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ABSTRACT 

This study presents a multispecies stochastic model. The model suggests optimal fishing policy for 

two species in a three species predator prey ecosystem in the Barents Sea. We have employed 

stochastic dynamic programing to solve a three dimensional model, where catch is optimized by a 

multispecies feedback strategy. Application of the model in cod, capelin and herring ecosystem in the 

Barents Sea shows that the optimal catch for stochastic interaction model is more conservative 

compared to deterministic policy. Furthermore, we found that stochasticity has strong effect on 

optimal exploitation policy in the prey (capelin) compared to the predator (cod) species.  
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1. Introduction 

 

Barents Sea is one of the most productive ocean areas in the world (Aanestad, Sandal, & Eide, 2009; 

O'Brien, Tompkins, Eriksen, & Prestrud, 2004) and represents a highly diverse arctic ecosystem 

(Larsen, Nagoda, & Anderson, 2001). The major commercial fish species in the Barents Sea include 

capelin (Mallotus villosus), herring (Clupea harengus) and their main predator, Northeast Arctic cod 

(Gadus morhua). Of the three species, only capelin and cod are harvested in the Barents Sea. 

However, the influx and out flux of the herring species affect the growth of these main commercial 

species through their predator-prey relationships. The relationships between these species are highly 

dynamic (Bogstad, Hauge, & Ulltang, 1997). There are biological, physical and economic interactions 

among these species in the ecosystem. The optimal catch of the two commercial species in the Barents 

Sea is affected due to the interactions of the species. There exist management problems for the species 

that involve interactions between species at different trophic levels (May, Beddington, Clark, Holt, & 

Laws, 1979). The most common approach, single species management in multispecies fisheries, 

ignores the ecological relationships among species as well as the technological and economic 

relationships (Kasperski, 2010). This may lead to misleading results and incorrect policy decisions 

causing an over or under exploitation of the stocks (Fleming & Alexander, 2003; Hoff et al., 2010). 

Therefore, an ecosystem based fishery management (EBFM) approach is required and it is gaining 

importance in recent years (Scandol, Holloway, Gibbs, & Astles, 2005; Zhou et al., 2010). EBFM is a 

holistic approach for maintaining ecosystem quality and sustaining associated benefits (Brodziak & 

Link, 2002; Zhou et al., 2010). Fisheries may affect the marine ecosystem in several ways such as fish 

populations and their growth habits, interaction among fish species, fish migrations, food preferences 

and more importantly its management. Among many factors of fisheries management, fish harvesting 

is one of the key determinants that affects the marine ecosystem. An ecosystem based management 

strategy for marine fisheries would be to minimize the potential impacts on ecosystem together with 

sustainable exploitation of fish resources (Witherell, Pautzke, & Fluharty, 2000). EBFM strategy 

includes conservative and precautionary harvest limits, comprehensive monitoring and enforcements, 

by-catch controls, gear restrictions, temporal and spatial distribution of fisheries and marine protected 

areas (Witherell et al., 2000). EBFM requires a multispecies ecosystem model for sustainable harvest 

of fisheries that considers beyond the sustainable yield for individual species. Multispecies 

management is to examine the big picture to address the long term consequences of present decisions. 

Therefore, it is a key approach for sustainable management (Hollowed et al., 2000) and consideration 

of multispecies interaction in fishery model is increasing in recent years (for example, see Agnarsson 

et al., 2008; Bogstad et al., 1997; Clark, 1990; Fleming & Alexander, 2003; Iversen, 2006; Kar & 

Chaudhuri, 2004; May et al., 1979; Poudel, Sandal, Steinshamn, & Kvamsdal, 2012; Sandal & 

Steinshamn, 2010; Woodward & Bishop, 1999; Yodzis, 1994). However, most of the studies focused 

on predators prey interactions between two species while three species continuous time interaction 
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models are very few, although there is increasing interest in multispecies model in recent years (for 

example, Aanestad et al., 2009; Das, Srinivas, Srinivas, & Gazi, 2012; Nieminen, Lindroos, & 

Heikinheimo, 2012; Samanta, Manna, & Maiti, 2003; Sharma & Samanta, 2013). 

 

Apart from the interactions among species, growth of the individual species is also affected by 

physical uncertainties and random shocks (Sarkar, 2009). Random shocks such as environmental 

disturbances and variability, zooplankton abundance, and predator distribution and migration affects 

recruitment and growth of fish stocks (Misund et al., 1998). Migration of herring stock in the Barents 

Sea is observed to be highly variable (Lindstrøm, Haug, & Røttingen, 2002), which creates uncertainty 

in growth of the stock, its predators and preys in the ecosystem. To our knowledge, three species 

continuous time model with stochastic stock dynamics are very rare. The reasons for the lack of 

multispecies stochastic bioeconomic models are due to unavailability of analytical solutions (Kar & 

Chaudhuri, 2004; Posch & Trimborn, 2010) and computational difficulties particularly in solving non-

linear dynamic models in higher dimensions (Munos & Zidani, 2005; Singh, Weninger, & Doyle, 

2006). In this study, we develop a multispecies model that not only considers the interactions among 

these species but also takes into account of the physical and biological or environmental system 

uncertainties by including stochasticity in the stock growth dynamics. The inclusion of stochasticity in 

the model makes the model more realistic because the Barents Sea ecosystem is highly volatile partly 

due to the variability in the abundance of immature herring year classes (Lindstrøm et al., 2002). 

