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Abstract: Hong and Kao (2004) proposed a panel data test for serial correlation of unknown 

form. However, their test is computationally difficult to implement, and simulation studies 

show the test to have bad small-sample properties. We extend Gencay’s (2011) time series 

test for serial correlation to the panel data case in the framework proposed by Hong and Kao 

(2004). Our new test maintains the advantages of the Hong and Kao (2004) test, and it is 

simpler and easier to implement. Furthermore, simulation results show that our test has 

quicker convergence and hence better small-sample properties.  
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Serially correlated errors in regression models have several implications for econometric 

modeling, such as making parameter estimation inefficient and invalidating the commonly 

used Student’s t-test and F-tests. Moreover, for the panel data case, commonly used 

estimators of dynamic models such as system-generalized method of moments (GMM) and 

Arrelano-Bond (1991) are only valid as long as the errors in the models are serially 

uncorrelated. Testing for serially correlated errors is thus an essential part of econometric 

modeling.   

 Most panel data tests for serial correlation; for example, Breusch and Pagan (1980), 

Bhargave et al. (1982), Baltagi and Li (1995) and Bera et al. (1995) test for no serial 

correlation against the alternative of serial correlation of some known form. Extending a time 

series test by Lee and Hong (2001), Hong and Kao (2004) relax the assumption that the serial 

correlation form is known. Because the Hong and Kao (2004) test is more general than other 

tests, it also has higher power. Additional strengths of the Hong and Kao test are that it may 

be applied to residuals from a wide range of different panel data models: static models, 

dynamic models, one- or two-way error-component models, fixed effects or random effects 

models. Among the weaknesses of the Hong and Kao (2004) test are its complex structure, 

which causes the convergence rate to be slow and makes the test computationally time 

consuming. 

We propose an alternative serial correlation test for panel data models that maintains the 

strengths of the Hong and Kao (2004) test and at the same time has a more simplified 

structure, higher convergence rate and better small-sample properties. Our test is constructed 

by combining the variance ratio-test proposed by Gencay (2011) for time series models with 

the Fisher-type test applied in Choi (2001). The small-sample properties of our test are 

evaluated in a simulation study and compare favorably to other commonly used tests.  

The rest of this paper has the following structure: Section 2 introduces the wavelet 

transform and the Hong and Kao test, Section 3 introduces the panel data test, Section 4 

contains the simulation study, and Section 5 concludes the paper.  

 

2. Wavelet method and the Hong and Kao test 

2.1 Introduction to the wavelet transform  

Wavelet transform methods began to gain the attention of statisticians and econometricians 

after a series of articles in the field of economics and finance. Introductory texts for 

economists are given by Ramsey (1999), Schleicher (2002) and Crowley (2005), and more 

extensive descriptions have been provided by Vidakovic (1999), Percival and Walden (2000) 



and Gençay et al. (2001). The wavelet methodology represents an arbitrary time series in both 

time and frequency domains by convolution of the time series with a series of small wavelike 

functions. Corresponding to the time-infinite sinusoidal waves in the Fourier transform, the 

time-located wavelet basis functions  : ,jk j k �  used in the wavelet transform are 

generated by translations and dilations of a basic mother wavelet 2( )L  � . The function 

basis is constructed through /2( ) 2 (2 )j j
jk t t k   , where k is the location index and j is the 

scale index that corresponds to the information inside the frequency band 
1

1 1
( , )
2 2j j . For a 

signal f , its wavelet transform is given by the wavelet coefficients *
,{ ( , )}k jf j k  � with 

*( , ) , ( ) ( )jk jkj k f f t t dt       , which represent the resolution at time k  and scale j . The 

resolutions in the time domain and the frequency domain are achieved by shifting the time 

index k and the scale index j , respectively. A lower level of j  corresponds to higher 

frequency bands, and a higher level of j  corresponds to lower frequency bands. Accordingly, 

the information at high frequency bands, such as noise, outliers or data spikes, is captured by 

( , )j k  at a lower level of j . By contrast, the long persistent information at low frequencies, 

e.g., trends or structural breaks, are captured by ( , )j k  at a higher level of j .  

For a time series sampled at discrete time points, the coefficients of the time series for the 

wavelet basis are obtained via the discrete wavelet transform (DWT) and maximum overlap 

discrete wavelet transform (MODWT). The DWT transforms a dyadic time series to the form 

of 1T   wavelet coefficients structured as 2ln ( )J T  scales and one scaling coefficient. 

