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Abstract 

Jump-diffusions are a class of models that is used to model the price dynamics of assets 

whose value exhibit jumps. The first part of this thesis discusses the implications of such 

models for the pricing of derivatives. Particular emphasis is put on explaining the adjustment 

for systematic risk. Efforts are made to link purely mathematical arguments with economic 

theory and intuitive explanations. 

In the second part, the theoretical framework for derivatives pricing are applied to answer 

the question whether jumps are relevant for the pricing of European options with the S&P 

500 index as the underlying asset. Analysis of the distributional properties of log-returns 

leads to the suggestion of a specific jump-diffusion model for the dynamics of this index. 

The model is calibrated to market data on a daily basis for a period of 80 trading days prior 

to and 80 trading days after what is considered the outbreak of the financial crisis of 2008. 

Obtained values of the jump-diffusion parameters implicit in option prices establish that 

jumps are relevant for their value.  
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1. Introduction  

1.1 Motivation 

Derivatives are flexible and powerful investment tools. Due to the wide range of payoff 

functions, they are used to achieve a v ariety of different goals. These goals range from 

hedging risk, obtaining exposure to an underlying that is non-tradable (e.g. air temperature), 

exploiting arbitrage opportunities, speculation, or simply leverage one’s exposure to an 

underlying. Thus, it is of great value to acquire the knowledge required to price derivatives 

with precision. 

In spite of the flexibility these financial contracts exhibits, the framework used to price them 

are general and applicable to a wide range of valuation problems. Within this framework, a 

model for the price dynamics of the underlying asset(s) is needed.  The choice of model may 

have important implications for pricing. In some markets, jump-diffusion models seem to 

better capture the real dynamics than models not accounting for jumps. Hence, to study the 

implications for derivatives pricing when the underlying asset follows a jump-diffusion is of 

great interest. 

Furthermore, the impression of the authors is that much of the existing literature on jump-

diffusions mainly focuses on t he mathematical aspects. This may hide the economic 

principles these models are built upon. H opefully, by putting emphasis on explaining the 

underlying economic arguments, this thesis can add value to the discussion of jump-

diffusion models. 

Besides examining the theoretical aspects of jump-diffusion models, it is also desirable to get 

acquainted with the practical application. Due to the widespread attention directed towards 

the U.S. stock market, along with the liquidity in the market for derivatives, options written 

on the broad S&P 500 index is considered exciting to study in the context of a jump-

diffusion model.   

A final motivating factor is related to the information implicit in option prices. Option 

pricing models are for instance used to extract investor expectations regarding future 

volatility in the underlying asset. While this is often summarized in a single parameter called 
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implied volatility, the use of jump-diffusion models may provide additional information 

regarding the assessment of risk. 

1.2 Topic 

The topic of this paper is twofold. First, focus is directed towards the development of a 

framework for pricing financial contracts derived from assets whose dynamics could be 

represented by a jump-diffusion. Particular emphasis is put on explaining the adjustment for 

systematic risk within such models. The objective is to highlight the underlying economic 

arguments that the pricing model is based upon.  

Second, the thesis aims to determine whether price jumps in the underlying asset are relevant 

for the pricing of S&P 500 i ndex options of European type. To investigate this, a pricing 

model is developed and then calibrated to historical option prices. Focusing on a  time 

interval comprising a period prior to and a period after the outbreak of the financial crisis of 

2008 is considered appropriate. Studying this particular period allows for answering two 

related research questions of interest. One is the question if there was an assessed risk of a 

market crash in September 2008. The other is to what extent the market’s perception of risk 

changed after the financial crisis hit.  

1.3 Refinements 

Certain refinements are considered appropriate in order to ensure a narrow focus. These are 

justified by the fact that including them complicates the analysis without adding significant 

value. It is assumed that the reader is familiar with basic option pricing theory. 

A derivative security, or a contingent claim, can be defined as an instrument whose value 

depends on the price of another asset, often referred to as the underlying (Hull, 2012). There 

exists a variety of such contracts distinguished by different payoff functions. In this thesis, 

however, only one type is considered. That is, call options of European type. To be clear, 

this is a contract that gives the holder the right to buy the underlying security at a predefined 

price at a specific date.  
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The price of derivatives depends upon parameters whose value is uncertain. For simplifying 

purposes, some of these are assumed to be constant. In particular, this assumption is applied 

to the risk-free rate of return and the dividend yield of the underlying security. 

In the financial literature, stochastic volatility models have gained widespread popularity. 

However, such models are not considered here. 

1.4 Thesis Structure 

The following structure is a reflection of what is considered the best approach to achieve the 

stated objectives of the thesis.  

Chapter 2 presents the theoretical foundation for jump-diffusion models. Intuitive reasons to 

why modeling jumps may add value is provided through relating model components to the 

occurrence of rare and normal events. Then, in chapter 3, it is turned to the issue of adjusting 

for systematic risk within such models. Due to this subjects’ fundamental importance for 

pricing and hedging, attempts are made to uncover the underlying economic principles. 

Chapter 4 marks the start of the applied part of the thesis. In this chapter, a pricing model for 

European options with the S&P 500 index as the underlying asset is suggested. The choice 

of model is supported by the results of statistical tests of the distributional properties of S&P 

500 returns. In order to extract investor expectations from market data, the model is 

calibrated to historical option prices. The choice of calibration approach and its 

implementation is described in chapter 5, while the chapter 6 is devoted to the presentation 

and discussion of the results.  

Finally, conclusions are summarized in chapter 7. Here, a discussion of limitations is also 

provided, along with suggestions for further research. A flowchart of the thesis’ structure is 

presented in Exhibit 1.1. 
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Exhibit 1.1 - Thesis Flowchart 
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2. Modeling Asset Price Dynamics 

There is a variety of ways to model jumps in the price of an asset. In this chapter, a general 

jump-diffusion is developed. The approach is based on Wiener and Poisson processes.  

2.1 The General SDE 

The change in the value of an asset over time is in general uncertain, i.e. it is stochastic 

(Hull, 2012). Stochastic differential equations (SDEs) provide a framework for modeling 

asset price dynamics. It can be shown that, under some mild assumptions1, the behavior of a 

continuous-time stochastic process 𝑆𝑡 can be approximated by the general SDE  

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 +  𝑏(𝑆𝑡, 𝑡)𝑑𝑋𝑡 ,                                                (1) 

where 

𝜇(𝑆𝑡, 𝑡) is the drift coefficient,  

𝑏(𝑆𝑡, 𝑡) is the diffusion coefficient,  

𝑑𝑋𝑡 is an innovation term. 

The first term on the right hand side of (1) represents the expected change in the security 

price over the infinitesimal time interval 𝑑𝑡 (Neftci, 1996). 𝜇(𝑆𝑡, 𝑡) is then the instantaneous 

absolute expected return on t he asset. Since investors are risk-averse, they demand 

compensation for taking on non-diversifiable risk. Hence, the drift rate will deviate from the 

risk-free rate of return if there are systematic risks inherent in 𝑆𝑡.  

Unpredictable changes in the price of 𝑆𝑡 in the given time interval is represented by the 

second term. This is sometimes referred to as the dispersion term. It consists of the diffusion 

coefficient 𝑏(𝑆𝑡, 𝑡) and the innovation term, 𝑑𝑋𝑡. The latter incorporates the uncertainty in 

the price process, and has expectation equal to zero - i.e. it is a martingale2 (Neftci, 1996).  

1 See Neftci (1996) ch.7 p.136-137 for a discussion of these assumptions. 

2 The concept of martingales is thoroughly explained in chapter 3. 
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Note that both the drift and diffusion term, 𝜇(𝑆𝑡, 𝑡) and 𝑏(𝑆𝑡, 𝑡), are 𝐼𝑡 − 𝑎𝑑𝑎𝑝𝑡𝑒𝑑3 (Neftci, 

1996). That is, their values are known given the information set 𝐼𝑡. 

2.2 Introducing Jump-Diffusion Models 

The dynamic behavior of the underlying asset(s) is given by the general SDE (1). In order to 

use this for pricing purposes one has to specify its distributional properties. Critical to this is 

the distinction between rare and normal events (Neftci, 1996).  

2.2.1 Rare and Normal Events 

According to Neftci (1996), a rare event is defined as something that has a “large” size and 

occurs infrequently. These differ from normal events, which occur in a routine fashion with 

smaller magnitude.  

Consider an observation interval, 𝑑𝑡. The formal distinction between rare events and normal 

events is the way their size and their probability of occurrence vary with this interval (Neftci, 

1996).  As the interval gets smaller, the size of normal events also gets smaller. However, 

because they are ordinary, their probability of occurrence is not zero. That is, in short time 

intervals, it will always be a non-zero probability that some normal event occurs. For rare 

events, this is not the case. As 𝑑𝑡 → 0, the probability of occurrence also goes to zero. 

However, in contrast to normal events, the size of the event may not shrink. Hence, it 

represents a discontinuous jump in the price of the asset in question.  

The intuition behind rare and normal events can be explained by the nature of price sensitive 

news. Normal events can be seen as small price changes due to the flow of “non-noticeable” 

news. For the stock market, such news may include small changes to investor expectations 

about future corporate earnings due to FED statements. The following normal event is the 

marginal change in prices caused by this. Or for a market like oil, a normal event can be an 

3 A variable 𝑎𝑡 is said to be 𝐼𝑡 − 𝑎𝑑𝑎𝑝𝑡𝑒𝑑 if its value is included in the information set, 𝐼𝑡. That is, 𝑎𝑡 is known given 𝐼𝑡. 
The information set contains all relevant information at time t, and may include historical prices, trading volumes, market 
volatility, etc. For a more detailed explanation, see Neftci (1996). 
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unexpected, but marginal increase in demand due to changing weather forecasts. Such news 

is the cause for the majority of price changes. 

On the other hand, rare events can be interpreted as consequences of  “big” news. The stock 

market crash in 1987 is a good example of a rare event. A recent oil related example of such 

an event, is the political and social unrest in Libya, which caused a large jump in the price of 

oil. Another example is the large change in the stock price of a p harmaceutical company 

receiving FDA denial for a promising drug. During a short time interval, the probability of 

such events approaches zero. Still, when they occur, their size may not be very different 

whether one looks at large or small time intervals (Neftci, 1996).  

2.2.2 A General Jump-Diffusion Model 

As stated, 𝑑𝑋𝑡 in the general SDE (1) has to be modeled. It is clear from the above 

discussion that this innovation term should account for both continuous and discontinuous 

price changes (Neftci, 1996). Two basic building blocks for doing this are the Wiener 

process for normal events, and the Poisson process for rare events. 

The standard Wiener process, denoted 𝑊𝑡, is a natural choice for modeling normal events 

(Neftci, 1996). This process has normally distributed increments, 𝑑𝑊𝑡, with expectation and 

variance equal to zero and 𝑑𝑡, respectively4. The normal distribution has tails that extend to 

infinity. However, since the variance is time-dependent, the tails will disappear as the time 

interval 𝑑𝑡 approaches zero. Hence, the distribution will be concentrated on zero. That is, for 

small time intervals, the Wiener process is only suitable for modeling small price changes. 

This is consistent with the discussion above. Exhibit 2.1 i llustrates the evolution of a 

standard Wiener process over time, along with its corresponding increments. It is noted that 

the scales of the y-axes are different.  

4 Formally, the standard Wiener process has the following important properties:  

1) 𝑊0 = 0 
2) 𝑊𝑡 −𝑊𝑠   ~  N(0, t − s)     𝑓𝑜𝑟   𝑡 ≥ 𝑠 
3) 𝑊𝑡0 , 𝑊𝑡1 −𝑊𝑡0,𝑊𝑡2 −𝑊𝑡1 , … ,𝑊𝑡𝑛 −𝑊𝑡𝑛−1                    𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑛   

is independent (increments) for any integer n 
4) W has continuous sample paths, i.e. Wt(ω) = W(t, ω)  is continuous in t for a given ω (state). 
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Exhibit 2.1 – Left Panel: Illustration of a Standard Wiener Process  
Right Panel: The Increments of a Standard Wiener Process 

  

However, the Wiener process is not appropriate for modeling rare events. Instead, a process 

that is capable of generating large price changes in very small time increments is needed. In 

other words, the actual process must exhibit discontinuous jumps, i.e. the process must have 

outcomes that are independent of 𝑑𝑡. This can be modeled in different ways. Frequently 

suggested in the literature on derivatives pricing are Poisson processes5. Such processes will 

be used to model jumps in this thesis. 

A particular type of Poisson process that is suitable for modeling jumps in financial markets 

are the Poisson counting process, 𝑁𝑡. This process represents the total number of changes 

that occur until time t, and is Poisson distributed. Hence, its expectation and variance are 

identical. The increments in 𝑁𝑡, denoted 𝑑𝑁𝑡, can take on two possible values. Either they 

are zero, meaning no change, or they are equal to one, representing change6 (Neftci, 1996).   

5 See for example Neftci (1996), Wilmott (2007) or Hull (2012).  

6 The increments has the following probability distribution: 

𝑑𝑁𝑡 =  � 1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜆𝑑𝑡
        0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜆𝑑𝑡 

Also important is it that the number of changes occurring in non-overlapping intervals is independent. 
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Exhibit 2.2 - Illustration of a Poisson Counting Process7 

 

As explained above, 𝑁𝑡 has constant jump sizes equal to one. When modeling financial 

markets this seems to be unrealistic. However, it is  fairly easy to allow for random jump 

sizes. Let 𝑁𝑡 be a Poisson counting process with intensity 𝜆. Further, let 𝑌𝑡 be a stochastic 

process with a predetermined distribution 𝑓(𝑦) and mean 𝜅 = 𝐸[𝑌𝑖]. If 𝑌𝑡  also is independent 

of the Poisson process 𝑁𝑡, one can define the compound Poisson process (Shreve, 2004) 

𝑄𝑡 = � 𝑌𝑡𝑑𝑁𝑡
𝑡

0
= �𝑌𝑖  .