Bogstad et al. (1997) found that herring is most likely to be affected by changes in the abundance of its 

top predators such as minke whales, which further influences the growth of the targeted species. 

Capelin and herring also compete for food during food scarcity in the Barents Sea (Huse & Toresen, 

1996). In addition to cod and herring predation, capelin are also predated in large quantities by whales, 

seals, and others such as haddock (Ushakov & Prozorkevich, 2002). Similarly, the cod recruitment and 

survivability is directly affected by climatic and food availability.  Higher temperature at spawning 

time and high capelin biomass has a positive effect on cod recruitment. However, high temperature 

results in decrease in capelin biomass through high herring recruitment which affects the cod 

recruitment negatively through cannibalism (Hjermann et al., 2007). Thus, the fluctuations in the 

distribution and abundance of herring have an impact on growth of its prey and predators, the 

commercially exploitable species. 

 

We apply stochastic dynamic programing to derive the feedback optimal control rules, which is a 

central tool for tackling stochastic optimization problems (Sydsæter, Hammond, Seierstad, & Strom, 

2005). Dynamic programming is a mathematical technique for solving certain types of sequential 

decision problems in which a sequence of decisions must be made with each decision affecting the 

future decisions (Howard, 1966). The dynamic programming technique has tremendous 

methodological appeal in solving inter-temporal economic problems but it has not been as widely used 



3 
 

as anticipated for empirical analysis of natural resource problems (Howitt, Msangi, Reynaud, & 

Knapp, 2002). One reason could be the computational difficulties for these types of problems. We 

solved stochastic dynamic problems through a numerical approximation scheme labeled “the 

probabilistic approach” to finite difference approximation of the associated Hamilton-Jackobi-

Belmann equation.  

 

The main contribution of the work is a development of multispecies bioeconomic model with 

stochastic dynamics, an essential component of the ecosystem based fisheries management. The 

contribution of the study is two-fold. This study shows that dynamic programming (DP) approach can 

be used for empirical model in higher dimensions and solving a stochastic dynamic programing 

problem in such higher dimension can be a very useful resource in the field of bioeconomic modeling. 

Secondly, it provides empirical results on optimal management in a complex bio ecosystem that 

harbors three species.  

 

2. The Bioeconomic Model 

 

Our model is a surplus production model (Schaefer, 1957) in continuous time.  The general biological 

interdependent deterministic growth functions for three interacting species are specified by adding one 

species in the model from Sandal and Steinshamn (2010). Let 	be capelin species, a prey for both cod 

and herring,  be the cod species, a predator for both capelin and herring, and 	be the herring that is 

preyed by cod and predator of capelin species. The deterministic growth increments of these species 

can be given as: 

 
, ,
, ,
, ,

 
(1) 

The functions	 , , ,  , ,  and , , are the biological growth functions of three fish 

species capelin, cod and herring respectively. 		and 	 	represent the harvest rate of species  and   

while there is no herring harvest in the Barents Sea.  

 

Furthermore, a three-species interaction model with stochastic dynamic can be formulated by adding 

stochastic terms in equation (1) as:  

 
, , 	

, ,
, ,

, , , ,
, , , ,
, , , ,

, ,
, ,
, ,

	  
(2) 

 

Although it is likely that the stochastic events are correlated among the species, it is not necessary to 

make excessively complex models to observe the effects of stochasticity (Stefansson, 2001). 
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Therefore, we assume it to be small enough to be neglected, i.e. , , 0		 	 	 .   

 

We further simplify by setting the volatility as a linear function of its own stock level, , ,

;	 , , ;	 and , , . This assumption is made for two reasons; firstly, for 

the simplicity in the numerical approximation, and secondly, complicated functional volatility 

dependence is not much known. Since the species are prey and predator species, the stochastic 

processes that affect prey directly may not affect the predators in a direct sense or vice versa. The 

other species is still indirectly affected by such a process through the interaction in the drift 

(deterministic) part. Epidemics are typically of this kind. Equation (2) can now be written as:   

 

 

, ,
, ,
, ,

 

(3) 

The biological growth functions and their coefficients obtained from (Aanestad et al., 2009) are given 

in equation (4): 

 

, , 1  

, , 1 1 √  

, , , 1
,

100
1

 

(4) 

Where , , , ,  and , , , 0 are parameters.  