Scale 1,...,j J  contains information in the frequency band 
1

1 1
;

2 2j j
 
  

 and consists of 
2 j

T
 

coefficients that correspond to strictly adjacent wavelet functions. The DWT is implemented 

by applying a cascade of orthonormal high-pass and low-pass filters to a time series that 

separates its characteristics at different frequency bands (Mallat, 1989). The maximum 

overlap wavelet transform is a variation of the wavelet transform, projecting a time series X  

on 2[log ]T T wavelet functions. The T  functions in each scale are translated by only one 

time period per iteration and thus overlap to a great extent, making a difference to the strictly 

adjacent wavelet functions of the DWT. The overlapping property allows considerably greater 

smoothness in the reconstruction of selected frequency bands at the cost of losing the 



orthogonality property. For detailed illustration of DWT and MODWT, we refer to Vidakovic 

(1999), Percival and Walden (2000) and Gençay et al. (2001). 

 

2.2 The Hong and Kao (2004) test 

The panel data model in Hong and Kao (2004) is given by:  

' ,      1,..., ;  1,...,it it i t it iY X u t T i n            (1) 

where itX  can be either static or dynamic in the form of including lag values of itY  , i  is an 

individual effect, and t  a common time effect. In the Hong and Kao test, the null hypothesis 

is 0 : cov( , ) 0it it hH u u    for all 0 and h i   vs. the alternative hypothesis 

1: cov( , ) 0it it hH u u   for some 0 and some h i . The test statistic is constructed using the 

spectral density function in which the assumption that h is known under the alternative may 

be relaxed.  

The test is performed on the demeaned estimated residual 
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    and ̂  indicates the consistent estimators under 

0H . Instead of using the autocovariance function ( ) ( )i it it hR h E v v  , Hong and Kao (2004) 

use the power spectrum 1 i( ) (2 ) ( ) , [ , ]h
i i

h

f R h e     


 



    to build the test statistic 

because it can contain the information on serial correlation at all lags. Instead of Fourier 

representation of the spectral density, a wavelet-based spectral density ( )jk   using the 

above-mentioned wavelet basis 2( )L  �  is used, with ( )jk   defined as: 

 ( 1/2)( ) (2 ) ( ),   [ , ]
2jk jk

m

m
     







     .  

( )jk   effectively captures the local peaks and spikes in spectral density by shifting the time 

effect index k . Based on the empirical wavelet coefficients 1/ 2 *ˆ (2 ) ( ) ( )ijk i jkh
R h    , 

the heteroscedasticity-consistent test statistic 1W  and heteroscedasticity-corrected test statistic 

2W , as well as their distribution under  0H  are defined separately as: 



 

2 12 2

1 0 1

1 1/ 2
14

1

2 12

0 1
2 1 1/ 2

1

ˆˆ2 (0)(2 1)
(0,1)

ˆ2 (0)(2 1)

ˆ2 (2 1)1
(0,1)

2(2 1)

j
i i

i

j
i i

i

n J J
i ijk ii j k d

n J
ii

J J
n

i ijkj k d
J

i

T R
W N

R

T
W N

n

 

 


  





 




     
  

 
 



  



 





, 

where “ d ” convergence in distribution. The Hong and Kao (2004) test has three main 

disadvantages. First, both test-statistics are constructed using the hyperparameters iJ  

(resolution level in wavelet decomposition), which are determined in a computationally-

intensive, data-driven method. Second, although Hong and Kao (2004) show 1 (0,1)dW N  

and 2 (0,1)dW N , the slow convergence rates of both test statistics show a serious bias 

below the nominal size when using the asymptotic critical values directly. Empirical or 

bootstrapped critical values must be generated by simulations, further complicating the test. 

Third, because the test statistics are based on DWT, the data set is restricted as iT  should be a 

multiple power of 2. All of these disadvantages hinder the test’s popularity. We proposes a 

much more simplified test and show that our test overcomes the shortcomings of 1W  and 2W  

while still giving good results in testing a wide range of serial correlations in the generalized 

panel model.  

 

3. A Panel data test based on wavelet variance ratio 

The test in Hong and Kao (2004) is the panel version extension of the wavelet spectrum-based 

serial correlation test in single series proposed by Lee and Hong (2001). However, the Lee 

and Hong (2001) test has a slow convergence rate because of the estimation of the 

nonparametric spectrum density. An alternative time series test for serial correlation of 

unknown form is the Gencay (2011) variance ratio-test, which converges to normal 

distribution at a much faster parametric rate.  

