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Abstract

We derive the equilibrium interest rate and risk premiums using
recursive utility for jump-diffusions. Compared to to the continuous
version, including jumps allows for a separate risk aversion related to
jump size risk in addition to risk aversion related to the continuous
part. We also consider a version that allows marginal utility to depend
on past consumption. The models with jumps are shown to have a
potential to give better explanation of empirical regularities than the
recursive models based on merely continuous dynamics.
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1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Questions like the following are
sometimes asked: Are asset prices too volatile relative to the information
arriving in the market? Is the mean risk premium on equities over the riskless
rate too large? Is the real interest rate too low? Is the market’s risk aversion
too high?

The results of Mehra and Prescott (1985) gave rise to some of these ques-
tions in their well-known paper, using a variation of Lucas’s (1978) pure
exchange economy with a Kydland and Prescott (1982) ”calibration” exer-
cise. They chose the parameters of the endowment process to match the
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sample mean, variance and the annual growth rate of per capita consump-
tion in the years 1889-1978. The puzzle is that they were unable to find
a plausible parameter pair of the utility discount rate and the relative risk
aversion to match the sample mean of the annual real rate of interest and of
the equity premium over the 90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

In the present paper we reconsider recursive utility in a continuous-
time model including jump dynamics along the lines of Øksendal and Sulem
(2013). This is an extension of the model developed by Duffie and Epstein
(1992a-b) and Duffie and Skiadas (1994) which elaborate the foundational
work by Kreps and Porteus (1978) and Epstein and Zin (1989) of recursive
utility in dynamic models. The data set we consider is the same as that used
by Mehra and Prescott (1985) in their seminal paper on this subject2.

The state price deflator (the state prices in units of probability) depends
on past values of consumption and utility, which invites us to consider a
version of recursive utility where the marginal utility depends on past con-
sumption. This seems like a modest extension of the standard model, and
was carried out in the model with continuous dynamics in Aase (2014a) and
in a discrete-time model in Aase (2014b). In the present model this interpre-
tation also leads to a new solution via the stochastic maximum principle and
the associated forward/backward system of stochastic differential equations.

While jump dynamics has been introduced in the conventional model,
among other things to throw some light on the puzzles (see Aase (1993a-b),

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).

2There is by now a long standing literature that has been utilizing recursive pref-
erences. We mention Avramov and Hore (2007), Avramov et al. (2010), Eraker and
Shaliastovich (2009), Hansen, Heaton, Lee, Roussanov (2007), Hansen and Scheinkman
(2009), Wacther (2012), Bansal and Yaron (2004), Campbell (1996), Bansal and Yaron
(2004), Kocherlakota (1990 b), and Ai (2012) to name some important contributions. Re-
lated work is also in Browning et. al. (1999), and on consumption see Attanasio (1999).
Bansal and Yaron (2004) study a richer economic environment than we employ.
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in the recursive models that we analyze in this paper, jump dynamics may
play an even more interesting role. This is particularly so for the model where
marginal utility is allowed to depend on past consumption. The reason for
this is that this recursive model has already changed matters so much in the
right direction, that second order effects may be enough to get satisfactory
results. Also jump dynamics in the recursive models allow for one new pref-
erence parameter related to relative risk aversion for jump size risk, which
gives the model added flexibility. This may also throw some light on the
behavioral puzzle of ’loss aversion’.

In the calibrations we have assumed that all income is investment income.
This may be justified in the present paper, since the goal is here to compare
two different models. One can view exogenous income streams as dividends
of some shadow asset, in which case our model is valid if the market portfolio
is expanded to include the new asset. However, if the latter is not traded,
then the return to the wealth portfolio is not readily observable or estimable
from available data. Under various assumptions this has been examined in
the continuous model by Aase (2014a), and the conclusion is that the model
with past dependence yields more stable results in terms of the preference
parameters, than the standard recursive model. This is reexamined in the
present models with jump dynamics.

It has been a goal in the modern theory of asset pricing to internalize
probability distributions. To a large extent this has been achieved in our
approach. The system of forward/backward stochastic differential equations
leaves parameters in the probability distributions of utility to be determined
in equilibrium.

The paper is organized as follows: In Section 2 we explain the problems
with the conventional, time additive model including jump dynamics. Sec-
tion 3 contains a preview of results for both the models we consider. Section
4 starts with a brief introduction to recursive utility in continuous time in-
cluding jump dynamics, Section 5 derives the first order conditions, Section
6 details the financial market, and Section 7 presents the analysis relevant
for recursive utility with jumps. Section 8 discusses the situation when the
market portfolio is not a proxy for the wealth portfolio, and Section 9 con-
cludes.

2 The problems with the conventional model

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
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tion that is the expectation of a sum, or a time integral, of future discounted
utility functions. The model has been criticized for several reasons. First, it
does not perform well empirically. Second, the usual specification of utility
can not separate the risk aversion from the elasticity of intertemporal sub-
stitution, while it would clearly be advantageous to disentangle these two
conceptually different aspects of preference. Third, while this representation
seems to function well in deterministic settings, and for timeless situations,
it is not well founded for temporal problems (derived preferences do not in
general satisfy the substitution axiom, e.g., Mossin (1969)).

In the conventional model the utility U(c) of a consumption stream ct is

given by U(c) = E{
∫ T
0
u(ct, t) dt}, where the felicity index u has the separa-

ble form u(c, t) = 1
1−γ c

1−γ e−δ t. The parameter γ is the representative agent’s
relative risk aversion and δ is the utility discount rate, or the impatience rate,
and T is the time horizon. These parameters are assumed to satisfy γ > 0,
δ ≥ 0, and T <∞.

When jumps are included the risk premium (µR− r) of any risky security
labeled R (for ”risky”) is given by

µR(t)− rt = γ σRc(t)−
∫
Z

(
(1 + γc(t, ζ))−γ − 1

)
γR(t, ζ)ν(dζ). (1)

Here rt is the equilibrium real interest rate at time t, and the term σRc(t) =∑d
i=1 σR,i(t)σc,i(t) is the covariance rate between returns of the risky asset and

the growth rate of aggregate consumption at time t, a measurable and adap-
tive process satisfying standard conditions. The dimension of the Brownian
motion is d > 1. Underlying the jump dynamics we have {Nj}, j = 1, 2, · · · , l
independent Poisson random measures with Levy measures νj coming from l
independent (1-dimensional) Levy processes. The possible time inhomogene-
ity in the jump processes is expressed through the terms denoted γR,j(t, ζj)
for the risky asset under consideration, and γc,j(t, ζj) for the aggregate con-
sumption process, both measuring the jump sizes. Here also jump frequen-
cies at time t are embedded. The ”mark space” Z = Rl in this paper, where
R = (−∞,∞). Thus the above term in (1) is short-hand notation for the
following∫

Z

(
(1 + γc(t, ζ))−γ − 1

)
γR(t, ζ)ν(dζ)

=
l∑

j=1

∫
R

(
(1 + γc,j(t, ζj))

−γ − 1
)
γR,j(t, ζj)ν(dζj). (2)
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This is a continuous-time version of the consumption-based CAPM, allowing
for jumps at random time points. Similarly the expression for the risk-free,
real interest rate is

rt = δ + γ µc(t)−
1

2
γ (γ + 1)σ′c(t)σc(t)

−
(
γ

∫
Z
γc(t, ζ) ν(dζ) +

∫
Z

(
(1 + γc(t, ζ))−γ − 1

)
ν(dζ)

)
. (3)

In the risk premium (1) the last term stems from the jump dynamics of the
risky asset and aggregate consumption, while in (3) the last two terms have
this origin. These results follow from Aase (1993a,b).

If the consumption process were as volatile as the stock market index, the
jump dynamics could potentially contribute to giving a better explanation
of empirical regularities than the continuous model can alone. However,
because of the relatively small sizes of the potential jumps in the consumption
process, it is unlikely that the last terms in these two relationships move these
quantities enough in the right direction. As with the continuous model, the
main problem stems from the low covariance rate between consumption and
the market index.

The process µc(t) is the annual growth rate of aggregate consumption
and (σ′c(t)σc(t)) is the annual variance rate of the consumption growth rate,
both at time t, again dictated by the Ito-isometry. Both these quantities are
measurable and adaptive stochastic processes, satisfying usual conditions.
The return processes as well as the consumption growth rate process in this
paper are also assumed to be ergodic processes, implying that statistical
estimation makes sense.

Notice that in the model is the instantaneous correlation coefficient be-
tween returns and the consumption growth rate given by

κRc(t) =
σRc(t)

||σR(t)|| · ||σc(t)||
=

∑d
i=1 σR,i(t)σc,i(t)√∑d

i=1 σR,i(t)
2

√∑d
i=1 σc,i(t)

2

,

and similarly for other correlations given in this model. Here−1 ≤ κRc(t) ≤ 1
for all t. With this convention we can equally well write σ′R(t)σc(t) for σRc(t),
and the former does not imply that the instantaneous correlation coefficient
between returns and the consumption growth rate is equal to one. Prime
means transpose.