 

In equation (4), the growth function for each species is concave with respect to its own species. The 

coefficients  and 	represent the intrinsic growth rates and carrying capacity in the logistic 

functions.  The additional coefficient 0 is the interaction coefficient that adjusts the actual 

biomass in the multispecies model. Capelin biomass decreases due to predation of cod and herring 

while increases in cod due to predation on capelin and herring. The term 1 √  implies that the 

biomass of capelin is more important than the biomass of the herring species. The growth function of 

the herring is somewhat different from the straightforward logistic growth function. The term .  

and .  have dependency on the biomass of cod and capelin. The coefficients 0 implies that 

herring stock can never extinct in the Barents Sea ecosystem due to predation or natural mortality 

because of its nature of migration or influx in the Barents Sea. In equation (3), the term . . .  

represents the stochastic part of the stock growth relationship. . . 	is the diffusion term and 

represents volatility in the growth models. The term	  is the time increment and the term . 	is 

Brownian motion which is identically and independently distributed with mean zero and variance	 . 

We assume stocks and harvests rates to be non-negative. 



5 
 

 

By substituting the growth functions from equation (4) into equation (3), our basic biological model is 

now given as: 

 

1 																										

1 1 √ 	 	 	 																																																		

100
	 1

100

100
1

		 	 	

 

(5)

Equation (5) states that all of the species have stochastic growth and interactions among them. But 

what if only one of the species has stochastic growth? To understand the effect of stochastic growth of 

one species on optimal exploitation in multispecies ecosystem, equation (5) can be simplified by 

setting other two stochastic parameters to zero. For example by setting  0 in equation (5), 

the stochasticity in capelin growth can be analyzed. Similarly by setting	 0, the stochastic 

effect of herring in multispecies ecosystem can be modeled. However, it is noteworthy that an 

assumption of stochasticity in one of the species makes all the other species stochastic due to the 

existence of predator prey interaction terms ( , , 	in the growth functions. 

 

The second part of the bioeconomic model consists of economic component, which is the net 

revenue from the harvest of capelin and cod species. 

 	 , , , , ,  (6) 

 

,  and  ,  are the net revenue from capelin species	  and cod species  

respectively. The revenue functions are obtained from (Sandal & Steinshamn, 2010) expressed as: 

 

 
, ,
, ,

 
(7) 

The functions	 .  and . are inverse demand functions and cost functions respectively. The demand 

functions and cost functions are specified as: 

 

,

,

 

(8) 

After substituting the expression from equation (7) and (8) into equation (6), the profit function can be 

specified as: 

 	 , , , 		 
(9) 
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Where	 , , , , ,  are economic parameters.  

We assume that prey is a schooling species and, therefore, the unit cost of harvest is independent of 

stock size. Our revenue function depends only on the predator stock and harvest level of prey and 

predators. The revenue function equation (9) can simply be written as a function of three 

arguments	 , , . 

 

Given the growth functions and profit function, the management objective is to maximize expected net 

present value of the return from the harvest schedule over an infinite time horizon. This can be 

achieved by maximizing following function: 

 , , ,  
(10) 

The non-negative parameter	  is the discount rate and  is the expectation operator.  Along with 

dynamic constraints and appropriate boundary conditions, the dynamic optimization problem can be 

written as: 

 

, , max
,

, ,

0
0
0

 

(11) 

The optimal solution in predator-prey model can be obtained by solving following Hamilton-Jacobi-

Bellman (HJB) equation (Kushner & Dupuis, 2001) along with appropriate boundary conditions. This 

is an equation for any feasible initial condition and hence we replace , ,  with , , . 

 

, , max
,

, , , , , , , ,

1
2

, , , , , ,  

(12) 

 

where, , ,
, ,
, ,
, ,

, , , , ,
, , 	

, ,
, ,

,  

, ,
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0
0 0

		
0
0 	 and , ,

, ,
, ,
, ,

, ,
, ,
, ,

, ,
, ,
, ,

		are 

matrices. 

 

The HJB equation (12) can be rearranged and simplified as: 
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max
,

, , , ,

, , , ,
1
2

1
2

1
2

 

(13) 

The subscripts of V denote partial derivatives with respect to the index , , . Optimal solution 

can be derived by solving the HJB equation (13).  While it is difficult or impossible to solve 

analytically the HJB equation together with boundary conditions, we solve it using numerical 

approximation methods by applying stochastic dynamic programing (SDP) technique. Among a 

number of techniques available, the Markov chain approximation approach which is based on 

probability theory, is one of the most effective methods (Song, 2008).  