We extend the Gencay test to the panel data case by using a Fisher-type test combining 

the p-values from individual serial correlation tests based on Gencay (2011). This p-value 

combination strategy is inspired by Maddala and Wu (1999) and Choi (2001). Choi (2001) 

noted that the method to combine p-values can allow more general assumptions of the 

underlying panel models such as stochastic or nonstochastic models, balanced or non-

balanced data and homogeneous or heterogeneous alternatives. This general assumption 

coincides with the aforementioned wide range assumption of the panel models in Hong and 



Kao (2004), making our further comparisons possible. Choi (2001) also shows this p-value 

combination test generally has better size and power performance compared with the previous 

panel unit root test.    

Our test procedure for serial correlation is straightforward. First, the errors in Equation (1) for 

each individual i  are estimated. Second, the estimated errors are transformed to the wavelet 

domain using the MODWT. Unlike the DWT, the MODWT does not impose any restrictions 

on the sample size, whereby in the Hong and Kao restriction, the sample size is restricted to 

the power of 2 The MODWT on the estimated errors yields two sets of transform coefficients, 

Wi and Vi . For the discrete time series, which has the frequency band 
1

(0, ]
2

, where Wi  

represents the higher half part of frequency component in the errors (frequency band is 

1 1
( , ]
4 2

), and Vi  represents the lower half part of frequency component in the errors 

(frequency band is 
1

(0, ]
4

). Third, if the errors are white noise, each frequency has the same 

energy in which the following wavelet-ratio test statistic 
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 has the 

expected value 
1

2
. Gencay shows that the test statistic 

11
4 ( ) (0,1) ( ) (0,1)

2
d

i i p iS T G N O T N      and it can be used to test for an unknown 

order of serial correlation in time series. Gencay further shows that the test based on iS  

performs well in small samples. However, we cannot use iS  directly to obtain the p-values in 

the panel framework because it is a two-sided normal test and will lose power seriously when 

the panel data contains both positive and negative correlations. However, as 2 2~ (1)iS  , the 

test based on 2
iS  is then a one-sided test and can be used to test the heterogeneous 

alternatives. Another advantage of using 2
iS   instead of iS is that the convergence rate turns 

into 2( )p iO T   and will lead to even better small-sample performance. Among the three p-value 

based test statistics P , Z ,  L  defined as 
1

2 ln( )
n
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 , we choose the inverse normal test statistic 1
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   where 



21 ( )i ip S   and   and   are separately cumulative density functions for the normal and 

chi-square distributions. Stouffer et al. (1949) already proved that (0,1)dZ N , and Choi 

(2001) showed that, compared to other Fisher-type of tests P and L, the inverse normal test 

statistic Z  performs best and is recommended for empirical applications.  

 

4. Simulation study 

The small-sample properties of our proposed inverse normal test statistic Z  are compared 

with the Hong and Kao test, 1̂W  and 2Ŵ , in a simulation study. We also compare it with 

Hong’s (1996) kernel-based tests, 1 2
ˆ ˆ,K K , Baltagi and Li’s (1995) Lagrange multiplier (LM) 

test BL and Bera et al.’s (2001) modified LM test BSY. We use the same data generation 

process used in Hong and Kao (2004) for direct comparison. To evaluate the size of the test, 

we assume both a static panel model with a data generating process 1DGP : 

5 0.5it it i itY X u    , 15 0.5it it itX X     with ~ . . . [ 0.5,0.5]it i i d U   and a dynamic 

panel model 2DGP : 15 0.5it it i itY Y u     with ~ . . . (0,0.4)i i i d N  and ~ . . . (0,1)itu i i d N  in 

both models. For the power part, the error process  itu  has two alternatives: 

1

1

1

1

AR(1).a: 0.2 , 1,...,

AR(1) Alternatives: AR(1).b: 0.2 , 1,...,

0.2 , 1,..., / 2
AR(1).c: 

0.2 , 1,..., / 2

it it it

it it it

it it it

it it it

u u i n

u u i n

u u i n

u u i n

















  
    
        

,                                 (2) 

1 4

1 4

1 4

1 4

ARMA(12,4).a: 0.3 , 1,...,

ARMA(12,4) Alternatives: AR(12,4).b: 0.3 , 1,...,

0.3 , 1,..., / 2
AR(12,4).c: 

