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Abstract 

The Hidden Markov Model (HMM) has been widely used in regime classification and 
turning point detection for econometric series after the decisive paper by Hamilton 
(1989). The present paper will show that when using HMM to detect the turning point 
in cyclical series, the accuracy of the detection will be influenced when the data are 
exposed to high volatilities or combine multiple types of cycles that have different 
frequency bands. Moreover, outliers will be frequently misidentified as turning points. 
The present paper shows that these issues can be resolved by wavelet multi-resolution 
analysis based methods. By providing both frequency and time resolutions, the 
wavelet power spectrum can identify the process dynamics at various resolution 
levels. We apply a Monte Carlo experiment to show that the detection accuracy of 
HMMs is highly improved when combined with the wavelet approach. Further 
simulations demonstrate the excellent accuracy of this improved HMM method 
relative to another two change point detection algorithms. Two empirical examples 
illustrate how the wavelet method can be applied to improve turning point detection in 
practice.  
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1. Introduction 

Hidden Markov Models (HMM) are stochastic signal models whose mathematical 

formalism is rooted in a series of papers by Baum et al. in the late 1960s (Baum and 

Petrie, 1966; Baum and Eagon, 1967; Baum, et al., 1970) and Rabiner (1989). The 

HMM framework contains doubly stochastic processes with an underlying 

unobservable variable, which can be observed through another stochastic sequence. 

HMMs can handle both long term variation for the underlying process and 

instantaneous randomness in the observed symbols. This high flexibility in modeling 

the variable-length sequence and time variant characteristics has resulted in wide 

application of the HMM in various fields, such as biological modeling (Anders, 

1997), speech recognition (Huang et al., 1990), and signal processing (Elliott et al., 

1995).  

In an econometric study performed more than half a century ago, Burns and Mitchell 

(1946) showed that economic cycles show an asymmetric shift where the turning 

points separate long periods of steady expansions and rapid recessions. HMMs gained 

popularity in modeling economic cycles due to their ability to capture the asymmetry 

of both duration and amplitude in business cycle expansions and recessions. The 

HMM framework assumes that economic statuses are unobservable and can be 

classified as K-state regimes, which can be modeled by a K-state Markov Chain. 

Using historical data, the HMM can calculate the probability that the underlying state 

of a set of given observations belongs to a certain system. When the specification rule 

is determined, further regime classification becomes possible. This sophisticated 

model has been extensively studied (both empirically and theoretically) in recent 

decades (Hamilton, 1989; Stock and Watson, 1989; Kim and Nelson, 1998). While the 

fusion schemes of the HMM under complex environments (e.g., frequent illumination 

changes or outlier contamination in pattern recognition) are well documented 

(Chengalvarayan, 1999; Wachter et al., 2007), the investigation of HMM performance 

in detecting turning points in cyclic data is not as well represented in the literature. 

Therefore, the current paper will examine two practical issues of HMM-based turning 
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point detection procedures. One issue is that the data is exposed to high volatility or 

composed by series of different frequency bands. This investigation is necessary, as it 

is well known that economic data is generally beset by short-term volatility, long-term 

trends and business cycles with various frequencies. Another important issue is the 

quality of the data to be analyzed. In the HMM framework, the true process of interest 

is the underlying signal and any external pollution of the data will complicate the 

actual dynamics of the signals. One source of data pollution about which one must be 

particularly cautious when attempting to detect turning points is the appearance of 

outliers, which may easily be misidentified as turning points. In particular, outliers 

lead to significant computation inefficiency for HMMs which use the Gaussian 

density as hidden state distribution, due to the intolerance of the Gaussian distribution 

to fat tails.  

This study uses Monte Carlo simulations to investigate how the HMM turning point 

detection will be affected when the data are exposed to the above-mentioned issues. 

