is set to one year, with ratios updated every 5th day. 

# The ratios are stored in a list, upon we then take the mean of the ratios. This 

# mean is used as a hedge ratio (coefficient) between the two stocks. Using the 

# hedge ratio and the stock’s price series a residual series is formed, i.e. 

# residual = Y - b*X. After the series has been demeaned, an ADF test is  

# performed to validate its stationarity, with a rejection level at 10-pct. If  

# the pair passes, the coefficient and its corresponding intercept (computed by 

# taking the mean of the residual series) is stored in new separate matrices,  

# namely betat and constt. 

 

# Calculating rolling coefficients 

startpoint <- 0 

endpoint <- half 

for (j in 1:(nrStocks)) { 

 for (i in (1):nrStocks) { 

  if (invalid(betas[j,i])) { 

  next 

  }else 

   betar <- numeric() 

   for (l in seq(0, half, 5)) { 

   start <- startpoint+l 

   end <- endpoint+l 

   rolling1 <- stocks[,j][start:end] 

   rolling2 <- stocks[,i][start:end] 

 

   deming <- mcreg(rolling2, rolling1, method.reg = "Deming") 

   beta <- MCResult.getCoefficients(deming)[2,1] 

   betar <- append(betar, beta, after = length(betar)) 

   next 

   } 

  betat[j,i] <- mean(betar) 

  next 

 } 

next 

} 

# Constructing spreads and testing for stationarity 

 

for (j in 1:(nrStocks)) { 

 for (i in (1):nrStocks) { 

  if (invalid(betat[j,i])) { 

  next 

  }else 

   stock1 <- stocks[, j][half:nDays] 

   stock2 <- stocks[, i][half:nDays] 

   spreadt <- stock1 - betat[j,i]*stock2 

   constt[j,i] <- mean(stock1 - betat[j,i]*stock2) 

   spreadt <- spreadt - constt[j,i] 

   htt[j,i] <- adfTest(spreadt, type = "nc", lags = 1)@test$statistic 

   next 

 } 

} 
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# Filtering out stock pairs that are not stationary at the 10-pct level 

for (j in 1:(nrStocks)) { 

 for (i in (1):nrStocks) { 

  if (invalid(betat[j,i])) { 

  next 

  }else 

   if (htt[j,i] < crit101) { 

   next 

   }else 

    betas[j,i] <- NA 

    consts[j,i] <- NA 

    betat[j,i] <- NA 

    constt[j,i] <- NA  

    next 

 } 

} 

##################################################################################### 

### PART 3 - Output 

# We now write the output to two files that can be imported to Excel. We write the 

# coefficients and intercepts from the 1 year horizon. 

 

for (j in 1:(nrStocks)) { 

 for (i in (1):nrStocks) { 

  if (invalid(betas[j,i])) { 

   beta1[j,i] <- NA 

   const1[j,i] <- NA 

   next 

  } 

 } 

} 

write.csv2(const1, file = "const.csv") 

write.csv2(beta1, file = "beta.csv") 

write.csv2(ht1, file = "t-statistic.csv") 

write.csv2(constt, file = "const-avgr.csv") 

write.csv2(betat, file = "beta-avgr.csv") 

write.csv2(htt, file = "t-statistic-avgr.csv") 

 

##################################################################################### 

### END OF SCRIPT 

######################## 
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Appendix 2.2 – Descriptive Statistics 

Total return: the cumulative total return of the strategy. 

Monthly returns: 

Average: arithmetic average monthly return. 

Standard deviation: standard deviation of monthly returns. 

Skewness: skewness of monthly returns. 

Kurtosis: kurtosis of monthly returns. 

Minimum: minimum of monthly returns. 

Maximum: maximum of monthly returns. 

Annualised Sharpe Ratio: monthly Sharpe Ratio multiplied by the square root of twelve. 

Average % open pairs: the percentage of pairs that open during a trading period. 

Average # trades per pair: the average number of trades for a pair during a trading period. 

Average % complete trades: the average percentage of trades that are complete roundtrips i.e. 

trades that are unwound when the spread crosses the exit threshold. 

 

Appendix 2.3 – Pricing Factors 

Market: A value weighted index of all listed equities on Oslo Stock Exchange is used as a 

proxy for the market. Illiquid and penny stocks are removed from the sample. 

HML – High Minus Low: Fama-French factor, capturing the return of a portfolio of stocks 

with a high book-to-market ratio in excess of a portfolio of stocks with a low book-to-market 

ratio. 

SMB – Small Minus Big: Fama-French factor, capturing the return of a portfolio of small 

stocks in excess of a portfolio of large stocks. 

PR1YR – Previous 1 Year: Carhart’s momentum factor, capturing momentum in stock market 

returns. Constructed as the average of stocks with the highest 30% eleven-month returns 

lagged one month minus the average of stocks with the lowest 30% eleven-month returns 

lagged one month. 