 

3. Approximation Procedure for Numerical Solution 

 

We have employed the Markov chain approximation approach of (Kushner & Dupuis, 2001). The 

basic idea of the Markov chain approximation approach is to discretize the HJB control problem. Let 

the HJB control problem (13) for multidimensional space be rewritten as:  

 max , ,
1
2

 
(14) 

 

where  and ,  are matrices of 1  dimensions and 	is the covariance 

matrix with  and  are the matrices of  dimensions. 

 

The numerical method entails a direct discretization of HJB equation (4). Let 	be the unit basis of  

for 1,… , 	and 0,	is a uniform step size or the approximation parameter. Let  be the 

numerical solution to the value function. Then by following standard finite difference approximations 

(Kushner & Dupuis, 2001), the first derivative and second derivative for  are given as equations 

(15) and (16) respectively. 

 
 

 

(15) 

 

2
2

2
 

(16) 

 

The next step is to define the positive and negative parts of the drift terms as in (17): 
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, max 0, ,  

, max 0, ,  

(17) 

 

where, ,  is the positive and , is flow in positive or negative direction. 
 

Next, we define the transition probabilities (18) and interpolation interval (19) as: 

 

 

, |
1
2

x
∑ |: x |

2
, / ,  

, | 	 , | /2 ,  

, | 	 , | /2 ,  

, | 1 , |  

(18) 

where, , | 	denotes the probability of remaining at the same point and ∑ , | 	is the sum 

of above listed values in (18). The implicit given stochastic interpolation time is then 

 

 ∆ / , . (19) 

 

where , ∑ x
∑ |, : |

	 ∑ ,  is the normalization coefficient. Defining 

, 1 	∆  with  being the discount rate, the proper discrete form (14) (Markov chain) is 

given by 

 , ∆ , , , | . 
(20) 

 

Given the transition probabilities and interpolation intervals, the optimal value function in the policy 

space is obtained and updated by value iteration and policy iteration on the HJB equation. We carried 

out value function iteration with initial guess, 	for a given policy for example	 	 	using the 

value iteration and policy iteration  and , 	 

respectively. Here, L(u) is representing the Markov chain operator. The policy iterations (given 

	) converges to the true value  for the given policy and the sequence  converges to 

the value function  of our problem. 

 

The value function iteration is carried out with initial guess, 0 for a given policy  

using value iteration: 
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 ,  (21) 

 

where, the Markov chain operator  is defined by , ∑ , | ∙ ,

| , ∙ ∆  

is obtained when n and k are large enough i.e.
 
Similarly, the 

policy iteration is given as: 

 , arg max , ,  (22) 

The new policy , 	is then employed in the value function iteration.  

A mixture of value and policy iterations was carried out until the value function converged to the 

optimal value function. The function to which this procedure converges is the unique value function 

for the infinite horizon problem and the policy associated with the optimal value function is the 

optimal policy. The uniqueness is due to the contraction operator nature of our approach (Kushner & 

Dupuis, 2001). The iteration is stopped by employing stopping criteria (22) for policy and value 

functions. 

 
 

 

(23) 

where ε  are a predefined threshold values. We carried out the policy and value iteration until the 

largest absolute difference in the value function was smaller than ε1 = ε2 =10-6 from one iteration to the 

next to ensure the convergence of the value function.  

 

4. Specification of Parameters in the Model 

 

The biological parameters were obtained from Aanestad et al. (2009) and the economic parameters 

were used from Sandal and Steinshamn (2010) and Aanestad et al. (2009).  These parameters were 

estimated from International Council for the Exploration of the Seas (ICES) Barents Sea stock and 

harvest data during 1973 to 2005. The value of biological and economic parameter is given in the table 

1 and table 2 respectively. 

 

Table 1. The value of coefficients in the biological growth functions 

Parameter value Parameter value Parameter value 

 1.8515  7890.1  1.1142  

 0.5490  3191.3  2.3  

 1380.7  1.0572   1.87  

Sources: obtained from Aanestad et al. (2009) 

*V
* *( ) .k k

n n k
V V V  

1, 1 , 1 1|| ( ) ( ) ||k n k nu x u x    

1 1
1 2|| ( ) ( ) ||k k

n nV x V x  
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Table 2. The value of economic parameters 

Parameter Value Parameter Value 

 1.0  12.65 

 0.67  0.00839 

 1.4  5848.1 

 0.05  1.0 

Sources: adopted from Sandal and Steinshamn (2010) and Aanestad et al. (2009) 

 

5. Results and Discussions 

 

In this section, the feedback exploitation policy obtained by employing numerical result is presented in 

multidimensional graphical surface plots. Exploitation policy in deterministic and stochastic model is 

discussed and compared. Although, there are four dimensions in the numerical output, only three 

dimensional surface plots are presented by fixing one of the species at some stock level due to 

difficulty in presenting in four dimensions. 

 

5.1 Results in a Deterministic Model 

 

The deterministic exploitation policy is obtained by employing dynamic equation (1). The feedback 

optimal exploitation policy for cod and capelin species is presented in figures 1 and 2 respectively.  