Similarly the term
∑l

j=1

∫
R γR,j(t, ζj)γc,j(t, ζj)ν(dζj) is the covariance rate

at time t between returns of the risky asset and the growth rate of aggregate
consumption stemming from the discontinuous dynamics. We use the short-
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Expectation Standard dev. Covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 1: Key US-data for the time period 1889-1978. Continuous-time com-
pounding.

hand notation
∫
Z γR(t, ζ)γc(t, ζ)ν(dζ) for this term as well.

Using a Taylor series expansion, the risk premium is approximately

µR(t)− rt = γ
(
σRc(t) +

∫
Z
γR(t, ζ)γc(t, ζ) ν(dζ)

)
− 1

2
γ(γ + 1)

∫
Z
γR(t, ζ)γ2c (t, ζ) ν(dζ) + · · · (4)

and an approximation for the interest rate is

rt = δ + γµc(t)−
1

2
γ(1 + γ)

(
σ′c(t)σc(t) +

∫
Z
γ2c (t, ζ)ν(dζ)

)
+

1

6
γ(γ + 1)(γ + 2)

∫
Z
γ3c (t, ζ)ν(dζ)− · · · (5)

Here the term
∫
Z γ

2
c (t, ζ)ν(dζ) is the variance rate of the consumption growth

rate at time t, stemming from the discontinuous dynamics, so that the total
consumption variance rate is (σ′c(t)σc(t) +

∫
Z γ

2
c (t, ζ)ν(dζ)) at time t. Sim-

ilarly the total covariance rate between returns of the risky asset and the
consumption growth rate is (σRc(t) +

∫
Z γR(t, ζ)γc(t, ζ)ν(dζ)).

The summary statistics for the US-economy for the period 1889-1978 is
presented in Table 1. The table is based on the data used by Mehra and
Prescott (1985). By σ̂c,M(t) we mean the estimate of the covariance rate
between the return on the index S&P-500 and the consumption growth rate,
and likewise for the other quantities in the table. We have used the raw
data, and adjusted for continuous compounding. This gives, for example, the
estimate κ̂Mc = .4033 for the instantaneous correlation coefficient κM,c(t).

Interpreting the risky asset R as the value weighted market portfolio M
corresponding to the S&P-500 index, equations (4) and (5) are two equations
in two unknowns that can provide estimates of the two preference parameters
by the ”method of moments”. Ignoring the higher order terms in each of these
equations, the result is γ = 26.3 and δ = −.015, i.e., a relative risk aversion
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of about 26 and an impatience rate of minus 1.5%.
The jump terms might mitigate these numbers somewhat, since the jump

model can, under certain distributional assumptions, produce a larger equity
premium than the continuous model can alone. As an example, suppose the
cross-moment term

∫
Z γR(t, ζ)γ2c (t, ζ) ν(dζ) is of the order -1.3 ·10−3 and the

third moment term
∫
Z γ

3
c (t, ζ)ν(dζ) is of the order -1.6·10−3. Then the model

produces results of the order δ = .08 and γ = 7.7. It is an empirical question
to estimate these quantities (e.g., Ait Sahalia and Jacod (2009-11)). As we
demonstrate below, jump dynamics may be more useful when combined with
recursive utility.

3 Preview of results

3.1 A continuous-time recursive model with jump dy-
namics

Turning to recursive utility, one more parameter occurs in its most basic form.
It is the time preference denoted by ρ. In the form we consider, the parameter
ψ = 1/ρ is the elasticity of intertemporal substitution in consumption (EIS),
which we refer to as the EIS-parameter. In the conventional Eu-model γ = ρ,
but relative risk tolerance (1/γ) is something quite different from EIS.

We show that the standard recursive model extended to include jump
dynamics takes the following form: For ρ 6= 1 and with the same notation as
above

µR(t)− rt = ρ σc(t)
′σR(t) + (γ − ρ)σV (t)′σR(t)+∫

Z

{
γM(t, ζ)−KV (t, ζ)− γ0KV (t,ζ)(1+γM (t,ζ))

1+γ0KV (t,ζ)

1 + γM(t, ζ)− γ0KV (t,ζ)
1+γ0KV (t,ζ)

}
γR(t, ζ)ν(dζ). (6)

Here the term KV (t, ·) signify the jump sizes in the future utility process V ,
which is internalized in equilibrium as follows

γM(t, ζ)−KV (t, ζ)− γ0KV (t, ζ)(1 + γM(t, ζ))/(1 + γ0KV (t, ζ))

1 + γM(t, ζ)− γ0KV (t, ζ)/(1 + γ0KV (t, ζ))

= γ0KV (t, ζ)−
((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1 + γ0KV (t, ζ)
)
, (7)

where the equality holds ν(·) a.e. Also the volatility of the utility process V
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is given by

σV (t) =
1

1− ρ
(
σM(t)− ρσc(t)

)
. (8)

The jump term in (6) reduces to the jump term in (1) when KV (t, ·) =
σV (t) = 0 a.e., so KV and σV have strictly to do with recursive utility. The
short term real interest rate is given by

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)− ρ(γ − ρ)σc(t)

′σV (t)

− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)− 1

2
(1 + ρ)γ0

∫
Z
K ′VKV ν(dζ)

−
∫
Z
γ0KV (t, ζ)

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1
}
ν(dζ)

−
∫
Z

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1 + ργc(t, ζ)− ρKV (t, ζ)

}
ν(dζ), (9)

Here σM(t) signifies the volatility of the return on the market portfolio of the
risky securities, σ′R(t)σM(t) = σRM(t) is the instantaneous covariance rate of
the returns on any risky asset, with the return of the market portfolio. In
the model these quantities are assumed to be measurable, adaptive, ergodic
stochastic processes satisfying standard conditions. The parameter γ0 is the
agent’s relative risk aversion related to jump size risk. When there are no
jumps, we obtain what we call the standard recursive model. When ρ = γ =
γ0, the model reduces to the conventional, additive Eu-model with jumps
presented in the previous section (same as when KV = σV = 0).

The term γM(t, ζ) models the jump sizes and frequency for the market
portfolio, and the term KV (t, ζ) plays the same role for the utility process
Vt, to be explained in the next section.

Calibrating the standard recursive model with only continuous dynamics
we obtain Table 2. This model is based on the aggregator (18) in Section
4, and the risk premium was first derived by Duffie and Epstein (1992a)3.
The interest rate was first derived in Aase (2014a), and follows from our
approach in the present paper. Here we have fixed the time impatience rate
δ and solved the two equations (6) and (9) in the two remaining unknowns
γ and ρ, for values of δ between zero and 11 per cent.

From this table we notice that there is a fairly narrow band of values of
the impatience rate δ that give reasonable values for the parameters4, and

3The coefficients were all constants, since dynamic programming was used. This is not
necessary in our approach

4The recursive model has also another solution where γ varies from 27.20 to 68.13, and
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γ ρ EIS

Conventional Eu-Model
δ = −.015 26.37 26.37 .037
Standard recursive model
with no jumps
δ = .01 .005 1.61 .62
δ = .02 .90 1.06 .94
δ = .03 1.74 .49 2.04
δ = .04 2.58 - .13 - 7.69
δ = .05 3.31 - .79 -1.26
δ = .06 4.02 -1.47 - .68
δ = .07 4.69 -2.20 - .45
δ = .08 5.32 - 2.97 - .34
δ = .09 5.91 - 3.76 - .27
δ = .10 6.46 - 4.59 - .22
δ = .11 6.98 -5.45 - .18

Table 2: Calibrations of the standard continuous model

small changes in one parameter may easily lead one or more of the other two
parameter out of the plausible region.

In applied economics values of the impatience rate between 1 and 2 per
cent seem common. One reason for this is of course that the conventional,
additive Eu-model is often taken for granted, and from the expression for
the interest rate in (3) one simply does not obtain reasonable values for the
short rate unless δ is in this range, or smaller.

In this connection it may be of interest to consider the study of Andersen
et. al. (2008). They use controlled experiments with field subjects in Den-
mark to elicit the impatience rate and risk preference, ignoring the subject
of time preferences. First, an estimate of δ around 25% is reached assuming
risk neutrality, second, a new estimate of δ around 10% is obtained assuming
risk aversion, with an associated estimate of γ around .74, both based on
arithmetic averaging. Notice that a value of about ten per cent does not fit
well with the standard recursive model.

With the jump terms added, this may change. The above continuous
model gives some interesting results, albeit in a rather narrow band of pa-
rameter values. One might conjecture that this requires minor adjustments
to the model, which the discontinuous part could provide.