The simulation results show that the HMM fails to detect the underlying structural 

changes when the data has components with different periodical dynamics or when 

the signals are perturbed by high volatilities. In addition, there is a strong possibility 

that outliers are misidentified as turning points. To resolve these issues, the current 

paper proposes a wavelet based method, due to this method’s ability to decompose a 

series into different frequency bands. The dynamic information corresponding to 

different frequency bands will be extracted based on the wavelet decomposition, and 

outliers, which can be viewed as high-frequency spikes, will be detected using the 

high-frequency wavelet details.  

The remainder of this paper is structured as follows: Section 2 introduces the basic 

framework of the HMM and describes how this model can be used to detect turning 

points; Section 3 investigates how the detection procedure is influenced by volatility, 

different frequency combinations and outlier effects. Section 4 introduces the wavelet 

method and combines it with the HMM to alleviate the issues that are detailed in 

Section 3. The final section includes discussion and conclusions.  
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2. HMM and its application in detecting turning point 

2.1. Introduction to HMM  

The HMM gradually gained popularity in regime classification and business cycle 

identification after a series of research papers (Hamilton, 1989; Stock and Watson, 

1989; Kim and Nelson, 1998). The HMM assumes that the underlying state of a given 

system is a stochastic process in the form of a Markov Chain, and that the 

observations follow state-dependent distributions. For the discrete Hidden Markov 

Chain, let tS  denote the underlying process and let tX  represent the observations at 

time t . The relationship can be described graphically: 
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... ...
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Taking the first order Markov Chain as example, the distribution of the unobserved 

state tS  only depends on the most recent state with transition probability 
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 =1 for 1,...,i k , with k  being the number of states. Furthermore, the 

distribution of each observation tX  is generated by the density function P ( )
tS tX  

which depends only on the present state tS  and is independent of other observations. 

Thus, given ( )t and ( )S t denoting the historic information of the process, the Markov 

property and the conditional dependence inside the HMM can be summarized as: 
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When the observation process  : 1, 2,...tX t   is available, the parameters of the 

model (e.g., the initial state probabilities, the transition matrix and the priori 

distribution parameters) can be computed efficiently by the Expectation-maximization 
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(EM) algorithm or Baum–Welch algorithm (also known as Forward-Backward 

algorithm). For more details regarding HMMs, the interested reader is referred to 

Levinson et al. (1983), Elliot et al. (1995), or MacDonald and Zucchini (1997).  

2.2. Applying the HMM to detect turning points in business cycles 

The original work of Hamilton (1989) was generalized to, and developed extensively 

for, detecting turning points (Layton, 1996; Hamilton and Perez-Quiros, 1996; 

Krolzig, 2003). The commonly adopted HMM for state identification is in the form of 

an order p autoregressive structure: 1 1[ - ] ... [ - ]
t t tt s t s p t p s tX X X            

where 
ts  or even 1... ,p t    depend on tS . To detect the turning points in business 

cycles based on the two regimes classification, a simplified HMM, 
t tt s sX   

where (0, )
t ts sN �  is applied (Bellone and Saint-Martin, 2004). In the simplified 

HMM, we assume that the variable  S= : 1,2,... {0,1}tS t    follows a two-state first 

order Markov Chain, which corresponds to the contraction and expansion states of the 

business cycle at each time point t : 0 0 1

1 0 1 2

0 :

1: ( 1) ( 1)
t t

t t

S t

S t

  
     

   
         

, 

where t   is the turning point and 1 2,  0.    Thus when 0tS  , 

1 1( ) 0t tE X X    and the cycle increases while when 1tS  , 

1 2( ) 0t tE X X      and the cycle decreases. The usual criterion for identifying 

which state tS  belongs to is the posterior probability P( I)tS  > 0.5 and the turning 

point is the time at which the underlying state changes regimes. For a detailed 

detection procedure we refer to Krolzig (2003). Past literature that follows the 

procedure in Krolzig (2003) shows that this methodology is efficient and decisive. 