0.3 , 1,..., / 2

it it it it

it it it it

it it it it

it it it it

u u i n

u u i n

u u i n

u u i n

 
 

 
 

 

 

 

 

    

   

    
    










.         (3) 

[Table 1] 

[Table 2] 

For the size and power of the Z  test, we take the critical values at 10% and 5% significance 

levels directly from the N(0,1) distribution and set the replication number for the simulation to 



1000. We use 1Z  to represent our Z  test constructed from the static data generation process 

1DGP  and 2Z  to represent the Z  test from the dynamic data generation process 2DGP . Table 

1 shows the size performance of our test statistic 1Z , and Table 2 shows the size performance 

of our of our test statistic 2Z . Table 1 may be compared with Hong and Kao’s (2004) Table I 

for the static model, and Table 2 may be compared to Hong and Kao’s (2004) Table II for the 

dynamic model. 

In Tables 1 and 2, 1 2
ˆ ˆ, , ,K K BL BSY  are separately heteroscedasticity-consistent Daniell 

kernel-based tests; heteroscedasticity-corrected Daniell kernel-based tests; Baltagi-Li (Baltagi 

and Li, 1995) tests; Bera, Sosa-Escudero and Yoon tests (Bera et al., 1995). The replication 

number is set to 1000, as in Hong and Kao, and the confidence intervals for a unbiased size at 

the 10% and 5% significance levels are 
0.10(1 0.10)

0.10 1.96* (0.0814, 0.1186)
1000


   and 

0.05(1 0.05)
0.05 1.96* (0.0365,  0.0635)

1000


  , respectively. Tables 1 and 2 show that the 

sizes of our test statistic Z  are almost all unbiased for both the static panel model and the 

dynamic panel model in all cases, even for very small sample sizes such as when (n, T) = (5, 

8) or (8, 5). However, Tables I and II in Hong and Kao (2004), show that when using the 

asymptotic critical values, the size is seriously under biased for 1̂W  and 2Ŵ , 1K̂  and 2K̂ ; for 

BL, the size is seriously over-biased, and for BSY, the size is either under-biased or over-

biased. The wide bootstrapped critical value is then used for Hong and Kao (2004) to adjust 

the size and there is still an under- or over-bias problem for all of the tests. On the contrary, 

our test uses critical values directly from the normal distribution, and the results are mostly 

unbiased.   

To evaluate the power of the proposed tests, we let the error process follow an AR(1) 

and ARMA(12.4) process, and we get Table 3 and Table 4 corresponding to Table III and 

Table IV in Hong and Kao (2004). We use 1Z  and 2Z  to report separately the results for 

static and dynamic cases, whereas Hong and Kao (2004) did not show the results for the 

dynamic model. 

[Table 3] 

[Table 4] 

In the power case for 1DGP , because of poor performance for small-sample sizes for their 

tests, Hong and Kao (2004) use a simulated empirical critical value and bootstrap critical 



value for power comparison. This is a challenging task because critical values must be 

simulated for all combinations of (n, T). However, we use the N(0,1) distribution for power 

tests, making it much more straightforward and easy to conduct. 

For the AR(1) type of error, Table 3 shows that our test performance is modestly 

improved over the previous test types , its performance is much better than almost all of the 

tests for the AR(1) model for sample size (5,8) and is better than all three models for the 

sample size (50, 64). All of these examples demonstrate the much higher convergence rate of 

our test-statistic. However, for sample sizes (10, 16) and (25, 32), even though the power 

performance of our test is modest, it is still quite acceptable. Table 4 shows that for the 

ARMA(12, 4) type of error, the tests in Hong and Kao (2004) have almost no power when the 

sample size is (10, 16), whereas our test performs much better. For sample size (25, 32) and 

(50, 64) in all three models, the only Hong and Kao (2004) test that compares well with our 

test is their 1 0( )W J  test. However, this test requires a computationally intensive, data-driven 

procedure for the choice of 0J , making the already complex test even more of an obstacle. 

Moreover, compared with 1W  and 2W , our test places no restrictions on T, whereas 1W  and 

2W  require T to be a multiple of a power of two. 