𝑁𝑡

𝑖=1

                                                             (2) 

This can be seen as an extension of the pure counting process. The jumps in 𝑄𝑡 arrive at the 

same times as before. That is, the jumps occur when 𝑁𝑡 equals 1. H owever, whereas the 

jumps in 𝑁𝑡 are constantly 1, the size of the jumps in 𝑄𝑡 is random (determined by the 

distribution of 𝑌𝑡). The compound Poisson process has mean 𝜅𝜆𝑡 (Shreve, 2004). 

7 A minor flaw in the exhibit is that the jumps, i.e. the vertical lines, are not perfectly vertical. Still, the figure is considered 
suitable for illustrational purposes.  
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Exhibit 2.3 - Illustration of a Compound Poisson Process 

 

From now on, the compound Poisson process will be used for modeling jumps. In order to 

be consistent with the general SDE (1), it has to be compensated. That is, 𝑄𝑡 has to be 

adjusted by subtracting its mean. Thus, one can define 

𝐽𝑡 = 𝑁𝑡 − 𝜅𝜆𝑡 ,                                                                   (3) 

where 𝐽𝑡 is a compensated compound Poisson process, i.e. 𝐸[𝐽𝑡] = 0. 

By splitting up the innovation term into a standard Wiener process for normal events and a 

compensated compound Poisson process for jumps, one ends up with a general model for 

asset price dynamics given by (Nefcti, 1996)8 

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝑑𝐽𝑡  .                                      (4) 

Here,  

 𝜇(𝑆𝑡, 𝑡) is the expected change in 𝑆𝑡, 

 𝜎1(𝑆𝑡, 𝑡) is the diffusion coefficient conditional on no jump, 

 𝑊𝑡 is a standard Wiener process, 

 𝐽𝑡 is a compensated compound Poisson,  𝐽𝑡 = ∑ 𝜎2(𝑆𝑡, 𝑖) 𝑁𝑡
𝑖=1 − 𝜅𝜆𝑡, with intensity 

 𝜆, and random jump size 𝜎2(𝑆𝑡, 𝑡); 𝜅 ≡ 𝐸[𝜎2(𝑆𝑡, 𝑡)] .   

8 The notation in Neftci (1996) is slightly different. 
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As before, the 𝑑𝑡-term represents the expected change in 𝑆𝑡 during 𝑑𝑡. In contrast to (1), the 

dispersion is now modeled by two separate terms, i.e. a diffusion term and a jump-term. 

Hence, this model is slightly less general than (1), and is often referred to as a jump-

diffusion (Neftci, 1996). Furthermore, the parameters 𝜇(𝑆𝑡, 𝑡), 𝜎1(𝑆𝑡, 𝑡) and 𝜎2(𝑆𝑡, 𝑡) are still 

𝐼𝑡 − 𝑎𝑑𝑎𝑝𝑡𝑒𝑑. A random sample of a jump-diffusion model is illustrated in Exhibit 2.4.  

Exhibit 2.4 - Illustration of a Jump-Diffusion 

 

It is noted that the dispersion terms in (4) have to be martingales to be consistent with (1). In 

addition, they have to be independent, i.e. the Wiener process and the Poisson process have 

to be independent at every instant 𝑡 (Neftci, 1996). 

Note that (4) also can be written as9 

𝑑𝑆𝑡 = [𝜇(𝑆𝑡, 𝑡) − 𝜅𝜆]𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡.                       (5) 

This notation makes the construction of the jump term more clear. A special case of the 

jump-diffusion is when the jump sizes, 𝜎2(𝑆𝑡, 𝑡), are constantly equal to zero. The resulting 

classes of models are called diffusions. 

9 As noted, 𝑄𝑡 = ∫ 𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡
𝑡
0 . In differential form, 𝑑𝑄𝑡 = 𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡. Thus 𝑑𝐽𝑡 = 𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡 −  𝜅𝜆𝑑𝑡. 
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3. Systematic Risk and Equivalent Martingale 
Measures 

Systematic risk is one of the most discussed topics in financial theory. Asset prices depend 

critically upon the size of this parameter. This is the focus of the following section.  

3.1 Definition  

Before elaborating on systematic risk, it seems appropriate with a definition. According to 

Hull (2012), it is risk that is related to the return from the market as a whole and cannot be 

diversified away. On the other hand, non-systematic risk, also referred to as idiosyncratic 

risk, is risk that is unique to the asset and can be diversified away (Hull, 2012).  

3.2 The General Pricing Problem  

Asset prices are determined by the law of one price10. This implies that security prices must 

preclude arbitrage opportunities11. It is, however, in many cases not a straightforward task to 

obtain a fair price for an asset. To illustrate the general pricing problem, it can be useful to 

consider a one-period setting. The expected rate of return of an asset 𝑆𝑡 at time t is given by 

𝜇𝑡 =  𝐸[𝑆𝑡]
𝑆0

− 1 ,       (6) 

where 𝑆0 is the initial value of the asset and 𝜇𝑡 is the expected rate of return. Note that 

𝜇𝑡 here is defined as a percentage, while 𝜇(𝑆𝑡, 𝑡) in (1) and (4) is expressed as an absolute 

value. In other words, 𝜇(𝑆𝑡,𝑡)
𝑆0

 is equivalent to 𝜇𝑡 . Rearranging terms in (6) gives an equation 

for the present value, 

𝑆0 =  𝐸[𝑆𝑡]
1+𝜇𝑡

 .              (7) 

10 The Law of One Price states that identical cash flows must have the same price. If this is not the case, an arbitrage exists, 
which is not consistent with economic theory. For more on this, see for example Berk, J. and P. DeMarzo (2010). 

11 In its simplest form, an arbitrage opportunity is said to exist if it is possible to achieve a riskless profit greater than the 
riskless rate of return by taking simultaneous positions in different assets (Neftci, 1996).  
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Equation (7) illustrates that uncertainty are present both in the numerator and denominator. It 

states that the value today is equal to the expected value at time 𝑡 discounted with the 

appropriate discount rate, which is the asset’s expected rate of return. Since investors are 

assumed to be risk-averse, they will demand a premium for taking on non-diversifiable risk. 

For a t ypical risky asset, 𝜇𝑡 has to be greater than the risk-free rate of return, 𝑟𝑡. If not, 

investors will only invest in risk-free assets. Note that 𝜇𝑡 sometimes are smaller than 𝑟𝑡. This 

is the case when the asset in question provides insurance, i.e. it has a negative covariance 

with the market portfolio. In conclusion, 𝜇𝑡 is determined by the degree of systematic risk 

(Neftci, 1996).  

Academics have identified numerous challenges with estimating this parameter. These are 

heavily discussed in modern textbooks in finance, and are not considered here12. In fact, the 

expected rate of return is almost impossible to accurately estimate ex ante (Hull, 2012). As a 

consequence, pricing methods that maneuver around this problem have been developed.  

3.3 Change of Measure 

3.3.1 The EMM Approach 

A method that does not require an estimate of 𝜇𝑡 is that of Equivalent Martingale Measures 

(EMM) (Miltersen, 2005). These are alternative probability measures that are used for 

pricing purposes. Formally, ℚ is an equivalent martingale measure relative to ℙ if  

ℚ(E) = 0 ⇔ ℙ(𝐸) = 0            (8) 

and 

𝐶𝑡
𝐵𝑡

= 𝐸ℚ �𝐶𝑇
𝐵𝑇

|𝐼𝑡� ,       (9) 

12 See, e.g., Berk, J. and P. DeMarzo (2010) or Brealey, Myers and Marcus (2009).  
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for any T, 0 ≤ 𝑡 ≤ 𝑇, and for any price process, 𝐶𝑡, in the economy. 𝐵𝑡 is referred to as the 

numeraire, i.e. the security price used as the discount factor. The choice of 𝐵𝑡 is a matter of 

convenience and should be chosen to best simplify the calculations13.  

In short, the EMM approach is a method that makes all discounted price processes 

martingales. A benefit from this is that it allows use of the bank account, 𝐴𝑡, as a deflator – 

i.e. the risk-free rate of return:  

𝑆0 = 𝐸[𝑆𝑡]
1+𝜇𝑡

= 𝐸ℚ[𝑆𝑡]
1+𝑟𝑡

 .      (10) 

Throughout this thesis, only the bank account is used as numeraire. The corresponding 

probability measure will be referred to as the risk-neutral measure.  

The existence of an equivalent martingale measure is closely related to the absence of 

arbitrage. Actually, it c an be shown that if there are no a rbitrage opportunities in the 

economy then an equivalent martingale measure exists. This is known as the fundamental 

theorem of asset pricing14 (Cont and Tankov, 2004a). 

Another important factor with respect to changing probability measure is market 

completeness. Cont and Tankov (2004a) state that markets are complete if the economy 

contains enough assets such that all contingent claims can be replicated. That is, one can 

create a portfolio that has the exact same properties as the contingent claim15. This implies 

the existence of a unique equivalent martingale measure.  

13 Formally, the numeraire can be any non-dividend paying asset, with price process 𝐵𝑡 such that 𝐵𝑡 ≥ 0, for all t, i.e. 
strictly positive prices (Miltersen, 2005). 

14 The fundamental theorem of asset pricing states that “the market model defined by (𝛺,ℱ, (ℱ𝑡),ℙ) and asset prices 
(𝑆𝑡)𝑡∈[0,𝑇] is arbitrage-free if and only if there exist a probability measure ℚ ∼ ℙ such that the discounted assets (𝑆𝑡� )𝑡∈[0,𝑇] 
are martingales with respect to ℚ”. (Cont and Tankov, 2004a) 

15 A perfect hedge (or equivalently perfect replication) is an investment strategy that exactly offset any gains or losses for an 
existing investment. In a B&S-economy with an underlying asset 𝑆𝑡 and savings account 𝐴𝑡, a perfect hedge is defined as a 
self-financing strategy (𝜙,𝜃) for a contingent claim 𝐻 if 

𝐻 = 𝜙0𝑆0 + 𝜃0𝐴0 + � 𝜙𝑢𝑑𝑆𝑢 +
𝑡

0
� 𝜃𝑢𝑑𝐴𝑢 .
𝑡

0
 

Here, 𝜙 and 𝜃 represents the number of the underlying asset and the investment in the savings account, respectively. (Cont 
& Tankov, 2004a, and Miltersen 2005) 
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It should be emphasized that while most pricing models are arbitrage-free, not all are 

complete (Cont & Tankov, 2004a). In such cases, there are multiple equivalent martingale 

measures. Consequently, some contingent claims cannot be perfectly replicated. As will 

become evident later, this is the case when allowing for jumps.  Cont and Tankov (2004a) 

argue that in the real world, markets are in general incomplete. 

3.3.2 Intuition 

There are two ways of changing measure (Neftci, 1996). First, the original shape of the 

distribution can be changed. Second, one can change the mean of the distribution, while 

leaving the variance unchanged. The latter is particularly used in pricing models for 

contingent claims. The intuition is that the original probability measure includes a premium 

for systematic risk. When changing measure from ℙ to the new measure ℚ, this premium is 

removed. Note that the sample paths of the stochastic processes are unchanged - it is only the 

probability weights that are changed in the transformation (Miltersen, 2005). The change of 

mean is illustrated in Exhibit 3.1. 

Exhibit 3.1 - Change of Measure 

 

To be clear, changing probability measure is just a method of adjusting for systematic risk. 

The way this is done is dependent on the model in question. This will become evident in the 

subsequent sections.  

Keep in mind that the probability measure ℚ is fictitious. On the other hand, the original 

probability measure ℙ is the real or the subjective probability measure. That is, it reflects the 

market’s belief about the future (Miltersen, 2005).  
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3.4 Adjusting for Systematic Risk in Jump-Diffusions 

Consider now the general jump-diffusion model proposed in equation (4), 

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝑑𝐽𝑡  .                                         (4) 

Keep in mind that 𝐽𝑡 is a compensated compound Poisson process. That is a compound 

Poisson process, 𝑄𝑡, adjusted by subtracting its mean such that it is a martingale,  

𝐽𝑡 = 𝑄𝑡 − 𝜅𝜆𝑡 .                                                                    (3) 

The parameters 𝜆 and 𝜅 represents the jump intensity and the expected jump size, 

respectively. It is assumed that 𝑄𝑡, and hence 𝐽𝑡, has random jump sizes 𝜎2(𝑆𝑡, 𝑡). The jump-

diffusion model can then be written as16 

𝑑𝑆𝑡 = [𝜇(𝑆𝑡, 𝑡) − 𝜅𝜆]𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡 .                         (5) 

In order to use this for pricing purposes, the dynamics under ℚ must be derived.  

3.4.1 A Special Case – Diffusions 

A special case is when 𝜎2(𝑆𝑡, 𝑡) = 0. As previously mentioned, these models are called 

diffusions. Here, the price dynamics is only dependent on one stochastic process, the Wiener 

process:  

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 .     (11) 

Consequently, the price evolves continuously over time and replicating arguments can be 

used. Hence, the market is complete. In accordance with the above discussion, this implies 

the existence of a u nique equivalent martingale measure. The discounted price process, 

𝑆𝑡∗ = 𝑆𝑡
𝐴𝑡

, is now a martingale under ℚ.  