As an illustration, of the total annual variation of .0250 in the stock

ρ varies from 25.19 to 14.03. This is not better than the conventional, additive Eu-model.
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γ ρ γ0 EIS

Standard recursive model
including jump dynamics
δ = .01 -1.15 1.60 6.00 .63
δ = .02 .71 1.09 4.00 .92
δ = .03 2.59 .45 3.00 2.22
δ = .04 31.16 10.00 2.00 .10
δ = .05 32.77 10.52 2.00 .09
δ = .10 42.27 8.96 2.00 .11
δ = .01 2.0 1.07 .01 .93
δ = .02 2.5 .88 -.02 1.14
δ = .03 1.5 1.39 .09 .72
δ = .04 2.5 .75 -.02 1.33
δ = .05 2.0 1.20 .05 .83
δ = .10 1.78 .93 .01 1.19

Table 3: Calibrations of the standard model including jump dynamics

market, measured as variance, suppose we allocate .010 to jumps. Further
we suppose there is no significant jump activity in consumption. Ignoring
higher order terms, the resulting jump-diffusion of this section calibrates to
δ = .040, γ = γ0 = .47 and ρ = 1.13. When Table 2 starts giving implausible
values, the jump part may adjust for this.

As Table 3 illustrates, however, there is still some variation in the values
obtained. The upper half of the table indicates that the model does not
explain well larger values of γ0.

The values in the lower half of the table are seen to be quite stable as δ
varies, for reasonable values of γ, while the values of γ0 are then small, and
sometimes negative. We return to a discussion in the next section.

More numerical work is needed here, combined with statistical work,
aimed at separating the discontinuous dynamics from the continuous part
(e.g., Ait Sahalia and Jacod (2009-11)). However, the general picture seems
to be that jumps may be of particular interest in the recursive models.

3.2 A recursive model with past dependence

Based on the analysis to be presented later, where we relax the assump-
tion that past consumption does not matter for current marginal utility, the
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relationships corresponding to the above are given by

µR(t)− rt = ρ σc(t)
′σR(t) + (γ − ρ)σV (t)′σR(t).

+

∫
Z

(γM(t, ζ)−KV (t, ζ)

1 + γM(t, ζ)

)
γR(t, ζ)ν(dζ). (10)

Here the term KV (·, ·) also signify the jump sizes in the utility process V ,
which is internalized in equilibrium as follows

γM(t, ζ)−KV (t, ζ)

1 + γM(t, ζ)
= γ0KV (t, ζ)

−
((1 +KV (t, ζ))ρ

(1 + γc(t, ζ))ρ
− 1
)(

1 + γ0KV (t, ζ)
)
, (11)

where the equality holds ν(·) a.e., and

σV (t) =
1

1 + γ − ρ

(
σM(t)− ρσc(t)

)
. (12)

The right-hand side of (11) is the same as the right-hand side of (7). The
equilibrium short rate with jumps for this model is

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)− ρ(γ − ρ)σc(t)

′σV (t)

− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)− 1

2
(1 + ρ)γ0

∫
Z
K ′VKV ν(dζ)

−
∫
Z
γ0KV (t, ζ)

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1
}
ν(dζ)

−
∫
Z

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1 + ργc(t, ζ)− ρKV (t, ζ)

}
ν(dζ). (13)

which is the same as (9), but with K given by (11). When γ = γ0 = ρ the
above results also reduce to the ones of the conventional model of Section 2.
The same happens when KV (t, ·) = σV (t) = 0 a.e.

Calibrations of the version including jumps are presented in Table 4,
under the same assumptions as for Table 3. Parameter values are seen to be
more stable throughout the whole range of values of δ than for the standard
model. This model explains well this range of values for the impatience rate
δ, including the high values reported by Andersen et. al. (2008). This is also
true for the model without jumps for the present version, as demonstrated
in Aase (2014a,b).

11



Parameters γ ρ γ0 EIS

The model (10) and (13)
including jumps
δ = .01 -.12 1.21 6.00 .83
δ = .02 .01 1.32 4.00 .76
δ = .03 .09 1.40 3.00 .71
δ = .04 .09 1.37 2.00 .73
δ = .05 .18 1.46 2.00 .68
δ = .10 .50 1.77 2.00 .56
δ = .01 2.0 1.26 .02 .79
δ = .02 2.0 1.27 .03 .79
δ = .03 2.0 1.28 .04 .78
δ = .04 2.5 1.30 .05 .77
δ = .05 1.5 1.27 .05 .79
δ = .10 .57 1.23 .06 .81

Table 4: Calibrations of the model with jumps where past consumption
matters.

The upper half of Table 4 should be contrasted with the same part of
Table 3. The values in Table 4 are much more stable. Here the weighted
average risk aversion is larger than the time preference. From Table 2 we
notice that the standard recursive model calibrates to γ > ρ when δ = .03,
but aside from this, the other values have negative time preference, or γ < ρ.

The lower part of Table 4 also points in the direction of preference for
early resolution for the US-data when γ takes on values around 2, in which
case the risk aversion γ0 for jump size risk is small. Since jumps in the market
index are primarily negative, a different risk aversion γ0 for jump-size risk can
be a utility-based explanation of ”loss aversion” (see Kahneman and Tversky
(1979)), in which case risk proclivity is observed in experimental situations.
Much the same conclusions can be drawn from the lower part of Table 3.

The special situation with γ = ρ 6= γ0 is also calibrated, and give plausible
values for the parameters, with γ0 < ρ. In this calibration all the variance
in the stock market was attributed to the jump part. More generally, we
can consider the situation where the dynamics only involve jumps. Since
the data we consider are annual observations, this would correspond to an
average jump frequency of one per year. This yields plausible calibrations as
well.
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4 Recursive Stochastic Differentiable Utility

In this section we give a brief introduction to recursive, stochastic differen-
tial utility in the continuous-time model including jumps, along the lines of
Øksendal and Sulem (2013). The starting point for this theory for the con-
tinuous model is Duffie and Epstein (1992a-b) and Duffie and Skiadas (1994).
Our approach based on Øksendal and Sulem (2013) is more general, and in
particular does not require any Markov structure.

We are given a probability space (Ω,F ,Ft, t ∈ [0, T ], P ) satisfying the
’usual’ conditions, and a standard model for the stock market with Brownian
motion driven uncertainty, N risky securities and one riskless asset (Section
5 provides more details). Consumption processes are chosen form the space
L of square integrable progressively measurable processes with values in R+.

The stochastic differential utility U : L→ R is defined as follows by three
primitive functions: f : R× R→ R, A : R→ R and A0 : R× R→ R.

The function f(t, ct, Vt, ω) is a felicity index at time t, A is a measure of
absolute risk aversion related to the continuous dynamics, while A0 measures
risk aversion related to jumps. Both the latter two terms may also depend
on t. In addition to current consumption ct, the felicity index also depends
utility Vt.

The utility process V for a given consumption process c that we consider,
satisfying VT = 0, is given by the representation

Vt = Et

{∫ T

t

(
f(s, cs, Vs)−

1

2
A(Vs)Z(s)′Z(s)

− 1

2

∫
Z
A0(Vs, ζ)K ′(s, ζ)K(s, ζ)ν(dζ)

)
ds
}
, t ∈ [0, T ] (14)

where Et(·) denotes conditional expectation given Ft and Z(t) as well as
K(t, ·) are square-integrable progressively measurable processes, to be deter-
mined in our analysis. Here d is the dimension of the Brownian motion Bt,
and K(t, ·) is an l dimensional vector. We think of Vt as the utility for c at
time t, conditional on current information Ft. The term A(Vt) is penalizing
for risk in the continuous model, while the term A0(Vt, ·) penalize for jump
size risk.

If, for each consumption process ct, there is a well-defined utility process
V , the stochastic differential utility U is defined by U(c) = V0, the initial
utility. The triplet (f, A,A0) generating V is called an aggregator.

Since VT = 0 and
∫
Z(t)dBt and

∫ ∫
Z K(t, ζ)Ñ(dt, dζ) are martingales,

13



(14) has the stochastic differential equation representation

dVt =
(
− f(t, ct, Vt) +

1

2
A(Vt)Z(t)′Z(t)+

1

2

∫
Z
A0(Vt, ζ)K ′(t, ζ)K(s, ζ)ν(dζ)

)
dt+ Z(t) dBt +

∫
Z
K(t, ζ)Ñ(dt, dζ).

(15)

Here Ñ(dt, dζ) = N(dt, dζ)− ν(dζ)dt is an l-dimensional compensated Pois-
son random measure of the underlying l-dimensional Levy process, and B(t)
is an independent d dimensional, standard Brownian motion.