Risk free rate: An estimate of the monthly risk free rate is obtained using monthly NIBOR 

quotes. 

For a more detailed description please Ødegaard (2013). All data obtained from Ødegaard 

(2013). 
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Appendix 2.4 – Historical Average Percentage Completed Trades 

Baseline case Unrestricted pair formation 

 

Restricted pair formation 

Year Subperiod % completed trades % completed trades 

2003 1 53.8 % 
 

50.0% 

 
2 50.0 % 

 
50.0% 

2004 1 59.1 % 
 

85.7% 

 
2 50.0 % 

 
25.0% 

2005 1 58.1 % 
 

69.2% 

 
2 69.0 % 

 
75.0% 

2006 1 31.6 % 
 

0.0% 

 
2 47.6 % 

 
37.5% 

2007 1 60.9 % 
 

44.4% 

 
2 71.4 % 

 
52.9% 

2008 1 79.4 % 
 

85.2% 

 
2 64.3 % 

 
62.5% 

2009 1 58.3 % 
 

62.5% 

 
2 30.0 % 

 
31.3% 

2010 1 45.5 % 
 

32.0% 

 
2 52.4 % 

 
33.3% 

2011 1 55.0 % 
 

80.0% 

 
2 58.1 % 

 
56.3% 

2012 1 63.6 % 
 

46.2% 

 

2 50.0 % 

 

38.5% 

Table 2.1. Historical development the percentage of completed trades, baseline case. 

 

Appendix 2.5 – Restricted Portfolio Composition 

Year Subperiod Number of pairs 

2003 1 8 

 
2 3 

2004 1 5 

 
2 4 

2005 1 18 

 
2 9 

2006 1 6 

 
2 6 

2007 1 7 

 
2 13 

2008 1 20 

 
2 9 

2009 1 7 

 
2 19 

2010 1 27 

 
2 4 

2011 1 7 

 
2 8 

2012 1 15 

 

2 15 

Table 2.2. Number of pairs for each 

period for the restricted pairs portfolio. 
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Year 
Sub-

period 

Consum-

er discr. 

Consum-

er stapl. 
Energy 

Fina-

ncials 

Health-

care 

Indust-

rials 
IT 

Mate-

rials 

Tele-

com 
Utilities 

2003 1 0 % 0 % 0 % 0 % 0 % 88 % 13 % 0 % 0 % 0 % 

 
2 0 % 0 % 100 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 

2004 1 0 % 0 % 60 % 0 % 0 % 20 % 20 % 0 % 0 % 0 % 

 
2 0 % 0 % 50 % 0 % 0 % 25 % 25 % 0 % 0 % 0 % 

2005 1 0 % 11 % 44 % 6 % 0 % 11 % 28 % 0 % 0 % 0 % 

 
2 0 % 0 % 33 % 0 % 0 % 11 % 56 % 0 % 0 % 0 % 

2006 1 0 % 0 % 33 % 0 % 0 % 33 % 33 % 0 % 0 % 0 % 

 
2 0 % 0 % 50 % 17 % 0 % 0 % 33 % 0 % 0 % 0 % 

2007 1 0 % 0 % 57 % 29 % 0 % 0 % 14 % 0 % 0 % 0 % 

 
2 0 % 0 % 38 % 0 % 0 % 54 % 8 % 0 % 0 % 0 % 

2008 1 0 % 0 % 45 % 0 % 0 % 25 % 30 % 0 % 0 % 0 % 

 
2 0 % 0 % 33 % 0 % 0 % 11 % 56 % 0 % 0 % 0 % 

2009 1 0 % 0 % 29 % 0 % 14 % 43 % 14 % 0 % 0 % 0 % 

 
2 0 % 11 % 47 % 0 % 5 % 32 % 5 % 0 % 0 % 0 % 

2010 1 0 % 0 % 52 % 0 % 0 % 41 % 4 % 0 % 4 % 0 % 

 
2 0 % 25 % 50 % 0 % 0 % 0 % 25 % 0 % 0 % 0 % 

2011 1 0 % 14 % 43 % 0 % 0 % 0 % 43 % 0 % 0 % 0 % 

 
2 13 % 0 % 38 % 13 % 0 % 13 % 25 % 0 % 0 % 0 % 

2012 1 7 % 27 % 47 % 0 % 0 % 20 % 0 % 0 % 0 % 0 % 

 
2 0 % 20 % 47 % 7 % 0 % 27 % 0 % 0 % 0 % 0 % 

            
Average 

 
1,0 % 5,4 % 44,8 % 3,5 % 1,0 % 22,6 % 21,6 % 0,0 % 0,2 % 0,0 % 

Table 2.3. Composition of pairs on sector/industry for each period for the restricted pairs portfolio. 

 