By using Itô’s lemma17 and Girsanov’s18 theorem, the risk-adjusted dynamics of 𝑆𝑡 is 

obtained: 

16 See section 2.2.2. 

17 For an explanation of Itô’s lemma, see for example Hull (2012), ch. 13. 
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𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊�𝑡 .           (12) 

Here, 𝑊�𝑡 is a Wiener process under the new probability measure. The relation between this 

and the Wiener process under ℙ, is given by 

𝑊�𝑡 = 𝑊𝑡 + 𝜃𝑡,      (13) 

where 𝜃 is the market price of risk.  In order for 𝑆𝑡∗ to be a martingale under the risk-neutral 

measure, the following equation must hold: 

𝜃 = 𝜇(𝑆𝑡,𝑡)−𝑟𝑡𝑆𝑡
𝜎1(𝑆𝑡,𝑡)

  .      (14) 

The intuition is consistent with previous explanations. That is, systematic risk has to be 

adjusted for when changing from ℙ to the risk-neutral measure.  

As a result, the expected return under ℚ is equal to the risk-free rate of return. Notice that the 

volatility remains unchanged. 

3.4.2 Jump-Diffusions  

Now, consider the case when 𝜎2(𝑆𝑡, 𝑡) is stochastic19 given 𝑆𝑡, i.e. a jump-diffusion. As 

noted, the model then has price jumps that may include systematic risk. Compared to the 

model above, this poses additional challenges for risk adjustment.  

When allowing for discontinuous jumps, markets are no longer complete. As a consequence, 

there is no longer a unique equivalent martingale measure. Hence, in mathematical terms, 

there exist many theoretical prices. In order to choose the right price, economic arguments 

must be used20 (Cont & Tankov, 2004).  

Formally, there is defined a Wiener process (𝑊𝑡) and a (compensated) compound Poisson 

process (𝐽𝑡) on the same probability space (𝛺,ℱ,ℙ) (Shreve, 2004). Assuming there is a 

18 Girsanov’s theorem is discussed in Neftci (1996), ch. 14. 

19 𝜎2(𝑆𝑡, 𝑡) can also be a constant. 

20 This is further discussed in section 3.5. 
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single filtration ℱ(𝑡), 𝑡 ≥ 0 for both processes, they must be independent. Thus, the 

processes can be considered separately when changing measure (Shreve, 2004).  

To obtain the risk-adjusted dynamics for 𝑆𝑡, the same principles as before are applied. That 

is, the discounted price process must be a martingale under ℚ.  

Now, consider the dynamics under the original probability measure, ℙ, 

𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝑑𝐽𝑡  .                                (4) 

By using the Itô-Doeblin formula for jump processes21, the dynamics of the discounted price 

process are obtained: 

𝑑𝑆𝑡∗ = �−  𝑆𝑡𝑟𝑡
𝐴𝑡

+ 𝜇(𝑆𝑡,𝑡)
𝐴𝑡

− 1
2
𝜎1(𝑆𝑡, 𝑡)20� 𝑑𝑡 + 𝜎1(𝑆𝑡,𝑡)

𝐴𝑡
𝑑𝑊𝑡 +  1

𝐴𝑡
𝑑𝐽𝑡 .                 (15) 

When simplifying terms, 

𝑑𝑆𝑡∗ = [𝜇(𝑆𝑡, 𝑡) −  𝑆𝑡𝑟𝑡]
1
𝐴𝑡
𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)

1
𝐴𝑡
𝑑𝑊𝑡 +  

1
𝐴𝑡
𝑑𝐽𝑡  .                        (16) 

The next step is to find the risk-adjusted dynamics for the underlying by changing measure 

from ℙ to ℚ. As before, Girsanov’s theorem is used to change measure for the Wiener 

process. For the (compound) Poisson process, this is conducted in a similar way22. Given 

that there is systematic risk inherent in the price jumps, the change of measure affect both 

the jump intensity and the jump size. That is, under risk-neutral measure one obtain a new 

intensity 𝜆̃ such that  

𝜆̃ = 𝜆 + 𝜆𝑐 ,                                                                        (17) 

where 𝜆 is the intensity under ℙ, and 𝜆𝑐 is the change in intensity. Further, the distribution of 

the jump size will change from 𝜎2(𝑆𝑡, 𝑡) to a new distribution 𝜎�2(𝑆𝑡, 𝑡). The expected jump 

size under ℚ is then equal to 𝜅̃ such that  

𝜅̃ = 𝜅 + 𝜅𝑐 .                                                                       (18) 

21 See e.g. Cont and Tankov (2004a), section 8.3.2, for a presentation of the Itô-Doeblin formula for jump processes. 

22 For a discussion of how to change measure for a compound Poisson process, see e.g. Shreve (2004). 
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Here, 𝜅 is the expected jump size under ℙ, while 𝜅𝑐 represents the change. Despite the above 

changes, 𝐽𝑡 is a compound Poisson process under ℚ (Shreve, 2004). 

When going from ℙ to ℚ, 𝐽𝑡 is no longer a martingale.  However, an adjustment of the mean 

can solve this. That is, one can define 

𝐽𝑡 = 𝐽𝑡 + �𝜆𝜅 − 𝜆̃𝜅̃�𝑡                                                                  (19) 

such that 𝐽𝑡 is a martingale under ℚ. The risk-neutral dynamics for 𝑆𝑡∗ is then given by 

𝑑𝑆𝑡∗ = [𝜇(𝑆𝑡, 𝑡) −  𝑆𝑡𝑟𝑡]
1
𝐴𝑡
𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)

1
𝐴𝑡
𝑑(𝑊�𝑡 − 𝜃𝑡) +  

1
𝐴𝑡
𝑑�𝐽𝑡 − �𝜆𝜅 − 𝜆̃𝜅̃�𝑡�  

        = �𝜇(𝑆𝑡, 𝑡) −  𝑆𝑡𝑟𝑡 − 𝜎1(𝑆𝑡, 𝑡)𝜃 − 𝜆𝜅 + 𝜆̃𝜅̃�
1
𝐴𝑡
𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)

1
𝐴𝑡
𝑑𝑊�𝑡 +  𝑑𝐽𝑡 ,    (20) 

where 𝑊�𝑡 and 𝐽𝑡 are independent of each other (Shreve, 2004). As stated, 𝑆𝑡∗ must be a 

martingale under the risk-neutral measure. Hence, the 𝑑𝑡-term in (20) must equal 0. That is, 

𝜇(𝑆𝑡, 𝑡) −  𝑆𝑡𝑟𝑡 − 𝜎1(𝑆𝑡, 𝑡)𝜃 − 𝜆𝜅 + 𝜆̃𝜅̃ = 0 .                                  (21) 

Rearranging terms, the market price of risk equation is given by 

 𝜇(𝑆𝑡, 𝑡) − 𝑆𝑡𝑟𝑡 = 𝜎1(𝑆𝑡 𝑡)𝜃 + (𝜆𝜅 − 𝜆̃𝜅̃).                                     (22) 

This equation includes important economic insight. The left hand side represents the total 

risk premium for holding the underlying asset. Thus, the right hand side illustrates the 

decomposition of this premium. Here, the first term can be interpreted as the total 

compensation for diffusion risk, i.e. risk related to the Wiener process. Then 𝜃 yields the 

diffusion premium per unit diffusive risk, 𝜎1(𝑆𝑡 𝑡). 

The second term represents the market price of jump risk. In general, this contains premiums 

for both the jump size and the rate of occurrence. When jump size is not priced, 𝜅 = 𝜅̃ and 

the market price of jump risk reduces to a premium for the intensity. On the other hand, if 

jump size is priced but timing is not, 𝜆 = 𝜆̃ and only a compensation for size is included.  
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There are now three unknowns, 𝜃, 𝜆̃ and, 𝜅̃, and one equation. This implies a multitude of 

possible prices, and thus the need for economic reasoning to obtain a unique price. In 

practice, market calibration23 is commonly used to estimate the parameters (Shreve, 2004).  

In accordance to the above discussion, the risk-neutral dynamics of 𝑆𝑡 is then given by 

𝑑𝑆𝑡 = 𝑆𝑡𝑟𝑡𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊�𝑡 +  𝑑𝐽𝑡                                                 (23) 

or equivalently 

𝑑𝑆𝑡 = �𝑟𝑡𝑆𝑡 − 𝜅̃𝜆̃�𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊�𝑡 + 𝜎�2(𝑆𝑡, 𝑡)𝑑𝑁�𝑡 .                             (24) 

Here, 

 𝑟𝑡 is the risk-free rate of return, 

 𝜎1(𝑆𝑡, 𝑡) is as before, 

 𝑊�𝑡 is a standard Wiener process, 

 𝜎�2(𝑆𝑡, 𝑡) is the risk-adjusted jump-size, where 𝐸[𝜎�2(𝑆𝑡, 𝑡)] ≡ 𝜅̃, 

 𝑁�𝑡 is a Poisson process with intensity 𝜆̃ . 

Note that the price dynamics under ℚ has an expected rate of return equal to the risk-free 

rate. This is consistent with risk-neutral pricing arguments. Observe also that if jump risk is 

idiosyncratic, the jump intensities and the jump sizes are equal in both probability measures. 

Then, the market price of risk equation is the same as in the situation with no jumps.  

A special case of (4) is when the jump-sizes 𝜎2(𝑆𝑡, 𝑡) are deterministic. Then 𝜅 = 𝜅̃ =

𝜎2(𝑆𝑡, 𝑡), and the market price of risk equation reduces to 

𝜃 =
𝜇(𝑆𝑡, 𝑡) − 𝑆𝑡𝑟𝑡 − (𝜆 −  𝜆̃)𝜎2(𝑆𝑡 𝑡)

𝜎1(𝑆𝑡 𝑡)
 .                                        (25) 

23 This is further discussed in the following. 
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3.5 Hedging and Pricing under Jump-diffusions 

Section 3.3.1 established that there is a o ne-to-one correspondence between arbitrage-free 

(payoff-replication) pricing and equivalent martingale measures. When markets are 

complete, as in the diffusion-case, there exist a unique pricing measure24. In other words, it 

is only one arbitrage-free way to price a co ntingent claim; the value equals the cost to 

replicate it (Cont & Tankov, 2004a).  

When markets are incomplete, as for jump-diffusions, there are in general infinitely many 

pricing measures (Cont & Tankov, 2004a). Essentially this means that there is no hedging 

strategy that perfectly replicates the contingent claim in question. Hence, when setting up a 

hedging portfolio there is risk that cannot be eliminated. From an economic point of view, 

the value of the claim should then equal the cost of the hedge, plus a premium for the 

unhedgeable risk. However, since there are different ways of measuring risk, there are also 

different ways of hedging. This implies that there exist a multitude of possible prices, 

dependent on the risk aversion of the investors.  

As noted in Xu (2005) and Cont & Tankov (2004a), there are two major approaches for 

hedging and pricing contingent claims when markets are incomplete. First, one can use so-

called utility-based methods. Here, one incorporates the investors’ attitude to risk via utility 

functions, using the underlying asset(s) to construct a hedging portfolio. Since it is difficult 

to determine investors’ preferences for risk, this approach is difficult to use in practice (Cont 

& Tankov, 2004a).  

The second approach is called (implied) risk-neutral modeling, and will be the focus in this 

thesis. Here, one obtains the risk-neutral dynamics for the underlying asset directly by 

choosing an equivalent measure ℚ that represents qualitative properties of the asset’s price 

(Cont & Tankov, 2004a). More specific, one assumes that the underlying follows a given 

risk-neutral model with certain parameters. These parameters are extracted from market 

prices25 for liquid contingent claims (e.g. plain vanilla options), and the model is then used 

for hedging and pricing of other exotic or illiquid derivatives. The intuition is that the market 

24 See section 3.3.1. 

25 This is also known as model calibration, and is further discussed in chapter 5. 
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chooses the right pricing measure, reflecting the investors’ risk aversion26. It is important to 

note that this approach may include options (and other contingent claims) to construct the 

hedging portfolio. This requires well-functioning markets for such contracts. If this is not the 

case, reasonable hedging portfolios may not exist (Xu, 2005).  

One can relate the above discussion to the general jump-diffusion in section 3.4. W hen 

markets are incomplete (as is the case for jump-diffusions), the risk-neutral dynamics has no 

direct relation to the real pricing measure ℙ. More specific, the jump intensity (𝜆̃) and 

expected jump size (𝜅̃) under ℚ are unknown. These ‘free parameters’ can then be estimated 

using risk-neutral modeling, as described above.  This is further discussed in chapter 4 and 5.  

3.6 Summary 

This chapter and the previous one laid out the theoretical groundwork for jump-diffusion 

models. By using a Wiener process for normal events and a (compound) Poisson process for 

extreme events, the model can represent all types of disturbances that may affect financial 

markets (Nefcti, 1996).  

Much emphasis has been attributed to the discussion of systematic risk and equivalent 

martingale measures. In general, since investors are assumed to be risk-averse, asset prices 

depend crucially on their level of systematic risk. That is, investors demand a compensation 

for taking on risk that is correlated to the risk in the return from the market portfolio. In our 

model, this includes both diffusive risk and jump risk. 

Since it is difficult to identify the investors’ risk-preferences, the job of pricing assets may 

seem impossible. However, it turns out that there exists a pricing method that maneuvers 

around the problem, without the concern of risk-aversion. In the financial literature this is 

known as the method of equivalent martingale measures. Essentially, this is a pricing 

method that allows for treating a risky asset as if it was risk-free.  

26 More precisely, this reflects the risk aversion of the average investor. The individual investors will in general have 
different attitudes to risk.  

                                                 



 29 

The existences of martingale measures are nearly related to the absence of arbitrage. 

According to the fundamental theorem of asset pricing such a measure exist if the market is 

arbitrage-free. Further, if the market is complete there exist a unique pricing measure.  