If terminal utility different from zero is of interest, like for applications
to life insurance, then VT may be different from zero. We think of A and
A0 as associated with functions h, h0 : R → R such that A(v) = −h′′(v)

h′(v)
,

where h is two times continuously differentiable, and similarly for h0. U is
monotonic and risk averse if A(·) ≥ 0, A0(·, ·) ≥ 0 and f is jointly concave
and increasing in consumption.

The preference ordering represented by recursive utility is usually as-
sumed to satisfy A1: Dynamic consistency (in the sense of Johnsen and
Donaldson (1985)), A2: Independence of past consumption, and A3: State
independence of time preference (see Skiadas (2009a)).

One of the advantages with the recursive model is that utility may depend
on the past. This we make use of in the present paper. Below we relax
assumption A2 related to marginal utility at any time t > 0: In the recursion
(14), if Vs depends on past consumption for s ≥ t > 0, so will Vt.

The version we consider has the Kreps-Porteus utility representation,
which corresponds to the aggregator with a CES specification

f(c, v) =
δ

1− ρ
c1−ρ − v1−ρ

v−ρ
, A(v) =

γ

v
and A0(v, ζ) =

γ0
v
, ∀ζ ∈ R (16)

corresponding to functions u(c) = c1−ρ

1−ρ and h(v) = v1−γ

1−γ , and h0(x) = x1−γ0
1−γ0 .

If, for example, A(v) = A0(v) = 0 for all v, this means that the recursive
utility agent is risk neutral.

Here ρ ≥ 0, ρ 6= 1, δ ≥ 0, γ ≥ 0, γ 6= 1, γ0 ≥ 0, γ0 6= 1 (when ρ = 1 , γ = 1
or γ0 = 1 it is the logarithms that apply). The elasticity of intertemporal
substitution in consumption ψ = 1/ρ. The parameter ρ is the time preference
parameter. Here u(·), h(·) and h0(·) can all be different functions, resulting
in the desired disentangling of γ or γ0 from ρ.

For the model with continuous dynamics only, an ordinally equivalent
specification can be derived as follows. When an aggregator (f1, A1) is given

14



corresponding to the utility function U1, there exists a strictly increasing and
smooth function ϕ(·) such that the ordinally equivalent U2 = ϕ ◦ U1 has the
aggregator (f2, A2) where

f2(c, v) = ((1− γ)v)−
γ

1−γ f1(c, ((1− γ)v)
1

1−γ ), A2 = 0.

The function ϕ is given by

U2 =
1

1− γ
U1−γ
1 , (17)

for the Kreps-Porteus specification. It has has the CES-form

f2(c, v) =
δ

1− ρ
c1−ρ − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
1−ρ
1−γ−1

, A2(v) = 0. (18)

The reduction to a normalized aggregator (f2, 0) does not mean that in-
tertemporal utility is risk neutral, or that the representation has lost the abil-
ity to separate risk aversion from substitution (see Duffie and Epstein(1992a)).
The corresponding utility U2 retains the essential features, namely that of
(partly) disentangling intertemporal elasticity of substitution from risk aver-
sion. This version is not as natural with jumps, and will not be used in this
paper.

In Aase (2013a) it is shown that these two versions have the same risk
premiums and the same short term interest rate in standard recursive model
with no jump dynamics. In the model where marginal utility is allowed to
depend on past consumption, these quantities are different. However, the
ordinally equivalent specification in the latter framework has the same risk
premiums and interest rate as the standard recursive model based on (18).

It is instructive to recall the that the conventional additive and separable
utility has aggregator

f(c, v) = u(c)− δv, A = 0. (19)

in the present framework (an ordinally equivalent one). As can be seen, even
if A = 0, the agent of the conventional model is not risk neutral.

Applying this last observation to the conventional model with jumps pre-
sented in Section 2, if A = A0 = 0 (since there is only one type of risk
aversion in the conventional model), this means that Z = K = 0, in which
case the risk premiums and the interest rate in Section 3 is seen to reduce to
the ones in Section 2 when ρ = γ = γ0.
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4.1 Homogeniety

The following result will be made use of in sections 7.3-4. For a given con-
sumption process ct we let (V

(c)
t , Z

(c)
t , Kt(ζ)(c)) be the solution of the BSDE

dV
(c)
t =

(
− f(t, ct, V

(c)
t ) + 1

2
A(V

(c)
t )Z(t)′(c)Z(t)(c)+

1
2

∫
Z A0(V

(c)
t , ζ)K ′(t, ζ)(c)K(s, ζ)(c)ν(dζ)

)
dt+ Z(t)(c) dBt

+
∫
Z K(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

V
(c)
T = 0

(20)

Theorem 1 Assume that, for all λ > 0,
(i) λ f(t, c, v) = f(t, λc, λv); ∀ t, c, v, ω
(ii) A(λv) = 1

λ
A(v); ∀ v

(iii) A0(λv) = 1
λ
A0(v); ∀ v

Then

V
(λc)
t = λV

(c)
t , Z

(λc)
t = λZ

(c)
t and K

(λc)
t (ζ) = λK

(c)
t (ζ); ∀ζ, t ∈ [0, T ]. (21)

Proof By uniqueness of the solution of the BSDEs of the type (20), all we

need to do is to verify that the triple (λV
(c)
t , λZ

(c)
t , λKt(·)(c)) is a solution of

the BSDE (20) with ct replaced by λct, i.e. that
d(λV

(c)
t ) =

(
− f(t, λct, λV

(c)
t ) + 1

2
A(λV

(c)
t )λZ(t)′(c)λZ(t)(c)+

1
2

∫
Z A0(λV

(c)
t , ζ)λK ′(t, ζ)(c)λK(s, ζ)(c)ν(dζ)

)
dt+ λZ(t)(c) dBt

+
∫
Z λK(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

λV
(c)
T = 0

(22)

By (i), (ii) and (iii) the BSDE (22) can be written
λdV

(c)
t =

(
− λf(t, ct, V

(c)
t ) + 1

2
1
λ
A(V

(c)
t )λ2Z(t)′(c)Z(t)(c)+

1
2

∫
Z

1
λ
A0(V

(c)
t , ζ)λ2K ′(t, ζ)(c)K(s, ζ)(c)ν(dζ)

)
dt+ λZ(t)(c) dBt

+λ
∫
Z K(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

λV
(c)
T = 0

(23)

But this is exactly the equation (20) multiplied by the constant λ. Hence
(23) holds and the proof is complete. �
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Remarks 1) Note that the system need not be Markovian in general, since
we allow

f(t, c, v, ω); (t, ω) ∈ [0, T ]× Ω

to be an adapted process, for each fixed c, v.
2) Similarly, we can allow A0 and A to depend on t as well5.

Corollary 1 Define U(c) = V
(c)
0 .Then U(λc) = λU(c) for all λ > 0.

Notice that the aggregator in (16) satisfies the assumptions of the theorem.

5 The First Order Conditions

In the following we solve the consumer’s optimization problem, where the
assumption A2 plays no role, using the stochastic maximum principle and
forward/backward stochastic differential equations. We return to the issue
of relaxing A2 later. We have the specification in (15) and (16) in mind,
formulated in the previous section, where the f̃ to appear below is the drift
term in (15). However, in principle the analysis is valid for any f , A and
A0 satisfying the stated conditions. The representative agent’s problem is to
solve

supc̃∈LU(c̃)

subject to

E
{∫ T

0

c̃tπtdt
}
≤ E

{∫ T

0

ctπtdt
}
.

Here Vt = V c̃
t , and (Vt, Z(t), K(t, ·)) is the solution of the backward stochastic

differential equation (BSDE){
dVt = −f̃(t, c̃t, Vt, Z(t), K(t, ζ)) dt+ Z(t) dBt +

∫
Z K(t, ζ)Ñ(dt, dζ)

VT = 0.

(24)
For α > 0 we define the Lagrangian

L(c̃;λ) = U(c̃)− αE
(∫ T

0

πt(c̃t − ct)dt
)
.

Important is here that the volatility Z(t) as well as the jump size quantity
K(t, ζ) are both to be determined, together with the dynamics of utility V .

5not common in economics
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Market clearing combined with properties of recursive utility in Theorem 1
will be used to internalize these quantities.

In order to set down the first order condition for the representative con-
sumer’s problem, we use Kuhn-Tucker and either directional derivatives in
function space, or the stochastic maximum principle. Neither of these prin-
ciples require any Markovian structure of the economy. The problem is well
posed since U is increasing and concave and the constraint is convex.