 

The fishing moratorium for cod in the deterministic growth model is found to be nearly one million 

ton, when the capelin and herring stock is high in the ecosystem. As soon as the cod stock biomass 

exceeds one million ton, its exploitation should be increased. For example an increase of cod biomass 

from two million ton to six million ton, its optimal exploitation can be increased from 0.36 million ton 

to 0.62 million ton. We also observe that the abundance of biomass of other stocks such as capelin and 

herring in the ecosystem has no strong influence on the cod exploitation policy (figure 1).The main 

reason could be that there are two prey species for cod that serve as a food for its growth.  
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Figure 1: Optimal exploitation policy for cod in three species interaction ecosystem (a) 1.5 million 

tons of herring (b) 6 million tons of herrings (c) 2 million tons of capelin (d) 6 million tons of capelin. 

 

The optimal exploitation policy for capelin is influenced by the presence of its predators in the 

ecosystem. The higher the influx of the juvenile herring, the more it is affected. We observed that 

exploitation of capelin should be more conservative at high herring biomass compared to low herring 

biomass. The main reason is that high herring biomass could consume more capelin and therefore one 

should be conservative in capelin exploitation to avoid its (capelin) extinction due to herring and cod 

predation.  

 

Similarly, when there is 1.5 million ton of herring and no cod, one should be conservative compared to 

high cod at the same level of herring biomass. The reason might be that when there is high cod stock, 

the cod predates on herring and therefore capelin can be harvested without being conservative. On the 

other hand, the exploitation of capelin should be conservative especially when the cod stock is low. 

The reason is that immature cod need capelin for their growth (Hamre, 2003) and if harvested capelin 

could extinct due to cod and herring predation. As soon as the cod stock becomes large capelin 

exploitation could be done earlier because the cod may utilize herring and may not depend solely on 

the capelin biomass.  
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Figure 2: Optimal exploitation policy for capelin in three species interaction ecosystem (a) 1.5 million 

tons of herring (b) 6 million tons of herrings (c) 1.5 million tons of cod (d) 6 million tons of cod. 

 

When there is low herring and very high cod in the ecosystem one should exploit the capelin as in a 

single species model (figure 2d), because the conservation of capelin to such a very large cod stock 

would not add value. With increasing herring biomass one should be conservative in capelin 

exploitation to avoid its collapse due to herring predation.  

 

In case of low cod with increasing herring biomass, one should be conservative to avoid the risk of 

capelin collapse because a high herring influx causes a mass death of capelin fry (Hamre, 2003; Mehl, 

1991) to extinction if harvested without considering the multispecies interaction in the ecosystem. 

There might be several reasons: (i) the herring predation on it, (ii) due to low cod in the ecosystem, 

there is high chance that herring is not affected by cod predation (iii) there is a food competition in the 

ecosystem (Kar & Chaudhuri, 2004). 
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5.2 Results in a Stochastic Model 

 

In this section, we discuss the results from the dynamic equation (3), where we choose different level 

of stochasticity to compare the results with the deterministic model.  The effect of stochasticity on 

optimal exploitation policy for cod and capelin species is presented following subsection. We analyze 

the result at different level of stochasticity in each species. 

 

5.2.1 Effect of Stochasticity in the Cod Exploitation Policy 

 

To analyze the effect of stochasticity in cod exploitation policy, we consider stochasticity only in one 

of the species at a time for all combination and also include stochasticity in all species. We observe 

that the stochastic effect is not very different whether one of the species is stochastic or all of the 

species are stochastic to cod harvest policy. The reason may be that if one of the species is stochastic, 

all are affected due to the interaction terms in equation (5). Due to similarity in results, we only 

present the results with stochasticity in all species.   

 

When the level stochasticity is low ( 	 0.1), there is no pronounced effect on optimal 

policy (results not shown). With increasing stochasticity in all of the species, the exploitation level 

should be decreased. For example, when the level of stochasticity increased to 0.5 i.e. (

	 0.5), at zero capelin and high level of herring stock in the ecosystem, it is optimal to delay the 

exploitation to higher stock because of the lack of capelin could cause slow growth of cod species 

(could be because the young cod prefer capelin to herring). At an increased level of stochasticity 

( , , 0.9) the moratorium moves towards a small stock level. This suggests that myopic 

exploitation is optimal for a high level of stochasticity. As in the deterministic model, the size of the 

other stocks (the prey species) has less influence in the optimal exploitation policy of cod (figure 3).  
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Figure 3: The effect of stochasticity in optimal exploitation policy for cod in three species interaction 

model (a) 1.5 million tons of herring (b) 6 million tons of herring (c)1.5 million tons of herring (d) 6 

million tons of herring. 