However, quick and accurate detection of turning points in the HMM framework is 

built upon certain assumptions, such as correct specification of the volatility and 

independently normal distributed errors. In practical applications, the data is easily 

subject to collection mechanism errors, calculation errors or unexpected and extreme 
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events. The following sections will illustrate three factors that influence the detection 

procedure: high volatility, multi-frequency bands and outliers. 

 

3. HMM detection when data are exposed to high volatility, multi-frequency 

bands, and outliers 

3.1. High volatility and frequency bands  

For econometric data, a primary source of obstruction in the main trend of the 

stochastic process is irregular factors in the form of short-term volatility. When 

detecting turning points in cyclical series, noise with large volatility leads to a shift in 

the location of a given turning point and results in incorrect estimation. The location 

shift problem is exacerbated when the data includes more than one type of cycle.  

Here, we apply a Monte Carlo experiment to show how the HMM fails to identify the 

actual turning point when the process is exposed to high volatility or composed of 

different frequency bands from separate uniform distributions, by simulating three 

types of signals with different deterministic cycles: a cosine wave with medium 

period, a sine wave with long period and a combination of these two signals. The 

volatility is introduced by independent Gaussian processes with different variances 

1 , 2  and 3 . The signals can be expressed separately as: 

1 1 1 1 1 1

2 2 2 2 2 2

3 1 2 3 3

( ) 1.5cos(2 ) ( ),  where ~unif.(1/8,1/4),  ( ) ~ . . .(0, )

 ( ) 1.5sin(2 ) ( ),  where ~unif.(1/16,1/8), ( ) ~ . . .(0, )

( ) 1.5cos(2 ) 1.5sin(2 ) ( ),  ( ) ~ . . .(0,

y t tf t f t n i d

y t tf t f t n i d

y t tf tf t t n i d

   

   

    

 

 

   3 )
. 

To examine the HMM’s accuracy in detecting the turning points for the underlying 

trend in data 1( )y t , 2 ( )y t  and 3( )y t , we simulate 200 trials and calculate the average 

value of the correct specification ratio, which is the number of correctly detected 

turning points to the number of actual turning points. We set the variance 

1 2 3       at three different levels: 0.5, 1 and 1.5. The result is as follows:   
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                                     Table 1:Correct specification ratio for HMM model 

 T                 0.5                1                  1.5    
                

1 2 3 1 2 3 1 2 3                                        t t t t t t t t ty y y y y y y y y     

200 
500 
100 

0.710  0.472  0.427
0.709  0.450  0.430 
0.710  0.493  0.516 

0.578  0.432  0.399
0.551  0.389  0.391 
0.569  0.372  0.466 

0.473  0.320  0.384
0.475  0.347  0.363 
0.480  0.333  0.433 

 

Table 1 shows that, among the three series, 1( )y t  has the highest correct specification 

ratio, while 3( )y t  has the lowest. The low correct specification ratio in 2 ( )y t  relative 

to 1( )y t  is due to the cycle dynamics 2 ( )y t  has a longer period while the volatilities 

between the cycles will be miss-specified as turning points. The lowest specification 

ratio in 3( )y t  indicates that the frequency band combination negatively affects the 

HMM to a greater extent.  Moreover, with the increase of the variance from 0.6 to 1.5, 

the correct specification ratio decreases for all the series. An empirical example is 

illustrated using quarterly U.S. GDP growth rates from 1960 to 2011. We aim at 

estimating acceleration cycle turning points, i.e. the break points between periods of 

ever-increasing and ever-diminishing growth rates.  The identified turning points that 

the HMM procedure reports are highlighted in Figure 1 by red and blue dots for peaks 

and troughs respectively. 

 

                                  Figure 1: HMM detection result for US GDP growth rate  
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When using the original data to detect the peak and trough points with a HMM, we 

obtain a pattern of frequently recurring peaks and troughs at nearly every possible 

local extreme point. This result can hardly be reconciled with the idea of business 

cycle fluctuations that span over several years. It suggests as well that high short-term 

volatility impairs the performance of HMMs since they dominate any cyclical 

movements at lower frequencies.    