Because of the generality of the problem, we utilize the stochastic maxi-
mum principle (see Pontryagin (1972), Bismut (1978), Kushner (1972), Ben-
soussan (1983), Øksendal and Sulem (2013), or Peng (1990)): We then have
a forward backward stochastic differential equation (FBSDE) system con-
sisting of the simple FSDE dX(t) = 0;X(0) = 0 and the BSDE (24). The
Hamiltonian for this problem is

H(t, c̃, v, z, k, y) = yt f̃(t, c̃t, vt, zt, kt)− απt(c̃t − ct), (25)

where

f̃(t, c, v, z, k) = f(c, v)− 1

2
A(v)z′z − 1

2

∫
Z
A0(v, ζ)k′(t, ζ)k(t, ζ)ν(dζ) (26)

with A and A0 given in (16). Let 5kf̃ denote the Frechet derivative of f̃

with respect to k, and d5k f̃
dν

(ζ) denote its Radon-Nikodym derivative with
respect to ν. From the general theory, the adjoint equation is then

dYt = Y (t−)
{(

∂f
∂v

(t, c̃t)− 1
2
( ∂
∂v
A(Vt))Z

′(t)Z(t)

−1
2

∫
Z( ∂

∂v
A0(Vt, ζ))K ′(t, ζ)K(t, ζ)ν(dζ)

)
dt

−1
2
∂
∂z

(
A(Vt)Z

′
tZt
)
dBt +

∫
Z
d5k f̃
dν

(t, c̃t, Vt, Zt, K(t, ·))(ζ)Ñ(dt, dζ)
}
,

Y0 = 1.

With A0 as in (16), we see that 5kf̃ is the linear operator

h→ (5kf̃)(h) = −
∫
Z
A0(v, ζ)k′(ζ)h(ζ)ν(dζ); h ∈ L2(ν).

Therefore, as a random measure we have that 5kf̃ << ν, with Radon-
Nikodym derivative

d5k f̃

dν
(ζ) = −A0(v, ζ)k(ζ).
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Based on this, the adjoint equation can be written
dYt = Y (t−)

{(
∂f
∂v

(t, c̃t) + 1
2
γ
V 2
t
Z ′(t)Z(t)

+1
2

∫
Z

γ0
V 2
t−
K ′(t, ζ)K(t, ζ)ν(dζ)

)
dt

− γ
Vt
Z(t)dBt −

∫
Z

γ0
Vt−

K(t, ζ)Ñ(dt, dζ)},
Y (0) = 1,

(27)

which has the solution

Yt = exp
(∫ t

0

(∂f
∂v

(s, c̃s) +
1

2

γ(1− γ)

V 2
s

Z ′(s)Z(s)

+
1

2

∫
Z

γ0
V 2
s−
K ′(s, ζ)K(s, ζ)ν(dζ)

)
ds−

∫ t

0

γ

Vs
Z(s)dBs

+

∫ t

0

∫
Z
{ln(1− γ0

Vs−
K(s, ζ)) +

γ0
Vs−

K(s, ζ)}ν(dζ)ds

+

∫ t

0

∫
Z

ln(1− γ0
Vs−

K(s, ζ))Ñ(ds, dζ)
)
.

(28)

The adjoint equation is now reduced to primitives of the economy, in addition
to the two unknowns K and Z. Maximizing the Hamiltonian with respect
to c̃ gives the first order equation

y
∂f̃

∂c̃
(t, c∗, v, z, k)− απ = 0

or

απt = Y (t)
∂f̃

∂c̃
(t, c∗t , V (t), Z(t), K(t, ·)) a.s. for all t ∈ [0, T ]. (29)

where c∗ is optimal. The state price deflator πt at time t depends, through
the adjoint variable Yt, on the entire optimal paths (c∗s, Vs, Z(s), K(s, ·)) for
0 ≤ s ≤ t, which means that marginal utility at time t depends on the
consumption history.

When γ = γ0 = ρ then Yt = e−δt for the aggregator (19) of the conven-
tional model, so the state price deflator is a Markov process, the utility is
additive and dynamic programming works well.

For the representative agent equilibrium the optimal consumption process
is the given aggregate consumption c in society, and for this consumption
process the utility Vt at time t is optimal.
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We now have the first order conditions for recursive utility. Before we
proceed to a solution of the problem, we need to specify the financial market
model.

6 The financial market

Having established the general recursive utility form of interest, in his section
we specify our model for the financial market. The model is much like the
one used by Duffie and Epstein (1992a), except that we do not assume any
unspecified factors in our model.

Let ν(t) ∈ RN denote the vector of expected rates of return of the N
given risky securities in excess of the riskless instantaneous return rt, and
let σ(t) denote the N × d-matrix of diffusion coefficients of the risky asset
prices, normalized by the asset prices, so that σ(t)σ(t)′ is the instantaneous
covariance matrix for the continuous part of asset returns. The jumps in the
various assets are captured by the N × l-matrix γ(t, ζ) and a vector valued,
compensated random measure

Ñ(dt, dζ)′ = (Ñ1(dt, dζ1), · · · , Ñl(dt, dζl)) =

(N1(dt, dζ1)− ν1(dζ1)dt, · · · , Nl(dt, dζl)− νl(dζl)dt),

where {Nj} are independent Poisson random measures with Levy measures
νj coming from l independent (1-dimensional) Levy processes.

The representative consumer’s problem is, for each initial level w of wealth
to solve

sup
(c,ϕ)

U(c) (30)

subject to the intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · ν(t)) + rt)− ct

)
dt+Wtϕ

′
t · σ(t)dBt

+Wtϕ
′
t ·
∫
Rl
γ(t, ζ)Ñ(dt, dζ). (31)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth Wt held
in the risky securities. The processes ν(t), σ(t) and γ(t) are progressively
measurable, ergodic processes.

Market clearing requires that ϕ′tσ(t) = (δMt )′σ(t) = σM(t) and ϕ′tγ(t, ·) =
(δMt )′γ(t, ·) = γM(t, ·) in equilibrium, where σM(t) is the volatility of the re-
turn on the market portfolio, γM(t, ·) is the corresponding jump size function,
and δMt are the fractions of the different securities, j = 1, · · · , N held in the
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value-weighted market portfolio. That is, the representative agent must hold
the market portfolio in equilibrium, by construction.

7 The consequences of the recursive models

We now turn our attention to pricing restrictions relative to the given optimal
consumption plan. Recall the first order conditions are given in (29).

It is convenient to use the notation Z(t)/Vt := σV (t) and K(t, ·)/V (t−) :=
KV (t, ·), where Vt− means the value of V just before a possible jump at time
t, assuming V 6= 0. By Theorem 1, σV (t) and KV (t, ·) are both homogeneous
of degree zero in c. With this convention the utility process Vt satisfies the
following backward equation

dVt
Vt−

=
(
− δ

1− ρ
c1−ρt − V 1−ρ

t

V −ρ+1
t

+
1

2
γσ′V (t)σV (t)

+
1

2

∫
Z
γ0K

′
V (t, ζ)KV (t, ζ)ν(dζ)

)
dt

+ σV (t)dBt +

∫
Z
KV (t, ζ)Ñ(dt, dζ), (32)

where V (T ) = 0. The short-hand notation for the integrals with jump dy-
namics is as explained in Section 2. Since the jump times have Lebesgue
measure zero, Vt = Vt− a.e. on [0, T ].

Aggregate consumption is exogenous, with dynamics on of the form

dct
ct−

= µc(t) dt+ σc(t) dBt +

∫
Z
γc(t, ζ)Ñ(dt, dζ), (33)

where µc(t), σc(t) and γc(t, ·) are measurable, Ft adapted stochastic pro-
cesses, satisfying appropriate integrability conditions. We assume these pro-
cesses to be ergodic, so that they can be estimated.

Under these conditions the adjoint variable Y has dynamics

dYt = Yt−
({
fv(ct, Vt) +

1

2
γ σ′V (t)σV (t) +

1

2

∫
Z
γ0K

′
V (t, ζ)KV (t, ζ)ν(dζ)

}
dt

− γσV (t) dBt −
∫
Z
γ0KV (t, ζ)Ñ(dt, dζ)

)
, (34)

where Y (0) = 1.
From the FOC in equation (29) we derive the dynamics of the state price

21



deflator. We then seek the joint determination of Vt, σV (t) and KV (t, ·). By
Ito’s generalized lemma, normalizing to α = 1, we get

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt) + d[Y, fc(c, V )](t), (35)

since f̃c = fc, where [X, Y ](t) is the quadratic covariation of the processes X
and Y given by

[X, Y ](t) =

∫ t

0

(
σX(s)σY (s) +

∫
Z
γX(s, ζ)γY (s, ζ)ν(dζ)

)
ds

+

∫ t

0

∫
Z
γX(s, ζ)γY (s, ζ)Ñ(ds, dζ).