 

5. Conclusion 

Compared with the tests in Hong and Kao (2004), our test statistic Z   has a simplified 

construct, much faster convergence rate and much better performance in small samples. As 

1W , 2W  and Z  are all constructed by the Lindeberg–Lévy central limit theorem and have the 

same convergence rate 1( )pO n , the faster convergence rate of Z  may be explained in two 

factors: first, the nonparametric spectral density estimation in 1W  and 2W  slows the 

convergence rate; second, the p-values in Z  are derived from 2
iS  instead of iS , which lead to 

a convergence rate in individuals being 2( )p iO T   instead of 1( )p iO T  . Moreover, by using the 

inverse normal test, our test is easily extended to a cross-sectional dependence robust test by 

using a modified inverse normal test (Hartung, 1999) when combining the p-values. Generally 

speaking, just by using the N(0,1) distribution, we obtain unbiased size and quite comparable 

power performance when compared with all previous tests.  

 

 



References: 
Arellano, M. and S. Bond. (1991). Some tests of specification for panel data: Monte Carlo 
evidence and an application to employment equations, The Review of Economic Studies, 58, 
277-297. 
 
Baltagi, B. H. and Li, Q. (1995). Testing AR(1) Against MA(1) Disturbances in an Error 
Component Model, Journal of Econometrics, 68, 133-151. 
 
Bera, A.K., Sosa-Escudero, W. and Yoon, M. (2001). Tests for the Error Component Model 
in the Presence of Local Misspecification, Journal of Econometrics, 101, 1-23. 
 
Bhargava, A., Franzini, L.  and Narendranathan, W. (1982). Serial correlation and the fixed 
effects model, Review of Economic Studies 49(4), 533-549. 
 
Breusch, T. S. and A. Pagan. (1980): The Lagrange Multiplier Test and Its Applications to 
Model Specification in Econometrics, Review of Economic Studies, 47, 239-253. 
 
Choi, I. (2001). Unit Root Tests for Panel Data,  Journal of International Money and  
Finance, 20, 249-272. 
 
Gençay, R. (2011). Serial correlation Tests with wavelets. Online on 
http://web.uvic.ca/econ/research/seminars/Gencay.pdf 
 
Gençay, R., Selçuk F. and Whitcher B. (2001). An Introduction to Wavelets and Other 
Filtering Methods in Finance and Economic, Academic Press, San Diego, CA, USA. 
 
Hartung, J. (1999) “A note on combining dependent tests of significance,” Biometrical 
Journal, 41(7), 849-855. 
 
Hong, Y. (1996): Consistent Testing for Serial Correlation of Unknown Form, Econometrica, 
64, 837-864. 
 
Hong, Y. and Kao, C. (2004) Wavelet-based testing for serial correlation of unknown form in 
panel models. Econometrica, 72, 1519-1563. 
 
Lee, J. and Hong, Y. (2001). Testing for Serial Correlation of Unknown Form Using Wavelet 
Methods, Econometric Theory, 17, 386-423. 
 
Percival, D.B. and Walden, A.T. (2000). Wavelet Methods for Time Series Analysis, 
Cambridge Univ. Press. 
 
Stouffer, S. A., Suchman, E. A., DeVinney, L. C. , Star, S. A. and Williams  R. M. Jr. (1949) 
The American Soldier, vol. 1 of Adjustment during Army Life, Princeton University Press, 
Princeton, NJ, USA. 
 
 

 

 



                                                                     Tables 

Table 1.  Size table for static panel model (
1DGP )  

  (n,T)              (5,8)         (10,16)        (25,32)       (50,64)            (5,5)       (10,10)       (25,25)        (50,50)             (8,5)         (16,10)       (32,25)      (64,50)       

                       10%  5%    10%  5%    10%  5%     10%  5%       10%  5%    10%  5%    10 %  5%     10%  5%          10%  5%    10%  5%    10%  5%   10%  5% 

Z
 

1W  

2W  

1K̂  

2K̂  

BL
 

BSY
 

  8.6   4.5     8.8   4.7     10.7    5.6     10.4   5.7       8.0   4.1     9.0  4.3     11.0  4.6     10.0   5.2      9.2   3.9      9.3   3.8     9.1   4.9    10.0   4.3 

  1.8   1.3     3.3   1.9       6.3    4.0       7.9   4.0       0.6   0.0     2.0  1.3      4.5   2.5      7.8   4.3      0.4    0.1      1.7   0.7     4.1   1.7      6.9   3.8   

  1.0   0.4     3.0   1.1       4.7    2.3       8.2   3.7       0.1   0.0     0.8  0.3      3.0   1.6      7.2   3.6      0.1    0.0      0.7   0.3     2.6   1.3      6.3   3.7 