An equally poor result is obtained when applying HMMs to a sample of monthly U.S. 

purchasing manager index (PMI) values for manufacturing firms between January 

1948 and October 2013. Ideally, the analysis is meant to identify turning points of the 

industrial cycle, i.e. changes between phases of expansion and contraction in 

industrial activity. The obtained dates for peaks and troughs (see Figure XYZ) are 

however rather randomly distributed over the sample and do not match the cycles one 

could identify by visual inspection of the series. Again, it is plausible that activity at 

high frequencies impairs the performance of HMMs in identifying turning points of 

underlying cycles that range over several years. 

 

Figure 2: HMM detection result for U.S. purchasing manager index 

Thus, both the Monte Carlo simulation and the empirical example show that it is 

necessary to deduct the variance and determine the actual pattern of the series before 

applying the HMM model. A common technique that is used to deduct the volatility 
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created by the noise is to smooth the data by passing it through a low pass filter and 

then extract the main trend. However, for process such as 3( )y t , the de-noised data 

also contain dynamics with difference frequencies: higher frequency cycles with 

periods of 4-8 units, and lower frequency cycles with periods of 8-16 units. Thus, 

purely de-noising the data is not sufficient, and filters that can separate cycles into 

different frequency bands are required for better dynamic identification.  

3.2. Outlier influence 

The effect of outlier contamination on HMM-based segmentation in pattern 

recognition is well documented (Chengalvarayan, 1999;  Wachter et al., 2007). The 

current paper focuses on additive outlier detection, which is defined in Barnett and 

Lewis (1994) as ( ) ( ) ( ) ( ) ( ) ( )y t t I t t x t t         , where   is the magnitude of the 

disturbance and ( )I t  is an index function that is equal to 1 at the outlier appearance 

time and 0 otherwise. We still use a Monte Carlo simulation to illustrate how the 

outlier will influence turning point detection. The data are generated from a two-state 

HMM model with 11 22 0.9p p  , and the turning point is the time where the process 

changes states. We measure the probability of misidentifying the outlier as a turning 

point, which is calculated as the ratio of the number of outliers being misidentified as 

a turning point to the total number of outliers. The number of outliers is set as 2%, 4% 

and 6% of the data size, which corresponds to 200, 500 and 1000 trials, respectively. 

The magnitudes of the outliers are set as 3  , 5   and 7  , which represent 

weak, medium and strong outliers. Based on 1000 simulations, we obtained the 

misidentification ratios as:                                 

                                     Table 2: Misspecification ratio under outlier influence 

T                           3                          5                          7            

                               2%       4%       6%              2%         4%       6%                2%      4%      6%    

200 
500 
1000 

0.510  0.549  0.539
0.512  0.522  0.521 
0.544  0.510  0.515 

0.915  0.893  0.876
0.916  0.897  0.872 
0.917  0.904  0.877        

0.950  0.912  0.888 
0.949  0.917  0.892 
0.936  0.924  0.904 
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Table 2 shows that when outliers are present, up to 90% of the outliers will be 

misidentified as turning points when 5   and 7  . Thus, it is important to detect 

outliers and correct them in the turning point detection procedure. One common 

technique for removing outliers is by passing the data through a low-frequency band-

smoothing filter to reduce the high-frequency fluctuation of the signal. However, 

when we examine in the frequency domain, the outlier clearly belongs to the high-

frequency spikes, while the smoothing is performed to maintain the primary trend of 

the underlying process, which motivated our attempt to resolve the issues found with 

the frequency domain based methodology. Given these findings and the related 

concerns, we determined that the wavelet method, which provides both frequency 

decomposition and temporal resolution, may be a viable alternative.  