By the dynamics of the adjoint and the backward equations, this can be
written, using Ito’s multi-dimensional formula

dπt = Yt fc(ct, Vt)
(
{fv(ct, Vt) +

1

2
γσ′V (t)σV (t) +

1

2

∫
Z
γ0K

′
VKV ν(dζ)}dt

−γσV (t)dBt−
∫
Z
γ0KV (t, ζ)Ñ(dt, dζ)

)
+Yt

∂fc
∂c

(ct, Vt)(ctµc(t)dt+ctσc(t)dBt)

+ Yt
∂fc
∂v

(ct, Vt)
(
{−f(ct, Vt) +

1

2
γVtσ

′
V (t)σV (t) +

1

2

∫
Z
Vt−γ0K

′
VKV ν(dζ)}dt

VtσV (t)dBt

)
+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) c
2
tσ
′
c(t)σc(t) +

∂2fc
∂c∂v

(ct, Vt)σ
′
c(t)σV (t)

+
1

2

∂2fc
∂v2

(ct, Vt)V
2
t σ
′
V (t)σV (t)

)
dt+Yt

(∫
Z
{fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))

− fc(ct−, Vt−)− γc(t, ζ)ct−
∂fc
∂c

(ct, Vt)−KV (t, ζ)Vt−
∂fc
∂v

(ct, Vt)}ν(dζ)dt

+

∫
Z
{fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}Ñ(dt, dζ)

)
− γσV (t)Yt{ctσc(t)

∂fc
∂c

(ct, Vt) + VtσV (t)
∂fc
∂v

(ct, Vt)}dt

+Yt

∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}ν(dζ)dt

+Yt

∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}Ñ(dt, dζ).

(36)
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Here

fc(c, v) :=
∂f(c, v)

∂c
= δc−ρvρ, fv(c, v) :=

∂f(c, v)

∂v
= − δ

1− ρ
(1− ρc1−ρvρ−1),

∂fc(c, v)

∂c
= −δρc−(1+ρ)vρ, ∂fc(c, v)

∂v
= δρvρ−1c−ρ,

∂2fc
∂c2

(c, v) = δρ(ρ+ 1)vρc−(ρ+2),
∂2fc
∂c ∂v

(c, v) = −δρ2vρ−1c−(ρ+1),

and
∂2fc
∂v2

(c, v) = δρ(ρ− 1)vρ−2c−ρ.

From the cannonical representation of the state price deflator

dπt = µπ(t)dt+ σπ(t)dBt +

∫
Z
γπ(t, ζ)Ñ(dt, dζ),

from (36) we find the key characteristics of π. They are

µπ(t) = Yt

(
fc(ct, Vt)

(
fv(ct, Vt) +

1

2
γσ′V (t)σV (t)

+
1

2

∫
Z
γ0K

′
VKV ν(dζ)

)
+
∂fc
∂c

(ct, Vt)ctµc(t)

+
∂fc
∂v

(ct, Vt)
{
− f(ct, Vt) +

1

2
γVtσ

′
V (t)σV (t) +

1

2

∫
Z
Vt−γ0K

′
VKV ν(dζ)

}
+

1

2

∂2fc
∂c2

(ct, Vt) c
2
tσ
′
c(t)σc(t) +

∂2fc
∂c∂v

(ct, Vt)σ
′
c(t)σV (t)

+
1

2

∂2fc
∂v2

(ct, Vt)V
2
t σ
′
V (t)σV (t) +

∫
Z
{fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))

− fc(ct−, Vt−)− γc(t, ζ)ct−
∂fc
∂c

(ct, Vt)−KV (t, ζ)Vt−
∂fc
∂v

(ct, Vt)}ν(dζ)

− γσV (t){ctσc(t)
∂fc
∂c

(ct, Vt) + VtσV (t)
∂fc
∂v

(ct, Vt)}

+

∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}ν(dζ)

)
,

(37)

σπ(t) = Yt

(
−fc(ct, Vt)γσV (t)+

∂fc
∂c

(ct, Vt)ctσc(t)+VtσV (t)
∂fc
∂v

(ct, Vt)
)

(38)
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and

γπ(t, ζ) = Yt

(
fc(ct, Vt)(−γ0KV (t, ζ))

+ {fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}

+ γ0KV (t, ζ){fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}
)
. (39)

7.1 The risk premiums

The risk premium of any risky security with return process R is given by

µR(t)− rt = − 1

πt
σ′π(t)σR(t)− 1

πt

∫
Z
γπ(t, ζ)γR(t, ζ)ν(dζ) (40)

where the last term follows from Aase (1993a,b). Since πt = Ytfc(ct, Vt), it is
a consequence of the expressions in (38) and (40) that the risk premium of
any risky security is given by

µR(t)− rt =
(
−

∂fc
∂c

(ct, Vt)

fc(ct, Vt)
ctσ
′
c(t)σR(t) +

(
γ −

∂fc
∂v

(ct, Vt)

fc(ct, Vt)
Vt

)
σ′V (t)σR(t)

)
+

∫
Z

(
γ0KV (t, ζ)− 1

fc(ct, Vt)

(
fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)

)
·(

1 + γ0KV (t, ζ)
))
γR(t, ζ)ν(dζ). (41)

This is our basic result for risk premiums. We now substitute in for f given
in (16) and the various partial derivatives derived above. This gives

µR(t)− rt = ρ σc(t)
′σR(t) + (γ − ρ)σV (t)′σR(t)

+

∫
Z

(
γ0KV (t, ζ)−

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
−1
)(

1+γ0KV (t, ζ)
))
γR(t, ζ)ν(dζ).

(42)

It remains to determine σV and KV , which we do below. Before that we turn
to the interest rate.

7.2 The equilibrium interest rate

The equilibrium short-term, real interest rate rt is given by the formula

rt = −µπ(t)

πt
. (43)
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The real interest rate at time t can be thought of as the expected exponential
rate of decline of the representative agent’s marginal utility, which is πt in
equilibrium.

In order to find an expression for rt in terms of the primitives of the model,
we use (37). Using the expression for f and its various partial derivatives,
we obtain the expression given in (9) of Section 2, which is our basic result
for the equilibrium short rate.

7.3 The determination of the volatility and jump char-
acteristics of utility: The standard model

In order to determine σV (t), and KV (t, ·), i.e., to solve the adjoint equation,
first notice that the wealth at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πsc
∗
s ds
)
. (44)

By the definition of directional derivatives (the Frechet derivative) we have
that

5 Uc∗(c
∗) = limα↓0

U(c∗ + αc∗)− U(c∗)

α
= limα↓0

U(c∗(1 + α))− U(c∗)

α

= limα↓0
(1 + α)U(c∗)− U(c∗)

α
= limα↓0

αU(c∗)

α
= U(c∗),

where the third equality uses that U is homogeneous of degree one as shown
in Theorem 1. By the Riesz representation theorem and dominated conver-
gence theorem it follows from the linearity and continuity of the directional
derivative that

5Uc∗(c∗) = E
(∫ T

0

πtc
∗
t dt
)

= W0π0 (45)

where W0 is the wealth of the representative agent at time zero, and the last
equality follows from (44) for t = 0. Thus U(c∗) = π0W0.

Let Vt(c
∗
t ) denote future utility at the optimal consumption for our rep-

resentation. Since this function is also homogeneous of degree one and is
continuously differentiable, by Riesz’ representation theorem and the dom-
inated convergence theorem, the same type of basic relationship holds here
for the associated directional derivatives at any time t, i.e.,

5Vt(c∗; c∗) = Et

(∫ T

t

π(t)
s c∗s ds

)
= Vt(c

∗)
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where the Riesz representation π
(t)
s for s ≥ t is the state price deflator at time

s ≥ t, conditional on time t information. As for the discrete time model, it
follows by results in Skiadas (2009a) that with assumption A2, implying
that marginal utility at any time t is independent of past consumption, the
consumption history in the adjoint variable Yt is removed from the state price
deflator πt, so that π

(t)
s = πs/Yt for all t ≤ s ≤ T . By this it follows that

Vt =
1

Yt
πtWt. (46)

This gives us the dynamics of V in terms of the primitives of the model. By
the product rule,

dVt = d
(
Y −1t

)
(πtWt) + Y −1t d(πtWt) + d[Y −1t , (πtWt)](t) (47)

where
d(πtWt) = Wtdπt + πtdWt + d[πt,Wt](t). (48)

Ito’s lemma gives

d
( 1

Yt

)
=
(
−
( 1

Yt

)(
fv(ct, Vt)+

1

2
γσ′V (t)σV (t)+

1

2

∫
Z
γ0K

′
V (t, ζ)KV (t, ζ)ν(dζ)

)
+
γ2

Yt
σ′V (t)σV (t)

)
dt+

1

Yt
γσV (t)dBt

+

∫
Z

{ 1

Yt− + YtA0(Vt)K(t, ζ)
− 1

Yt−
+

Yt
Y 2
t−
A0(Vt, ζ)K(t, ζ)

}
ν(dζ)dt

+

∫
Z

{ 1

Yt− + YtA0(Vt)K(t, ζ)
− 1

Yt−

}
Ñ(dt, dζ) (49)

From the equations (47)-(49) it follows by the market clearing condition
ϕ′t · σ(t) = σM(t) that

VtσV (t) =
1

Yt

(
πtWtγσV + πtWtσM(t)− πtWt

(
ρσc(t) + (γ − ρ)σV (t)

))
(50)

From the expression (46) for Vt we obtain the following equation for σV

σV (t) = γσV (t) + σM(t)− (ρσc(t) + (γ − ρ)σV (t)

from which it follows that

σV (t) =
1

1− ρ
(σM(t)− ρσc(t)). (51)
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Inserting this expression into (42) and (9) the standard version of recursive
utility given in Section 2.2 results for the continuous dynamics part. The
version treated by Duffie and Epstein (1992a) is the ordinally equivalent one
based on (18), which was claimed to be better suited for dynamic program-
ming, the solution method used by them. This shows that under the standard
assumptions, the two ordinally equivalent versions give the same expressions
for the risk premiums and the real interest rate in the model with continuous
dynamics only.