On the other hand, if the market is said to be incomplete, there exist a multitude of possible 

prices corresponding to different pricing measures. This stems from the fact that it is  

impossible to perfectly replicate the asset in question. In these situations one must use 

economic arguments, such as those presented in section 3.5, to choose the right measure. 
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4. Pricing European Options on S&P 500 

With the theoretical aspects of the framework for derivatives pricing in place, the remainder 

of this thesis is devoted to its application. In particular, the focus will be directed towards the 

implications of jumps for the pricing of European options with S&P 500 as the underlying 

asset. S&P 500 is a diverse stock market index comprising 500 large companies in leading 

industries in the U.S., and is by many regarded as the best representation of the market 

(Standard & Poor’s, 2013). For the purposes of this thesis, it is important to note that it is a 

price index, i.e. it does not account for dividends.  

This chapter begins with a discussion of the traditional assumption that stock returns follow 

a normal distribution, followed by an empirical examination of the distributional properties 

of historical S&P 500 returns. This leads to the proposition of a jump-diffusion model for the 

dynamics of this index. The chapter concludes by presenting a closed form solution for the 

price of a European call on S&P500.  

4.1 Traditional Assumptions about Stock Returns  

The distributional properties of asset prices, and thus their rate of return, have important 

implications for investment decisions. Numerous models and applications of finance rely 

upon the assumption that stock prices follow a lognormal distribution (Hull, 2012). 

Consequently, the distribution of logarithmic stock returns is assumed to follow a normal 

distribution. This is also one of the underlying assumptions of the Black-Scholes (B&S) 

option-pricing model27 (Black and Scholes, 1973).  

The B&S model is a widely used model for pricing European options. It is based on t he 

assumption that stock prices evolve according to a geometric Brownian motion28. That is, the 

underlying stock is assumed to exhibit the dynamics given by the SDE 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎1𝑆𝑡𝑑𝑊𝑡 .                                                          (26) 

27 The model is not derived here, as it assumed that it is familiar for the reader. See Black and Scholes (1973). 

28 Note that a Brownian motion is equivalent to a Wiener process. 
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In this specific diffusion model, 𝜇 and 𝜎1 are assumed to be constants, representing the 

expected rate of return and the standard deviation of the return, respectively. This is 

consistent with previous explanations. The solution to the SDE is given by 

𝑆𝑡 = 𝑆0𝑒
�𝜇−12𝜎1

2�𝑡+𝜎1𝑑𝑊𝑡  .                                                        (27) 

Since 𝑆𝑡 is a lognormal process, it follows that the distribution of logarithmic stock returns 

are normal. That is,  

𝑅𝑡 = ln �
𝑆𝑡
𝑆0
�~ 𝑁 ��𝜇 −

1
2
𝜎12� 𝑡,𝜎12𝑡�  ,                                           (28) 

where 𝑅𝑡 denotes the logarithmic return (Hull, 2012). From here on, this will be referred to 

as the log-return.  

4.2 Distributional Properties of S&P 500 log-returns 

To determine whether the empirical distribution is consistent with the aforementioned 

assumptions, the distributional properties of log-returns from the S&P 500 index are 

investigated. Obviously, it is  essential that the assumptions leading to a pricing model is 

consistent with the real dynamics. 

Two approaches are applied to assess whether the log-returns of the S&P 500 are normal. 

First, descriptive statistics and graphical representation of the time series are used. Keller 

(2009) advocates the use of such methods. Since this approach requires subjective judgment 

of the distributional properties, formal statistical tests are also conducted in order to 

determine normality. For this, the commonly used Anderson-Darling test is applied to the 

data sample. All statistical tests are conducted in the software MiniTab 16. 

4.2.1 Data 

Data was downloaded from Yahoo! Finance on May 21st. Closing prices for the S&P 500 

index (ticker: ^GSPC) is collected for the period starting in May 1990 and ending in May 

2013 (finance.yahoo.com, 2013a). The frequency of the obtained data is daily, weekly and 

monthly, respectively. From this, log-returns are computed for all frequencies. Only results 

based on 5795 da ily observations are presented in the text. However, identical analyses are 



 32 

conducted to data with weekly and monthly frequencies. The results of these are presented in 

Appendix A.  

4.2.2 Graphical Analysis 

A presentation of the empirical distribution of daily log-returns, along with its descriptive 

statistics is provided in Exhibit 4.1. F or illustrational purposes, the theoretical normal 

distribution is plotted in the same diagram.  

Exhibit 4 1 - Distribution of Daily log-returns for S&P 500, 1990-2013 

 

By visual inspection of the empirical distribution of daily log-returns, it is evident that it 

does not perfectly resemble the normal distribution. In particular, it displays leptokurtic 

features. That is, the peak is higher and the tails are heavier than that of the normal 

distribution. The last point is evident from the frequency of extreme observations. These are 

seen by looking closely at the tails of the histogram. It is noted that the data was checked for 

obvious measurement errors, for which none was identified. 

The descriptive statistics suggest that the distribution of log-returns is close to symmetric. A 

skewness of -0.23 indicates that it is  slightly skewed to the left. Further, kurtosis equal to 

8.518 confirms the views posted above. This implies an excess kurtosis of 5.518. The latter 

measure provides a direct comparison with the normal distribution, which has a kurtosis 

equal to 3.  
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4.2.3 A Formal Normality Test 

A powerful and frequently used method to detect if a given data sample departs from 

normality is the Anderson-Darling test. It is considered beyond the scope of this paper to 

explain how this test is conducted. Instead, a brief description of this method for assessing 

the distributional properties of S&P500 log-returns is provided.  

The test statistic, denoted AD, is the squared difference between the empirical and fitted 

cumulative distribution functions (CDFs) (D’Agostino & Stephens, 1986). Here, each 

observation is weighted in such a way that the tails of the distribution is accentuated. In 

order to determine if the sample follow a particular distribution, the test statistic is compared 

to critical values of the fitted distribution. Smaller values of AD thus indicate a better fit to 

the theoretical probability distribution. The null hypothesis is that the data is normally 

distributed. If the computed p-value is less than the chosen significance level, this is rejected.  

It should be noted that p-values and critical values for the Anderson-Darling test in most 

cases only is approximated since it does not have a usable distribution (D’Agostino & 

Stephens, 1986). The results of the test are displayed in Exhibit 4.2.  

Exhibit 4.2 - Anderson-Darling Test for Daily log-returns 
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In the probability plot, the empirical CDF and the CDF of the normal distribution are 

compared. These are illustrated by the red and blue lines, respectively. Note that the y-axis is 

scaled in such a way that the latter is a straight line. Non-normal data are thus indicated by 

large deviations from the straight blue line. Both ends of the red line exhibit a flatter slope 

than the normal CDF. This implies that the empirical CDF exhibit fatter tails. In other words, 

there are more extreme observations of daily log-returns from S&P 500 than a fitted normal 

distribution would produce.  

MiniTab returns a value of the AD test statistic equal to 92.766. The corresponding p-value 

is less than 0.005. Hence, the assumption of normality is rejected for daily log-returns from 

S&P 500 at a significance level of less than 0.5%.  

In order to verify the conclusion produced by the Anderson-Darling test, two other normality 

tests are applied to the data sample. These are the Kolmogorov-Smirnov test and the Ryan-

Joiner test29. These methods yield the same conclusion as above. Results from these tests are 

presented and discussed in Appendix A. 

4.2.4 Conclusion on Distributional Properties 

Both graphical and formal analysis of the distributional properties of empirical data suggests 

that daily S&P 500 log-returns do not follow a normal distribution. Rather, it is evident from 

the analyses that that the empirical distribution exhibit leptokurtic features, i.e. it has fatter 

tails and a sharper peak. Consequently, it is concluded that daily log-returns are non-normal. 

This conclusion is in direct conflict with traditional assumptions concerning the dynamics of 

stock prices. In particular, geometric Brownian motion fails to capture the distributional 

properties of daily log-returns from S&P 500. Hence, to model these features, other 

stochastic processes are needed (Benth, 2004).  

Note that this conclusion is in accordance with the arguments of Benth (2004). He states that 

log-returns are far from normal for short time horizons. Given that daily log-returns are iid, 

however, the central limit theorem implies that weekly and monthly log-returns will move 

towards a normal distribution (Benth, 2004). This is due to the additive property of log-

29 Note that the Ryan-Joiner test is also called the Shapiro-Wilk test. 
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returns. Still, normality tests for weekly and monthly log-returns presented in Appendix A 

suggest otherwise. The question whether daily log-returns are independent can be discussed, 

as empirical evidence also suggests long-range dependency of returns. However, the issue of 

autocorrelation is ignored as it is of greater importance to models not considered in this 

thesis30.  

4.3 A Suggested Pricing Model for S&P 500 

Based on t he above discussion, alternatives to geometric Brownian motion should be 

considered for the S&P 500 index. There exists an extensive literature on such models (Hull, 

2012). Due to the limited scope of this thesis only one model is applied. As in Bates (1991), 

it is suggested that the price dynamics of the S&P 500 index is given by 

𝑑𝑆𝑡
𝑆𝑡

= [𝜇 − 𝜅𝜆 − 𝑑𝑡]𝑑𝑡 + 𝜎𝑑𝑊𝑡 + (𝑌𝑡 − 1)𝑑𝑁𝑡 .                                  (29) 

Here,  

 𝜇 is the cum-dividend expected rate of return on the asset, 

 𝑑𝑡 is the dividend yield, 

 𝜎 is the diffusion coefficient conditional on no jump, 

 𝑊𝑡 is a standard Wiener process, 

 (𝑌𝑡 − 1) is the percentage jump given a Poisson event, where ln𝑌𝑡 is normally 

 distributed: ln𝑌𝑡  ∼ 𝑁 (𝛼, 𝛿2),  

 𝐸[𝑌𝑡 − 1] ≡ 𝜅 = 𝑒𝛼+
𝛿2

2 − 1 ,   

  𝑉𝑎𝑟[𝑌𝑡 − 1] ≡  𝜐2 = (𝑒𝛿2 − 1)𝑒2𝛼+𝛿2,  

 𝑁𝑡 is a Poisson process with intensity 𝜆 . 

  

The model is often referred to as Merton’s jump-diffusion model. Most of the time, it is  

identical to the B&S-model (i.e. geometric Brownian motion). However, at an average of 𝜆 

times per year, 𝑆𝑡 jumps discretely by (𝑌𝑡 − 1) percent. It should be noted when 𝜆 = 0, the 

process has no jumps. This is also the case when both 𝛼 and 𝛿 equals 0. 

30 The time-dependency of returns is of more interest to models that account for stochastic and/or mean-reverting volatility. 
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Bates (1991) shows that for constant 𝜇 − 𝑑𝑡, the variance, skewness and kurtosis for ln (𝑆𝑡+𝑇
𝑆𝑡

) 

are given by  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣2𝑇 = {𝜎2 + 𝜆[𝛼2 + 𝛿2]}𝑇                                      (30) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝜆𝛼[𝛼2 + 3𝛿2]
𝑇
−1
   2

𝑣3
                                             (31) 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 3 + 𝜆[𝛼4 + 6𝛼2𝛿2 + 3𝛿4]
𝑇−1

𝑣4
                                  (32) 

As the holding period (T) increases, the distribution will converge towards the normal 

distribution (Bates, 1991).  

Consistent with the notation in previous sections, Merton’s model can also be written as 

𝑑𝑆𝑡
𝑆𝑡

= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝐽𝑡 ,                                                       (33) 

where 𝐽𝑡 is a compensated compound Poisson process, 𝐽𝑡 = ∑ (𝑌𝑖 − 1)𝑁𝑡
𝑖=1 − 𝜅𝜆𝑡. 

4.3.1 The Risk-Neutral Measure 

Merton’s original paper from 1976 assumes that jump risk is unsystematic. Hence, neither 

the jump size nor the intensity is priced, and the jump distribution is the same under the real 

and the risk-neutral measure.  

When considering a large stock index, such as S&P 500, Merton’s assumptions regarding 

jump risk, seems to be too simple (Bates, 1991)31. Because of this, it is allowed for 

systematic jumps. Hence, in this framework both jump-size and intensity may change when 

going from ℙ to ℚ. The theory of changing measure for jump-diffusions was presented in 

section 3.4. This will now be applied to our suggested price model.  

Consider the general jump-diffusion,  

31 When combining many stocks in a large portfolio, unsystematic risk will be diversified away. Hence, large indexes such 
as S&P 500 will contain little unsystematic risk. (Berk and DeMarzo, 2011) 
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𝑑𝑆𝑡 = 𝜇(𝑆𝑡, 𝑡)𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝑑𝐽𝑡  .                                        (4) 

To be consistent with Merton’s notation, this is alternatively written as 

𝑑𝑆𝑡 = [𝜇(𝑆𝑡, 𝑡) − 𝜅𝜆]𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊𝑡 +  𝜎2(𝑆𝑡, 𝑡)𝑑𝑁𝑡 .                       (5) 

Given that there is systematic risk inherent in the jumps, the change of measure affect both 

the jump-size and the intensity. As stated earlier, the risk-neutral dynamics is then given by 

𝑑𝑆𝑡 = �𝑟𝑡𝑆𝑡 − 𝜅̃𝜆̃�𝑑𝑡 + 𝜎1(𝑆𝑡, 𝑡)𝑑𝑊�𝑡 +  𝜎�2(𝑆𝑡, 𝑡)𝑑𝑁�𝑡 .                         (24) 

Now, take a second look at Merton’s jump-diffusion model (29). This can be considered as a 

special case of the more general jump-diffusion (5). Specifically, by comparing terms, one 

gets that 

𝜇(𝑆𝑡, 𝑡) =  𝜇𝑆𝑡 

𝜎1(𝑆𝑡, 𝑡) =  𝜎𝑆𝑡 

𝜎2(𝑆𝑡, 𝑡) = (𝑌𝑡 − 1)𝑆𝑡 . 