 

4. Wavelet methodology to improve the HMM detection ability  

4.1. Introduction to the wavelet method 

Wavelet methods have been widely applied in the field of signal and image processing 

following their introduction in the 1980s (Grossmann and Morelet, 1984; Mallat, 

1989). Corresponding to sinusoidal waves in the Fourier transform, the wavelet bases 

 , : ,k a k a R   used in the wavelet transform are generated by translations and 

dilations of a basic mother wavelet 2 ( )L R   and can be expressed as 

,

1
( ) ( )k a

z k
z

aa
  

 . For the signal ( )f z , the wavelet transform is 

*
, ,( , ) , ( ) ( )k a k ak a f f z z dz       . When the mother wavelet satisfies the condition 

2

0

( )H
d







  , with ( )H   as the Fourier transform of the ( )z , we can 

reconstruct ( )f z using the inverse ,( ) ( , ) ( )k jf z k a z dkda   . For the discrete 

series Z { , 0,..., 1}tZ t N   , the level J  maximal overlap discrete wavelet 

transform (MODWT) contains 1J  vectors 1,..., ,J JW W V    with wavelet coefficients 



11 
 

jW  corresponding to changes of scale 12 j
j

 , while the wavelet scaling 

coefficients JV  corresponds to averages on a scale of 2 j
J  . The N  dimensional 

vectors jW  and JV  are computed by Z, Zj j J Jw v W V    where jw and Jv  are 

N N matrices. Then, the MODWT based synthesis is: 

1 1

Z
J J

T T
j j J J j J

j j

D Sw v
 

    W V     , where jD  is the thj  level MODWT detail 

containing the information in frequency band 
1

1 1
( , )
2 2j j   of   and JS  is the thJ level 

MODWT smooth containing information in the frequency band 
1

(0, )
2J

.  For more 

information about the wavelet methodology and MODWT, we refer to Vidakovic 

(1999), Percival and Walden (2000), and Gençay et al. (2001). 

Thus, based on wavelet filtering of the original signal through shifting and dilations, 

the wavelet transformation can capture frequency and time information of a given 

data series. Wavelet multi-resolution analysis (MRA) can further decompose the 

signal into different scales where the non-stationary nature of the signal can be 

analyzed according to its own resolution levels: long run or medium run trends 

correspond to the different frequency resolutions, and the spikes (e.g., outliers) can be 

captured in the high-frequency resolution.  

4.2. Wavelet decomposition based on power spectrum  

The low correct specification ratio in section 3.2 is introduced by combining the 

dynamics from the short-term volatility with cycles with different frequency bands. 

However, the different type of dynamics can be easily identified by the wavelet power 

spectrum, which provides both time and frequency resolutions, for one trial of 1( )y t , 

2 ( )y t  and 3( )y t ; we obtain the following wavelet spectrum: 
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                                Figure 3: Wavelet power spectrum for three series  

The wavelet power spectrum shows clear energy distributions of the series 1( )y t , 

2 ( )y t  and 3( )y t . Based on the spectrum, we can further select the level of wavelet 

decomposition to extract information on specific cyclical behavior. The present paper 

applies 3( )y t  to illustrate the wavelet decomposition, as the wavelet power spectrum 

shows that the series is combined with two different sets of cyclical information, a 

second-level wavelet decomposition is chosen and the wavelet details 1D , 2D  and 3D  

can separately extract information about short-term volatility, medium period and 

long cycle with the corresponding power spectrums:  

  

                   Figure 4: Wavelet power spectrums for wavelet decomposed series   

Figure 3 shows that the wavelet decomposition successfully separates the cyclic 

dynamics according to different frequency bands. We can further use HMM to detect 
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the turning point for medium period and long cycle in 2D  and 3D . A further 1000 trial 

Monte-Carlo simulation for the detection process based on 2D  and 3D  for 3( )y t  can 

be seen in Table 3: 

Table 3: Correct specification ratio for HMM model based on 
2D  and 

3D  for 
3( )y t  

 T            0.5            1             1.5    
                  

2 3 2 3 2 3                                  D D D D D D  

200 
500 
1000 

0.984  0.857
0.980  0.853 
0.983  0.887 

0.854  0.729
0.857  0.683 
0.857  0.670 

0.671  0.554
0.664  0.527 
0.670  0.541 

 

Relative to Table 1, the correct specification ratio increased significantly in 3( )y t . 