We turn to the determination of KV (t, ·). From the equations (46)-(49),
using the market clearing condition ϕ′tγ(t, ·) = γM(t, ·), we have that∫

Z
VtKV (t, ζ)Ñ(dt, dζ) =

1

Yt
πtWt

∫
Z
γM(t, ζ)Ñ(dt, dζ)+

1

Yt
Wt

∫
Z

(
Ytfc(ct, Vt)(−γ0)KV (t, ζ)+Yt(fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−

fc(ct−, Vt−)) + Ytγ0KV (t, ζ)(fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))−

fc(ct−, Vt−)
)
Ñ(dt, dζ) +

∫
Z

{ 1

Yt− + YtA0(Vt)K(t, ζ)
− 1

Yt−

}
πtWtÑ(dt, dζ)

+
1

Yt

∫
Z
WtγW (t, ζ)γπ(t, ζ)Ñ(dt, dζ) +

∫
Z

{ 1

Yt− + Yt
γ0
Vt
K(t, ζ)

− 1

Yt

}
·{

Wtγπ(t, ζ) + πtWtγM(t, ζ) +WtγW (t, ζ)γπ(t, ζ)
}
Ñ(dt, dζ). (52)

We now use the expression for γπ(t, ·) found in (40). This leads to the fol-
lowing equation for KV (t, ·):

γ0KV (t, ζ)−
((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1 + γ0KV (t, ζ)
)

=

γM(t, ζ)−KV (t, ζ)− γ0KV (t, ζ)(1 + γM(t, ζ))/(1 + γ0KV (t, ζ))

1 + γM(t, ζ)− γ0KV (t, ζ)/(1 + γ0KV (t, ζ))
, (53)

ν a.e. This proves the results of Section 3.1, which we formulate as:

Theorem 2 For the standard recursive model with jump dynamics included,
in equilibrium the risk premium of any risky asset R is given by (42), and the
real interest rate by (9), where σV (t) is given in (51) and KV (t, ·) satisfies
the equation (53).
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7.4 The determination of the volatility and jump char-
acteristics of utility: The model with past depen-
dence

It seems reasonable that an individual’s current marginal utility is affected
by the individual’s consumption history, not only of current consumption.
For additional utility models in which past consumption plays a role in de-
termining utility, see e.g., Sundaresan (1989). In our model the natural way
to achieve this is as follows: Simply keep the first order conditions in (29) at
time t. This amounts to letting marginal utility be dependent on past con-
sumption. By relaxing assumption A2 it no longer follows that π

(t)
s has the

form given above. It is important that A1 holds. In addition homogeneity in
c must hold for consistency, and finally the relationship V0 = π0W0 in (44)
must result at t = 0, for any such extension. To this end, consider

π(t)
s = πs for all t ≤ s ≤ T (54)

We must examine the expression for πt = Yt
∂f
∂c

(ct, Vt). By the above results
and (28) this can be written

πt =
{
Y0 exp

(∫ t

0

(
− δ

1− ρ
+ ρ

δ

1− ρ
c1−ρs V ρ−1

s

+
1

2
γ(1− γ)σ′V (s)σV (s)

)
ds− γ

∫ t

0

σV (s)dBs

+

∫ t

0

∫
Z

{
ln
(

1− γ0KV (s, ζ)
)

+ γ0KV (s, ζ)
}
ν(dζ)ds

+

∫ t

0

∫
Z

ln
(

1− γ0KV (s, ζ)
)
Ñ(ds, dζ)

)}
δc−ρt V ρ

t (55)

From (55) we notice that πt is homogeneous of degree zero in c for all t. With
this choice we obtain the same homogeneity results as the standard solution.
Dynamic consistency holds by symmetry, when the observer stands at time
t and looks back at the consumption history. With this choice of π

(t)
s , since

V is homogeneous of degree one, it follows that

5Vt(c∗; c∗) = Et

(∫ T

t

πs c
∗
s ds
)

= Vt(c
∗).

From (44) we get that Vt(c
∗) = Wtπt. This shows that

Vt = πtWt (56)
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at the optimal consumption path c∗, so that for our version of recursive utility
with dependence on history, the optimal utility at time t is the deflated wealth
at this time. This V is not a Markov process, allowed by our approach.

Since the process Vt is a function of the agent’s wealth and the state price
deflator, it is a consequence of Ito’s generalized lemma

dVt = πtdWt +Wtdπt + d[πt,Wt](t) =

πt
(
µW (t)dt+WtσM(t)dBt +Wt

∫
Z
γM(t, ζ)Ñ(dt, dζ)

)
+

Wt

(
µπ(t)dt+ σπ(t)dBt +

∫
Z
γπ(t, ζ)Ñ(dt, dζ)

)
+

σπ(t)σW (t)dt+

∫
Z
γπ(t, ζ)γW (t, ζ)ν(dζ)dt+

∫
Z
γπ(t, ζ)γW (t, ζ)Ñ(dt, dζ) =(

− δ

1− ρ
c1−ρt − V 1−ρ

t

V −ρt

+
1

2
γVtσ

′
V (t)σV (t)+

1

2

∫
Z
γ0VtK

′
V (t, ζ)KV (t, ζ)ν(dζ)

)
dt

+ VtσV (t)dBt +

∫
Z
VtKV (t, ζ)Ñ(dt, dζ). (57)

First, regarding the continuous dynamics this shows that

VtσV (t) = σπ(t)Wt + σW (t)πt. (58)

We now use the equation for the optimal wealth, and observe that in equi-
librium ϕ′t · σ(t) = σM(t), so that by (31), σW (t) = WtσM(t). This gives

VtσV (t) = −πtWt(ρσc(t) + (γ − ρ)σV (t)) +WtσM(t) πt.

This leads to the following equation for σV (t)

σV (t) = σM(t)− ρσc(t)− (γ − ρ)σV (t),

from which it follows that

σV (t) =
1

1 + γ − ρ

(
σM(t)− ρσc(t)

)
. (59)

By comparing with (51), this shows our point of departure from the standard
recursive model for the diffusion part. With past dependence on marginal
utility at any time t > 0, we obtain different results. Finally we turn to the
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restriction on KV (t, ·).∫
Z
VtKV (t, ζ)Ñ(dt, dζ) = πtWt

∫
Z
γM(t, ζ)Ñ(dt, dζ)+

Wtπt

∫
Z

(
− γ0KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1 + γ0KV (t, ζ)
)
Ñ(dt, dζ)

+πtWt

∫
Z
γM(t)

{
−γ0KV (t, ζ)+

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ−1
)(

1+γ0KV (t, ζ)
)}
Ñ(dt, dζ).

(60)

Since Vt = πtWt, this leads directly to

γM(t, ζ)−KV (t, ζ)

1 + γM(t, ζ)
= γ0KV (t, ζ)

−
((1 +KV (t, ζ))ρ

(1 + γc(t, ζ))ρ
− 1
)(

1 + γ0KV (t, ζ)
)
, (61)

ν a.e., which is (11) of Section 3.2. This shows our point of departure for the
jump component.

With the new interpretation we have obtained a new solution of the sys-
tem of forward/backward stochastic differential equations, where σV (t) in
(59) and KV (t, ·) in (61) represent this new solution with consumption de-
pendence 6.