The risk-adjustment is then straightforward. One should, however, be aware of one particular 

point. When going from ℙ to ℚ, the density function of the jump-sizes 𝜎2(𝑆𝑡, 𝑡) may change. 

This change is dependent on the original distribution. 

In our model, the jump-sizes under ℙ are denoted (𝑌𝑡 − 1). Here ln (𝑌𝑡) is normally 

distributed with mean 𝛼 and variance 𝛿2. Then, as shown in Gerber and Shiu (1994), the 

distribution under ℚ also is normal but with different parameters32. More specific, the result 

is changed mean and unchanged variance33 (Gerber and Shiu, 1994). That is, when changing 

measure, (𝑌𝑡 − 1) will simply turn to a new variable (𝑌�𝑡 − 1), where ln (𝑌�𝑡) is normally 

distributed with new mean 𝛼� and unchanged variance 𝛿2. This is consistent with the 

discussion in section 3.3.2. As before, the economic intuition is that the variable contains a 

32 Here, a so-called Esscher transform is used. Essentially this method takes a density function 𝑓(𝑥) and transform it to a 
new probability function 𝑓(𝑥;ℎ) with parameter ℎ. (Gerber and Shiu, 1994) 

33 When changing measure, a normally distributed variable 𝑋~𝑁(𝛼, 𝛿2) will turn to a new normally distributed variable 
𝑋�~𝑁(𝛼 + ℎ𝛿2, 𝛿2). The parameter ℎ must be determined such that the new measure is an equivalent martingale measure 
(Gerber and Shiu, 1994). 
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premium for systematic risk. When going from ℙ to ℚ this premium is removed, leaving the 

variance unchanged. 

From the above discussion it is clear that the risk-neutral dynamics for our suggested model 

(29) is given by (Bates, 1991) 

𝑑𝑆𝑡
𝑆𝑡

= �𝑟𝑡 − 𝜅̃𝜆̃ − 𝑑𝑡�𝑑𝑡 + 𝜎𝑑𝑊�𝑡 + �𝑌�𝑡 − 1�𝑑𝑁�𝑡.                             (34) 

Here, 

 𝑟𝑡 is risk-free rate of return, 

 𝑑𝑡, 𝜎, and  𝛿 are as before, 

 𝑊�𝑡 is a standard Wiener process, 

 (𝑌�𝑡 − 1) is the percentage jump given a Poisson event, where ln𝑌�𝑡 is normally 

 distributed: ln𝑌�𝑡  ∼ 𝑁 (𝛼�, 𝛿2),  

 𝐸[𝑌�𝑡 − 1] ≡ 𝜅̃ = 𝑒𝛼�+
𝛿2

2 − 1 ,  

  𝑉𝑎𝑟[𝑌�𝑡 − 1] ≡  𝜐�2 = (𝑒𝛿2 − 1)𝑒2𝛼�+𝛿2, 

 𝑁�𝑡 is a Poisson process with intensity 𝜆 . 

It should be noted that when all jump-risk is unsystematic, 𝜆 = 𝜆̃ and 𝛼 = 𝛼�. Then the jumps 

are equal under both measures, and the model coincides with Merton’s jump-diffusion. 

However, if both jump intensity and jump-size contains systematic risk, 𝜆 ≠ 𝜆̃ and 𝛼 ≠ 𝛼�. 

4.3.2 Closed-Form Solution 

When jump risk is idiosyncratic, Merton (1976) provides a closed-form formula for the price 

of a European call option on an underlying following (29). It is straightforward to extend this 

formula to our model34.  

Consider a European call (𝐶) with time to maturity T and strike K. The risk-free rate of 

return (r) is assumed to be constant. If its underlying (𝑆) follows (29) with systematic jump 

risk, the price of 𝐶 is given by: 

34 This is simply done by replacing 𝜆 and 𝛼 in Merton’s formula, with 𝜆̃ and 𝛼�. 
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𝐶(𝑆,𝑇,𝐾) = �
𝑒−𝜆��𝜆̂𝑇�

𝑛

𝑛!

∞

𝑛=0

𝐶𝐵𝑆(𝑆,𝑇,𝐾,𝜎𝑛2, 𝑟𝑛,𝑑𝑡) ,                               (35) 

where 

𝜎𝑛2 = 𝜎2 +
𝑛
𝑇
𝛿2 , 

𝜆̂ = 𝜆̃�1 + 𝑘�� , 

𝑟𝑛 = 𝑟 − 𝜆̃𝑘� +
𝑛
𝑇

ln(1 + 𝜅̃) . 

𝐶𝐵𝑆 represents the well-known B&S-formula (Black and Scholes, 1973) 

𝐶𝐵𝑆(𝑆,𝑇,𝐾,𝜎𝑛2, 𝑟𝑛,𝑑𝑡) = 𝑆𝑡Φ(𝑑1) − 𝐾𝑒−𝑟𝑇Φ(𝑑2) ,                               (36) 

where  

Φ(𝑥) =
1

√2𝜋
� 𝑒

𝑠2
2 𝑑𝑠

𝑥

−∞
 , 

𝑑1 =
ln �𝑆𝐾� + �𝑟𝑛 − 𝑑𝑡 + 𝜎𝑛2

2 � 𝑇

𝜎𝑛√𝑇
 , 

𝑑2 = 𝑑1 − 𝜎𝑛√𝑇 . 

4.3.3 The Hedging Portfolio 

From a financial point of view, pricing of options using (35) and (36) makes no sense 

without a replicating strategy. Since the model exhibits discontinuous jumps the market is 

incomplete. This means that there is no such thing as a perfect hedge, and there exist a 

multitude of pricing measures. Hence, in order to price and hedge under these circumstances 

one must use techniques such as those presented in section 3.4. 

It is considered beyond the scope of this thesis to present a replicating strategy for (29). 

Note, however, that there exists a wide literature on hedging of such models. This includes 

Rebonato (2004), Cheang and Chiarella (2011), etc. As a general result, the hedging 

portfolio includes other contingent claims. 
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5. Calibration 

In order to answer whether jumps are relevant for the pricing of European options on S&P 

500, the suggested model is calibrated to historical option prices. This chapter subsequently 

describes the applied calibration algorithm, the data used in the process, and discusses the 

implementation of the procedure. 

5.1 Method 

Before presenting the applied calibration approach, a general discussion about market 

calibration is provided.  

5.1.1 General Remarks 

Calibration is a common way of determining unknown parameters in financial models (Hull, 

2012). In general, it involves identifying the model parameters that leads to the best fit to 

market data. Several calibration methods are proposed in the literature on option pricing 

models, and the best approach is dependent on the problem at hand35 (Gilli and Schumann, 

2010).  The success of the calibration is critically dependent on an appropriate goodness-of-

fit measure, along with a robust method to solve the resulting optimization problem.  

The choice of goodness-of-fit measure, or objective function, should ensure that the 

calibration process determines the value of the desired parameters in a reasonable fashion.  

Considerations to make are whether the objective function should comprise of absolute or 

relative price differences, whether to use the absolute value or square these differences, and 

if a weighting scheme should be applied (Gilli and Schumann, 2010). Standard methods to 

solve the resulting optimization problem are based on the derivatives of the objective 

function, such as the Newton-Raphson method. In the case of an ill-posed problem, i.e. a 

problem with no uni que or stable solution, however, such methods may fail36 (Cont and 

Tankov, 2004b).  

35 For discussions of different calibration routines, see, e.g., Cont and Tankov (2004b), Hull (2012) or Gilli and Schumann 
(2010).  

36See Cont and Tankov (2004b) for a calibration approach that mitigates this problem.  

                                                 



 41 

It should be noted that the existence of a unique solution to the calibration problem is 

unlikely if model and market prices are restricted to be equal (Cont and Tankov, 2004b). 

This is due to the fact that market prices are quoted as bid-ask intervals with predefined tick 

sizes, and are thus not necessarily exact. Hence, the problem is often reduced to a 

minimization problem.  

5.1.2 Choice of Calibration Approach 

Here, the objective of the calibration procedure is to obtain precise estimates of the diffusion 

volatility (𝜎), the risk-adjusted jump intensity (𝜆̃), the risk-adjusted mean jump-size (𝜅̃) and 

the volatility of the risk-adjusted jump-size (υ�). Since 𝜅̃ and υ� follows directly from α� and δ, 

it does not matter which two of these parameters that are estimated directly through 

calibration, and which two that are subsequently determined indirectly. In this case, the 

procedure is easier to implement when estimates of 𝜅̃ and δ are derived, while υ� and α� are 

indirectly computed. Estimates of implied dividend yield (𝑑) are not obtained here, as it is, in 

general, uncommon to calibrate parameters for which good estimates are easily observable.  

In line with the above discussions, the applied calibration strategy is given by: 

min
𝜎,𝜆�,𝜅�,𝛿 

𝑓�𝜎, 𝜆̃, 𝜅̃, 𝛿� =  min
𝜎,𝜆�,𝜅�,𝛿

��𝐶𝑖𝑂𝑏𝑠 − 𝐶𝑖∗�
2

𝑛

𝑖=1

,                                             (37) 

where 

 𝑛 is the number of calibrating instruments,  

 𝐶𝑖𝑂𝑏𝑠 is the observed market price of calibrating instrument 𝑖, 

 𝐶𝑖∗ is the price obtained by the suggested model for instrument 𝑖. 

(37) states that the model is fitted to market data by minimizing the sum of squared absolute 

differences between observed market prices and model prices with respect to the unknown 

parameters 𝜎, 𝜆̃, 𝜅̃, 𝛿. Since only one daily estimate of these parameters are obtained by 
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choosing calibrating instruments that satisfies a set of required characteristics, it is  

appropriate to use absolute price differences in the objective function37.  

Obviously, the calibrating instruments are traded European type call options with the 

S&P500 index as the underlying asset. Some remarks regarding the choice of these should 

be emphasized. First of all, the number of calibrating instruments cannot be smaller than the 

number of unknown parameters in order for the strategy (37) to work. In addition, it is of 

critical importance to the results that the chosen calibrating instruments and the instruments 

being valued are identical, i.e. that they have the same exercise price and time to maturity, 

respectively (Hull, 2012). The characteristics of the chosen options are thoroughly explained 

in section 5.2.  

Despite its absence in (37), weighting schemes could have been included (Cont and Tankov, 

2004b) . In particular, it was considered to construct relative weights that accounts for the 

liquidity of the given option. It is generally accepted that the more liquid the asset, the more 

confidence is attributed to its price. A possible choice of weights reflecting this is the inverse 

of the bid-ask spread of the specific option, assuming that the bid-ask spread is inversely 

related to liquidity. However, the bid-ask spread is not always possible to obtain. An 

alternative is to exclusively choose options with relatively high trading volumes. This is the 

chosen strategy for the calibration procedure in this thesis.  

5.2 Data 

Historical end-of-day prices for SPX options were obtained from Historical Option Data  

(historicaloptiondata.com, 2013). These are options of European type with the S&P 500 

index as the underlying (cboe.com, 2013a). Exhibit 5.1 presents the product specifications. 

When determining the relevance of jumps, it seems reasonable to choose a sample period 

that includes abrupt price changes. An obvious choice is the global financial crisis of 2008. 

From September 2008 until the end of the year, a total of 32 daily log-returns exceeded 3 

37 It can in some cases be more suitable to use relative price differences in the objective function. A rationale for choosing 
relative price differences rather than absolute price differences is to achieve a more equal weighting of in-the-money and 
out-of-the-money options. This is based on an assumption that relative price differences exhibit less variation than absolute 
price differences in this case. Due to the choice of calibrating instruments, this is not relevant here. 
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Symbol: SPX 

Underlying: The Standard &  Poor's 500 Index is a capitalization-weighted index of 500 stocks from a broad range of 
industries. The component stocks are weighted according to the total market value of their outstanding shares. The 
impact of a component's price change is proportional to the issue's total market value, which is the share price times the 
number of shares outstanding. These are summed for all 500 stocks and divided by a predetermined base value. The base 
value for the S&P 500 Index is adjusted to reflect changes in capitalization resulting from mergers, acquisitions, stock 
rights, substitutions, etc. 

Multiplier: $100. 

Premium Quote: Stated in decim als. O ne point equals $100. M inim um  tick for options trading below  3.00 is 0.05 ($5.00) 
and for all other series, 0.10 ($10.00). 

Strike Prices: In-,at- and out-of-the-money strike prices are initially listed. New series are generally added when the 
underlying trades through the highest or lowest strike price available. 

Strike Price Intervals: Five points. 25-point intervals for far months. 

Expiration Months: Up to tw elve (12) near-term months. In addition, the Exchange may list up to ten (10) SPX LEAPS® 
expiration months that expire from 12 to 60 months from the date of issuance. 

Expiration Date: Saturday follow ing the third Friday of the expiration m onth. 

Exercise Style: European - SPX options generally may be exercised only on the last business day before expiration. 

Last Trading Day: Trading in SPX options w ill ordinarily cease on the business day (usually a Thursday) preceding the day 
on which the exercise-settlement value is calculated. 

Settlement Value: Exercise w ill result in delivery of cash on the business day follow ing expiration. The exercise-
settlement value, SET, is calculated using the opening sales price in the primary market of each component security on 
the last business day (usually a Friday) before the expiration date. The exercise-settlement amount is equal to the 
difference between the exercise-settlement value and the exercise price of the option, multiplied by $100. 