Moreover, because 2D  and 3D  separately contain identical dynamic behaviors as 

2 ( )y t  and 3( )y t , they can be compared, with the former two series showing much 

higher correct specification ratios.  

In the empirical example, the power spectrum, shown in the left panel of figure 6, 

suggests that the energy of the data is concentrated primarily on the dynamics that 

stretch over more than four years. Activity at higher frequencies is present, but has a 

very limited impact on some local spots of the time series. As the data are sampled 

quarterly, the wavelet smooth 3S  which contains information in frequency band 

1
(0, )

16
, can be used for future analysis. The turning point detection result on this 

series is shown in the lower right panel of Figure 5: 
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    Figure 5: Wavelet sample spectrum for GDP rate data and detection result based on smoothed data 

Compared to the original data, 3S  shows a much clearer cyclical behavior while 

preserving the same peaks and troughs as in the original data. Short-term fluctuations 

have been removed from the series, thus exposing the cyclical swings at frequencies 

that can be associated with business cycle fluctuations. The HMM can precisely 

detect turning points in these cycles and provides us with a reasonable estimate of 

acceleration cycle turning points.  

In the case of PMI values, the wavelet sample spectrum in Figure 6 is equally helpful 

in spotting the frequencies which exhibit energy that spans over the entire sample. In 

the case at hand, these frequencies are associated with dynamics stretching over more 

than 32 months. Higher frequencies are characterized by significant activity as well, 

but these movements are again very specifically related to small isolated regions 

within the sample. It can hence be concluded that these frequencies merely add noise 

to the information given at lower frequencies. We use hence the fourth-scale smooths 

of the MRA to determine turning points with a HMM. The resulting dates, depicted by 

red and blue dots in the lower right panel of Figure 6, are intuitively much more 

appealing. 
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Figure 6: Wavelet sample spectrum for PMI data and detection result based on smoothed data 

 

4.3. Comparison to change point detection methods 

Since turning point detection with HMMs entails the identification of sections witin a 

time series that have different growth rates, it is conceptually similar to change point 

detection methods. Hence we will assess the performance of HMMs in detecting 

turning points by comparing them to detection algorithms for multiple changes in 

mean that are applied on the first differences of our simulated series. We focus on 

investigating the performance of the Binary Segmentation algorithm (Edwards and 

Cavalli-Sforza, 1965) and the Pruned Exact Linear Time algorithm (PELT) (Killick et 

al., 2012). Despite being comparatively fast methods relative to HMMs, the two 

change point detection algorithms do not explicitly classify which regime a specific 

subsection in a time series belongs to. In the case of only two regimes, this problem is 

solved by comparing the means of the first and second subsection in order to 

determine whether the first identified change point in the first differences is a peak or 

a trough in the levels of the series. The nature of all other turning points can then be 

derived stepwise.  

In a first instance, we apply the two considered algorithms to the raw series ݕଷ and 

calculate the correct specification ratios for the turning points of the two cyclical 

components in the series. Since the series is not split up into different frequencies, the 

correct specification ratio gives solely an indication of whether the change point 
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detection algorithms correctly detect a turning point at some frequency. A 

classification into the corresponding frequency band is, however, not possible with the 

raw data.  