 

5.2.2 Effect of stochasticity in capelin exploitation policy 

 

To analyze the effect of stochasticity in capelin exploitation policy, we consider stochasticity in all 

species, and again only in one of the species. Here we observe that capelin is more sensitive to 

stochasticity in different species, different biomass levels and also at different level of stochasticity.  

The effect due to cod species and herring species is not much pronounced. We present the results with 

stochasticity in all species, in capelin species and in herring species in flowing three different cases. 

 

5.2.2.1 Case 1. All of the Species are Stochastic 

 

Stochasticity has a large effect on the exploitation policy for capelin compared to cod species. If all 

three species are stochastic the exploitation policy should be conservative at low level of stochasticity 

(figure 4). The reason is that when these species are stochastic, there is high risk of stock collapse 

(Poudel, Sandal, & Kvamsdal, 2012) and therefore one should be more conservative to avoid the risk 

of extinction of the stock. When the herring stock is high, there is higher risk of stock collapse due to 
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herring predation; therefore, one should be very conservative compared to the low herring stock in the 

ecosystem. 

   

   

   

Figure 4: The feedback optimal exploitation policy for capelin in three species interaction model (a) 

1.5 million tons of herring (b) 6 million tons of herring (c) 1.5 million tons of herring (d) 6 million 

tons of herring (e)1.5 million tons of herring (f) with 6 million tons of herring. 
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For substantially high level of stochasticity ( , , 0.9), it is optimal to exploit capelin species 

myopically when the stock is low but should be conservative when the stock gets larger. At a very 

small stock, it is almost impossible to avoid extinction due to predation and the stochasticity, 

therefore, it is profitable to exploit to collapse. While at high stock level the risk of stock collapse can 

be avoided by being conservative. One should be more conservative when the herring stock is very 

high for high stochastic growth model compared to the low herring present in the ecosystem (figure 4e 

4f). 

 

5.2.2.2 Case 2. Only Capelin Species is Stochastic 

 

In this section, we study the optimality in the capelin if the capelin stock is stochastic while other 

stocks have deterministic growth. The numerical results are obtained by setting the stochastic 

parameters for herring and cod to zero and choosing different level of stochasticity in the capelin 

stock. 

 

We observe that one should be further conservative in capelin exploitation if it stochastic and the other 

species are deterministic (figure 5). The reasons are at least two-folds. First the stochastic stock has a 

high risk of extinction and therefore conservative exploitation is required. Second, by saving the 

stochastic capelin for cod food, we can increase the revenue from the cod harvest especially when the 

cod stock is small and the herring is very high.  

 

Furthermore, we observe that substantially high level stochasticity	 1.5 , one should be 

conservative except at a very low capelin stock. The exploitation, however, should be myopic at this 

stochasticity level when the cod is zero because in the absence of cod, the stock could extinction due 

to the stochasticity and the herring predation. 
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Figure 5: Effect of capelin stochasticity in exploitation policy of capelin (a) Low herring with 

0.5  (b) High herring with 0.5   (c) Low herring with 0.9  (d) High herring level with 

0.9   (e) Low herring with 1.5   (f) High herring with 1.5  
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herring stock. The effect of herring stochasticity in the exploitation of capelin stock is presented in 

figure 6. 

 

It is interesting to observe that there is no strong influence of the herring stochasticity in the capelin 

exploitation policy for relatively high degree of stochasticity	 0.9 . For substantially high 

degree of stochasticity	 0.9 , one should be myopic when the stock is small because the 

stochastic herring can deplete capelin to extinction when capelin is very low. As long as the capelin 

stock becomes large, there is no effect of herring stochasticity in the optimal exploitation policy. 

 

   

   

Figure 6: Effect of herring stochasticity on optimal exploitation of capelin species (a) Low herring 

with 0.9  (b) High herring with 0.9  (c)	Low	herring		with	 2 		(d) High herring 

with 2 . 
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6. Long-term sustainable optimal State (LSOS) 

 

To sustain resources over a long time horizon, it is important to manage them optimally. Therefore, it 

is important to determine sustainable levels for the resource and their harvests. To determine the 

optimal sustainable levels or to derive LSOS, we conduct Monte Carlo simulations with 

implementation of optimal solutions. We simulate the system forward in time for a range of initial 

stock levels with all the species presents in the system1. The LSOS for the deterministic and stochastic 

models are defined as follows. 

 

Deterministic LSOS: In the deterministic setting, the simulated paths approach a certain level over 

time, which is defined as the LSOS or steady state or the equilibrium level that can be achieved after a 

certain period of time if the stocks are managed optimally.   

 

 Stochastic LSOS: In the stochastic setting, there is no equilibrium but most paths2 become confined to 

the same level after some period. This is a region around a zero drift level which is defined as the 

stochastic LSOS (Poudel, Sandal, Kvamsdal, & Steinsham, 2013). In other words, it can be defined as 

the optimal stochastic stationary state (Smith, 1986).  