Position and Exercise Limits: No position and exercise limits are in effect. Each member (other than a market-maker) or 
member organization that maintains an end of day aggregate position in excess of 100,000 contracts in SPX and Mini-SPX 
(10 Mini-SPX options equal 1 SPX full value contract) for its proprietary account or for the account of a customer, shall 
report certain information to the Department of Market Regulation. The member must report information as to whether 
such position is hedged and, if so, a description of the hedge employed e.g. stock portfolio current market value, other 
stock index option positions, stock index futures positions, options on stock index futures; and for customer accounts, 
provide the account name, account number and tax ID or social security number. A report must be filed when an account 
initially meets the aforementioned applicable threshold. Thereafter, a report must be filed for each incremental increase 
of 25,000 contracts. Reductions in an options position do not need to be reported. However, any significant change to the 
hedge must be reported. 

Margin: Purchases of puts or calls w ith 9 m onths or less until expiration m ust be paid for in full. W riters of uncovered puts 
or calls must deposit / maintain 100% of the option proceeds* plus 15% of the aggregate contract value (current index level 
x $100) minus the amount by which the option is out-of-the-money, if any, subject to a minimum for calls of option 
proceeds* plus 10% of the aggregate contract value and a minimum for puts of option proceeds* plus 10% of the aggregate 
exercise price amount. (*For calculating maintenance margin, use option current market value instead of option 
proceeds.) Additional margin may be required pursuant to Exchange Rule 12.10. 

Cusip Number: 648815 

Trading Hours: 8:30 a.m . - 3:15 p.m. Central Time (Chicago time). 

Position and Exercise limits are subject to change. 

Source: cboe.com 

Exhibit 5.1 - Fact Sheet for S&P 500 Index Options 
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standard deviations38. The largest single day percentage drop in the S&P 500 index occurred 

on the 15th of October, and equaled 9.47%.  

The first sharp price drop in this period is identified on the 9th of September, when the S&P 

500 index declined by 3.47%. By considering a time frame that is centered on this date, the 

observation interval comprises two distinct periods. One period is characterized by normal 

market conditions and another period is dominated by a high frequency of extreme events. 

This allows for analyzing the impact of price jumps on investor expectations. Perhaps more 

interesting, it may provide answers to whether, and to what extent, the significant financial 

turmoil of 2008 was expected. Consequently, the chosen sample period is 80 t rading days 

prior to, and 80 t rading days after September 9th, i.e. May 12th 2008 to January 5th 2009. 

Exhibit 5.2 shows daily closing prices for the S&P 500 index from January 2007 until May 

2013.  The dashed black lines illustrate the chosen time frame, while the red line is at 

September 9th 2008.  

Exhibit 5.2 - S&P 500 Index, January 2007 - May 2013 

 

38 The standard deviation of daily log-returns used here is based on the period from 1990 until 2013. See Exhibit 4.2 for a 
recap of the descriptive statistics corresponding to this sample period. 
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To ensure the robustness of the estimates, high liquidity levels are desired for the options 

applied in the calibration procedure. However, due to the extreme uncertainty surrounding 

financial markets in the chosen timeframe, both financial prices and liquidity exhibited large 

fluctuations. This is illustrated by a varying and occasionally large bid-ask spread in the 

dataset of SPX option prices. As the liquidity of out-of-the-money options for a large 

fraction of the trading days is insufficient for calibration purposes, only in-the-money 

options are considered. 

In addition, the volatility smile, i.e. the tendency of implied volatility to be higher for deep 

out-of-the-money and deep in-the-money options than for near-the-money options, should be 

accounted for (Hull, 2012). Hence, for the implicit parameters to be comparable within the 

sample period, it is  required that they are obtained from a set of options with similar 

moneyness39. Since the liquidity is the highest and most stable for options with moneyness 

between 1.05 and 1.10 in the dataset, this appears as the best choice of moneyness range.  

Furthermore, the term structure of volatility represents how the implied volatility varies for 

different maturities (Wilmott, 2007). In order to prevent this phenomenon from disturbing 

the estimates, the time to maturity for the calibrating instruments is consistently as close as 

two months as possible. That is, the time to maturity ranges from 45 to 75 days. This is also 

among the most traded maturities. Observe that plotting the implied volatility as a function 

of strike and time to maturity yields the implied volatility surface.  

In addition to the calibrating instruments, estimates of the risk-free rate of return are needed. 

For reasons not elaborated on he re, this rate of return can only be approximated40. A 

frequently used approach is to derive the rate of return from U.S. Treasury securities with an 

appropriate maturity and use this as an approximation of the risk-free rate of return (Berk 

and DeMarzo, 2011). This approach is thus applied here. 

39 Moneyness is a measure of how deep an option is in the money, and is calculated as the spot price of the underlying as a 
fraction of the strike price. The argument is based on an assumption that implied volatility correlates better with moneyness 
than exercise price. 

40 There are several issues related to determining the risk-free rate of return. For instance, when pricing a given cash flow, 
its maturity should ideally be equal to the maturity of the asset from which the risk-free rate is derived. Moreover, it is 
difficult to identify any completely risk-free assets in the real world. Thus, one can at best obtain an approximation of the 
risk-free rate of return. For more on the practical estimation of the risk-free rate of return, see, e.g., Koller, Goedhart and 
Wessels (2010) or Berk and DeMarzo (2011). 
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In particular, the risk-free rate of return is approximated by 3-month U.S. Treasury Bills. 

Each option is matched with the spot rate corresponding to the particular quote date. It is 

noted that, ideally, the maturity of the options and the Treasury Bills should be the same. 

Here, the maturity of the options is 15 to 45 days shorter than that of the 3-month Treasury 

Bills. The choice is justified by the fact that interest rates in the sample period was very low 

and exhibited small deviations between maturities. Additionally, rates from 3-month 

Treasury Bills are more easily obtainable than for shorter maturities. Historical rates for the 

sample period were retrieved from Yahoo! Finance (ticker: ^IRX) (finance.yahoo.com, 

2013b).  

The last variable that needs to be determined is the dividend yield. This parameter is for 

simplifying purposes assumed constant, and is calculated as the 5-year historical average 

dividend yield for the component stocks of the S&P500 index. The applied value of this 

parameter is 1.77%, based on da ta downloaded from Standard & Poor’s 

(standardandpoors.com, 2013).  

5.3 Implementation 

The calibration procedure is implemented in MS Excel. An Excel function for the price of a 

European Call is created in the VBA developer, given that the underlying’s dynamics is 

described by the SDE (29). The absolute difference between the obtained market prices and 

corresponding model prices are then squared and aggregated. By adjusting the values of the 

unknown parameters, the resulting sum is minimized by applying Excel’s Solver add-in. The 

VBA code applied to create the function for the call price is presented in Appendix B. 

The chosen method in Solver is non-linear Generalized Reduced Gradient (GRG), which is 

a proven and reliable approach to solving non-linear problems (Harmon, 2011). Each time 

the GRG algorithm is run in Solver, the starting point is slightly changed until a solution is 

obtained. One should be aware that if the objective function or any constraints is non-

convex, the method might arrive at a locally optimal solution (Solver.com, 2013). To 

increase the probability of obtaining the optimal solution, the procedure should be repeated 

for a range of initial values and realistic constraints should be imposed. Optimally, the initial 

guess reflects good knowledge on the specific problem. Appendix C provides a test of the 

non-linear GRG method’s robustness.  
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According to Cont and Tankov (2004b), gradient-based methods may fail for optimization 

problems such as (37). This is also indicated by the partial derivatives of the theoretical call 

price with respect to the unknown parameters. Graphical representation of these suggests 

that the optimization problem is non-convex. Exhibit 5.3 illustrates the sensitivity of the call 

price to 𝜅̃ and 𝛿, while Exhibit 5.4 shows the sensitivity of the prices for a range of 

parameter values of 𝜎 and 𝜆̃. 

As a consequence of the ill-posedness of the optimization problem (37), the chosen 

calibration method is carefully applied. In particular, for each set of calibration instruments, 

the GRG algorithm is run for a range of initial guesses. Additionally, appropriate constraints 

are imposed for the unknown parameters. The optimal solution is then the set of parameter 

values that produces the lowest aggregate pricing error, which is given by the objective 

function (37).  

Exhibit 5.3 - Theoretical Call Prices for Different Parameter Values of 𝜅̃ and 𝛿 

 

Fixed values of other parameters: 𝑆0 = 100,𝐾 = 100, 𝑟𝑓 = 5%,𝑇 = 1,𝑞 = 0,𝜎 = 20% 𝑎𝑛𝑑 𝜆̃ = 1. 
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Exhibit 5.4 - Theoretical Call Prices for Different Parameter Values of 𝜎 and 𝜆̃ 

 

Fixed values of other parameters: 𝑆0 = 100,𝐾 = 100, 𝑟𝑓 = 5%,𝑇 = 1,𝑞 = 0, 𝜅̃ = 0 𝑎𝑛𝑑 𝛿 = 30%. 
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6. Results 

This section presents the results of the calibration. The obtained time-series of the implied 

parameters are first discussed individually, before they are evaluated in conjunction with 

regards to total implied volatility, given by the square root of (30). Statistical tests are 

performed on relevant parameters in order to determine the significance of the findings.  

Two points should be emphasized regarding the results presented below. First, inferences are 

based upon the risk-neutral parameters. As explained above, only in the case of 𝜎 and 𝛿 are 

these identical to those of the real world. Bates (1991) argues, however, that the risk-neutral 

parameters do not  differ significantly from the corresponding real world parameters, given 

reasonable assumptions41. 

Second, the parameter values implicit in option prices are allowed to change. This is in 

contrast to the assumptions that the jump-diffusion model is built upon. That is, it is 

inconsistent with the assumption about constant or slow-changing parameters. However, 

doing so allows for the generation of a time-series of the implied parameters, which allows 

for investigating the change in sentiment following jump events (Bates, 1991).  

6.1 Implied Diffusion Coefficient 

The implied diffusion coefficient (𝜎) averaged at 9.62% in the sample period as a w hole, 

with an associated standard deviation of 5.06%. The largest estimate exceeds 34% is 

obtained for September 15th, a day when S&P 500 dr opped 4.71%. On average, both the 

diffusion coefficient and the variability of the coefficient estimate are greater in the period 

after September 9th than the period before this date. This is evident from a 0.94 percentage 

point greater average and 2.81 pe rcentage point greater standard deviation in this period. 

From Exhibit 6.1, where the daily estimates are plotted, this is easily observable. 

41 These include plausible assumptions regarding relative risk aversion and about the extent to which jumps in the S&P 500 
index affects total wealth  (Bates, 1991).  
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Exhibit 6.1 - Implied Daily Diffusion Coefficient (𝜎) 

 

6.2 Implied Jump Intensity 

Daily estimates of implied jump intensity (𝜆̃) varies from a minimum of 0.3 to a maximum 

of 13.81. The average for the whole period of 160 trading days is 5.73 jumps per year and 

the standard deviation is 2.18. T he estimated parameter values suggest that the market on 

average expects a higher annual frequency of jumps in the last 80 da ys of the sample. 

Compared to the first period, the average is larger by a magnitude of 1.57, while the standard 

deviation is only slightly increased. Exhibit 6.2 illustrates the evolution of the implied jump 

intensity.  

It is difficult to infer from the results that the negative shock on September 9th was expected. 

Still, it is noted that the implied number of jumps was relatively high before this date. This 

suggests an assessed risk of jumps occurring, however not to a very large extent.  

It seems reasonable that investors revise their expectations regarding jumps after their 

occurrence. From Exhibit 6.2, it is though unclear to what direction they are adjusted. One 

might expect that shortly after a jump has occurred, investors expect fewer jumps in the near 

future. The sharp drop in the implied jump frequency on September 9th may indicate this.  
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Exhibit 6.2 - Daily Implied Jump Intensity (𝜆̃) 

 

On the other hand, this is somewhat inconsistent with the observed increase in the estimated 

parameter value in the days after September 16th and that it then remains at relatively high 

levels throughout the sample period. A plausible explanation is related to the extreme market 

conditions characterizing the months following 15th of September. Suddenly, daily returns of 

magnitudes that are perceived as jumps occurred very frequently, while they before were few 

and far between42. As the uncertainty surrounding financial markets became extreme, it is 

intuitive that the assessed risk of jumps increased. 

6.3 Implied Mean Jump Size 

Obtained estimates of implied mean percentage jump size conditional on a jump occurring 

(𝜅̃) range from 0% to 7.29%. The associated average and standard deviation is 0.67% and 

1.33%, respectively. The results are presented in Exhibit 6.3. 

42 As mentioned in section 5.2, a total of 32 obs ervations of daily log-returns exceeded 3 standard deviations from 
September 2008 until the end of the year. In comparison, from January 2007 until the start of September 2008, only a total 
of 3 daily log-returns of this magnitude are observed.  
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Exhibit 6.3 - Daily Implied Mean Jump Size (𝜅̃) 

 

There is little or no evidence of an expected negative price jump in the derived parameter 

values for the mean jump size. In fact, no daily estimate yielded a negative value of the mean 

jump size. However, results indicate that the average of implied mean jump sizes is larger 

and more volatile in the first half of the sample, i.e. before the first jump event. While 

positive values are frequently observed in this period, the by far most common estimate in 

the second period is 0%. This is confirmed by a median observation of 0% for the period 

following September 9, reflecting the uncertainty that characterized financial markets. 

6.4 Implied Standard Deviation of Percentage Jump Sizes 

For the whole sample period, the average implied standard deviation of percentage jump 

sizes (υ�) is 16.69%. The estimates vary between 2.8% and 43.16% and have a standard 

deviation of 7.52%. Not surprisingly, there is a marked change in the implied volatility of 

jump sizes after September 9th. This is clear from Exhibit 6.4, which provides an illustration 

of the obtained estimates of this parameter. 
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Exhibit 6.4 - Daily Implied Standard Deviation of Percentage Jump Sizes (𝜐�) 

 

With the exception of a couple of observations in August, this parameter evolved in a 

relatively stable fashion until the occurrence of the first jump event. The average implied 

standard deviation of jumps is estimated to 11.74% for the period before this event. 