Table 4: Correct specification ratios for change point algorithms on raw data 

            Binary Segmentation 

      T             0.5            1             1.5              

                 
2 3 2 3 2 3                                  D D D D D D    

200  0.199 0.086 0.202 0.123 0.190 0.133 

500  0.163 0.074 0.200 0.119 0.191 0.136 

1000  0.112 0.050 0.196 0.121 0.190 0.136 
 

               PELT 

     T              0.5            1             1.5             
                

2 3 2 3 2 3                                  D D D D D D
   

200  0.261 0.125 0.242 0.176 0.253 0.225 

500  0.262 0.129 0.243 0.178 0.254 0.224 

1000  0.262 0.129 0.241 0.177 0.255 0.224 

 

 The results in table 4 reveal a fairly low correct specification rate for Binary 

Segmentation. The algorithm fails specifically at identifying turning points that 

correspond to the cyclical component with a range of 8-16 time points. Interestingly, 

the performance of the algorithm on these turning points improves as the magnitude 

of short-term volatility increases. The correct specification ratios of the PELT 

algorithm are on average almost 7% higher than those obtained with Binary 

Segmentation, but exhibit otherwise the same characteristics. Both methods are, 

however, by far less successful in detecting the correct turning points than HMMs. 

In a next step, the two algorithms are applied directly to the second- and third-scale 

wavelet details in order to allow a comparison with the HMM approach under the 

same circumstances. As can be seen in table 5, the Binary Segmenation algorithm 

fails entirely to detect correct turning points when applied to wavelet details. Notably 

the ability to identify turning points in highly frequent cyclical components is 

impaired and the corresponding correct specification rates are generally plain zero. 

The results obtained from applying the PELT algorithm are mixed and differ in their 

characteristics strongly from those of Binary Segmentation. We see that the 

application of the PELT algorithm on wavelet details has different implications for 
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turning points of components at different frequencies. The correct specification ratio 

for turning points in the second-stage wavelet details turns out to be significantly 

higher when the algorithm is applied to the corresponding wavelet details. The ratio 

decreases, however, substantially when either the sample size or the magnitude of 

short-term volatility increases. The results are fundamentally different for turning 

point detection on the third-scale wavelet details. The performance of the PELT 

algorithm is seriously impaired here, leading to a correct specification ratio of only 

1% with ߪ ൌ 0.5. The correct specification ratio increases as the volatility magnitude 

gets higher, but generally remains below the ratios that were obtained from the raw 

data. Overall, the two algorithms prove to be inferior to HMMs, despite the promising 

results that the PELT algorithm provides for cyclical components with high frequency. 

Table 5: Correct specification ratios for change point algorithms on wavelet details 

            Binary Segmentation 

     T                0.5            1             1.5            

                   
2 3 2 3 2 3                                  D D D D D D  

200  0.001 0.062 0.009 0.049 0.019 0.051 

500  0.000 0.001 0.001 0.004 0.003 0.010 

1000  0.003 0.088 0.004 0.021 0.005 0.014 
 

              PELT 

    T              0.5            1                1.5           
               

2 3 2 3 2 3                                     D D D D D D
    

200  0.703 0.011 0.471 0.069 0.346 0.109 

500  0.626 0.009 0.389 0.065 0.288 0.097 

1000  0.557 0.009 0.334 0.063 0.269 0.086 

 

4.4. Using wavelet details to detect and eliminate outliers 

In Section 3.1, we mentioned that through wavelet decomposition, the wavelet detail 

will retain the high-frequency information. As outliers are inherent to the signal, it is 

reasonable to analyze them within the wavelet detail, which is most sensitive to the 

local behavior of the signal.  Research has been performed on wavelet outlier 

detection (Canan and Huzurbazar, 2002; Grané and Veiga, 2009). In this paper we set 

decomposition level J =1 in the wavelet transform, which results in decomposition 

1 1D S   , where the wavelet detail 1D  is quite sensitive to the outliers with a 
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significant deviation at the outlier occurrence time and it can be used to detect and 

correct the outliers. We then set a threshold value   to lower 2.5% percentile value of 

1D  from standard normally distributed data. The values in 1D  which are above   are 

set then to 0, while the other values are not altered, resulting in a new series of 

wavelet detail '
1D . Next, we reconstruct a series ' '

1 1X D S   and apply it for turning 

point detection. The new series 'X  maintains the original structure of the observations 

but with the outlier points corrected. We now generate 1000 trials in a Monte Carlo 

simulation based on the same set of parameters in Section 3.2 to show how the outlier 

effect is eliminated after wavelet method based corrections. In addition to the miss-

specification ratio (MSR) in Table 2, we also measured the corrected-specification 

ratio (CSR), which is the percentage of actual turning points being detected.  