 

The LSOS and biological equilibrium (BE - equilibrium that can be achieved without taking into 

consideration of the harvest, a natural equilibrium level) are characterized and compared in table 3-5, 

both in the deterministic and stochastic models. Table 3 shows results on biological equilibrium (BE) 

for stock and long-term sustainable optimal states (LSOS) for stocks and their harvest in deterministic 

model.  

Table 3: The BE and LSOS in deterministic model 

Species and harvest Type of Equilibrium 

Bio-Equilibrium (BE) LSO States 

Capelin (106 kg) 2711   3025 

Capelin harvest (106 kg) - 228 

Cod (106 kg) 4046 3156 

Cod harvest (106 kg) - 560 

Herring (106 kg) 1844 2012 

 

                                                            
1For example, LSOS for capelin is obtained with optimal feedback solution for capelin along with cod and 

herring present in the model. 

2 In this study, each paths are obtained by taking an average of 1000 stochastic realizations. 
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Biological equilibrium (BE) is lower than the LSOS in capelin and herring but higher in cod. This is 

an interesting but contrasting result. This is contrasting because in general, LSOS is expected to be 

lower compared to the biological equilibrium because of the harvest. But this can be explained as 

follows. Cod LSOS is smaller than the biological equilibrium i.e. when we harvest cod there is low 

predator for capelin and  herring in the ecosystem, thus allowing it to grow to a higher equilibrium 

level. 

We also derive biological equilibrium levels at different degree of stochasticity (table 4). It is 

interesting to note that for an increased stochasticity, the biological equilibrium in the capelin is 

increases until some level of stochasticity (for example  = 0.5) and then decreases when the 

stochasticity is very high ( ≥ 0.7). The main reason is that due to stochastic downward drag, both of 

the predators (cod and herring) have smaller equilibrium at increased stochasticity. This means that 

there is less predator stock in the ecosystem to prey upon capelin, thus allowing the capelin species to 

grow to a higher level until it is not affected by its own stochastic drag. But at very high stochasticity 

the biological equilibrium decreases as a result of the stochastic downward drag of itself. 

 

Table 4: The biological equilibrium levels under different degree of stochasticity 

Species  Degree of stochasticity 

  = 0.1  = 0.3  = 0.5  = 0.7  = 0.9 

Capelin (106 kg) 2744 

(354) 

3059 

(1061) 

3485 

(1776) 

2824 

(1780) 

1988 

(1629) 

Cod (106 kg) 4011 

(321) 

3727 

(938) 

3102 

(1405) 

2131 

(1641) 

1046 

(1274) 

Herring (106 kg) 1812 

(277) 

1545 

(734) 

1294 

(1060) 

827 

(1268) 

645 

(1189) 

Figures in the parentheses represent standard deviation 

 

The stochastic LSO levels of stocks and their exploitations and the stochastic biological equilibrium 

stock levels in our model are presented and compared in table 5. This is generally expected that LSOS 

is lower compared to the biological equilibrium due to harvest. This can be observed in the cod 

species, where the LSOS is smaller compared to the BE. However, we found that biological 

equilibrium is smaller compared to the LSOS in capelin species, which is contrasting result. But the 

interesting point behind this result is that due to decreased LSOS in cod species, there is less prey in 

the ecosystem thus allowing capelin to increase at LSOS. 
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  Table 5: The BE and LSOS under different degree of stochasticity 

Species and Harvest Degree of stochasticity 

σ=0.1 σ=0.3 

 Biological 

Equilibriums  

LSO States Biological 

Equilibriums 

LSO States 

Capelin (106 kg) 2744 (354) 3084 (351) 3059 (1061) 3357 (1036) 

Capelin harvest (106 kg) -  221 (50) -  209 (138)      

Cod (106 kg) 4011 (321) 3136 (292) 3727 (938) 3000 (815) 

Cod harvest (106 kg) - 547 (32)  -  443 (130) 

Herring (106 kg) 1812 (277) 1938 (290) 1545 (734) 1662 (783) 

Figures in the parentheses represent standard deviation 

 

 

7. Evolution of stock over time 

 

We have illustrated how different stocks evolve over time as they approach the LSOS in the prey-

predator ecosystem. Several different optimal paths for various combinations of initial biomass levels 

of capelin, cod and herring are shown in figures 7 and 8 for deterministic and stochastic stock 

overtime. The paths in the stochastic setting were obtained by taking an average of thousand 

realizations from the same point. 