Evaluated in conjunction with positive estimates of implied mean jump sizes in the same 

period, investors did not seem to attach a high probability to the possibility of a market 

crash. On September 8, the implied standard deviation of percentage jump sizes is 6.53%, 

and the associated implied mean jump size is estimated to 0.45%.  

After this date, the parameter estimates exhibit an increasing trend until the midst of 

November. This is a direct reflection of the significant financial turmoil associated with this 

period. In contrast to the first half of the sample, the corresponding average implied standard 

deviation of jump sizes for the second half is 21.64%.  

6.5 Implied Total Volatility 

By putting together the estimates of the individual parameters, the total volatility implicit in 
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obtained from the VIX index43, this is a reasonably high estimate. However, it is  less than 

half the size of the implied volatility of the subsequent period, for which the average is 

55.88%. The highest estimated value is obtained for October 29, and equals 84%. Exhibit 6.5 

depicts the implied volatility from the jump-diffusion model along with the VIX index for 

the same period.  

Exhibit 6.5 - Daily Implied Volatility From Jump-Diffusion Model and VIX Index 

 

The VIX index is included in the exhibit in order to verify the obtained estimates. It is clear 

that the graphs track each other fairly well, even though the resemblance is not perfect. Some 

deviations should however be expected, as the VIX index value is calculated from a many 

near-term options for a range of exercise prices (cboe.com, 2013b). Additionally, some of 

the jump-diffusion parameters are risk-neutral. 

43 The CBOE Volatility Index (VIX) measures the implied volatility in the S&P 500 index conveyed by near-term S&P 500 
stock option prices (cboe.com, 2013b).  
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6.6 Pricing Error 

For almost all days in the sample, the jump-diffusion model fits the data well. This is evident 

from the consistent achievement of a low pricing error, which is measured by the objective 

function presented in section 5.1.2. T he most notable exception is the days following 

September 9. Due to low liquidity, as indicated by very large bid-ask spreads and low 

trading volumes, option prices were inaccurate and exhibited large degrees of variation for 

these days. Hence, the fitting of the parameters inevitably produced some undesirably large 

pricing errors. Exhibit 6.6 presents the aggregate squared pricing errors. 

Exhibit 6.6 - Aggregate Squared Pricing Errors 

 

6.7 The Relevance of Jumps 

The above results suggest that jumps are relevant for the pricing of European options written 

on the S&P 500 index. This is firstly indicated by the positive values obtained for the jump 

intensity. In addition to a positive probability for the occurrence of jumps, it is also required 

that there is a positive probability that their size is greater than 0.  This is found to be the 

case, as the estimated values of the volatility of the jump size are positive.  Consequently, it 
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does not matter that the expected mean jump size is frequently estimated at or around 0. 

However, in order to establish if jumps are relevant, formal statistical tests are conducted.  

For the purposes of this paper, it is sufficient to test the significance of the obtained 

estimates of the implied jump intensity and the implied standard deviation of the percentage 

jump size. It is considered unimportant to formally test the values of the implied mean jump 

size. There are two reasons for this. First, this will not affect conclusions on the relevance of 

jumps. Second, it seems obvious that this parameter is not significantly different from 0 for 

reasonable confidence levels. 

To enable the use of tests that require normally distributed variables, the 160 daily estimates 

of the implied parameters subject to testing is transformed into a total of 32 non-overlapping 

averages comprising of 5 daily estimates. These averages are split into two samples. The first 

is the 16 averages obtained from the sub-period from May 12 until September 8, while the 

second comprises the averages estimated from September 9 until January 5 2009. According 

to the central limit theorem, these averages are normally distributed given a sufficiently large 

sample size and that the averages are iid (Keller, 2009).  

Neither graphical analysis nor the Ryan-Joiner44 test for normality rejected the hypothesis 

that the averages from the two sample periods follow a normal distribution. Hence t-tests are 

applied in all cases.  

The hypothesis of no j umps occurring, i.e. 𝜆̃ = 0, is rejected at a 1% significance level, 

which is confirmed by a t-statistic of 18.45 and 14.70 for the first and second sample period, 

respectively. In the same manner is the hypothesis of deterministic jump sizes45, i.e. υ� = 0, 

rejected at 1% significance levels. The corresponding t-statistics is calculated to 25.83 and 

14.04. Hence, it is formally established that jumps in the S&P 500 index are relevant for the 

pricing of European options with this index as the underlying. 

Lastly, it is tested whether investor expectations regarding these parameters significantly 

differs before and after the 9th of September. A two-sample t-test comparing the means of the 

44 The Ryan-Joiner test is preferred instead of the Anderson-Darling test because of the relatively small sample size.  

45 No variation in the mean jump size is implies deterministic jump sizes. Note that if κ� is not significantly different from 0, 
this is equivalent to testing whether the size of the jumps significantly differs from 0. 
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implied parameters for the two sample periods confirms on a 99% confidence level that both 

the implied jump intensity and the implied standard deviation of percentage jump sizes are 

greater in the latest sample.  

Appendix E presents descriptive statistics for the 5-day averages for all parameters, also 

those not tested, results of the Ryan-Joiner tests for normality, and printouts from the 

performed t-tests.  

6.8 Summary  

Summing up, the estimated parameter values implicit in option prices provide three main 

insights. First, it is established that jumps in the S&P 500 index are relevant for the pricing 

of European options written on this index. A standard t-test confirms that both the implied 

jump intensity and the implied standard deviation of percentage jump sizes significantly 

differ from 0. Consequently, there was an assessed risk of jumps in the S&P 500 index for 

the period considered. 

Second, the results do n ot provide evidence that investors in any way expected a market 

crash in September 2008. That is, there is no indication of a stronger than normal perception 

of downside risk. This conclusion is supported by a non-negative implied mean jump size. 

Implied values of the other jump parameters also indicate that the significant financial 

turmoil starting at the 9th of September was unexpected.  

Third, the frequent occurrence of jumps in the months following September 9th of 2008 is 

found to significantly alter investor expectations regarding jump events. A t-test applied to 

the samples before and after this date confirms that a higher frequency of jumps was 

expected in the period after the financial crisis struck. In addition, there was a perceived risk 

of jumps of greater magnitude. That is, the implied standard deviation of jump sizes is found 

to be significantly larger in the second sample period. These findings are not surprising, 

given the extreme market conditions associated with this period. 



 58 

7. Conclusions 

In the following, the findings of this thesis are summarized. Also provided is a discussion of 

limitations related to the analysis, before suggestions for further research is presented in the 

end. 

7.1 Concluding Remarks 

Empirical observations suggest that most financial markets occasionally are characterized by 

abrupt and large price changes. This highlights the need for accurate pricing models that 

allows for discontinuous jumps. In the literature, such models are known as jump-diffusions. 

Compared to traditional pricing models, these pose additional challenges related to the 

adjustment for systematic risk. In particular, when allowing for jumps, markets are in general 

no longer complete. This precludes the construction of a perfectly replicating portfolio.   

In this thesis, the theoretical framework for jump-diffusions is established. It is shown how 

to overcome the aforementioned challenges in order to use such models for pricing purposes. 

Especially, the adjustment for systematic risk is thoroughly covered with particular focus on 

economic intuition.  

With the theoretical aspects in place, a specific jump-diffusion model is suggested for the 

S&P 500 i ndex. Calibration to market data from May 2008 t o January 2009 shows that 

jumps were relevant for the pricing of options written on t he S&P 500 index. That is, an 

assessed risk of jumps in the index is established for this period. Furthermore, no indication 

of crash fears is found prior to the outbreak of the financial crisis. Lastly, the analysis shows 

that more frequent jumps were expected after the crisis struck.  

7.2 Limitations  

As noted, there exist a range of models that may explain the dynamics of S&P 500. It is not 

given that the chosen jump-diffusion model provides the best fit. For instance, jump-

diffusion models with stochastic volatility may better describe the development in the S&P 

500 index. However, it is a trade-off between efficiency and the value added by more 
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complex models. If making the model more complex provides little extra value, there are 

probably good arguments for not doing so.  

Ideally, several independent estimates of the implicit parameters should be derived for each 

trading day. Calibrating the model to an array of options with different strike prices and 

different maturities might improve the reliability of the results. In addition, considering puts 

in the calibration procedure would possibly increase the validity of the estimates. The main 

reason that this is not done here, is the issue of liquidity. Only call options with moneyness 

in the range between 1.05 and 1.10, along with a maturity between 45 and 75 da ys, had 

sufficiently high and stable trading volumes in order to be suitable for calibration. That is, 

options without these characteristics had, at least occasionally, bid-ask spreads so large that 

fairly precise estimates of the implicit parameters were very difficult to obtain.  

Also, a longer time-series of the jump-diffusion parameters could have been obtained, as this 

probably would reduce the estimation error. On the other hand, it is undesirable to include 

outdated observations that are of little relevance. Hence, there is a trade-off between 

statistical significance and reliability. Furthermore, calibration is costly in terms of 

computational time.  

Lastly, it is noted that there are several sophisticated optimization methods that are more 

robust than non-linear GRG for ill-posed calibration problems, see, e.g., Cont and Tankov 

(2004b). Still, this method is applied in this thesis for two reasons. First, it produces reliable 

and satisfactory results. This is evident by the small pricing errors that are consistently 

achieved. Second, the method is relatively easy to implement compared to other approaches. 

Hence, the need for more complex methods is considered non-existing. 

7.3 Suggestions for Further Research 

The framework applied in this paper is applicable to a variety of other research areas. For 

instance, the jump-diffusion model may be applied to a different time period, to other 

derivatives, or to other markets. 

First, it seems interesting to reproduce the analysis by using current market prices for S&P 

500 index options. Important insights about investors’ assessment of risk may then be 

revealed. This is of particular interest since the S&P 500 i ndex recently have been 
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fluctuating around all-time-high-levels. Is there, for instance, a perceived risk of an 

impending negative price jump?   

Furthermore, the same analysis can be conducted by using American rather than European 

options. Estimating implicit parameters from American options would require an expansion 

related to deriving the price of the given option. A simulation-based pricing approach or a 

closed-form approximation may be used. This will probably lead to fewer problems related 

to liquidity, as American options in general are more actively traded than their European 

counterparts. Also, this enables similar analysis of assets for which only American options is 

available.    

Last but not least, the analysis can be extended to also consider the importance of jumps for 

the accuracy of pricing. That is, examining whether accounting for jumps is important for 

getting the price right, out of sample. 
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Appendices 

Appendix A: Normality Testing of S&P500 log-returns 

Daily Returns 

The distributional properties of daily log-returns were also investigated by the Ryan-Joiner 

and Kolmogorov-Smirnov tests. The latter is similar to the Anderson-Darling test, with the 

exception that it attaches less weight to the tails of the distribution. The former uses another 

test statistic, which is more cumbersome to compute, and is better when sample sizes are 

relatively small (D’Agostino & Stephens, 1986). Results produced by these tests are 

displayed in Exhibits A1 and A2, respectively.  

Exhibit A1 - Ryan-Joiner Test for Normality of Daily log-returns 

 

For the Ryan-Joiner test, RJ is the test statistic. MiniTab estimates this to 0.956. This 

corresponds to a p-value of less than 0.01.  Consequently, the null hypothesis that the data 

sample is from a normal distribution is rejected for significance levels of 1% and greater. 
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Exhibit A2 - Kolmogorov-Smirnov Test for Normality of Daily log-returns 

 

Exhibit A2 shows that The Kolmogorov-Smirnov test yield the same result as the Ryan-

Joiner test. That is, the p-value that corresponds to the observed test value, KS, is less than 

0.01. It follows that the null hypothesis is rejected for significance levels greater than or 

equal to 1%. 

Weekly Returns 

Exhibit A3 presents the empirical distribution of 1199 weekly log-returns from S&P500 for 

the given sample period. Also presented are descriptive statistics and the density function of 

the normal distribution.  

Weekly log-returns seem to exhibit the same features identified for daily log-returns. Visual 

inspection and the calculated kurtosis suggest that the empirical density is leptokurtic, 

however to a lesser extent than daily log-returns. Furthermore, a greater magnitude of 

negative skewness is identified. As noted, this is not consistent with the normal distribution.  
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Exhibit A3 - Distribution of Weekly log-returns for S&P500, 1990-2013 

The output of the Anderson-Darling test applied to weekly log-returns is provided in Exhibit 

A4. Clear deviations from the straight line are observed, as the empirical CDF displays a “S-

shape”. AD is estimated to 10.073, for which the p-value is below 0.005. Hence, normality is 

rejected for weekly log-returns for 0.5% significance or more. Ryan-Joiner and 

Kolmogorov-Smirnov approximated p-values were both below 0.01, and yielded thus similar 

conclusions.  

Exhibit A4 - Anderson-Darling Test for Weekly log-returns 
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Monthly Returns 

The empirical density of monthly log-returns along with descriptive statistics and the normal 

distribution curve is illustrated in Exhibit A5. It does not display leptokurtic features and the 

peak is clearly less sharp than for higher frequencies. This is supported by kurtosis of less 

than 3. Monthly log-returns exhibit the most negatively skewed distribution. Consequently, 

the figures indicate that the normal distribution is poorly resembled. This may be related to 

the sample size of 276 observations.  

Exhibit A5 - Distribution of Monthly log-returns for S&P500, 
1990-2013 

 

The results of the Anderson-Darling test for monthly log-returns are shown in Exhibit A6. 