                     Table 6: Comparison of misspecification and correct specification ratio  

                                        Polluted data                                          Corrected data
T                            MSR                           CSR                            MSR                              CSR 
                               2%      4%       6%                 2%     4%       6%                 2%      4%      6%                      2%      4%       6% 

3   

200 
500 
1000 

 
0.510  0.549  0.539 
0.512  0.522  0.521 
0.544  0.510  0.515 

 
0.750  0.594  0.517 
0.752  0.617  0.497 
0.766  0.632  0.507 

0.025  0.040  0.053 
0.022  0.045  0.051 
0.030  0.040  0.043 

0.804  0.775  0.742 
0.800  0.784  0.745 
0.803  0.777  0.749 

5   
200 
500                
1000                 

 
0.915  0.893  0.876 
0.916  0.897  0.872 
0.917  0.904  0.877         

 
0.651  0.483  0.369 
0.680  0.470  0.368 
0.668  0.483  0.366 

0.037  0.047  0.048 
0.043  0.046  0.053 
0.047  0.050  0.054 

0.773  0.745  0.725 
0.787  0.767  0.722 
0.787  0.746  0.712 

7   

200 
500 
1000 

 
0.950  0.912  0.888 
0.949  0.917  0.892 
0.936  0.924  0.904 

 
0.653  0.462  0.365 
0.657  0.481  0.362 
0.664  0.479  0.368 

0.090  0.080  0.083 
0.071  0.081  0.082 
0.086  0.079  0.080 

0.782  0.702  0.659 
0.770  0.689  0.632 
0.764  0.687  0.630 

 

Table 6 shows that for the outlier polluted data, the WSR is approximately 90% for 

the medium and large magnitude outliers, which will also lead to a reduction in the 

correct specification ratio to approximately 
1

3
. Table 6 also indicates that the outlier 

influence is significantly improved after the wavelet correction, especially for the 

MSR, which is reduced to a maximum value of 10% in the high-magnitude outlier 

cases. After the wavelet correction, most outliers are detected and will lead to a higher 

CSR. Moreover, to increase the robustness of the HMM to the outliers, another 

commonly applied methodology is to Student’s t distribution (instead of the Gaussian 
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distribution as the observation likelihood). However, this solution must overcome the 

difficulties in the identification of the degrees of freedom in the t distribution. 

Furthermore, this method concentrates on increasing the tolerance of outliers in the 

system but fails to detect the actual position of the outliers (i.e., the locations of 

unusual events, such as unexpected occlusions and structural changes) in empirical 

applications. By applying the wavelet methods, the location of the outliers can be 

identified and the ratio of the correct identification is quite high:  

                                         Table 7: Correct outlier identification ratio 

T                           3                            5                           7               
                               2%       4%       6%                2%       4%       6%                 2%      4%      6%           

200 
500 
1000 

0.652   0.565   0.576
0.613   0.589   0.576 
0.638   0.600   0.599 

0.935   0.890    0.883 
0.925   0.896    0.900 
0.933   0.914    0.887 

0.957   0.956   0.942 
0.961   0.941   0.942 
0.958   0.952   0.936 

 

5. Conclusion  

The current paper primarily concentrates on improving turning point (i.e. peak and 

trough) detection in cyclical series by applying HMMs. The successful performance 

of HMMs is reported in many studies. However, our simulation and our empirical 

results show that the presence of a high degree of volatility, different frequency 

combinations and outliers will negatively affect performance. To address these 

concerns, we next applied a wavelet multi-resolution based methodology to 

decompose the series into different frequency bands and perform further analyses.  

Both the empirical example and the simulation results show that this methodology can 

reduce the issues raised by high volatility, differences in frequency band combinations 

and outliers.   
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