In the expressions for the equilibrium risk premiums and the real interest
rate σV (t) and KV (t, ·) were the only undetermined quantities. Inserting (59)
into (42) and using the above result, we obtain

µR(t)− rt =
ρ

1 + γ − ρ
σ′R(t)σc(t) +

γ − ρ
1 + γ − ρ

σ′R(t)σM(t)

+

∫
Z

(γM(t, ζ)−KV (t, ζ)

1 + γM(t, ζ)

)
γR(t, ζ)ν(dζ), (62)

6Notice that we have not imposed an exogenous consumption history on marginal
utility, only the one inherent in recursive utility is utilized.
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and

rt = δ + ρµc(t)−
1

2

ρ
(
1 + γ + (γ − ρ)(1 + γ − ργ)

)
(1 + γ − ρ)2

σc(t)
′σc(t)

+
γρ(ρ− γ)

(1 + γ − ρ)2
σ′c(t)σM(t)− 1

2

(γ − ρ)(1− ρ)

(1 + γ − ρ)2
σ′M(t)σM(t)

− 1

2
(1 + ρ)γ0

∫
Z
K ′VKV ν(dζ)−

∫
Z
γ0KV (t, ζ)

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1
}
ν(dζ)

−
∫
Z

{(1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1 + ργc(t, ζ)− ρKV (t, ζ)

}
ν(dζ). (63)

Taking existence of equilibrium as given, the main results in this section are
then summarized as;

Theorem 3 For the model with marginal utility depending on the consump-
tion history, in equilibrium the risk premium of any risky asset is given by
(62) and the real interest rate by (63), where KV (t, ·) satisfies (61).

7.5 Discussion

The resulting risk premiums in Theorem 3 are linear combinations of the
consumption-based CAPM and the market-based CAPM for the continuous
part, with different coefficients from the standard version in Theorem 2, and
the jump terms also differ. In Theorem 3 the latter is seen to have a simpler
and more intuitive form than the corresponding one in Theorem 2.

The calibrations to the US-data summarized in Table 1, reported in Table
4, correspond to plausible values of the various parameters. Also for the stan-
dard version of recursive utility the jump version indicates more stable results
than the corresponding model without jump dynamics, as demonstrated in
the Table 2 and 3.

Without jump dynamics present, the model with consumption history
dependence calibrates to γ < ρ for this set of data. In Aase (2014a) it was
demonstrated that for other sets of data this may be different.

An example of this was shown for Norwegian data, where this model
calibrated to γ > ρ. With jumps included this still holds true with a value
of γ0 of around three.

Tables 3 and 4 indicate that with jumps allowed in the model, only a small
risk aversion related to jump size risk in the stock market is needed in order
to explain preference for early resolution of uncertainty for the US-data.
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8 The market portfolio is not a proxy for the

wealth portfolio

In the paper we have focused on comparing two models, assuming the market
portfolio can be used as a proxy for the wealth portfolio. Suppose we can
view exogenous income streams as dividends of some shadow asset, in which
case our model is valid if the market portfolio is expanded to include the
new asset. However, if the latter is not traded, then the return to the wealth
portfolio is not readily observable or estimable from available data. Still
we should be able to get a pretty good impression of how the two models
compare, which we now attempt.

In the conventional model with constant coefficients the growth rate of
the wealth portfolio has the same volatility as the growth rate of aggregate
consumption. Taking this quantity as the lower bound for this volatility,
we indicate how the models compare when the market portfolio can not be
taken as a proxy for the wealth portfolio. Below we first set the value of
σW (t) equal to the value of σc(t), κc,W = .40 as before, and κW,M = .70. The
model with a past dependence structure can be written

µM(t)− rt =
ρ

1 + γ − ρ
σ′M(t)σc(t) +

γ − ρ
1 + γ − ρ

σ′M(t)σW (t)

+

∫
Z

(γW (t, ζ)−KV (t, ζ)

1 + γW (t, ζ)

)
γM(t, ζ)ν(dζ), (64)

with a corresponding adjustment for the interest rate. Here M stands for the
market portfolio and W for the wealth portfolio, so that (64) is the equity
premium. Similar adjustments apply for the standard recursive model with
jumps.

For the model with past dependence some calibrations are presented in
Table 5. The assumptions about the jump dynamics are as before. Results
for the standard model are presented in Table 6. With jumps included the
difference between these two models seems to have diminished, at least for
the calibrations in these two tables. Both models are seen to give plausible
results. In particular is the weighted average risk aversion larger than the
time preference for most of the calibrations, for both models.

The value for the variance rate of the wealth portfolio may be somewhat
low. A more reasonable quantity is likely to be somewhere between σc(t) and
σM(t); we suggest σW (t) = .10. We set the correlation coefficient κW,M = .80,
and maintain κc,W = .40. Calibrations under these assumptions are given in
Table 7 and 8. Again the two model produce similar results, with low values
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Parameters γ ρ γ0 EIS

The model with past
dependence
δ = .01 2.0 1.04 .01 .96
δ = .02 2.5 1.05 .01 .95
δ = .03 1.5 1.05 .01 .95
δ = .04 3.5 1.05 .02 .95
δ = .05 2.5 1.05 .02 .95
δ = .10 2.5 1.07 .03 .93
δ = .25 2.5 1.11 .08 .90

Table 5: Calibrations of the model with past dependence and jumps when
σW (t) = .0355, κW,M = .70 and κc,W = .40.

Parameters γ ρ γ0 EIS

Standard recursive model
δ = .01 2.0 1.06 .01 .94
δ = .02 2.5 1.07 .01 .93
δ = .03 1.5 1.07 .01 .93
δ = .04 3.5 1.10 .03 .91
δ = .05 2.5 1.09 .03 .92
δ = .10 2.5 1.13 .04 .88
δ = .25 2.5 1.25 .10 .80

Table 6: Calibrations of the standard recursive model with jumps.
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Parameters γ ρ γ0 EIS

The model with past dependence
δ = .01 2.0 1.14 .03 .88
δ = .02 2.5 1.17 .04 .86
δ = .03 1.5 1.17 .05 .86
δ = .04 3.5 1.19 .06 .84
δ = .05 2.5 1.20 .07 .83
δ = .10 2.5 1.26 .13 .79
δ = .25 2.5 1.40 .27 .71

Table 7: Calibrations of the model with past dependence and jumps when
σW (t) = .10, κW,R = .80 and κc,W = .40.

Parameters γ ρ γ0 EIS

Standard recursive model
δ = .01 2.0 1.15 .03 .87
δ = .02 2.5 1.13 .03 .89
δ = .03 1.5 1.17 .05 .86
δ = .04 3.5 1.07 .02 .93
δ = .05 2.5 1.18 .05 .85
δ = .10 2.5 1.31 .10 .76
δ = .25 2.5 1.96 .39 .51

Table 8: Calibrations of the standard model with jumps

of γ0.
Alternatively the model with past consumption history can calibrate to

δ = .06, γ0 = 2.5, γ = .01, and ρ = 1.08, while the standard recursive
version then gives δ = .06, γ0 = 2.5, γ = 29.2, and ρ = 7.07 for the best of
several solutions. A relatively high risk aversion for jump size risk can only
be explained by the model with past dependence. In this situation the risk
aversion γ for the continuous part is low. These two risk aversions seem to
complement each other.

The illustrations in this section only give an indication of how these mod-
els do when the market portfolio is not a proxy for the wealth portfolio. Many
additional examples could of course be given, and the models could have been
extended and moved in a different directions. However, the examples pre-
sented are fairly typical, and give an illustration of how the recursive models
behave. Compared to the conventional model the difference is dramatic.
With only continuous dynamics, the model with marginal utility depending
on past consumption history tend to give more plausible and stable results
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than the standard recursive model (see Aase (2014a)). When jumps are in-
cluded, the models can still give very different results, but can also agree on
reasonable parameter values, as demonstrated above.

In both situations presented, the risk aversion on jump size risk were low
for both models, giving a utility based support for loss aversion.

9 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial- and macro economics. Although the stan-
dard recursive model gives better results than the conventional Eu-model,
the results suffer from lack of stability in the parameters. Our approach is to
relax the condition that past consumption does not matter for the marginal
utility. This leads to a version of recursive utility that is more stable in the
parameters than the ordinary version. In this setting we introduce jump dy-
namics in addition to the continuous components in both the standard, and
our new version of recursive utility.

We use a general method of optimization, the stochastic maximum prin-
ciple, together with the theory of forward/backward stochastic differential
equations, which allows for the extension to jump dynamics. This method
does not require any Markov structure.

For the US-data our extended model may calibrate, with a few simplifi-
cations regarding the jump dynamics, to reasonable values of the preference
parameters. Here we lack an exact statistical analysis, so our results are only
suggestive at this point. The standard model with jump dynamics included
may also calibrate to more reasonable values of the parameters than without
jumps.

When the market portfolio is not a proxy for the wealth portfolio, cal-
ibrations naturally change, but still yield plausible parameter values. The
”stability” of the results seem good for both models studied in these situa-
tions, although the two models can also provide very different results.
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