The “S-shape” observed for higher frequencies are no longer obviously present. However, 

the red line is far from straight and its shape indicates more outliers than the normal 

distribution. The test-statistic and p-value provided by MiniTab is 2.277 and less than 0.005, 

respectively. Hence, the null hypothesis is rejected with the same confidence as for daily and 

weekly data. Also here, the Ryan-Joiner and Kolmogorov-Smirnov approximated p-values 

were both short of 0.01. Conclusions are thus similar.  

 

0

5

10

15

20

25

30

35

40

45

-20% -15% -10% -5% 0% 5% 10% 15% 20%

Empirical Distribution Normal Distribution

Descriptive statistics 

Mean 0.55% 
Std.dev 4.34% 
Skewness -0.8241 
Kurtosis 1.6998 
Median 1.08% 
Max 10.58% 
Min -18.56% 
Q1 -1.86% 
Q3 3.42% 
Observations 276 



 65 

Exhibit A6 - Anderson-Darling Test for Monthly log-returns 
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Appendix B: VBA Code Used to Calculate Model Price in 
Excel 

The MS Excel function used to obtain the price of a European Call when the underlying’s 

dynamics is represented by the jump-diffusion suggested in (#), is created by the VBA code 

presented in Exhibits B1 and B2. 

Function EuropeanOption(CallOrPut, S, K, v, r, T, q) 

Dim d1 As Double, d2 As Double, nd1 As Double, nd2 As Double 

Dim nnd1 As Double, nnd2 As Double 

d1 = (Log(S / K) + (r - q + 0.5 * v ^ 2) * T) / (v * Sqr(T)) 

d2 = (Log(S / K) + (r - q - 0.5 * v ^ 2) * T) / (v * Sqr(T)) 

nd1 = Application.NormSDist(d1) 

nd2 = Application.NormSDist(d2) 

nnd1 = Application.NormSDist(-d1) 

nnd2 = Application.NormSDist(-d2) 

If CallOrPut = "Call" Then 

  EuropeanOption = S * Exp(-q * T) * nd1 - K * Exp(-r * T) * nd2 

Else 

  EuropeanOption = -S * Exp(-q * T) * nnd1 + K * Exp(-r * T) * nnd2 

End If 

End Function 

Exhibit B1 – VBA Code for the Price of a European Call 
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Public Function JumpDiffusionCall(S, K, v, r, T, q, Kappa, Delta, Lambda) 

Dim LAMBDAn As Double, SIGMAn As Double 

Dim Rn As Double, Sum As Double 

Dim i As Integer 

LAMBDAn = Lambda * (1 + Kappa) 

Sum = 0 

For i = 0 To 100 

SIGMAn = Sqr(v ^ 2 + (i * Delta ^ 2) / T) 

Rn = r - (Lambda * Kappa) + i * (WorksheetFunction.Ln(1 + Kappa)) / T 

Sum = Sum + (Exp(-LAMBDAn * T) * (LAMBDAn * T) ^ i / Application.Fact(i)) * 

EuropeanOption("Call", S, K, SIGMAn, Rn, T, q) 

Next 

JumpDiffusionCall = Sum 

End Function 

Exhibit B2 – VBA Code for the Price of a European Call When Underlying 
is Modeled by a Jump-diffusion 
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Appendix C: Robustness Test of Optimization Method in 
Solver 

To ensure that the chosen optimization method is appropriate for the given purposes, its 

robustness is tested. The test is conducted by confirming that Solver actually arrives at the 

optimal solution to the optimization problem when it is  possible. That is, the method is 

applied to a problem of the same type as (37), defined in such a way that there exists a 

unique solution. This is the case if market prices are substituted with prices generated by the 

model. The initial guess for the value of the unknown parameters should deviate from those 

used to obtain the model prices. Instead of minimizing the sum in (37), it could now be set 

equal to zero. If Solver yields a solution by using the non-linear GRG method, it is  

considered robust for the application in this thesis. Exhibit C1 presents a set of randomly 

chosen input parameters and the corresponding model generated prices of four European call 

options.  

Exhibit C1 - Model Generated Prices for European Calls 

Parameters Call 1 Call 2 Call 3 Call 4 
Known      
 Asset Price S 100 100 100 100 
 Strike Price K 90 100 110 120 
 Risk-Free Rate r 1.00% 1.00% 1.00% 1.00% 
 Time to Maturity T 1 1 1 1 
 Dividend Yield d 2.00% 2.00% 2.00% 2.00% 
Unknown      
 Diffusion coefficient 𝜎 15.00% 15.00% 15.00% 15.00% 
 Kappa  𝜅̃ 0.00% 0.00% 0.00% 0.00% 
 Delta 𝛿 10.00% 10.00% 10.00% 10.00% 
 Lambda 𝜆̃ 5 5 5 5 
Model Output      
 Call Price 𝐶𝑖∗ 15.00 9.94 6.36 3.98 

 

For relatively good initial guesses, the method consistently succeeds in identifying the 

optimal solution. However, the success seems to be somewhat sensitive to the precision of 

the starting values of the unknown parameters. The method still generates parameter values 

that produce small aggregate pricing errors even for very imprecise starting values. 

Nonetheless, this test highlights the need for repeating the algorithm for a range of initial 

guesses. When this is done, the method is considered to be sufficiently reliable for the 

purposes of this thesis.  
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Appendix D: Test of Pricing Model 

The suggested pricing model is tested for errors in order to be able to put confidence in the 

results obtained. Bates (1991) presents a table of theoretical prices on European call options 

when the underlying follows the same dynamics as suggested for S&P 500 in this thesis. By 

applying the same input parameters, the suggested pricing model should exactly reproduce 

the prices obtained by Bates (1991). The results of the test are presented in Exhibit D1.  

Exhibit D1 - Theoretical Option Prices Compared to Bates (1991) 

          Suggested Model   Bates (1991) 

 Jump-Diffusion Parameters  Exercise Price K  European Call 
Option c(S,T;K) 

 European Call 
Option c(S,T;K)     

        
1) σ = 0,1414  220  29.49  29.49 

 λ = 0  235  16.39  16.39 

 γ = 0  250  6.88  6.88 

 δ = 0  265  2.04  2.04 

   280  0.42  0.42 

        

2) σ = 0,10  220  29.45  29.45 

 λ = 10  235  16.25  16.25 

 γ = 0.01  250  6.81  6.81 

 δ = 0.03  265  2.17  2.17 

   280  0.56  0.56 

        

3) σ = 0,10  220  29.58  29.58 

 λ = 10  235  16.49  16.49 

 γ = -0.01  250  6.79  6.79 

 δ = 0.03  265  1.88  1.88 

   280  0.35  0.35 

Fixed values of other parameters: 𝑆0 = 250, 𝑟𝑓 = 10%, 𝑇 = 0,25 

 

No differences are identified between the models. Hence, it is concluded that the pricing 

model is correct and free of errors. Note that in the above exhibit, the notation of Bates 

(1991) is used. In terms of the notation used in this thesis, 𝜆̃ =  𝜆  and γ =  𝛼� +  𝛿
2

2
, or 

equivalently 𝑒γ =  𝜅̃. 
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Appendix E: T-Test for The Relevance of Jumps 

Exhibit E1 provides descriptive statistics for the 5-day independent averages of all obtained 

parameters for the sample period as a whole, and for the two sub-periods.  

Exhibit E1 - Descriptive Statistics, 5-day Independent Averages 

12.05-05.01 Average Std.dev Max Min Median Q1 Q3 Skewness Kurtosis 

 𝜎 9,62 % 3,22 % 19,96 % 4,64 % 9,21 % 7,99 % 11,83 % 1,02 2,13 
 𝜆̃ 5,73 1,65 8,65 1,76 5,63 4,64 6,67 -0,08 -0,18 
 𝜅̃ 0,67 % 1,16 % 4,88 % 0,00 % 0,26 % 0,00 % 0,59 % 2,76 7,71 
 𝜐� 16,69 % 6,73 % 32,96 % 8,62 % 13,79 % 11,04 % 21,95 % 0,85 -0,48 
 𝜈� 41,27 % 17,62 % 75,11 % 22,73 % 30,61 % 26,48 % 60,81 % 0,60 -1,31 
 𝛼�  -0,95 % 1,97 % 3,75 % -5,28 % -0,64 % -2,40 % -0,08 % 0,21 0,53 
 𝛿 16,42 % 6,56 % 32,03 % 8,57 % 13,65 % 10,96 % 21,67 % 0,83 -0,57 
12.05-08.09          

 𝜎 9,15 % 2,34 % 12,88 % 5,27 % 8,42 % 7,63 % 10,63 % 0,26 -0,97 
 𝜆̃ 4,95 1,07 6,70 3,18 4,78 4,16 5,67 0,38 -0,81 
 𝜅̃ 1,19 % 1,45 % 4,88 % 0,19 % 0,51 % 0,28 % 1,48 % 1,94 2,98 
 𝜐� 11,74 % 1,82 % 16,30 % 8,62 % 11,10 % 10,79 % 12,76 % 0,98 1,60 
 𝜈� 26,65 % 2,46 % 31,18 % 22,73 % 26,42 % 24,54 % 28,39 % 0,13 -0,84 
 𝛼�  0,46 % 1,34 % 3,75 % -0,67 % -0,11 % -0,39 % 0,71 % 1,78 2,40 
 𝛿 11,55 % 1,69 % 15,42 % 8,57 % 11,02 % 10,52 % 12,58 % 0,72 0,66 
09.09-05.01          

 𝜎 10,09 % 3,93 % 19,96 % 4,64 % 9,42 % 8,44 % 11,99 % 0,92 1,46 

 𝜆̃ 6,52 1,77 8,65 1,76 6,58 5,60 7,84 -1,18 2,23 

 𝜅̃ 0,15 % 0,34 % 1,28 % 0,00 % 0,00 % 0,00 % 0,07 % 2,91 8,98 

 𝜐� 21,64 % 6,17 % 32,96 % 10,69 % 22,02 % 16,16 % 26,05 % -0,08 -0,67 

 𝜈� 55,88 % 13,42 % 75,11 % 30,04 % 60,88 % 45,92 % 66,18 % -0,59 -0,68 

 𝛼�  -2,37 % 1,39 % 0,36 % -5,28 % -2,40 % -3,33 % -1,28 % -0,04 0,25 

 𝛿 21,29 % 5,95 % 32,03 % 10,47 % 21,75 % 16,05 % 25,60 % -0,15 -0,66 

 

The Ryan-Joiner test for normality is applied to the 5-day averages obtained for the jump 

intensity and the standard deviation of percentage jump sizes. The test is individually 

performed for the sample from the first sub-period and the sample from the second sample 

period, respectively. Exhibit E2 presents the results. 
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Exhibit E2 - Ryan-Joiner Test for Normality 

 𝝀�_1 𝝀�_2 𝝊�_1 𝝊�_2 

Average 4.95 6.516 0.1174 0.2164 
Std.dev 1.073 1.773 0.01818 0.06167 
Observations 16 16 16 16 
RJ 0.972 0.95 0.949 0.991 
P-Value >0.10 0.086 0.084 >0.10 

 

As is evident from the obtained p-values, the test does not enable the rejection of the null 

hypothesis, i.e. that the parameters are normally distributed. This is also supported by 

graphical analysis of the samples. Hence, normality is not rejected, and t-tests are thus 

applicable in order to determine the significance of the results.  

A one-sample t-test was conducted to all samples. In all cases, the hypothesis of a m ean 

equal to zero was rejected on a 1% significance level. A printout from the tests is presented 

in Exhibit E3. 

 

 

 

 

 

 

In order to determine whether the assessed values of these parameters are significantly 

different between the two sample periods, a two-sample t-test was performed for the jump-

intensity and the standard deviation of jump sizes, respectively. Both tests yielded significant 

results on a 99% confidence level, i.e. that 5-day averages of these variables are significantly 

different between the sub-periods. Exhibit E4 and E5 provides the respective test-printouts.  

 

 

One-Sample T: λ_1, λ_2, υ_1, υ_2  
 
Test of mu = 0 vs not = 0 
 
 
Variable   N     Mean    StDev  SE Mean        99% CI            T      P 
λ_1       16    4.950    1.073    0.268  (  4.160,   5.741)  18.45  0.000 
λ_2       16    6.516    1.773    0.443  (  5.210,   7.822)  14.70  0.000 
υ_1       16  0.11739  0.01818  0.00455  (0.10399, 0.13078)  25.83  0.000 
υ_2       16   0.2164   0.0617   0.0154  ( 0.1710,  0.2619)  14.04  0.000 
 

 

Exhibit E3 – One-sample t-test of 𝜆̃ and 𝜐� for the two sub-periods 
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Two-Sample T-Test and CI: λ_1, λ_2  
 
Two-sample T for λ_1 vs λ_2 
 
      N  Mean  StDev  SE Mean 
λ_1  16  4.95   1.07     0.27 
λ_2  16  6.52   1.77     0.44 
 
 
Difference = mu (λ_1) - mu (λ_2) 
Estimate for difference:  -1.566 
99% CI for difference:  (-3.015, -0.117) 
T-Test of difference = 0 (vs not =): T-Value = -3.02  P-Value = 0.006  DF = 24 
 

 

 
Two-Sample T-Test and CI: υ_1, υ_2  
 
Two-sample T for υ_1 vs υ_2 
 
      N    Mean   StDev  SE Mean 
υ_1  16  0.1174  0.0182   0.0045 
υ_2  16  0.2164  0.0617    0.015 
 
 
Difference = mu (υ_1) - mu (υ_2) 
Estimate for difference:  -0.0990 
99% CI for difference:  (-0.1456, -0.0525) 
T-Test of difference = 0 (vs not =): T-Value = -6.16  P-Value = 0.000  DF = 17 

 

Exhibit E4 - Two-sample t-test of 𝜆̃  
 

Exhibit E5 - Two-sample t-test of  𝜐� 
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