 

7.1 Capelin evolution over time  

 

Capelin evolution to LSOS is shown in figure 7. It can be seen that for any combination of initial 

biomass of capelin, cod and herring, the stock reaches to LSOS about 40 years in a deterministic stock 

(figure 7a) but it takes more than 60 years in the stochastic stock. However, an un-harvested stock 

approaches to LSOS earlier when there are low predators in the ecosystem. During the evolution 

process, we can observe overshooting and undershooting phenomena. Overshooting occurs when there 

is a fast growth of the stock and in the absence of harvest or predation, while undershooting takes 

place if a large stock is heavily harvested because a large stock is less costly to harvest due to harvest 

cost. 

 

Overshooting is observed in a high initial capelin stock (5 million ton) with low cod and low herring in 

the ecosystem because of the low predation. Furthermore, it takes longer duration to reach to LSOS 

because it is suboptimal to exploit heavily due to market condition. But an undershooting is observed 
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in a high initial capelin stock (6 million ton) with high cod and high herring in the ecosystem due to 

both exploitation and predation. Overshooting can also be observed if there is only one predator in the 

ecosystem because of the low predation.  A small capelin stock (0.1 million ton) with high cod and 

high herring leads to a slow growth towards LSOS compared to medium but un-harvested stock. 

 

The trend of stock evolution in the stochastic and in deterministic model is similar but the stochastic 

stock evolution seems to take longer duration to reach to the LSOS compared to the deterministic 

evolution. 

  

Figure7: Evolution of capelin stock over time towards LSOS from a combination of several initial 

conditions of capelin, cod and herring (a) Deterministic model (b) Stochastic model 

 

7.2 Cod evolution of over time  

 

Cod evolution is shown in figure 8. A large cod reaches to LSOS earlier than the small initial stock. 

No overshooting is observed in the cod evolution but an undershooting occurs when high cod, large 

capelin but low herring in the ecosystem. At large stock levels, both cod and capelin can be harvested 

extensively but due to low of herring in the ecosystem, cod might lack food and resulting competition 

and cannibalism until the herring and capelin increases in the ecosystem. Furthermore, with high 

capelin and herring stock in the ecosystem, even a small cod reaches to LSOS fast compared to only a 

large capelin in the ecosystem because capelin is harvested thus leading to food deficiency for cod 

growth. However, its own initial stock level influences the evolution directly. A small initial stock 

takes longer compared to the higher initial stock level. In the stochastic stock, the LSOS is lower but 

having other features similar to the deterministic growth model. In the stochastic stock, same initial 

stock take more time to reach to LSO compared to the deterministic model (figure 8b). However 

compared to the capelin and herring evolution, the cod stochastic evolution takes shorter period. This 

could be because prey growth is negatively affected by the cod stock as the stochastic cod needs more 

food. 
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Figure 8: Evolution of cod stock over time towards LSOS from a combination of several initial 

conditions of capelin cod and herring (a) Deterministic model (b) Stochastic model 

 

7.3 Paths towards LSOS  

 

The dynamics paths from different initial combination of cod capelin and herring  

Species are also shown in figure 9. Generally the tendency towards LSOS appears alike in both the 

deterministic model except the LSOS lower in stochastic case. The initial biomass level determines 

how the paths move towards to LSOS. Figure 9 shows seven different combination of initial biomass 

levels how they reach to LSOS in the long-term. 

 

Figure 9: Dynamic paths towards LSOS in capelin, cod and herring space (a) deterministic paths (b) 

stochastic paths (mean of 1000 realizations) 

 

8. Concluding Remarks 

 

We solve a three dimensional model to suggest feedback optimal strategy for Barents Sea species. 

This study employed stochastic dynamic programing (SDP) technique for the numerical 

approximation. Since, such types of multispecies models are rare in the economic literatures due to the 

complexity in solving model in higher dimensions; our work is a break-through in dealing with 

solution to complex three dimensional model. This work is an important step towards the ultimate goal 

of Ecosystem based fishery management (EBFM) under uncertainty. 
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Since we have employed the parameters from previous work, our findings in the deterministic growth 

model confirms the results of (Aanestad et al., 2009). That is the dynamic programming (DP) 

approach can be used for empirical model in higher dimensions. 

 

Secondly, our study added stochasticity in the model. Solving a stochastic dynamic programing 

problem in such higher dimension can be a very useful resource in the field of bioeconomic modeling. 

 

Although the empirical results may not be truly representing the reality, we argue that incorporating 

rather than avoiding uncertainty will increase the chances of successfully achieving conservation and 

management goals as suggested by Halpern, Regan, Possingham, and McCarthy (2006). Our model 

suggests that in multispecies ecosystem the effect of the stochasticity is less pronounced when the 

stochasticity is relatively low. And the effect of stochasticity is higher in prey species compared to the 

predators. Furthermore, a very interesting result is that juvenile herring in the Barents Sea has to be 

considered when exploiting the capelin species, if not a higher herring may lead to capelin extinction. 

However, the stochasticity is not very important for the capelin exploitation. The reason may be that 

its influx is stochastic and the deterministic feedback model takes into account of the influx itself. 
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