  2.5   1.5     3.6   1.7      6.6     3.9       7.2   3.9        0.9   0.0     2.3  1.3      5.0   2.9      7.5   4.0      0.4    0.2      1.6   0.8      4.2  2.1      6.7   3.5 

  1.4   0.4     2.8   1.2      5.8     2.6       8.0   3.8        0.1   0.0     1.2  0.2      3.3   2.0      7.5   3.4      0.1   0.0       0.7   0.2      3.1  1.7      7.1   3.2 

30.5 19.9  22.6 14.9    23.2  14.6     22.5 14.5     45.3 32.4  35.2 23.9   30.2 20.8    28.2 19.2   57.8  46.3    48.0 35.4    34.7 24.5  35.3 23.8 

  9.0   3.0     5.7   2.1      6.7    1.8       7.7   2.2       18.3  9.3  13.5  5.1      9.9    3.4      7.3   2.8    31.9 20.7    22.0  10.3    14.2 5.9    11.4  4.8 

 

 

 

Table 2.  Size table for dynamic panel model (
2DGP ) 

  (n,T)              (5,8)         (10,16)        (25,32)       (50,64)           (5,5)        (10,10)          (25,25)       (50,50)          (8,5)         (16,10)        (32,25)      (64,50)       

                       10%  5%    10%  5%    10%  5%     10%  5%       10%  5%    10%  5%      10 %  5%     10%  5%      10%  5%    10%  5%     10%  5%   10%  5% 

Z
 

1W  

2W  

1K̂  

2K̂  

BL  

BSY  

  8.4   4.3     8.7   3.9       8.2    4.3       9.2   5.6     10.0   3.3     8.8   3.4      8.8   6.1     10.8   4.2     8.1   5.3     10.2   4.0     9.0   5.8     9.7   5.1 

  0.5   0.2     1.1   0.4      2.8     1.1       6.3  3.3        0.0   0.0      0.4  0.3      2.3   1.5       3.5   1.8      0.4   0.1      1.7    0.7     4.1  1.7      6.9   3.8  

  0.1   0.0     0.4   0.2      3.2     1.1       5.9  2.7        0.0   0.0      0.0  0.0       1.2  0.7       2.8   0.9      0.1   0.0      0.7    0.3     2.6  1.3      6.3   3.7  

  0.6   0.3     1.6   0.7      3.7     2.2       7.0  3.8        0.0   0.0      0.3  0.2       2.8  1.4       3.2   1.5      0.4   0.2      1.6    0.8     4.2  2.1      6.7   3.5 
 
  0.1   0.0     0.8   0.2      3.4     2.1       6.7 2.8         0.0   0.0      0.1  0.0       1.8   0.9      3.3   1.6      0.1    0.0     0.7    0.2     3.1 1.7      7.1    3.2 
 
16.6   9.8     4.8   1.8      2.1     0.3       0.3  0.0      40.2 31.4   12.8  5.8       2.8   1.0      1.3   0.2    56.7  44.2   17.7 10.0     1.9 0.5      0.6    0.2 
 

12.9   6.2  29.8 19.8     99.9  99.7       0.0  0.0      24.0 16.3   14.2  7.3     96.9 93.1    94.9 94.9   23.3 16.0    14.5   8.1  99.4  98.6   59.0 59.0 

 

 

 

 

 

 

 



Table 3. Power for Static panel model (
1Z ) and Dynamic panel model (

2Z ) with AR(1) alternatives 

                                                 AR(1).a                                                                   AR(1).b                                                                    AR(1).c       

 (n,T)             (5,8)       (10,16)      (25,32)        (50,64)            (5,8)          (10,16)         (25,32)       (50,64)         (5,8)         (10,16)        (25,32)       (50,64)        

                   10%  5%   10%  5%    10%   5%     10%  5%       10%  5%     10%  5%       10%  5%     10%  5%    10%  5%    10%  5%     10%  5%      10%  5% 

1Z  

2Z  

1W  

2W  

1K̂  

2K̂  

BL  

BSY  

  8.2   4.2   13.5  6.1    55.6  42.9  100.0 99.9   18.5  8.0    39.0  27.9    95.4  92.4  100.0 99.9   13.5   5.4    16.1 11.5   79.3 71.5     99.9 99.9 

  9.7   6.2   11.2  5.4    29.0  19.9    93.0 99.9   14.4  7.9    30.7  23.4    87.3  78.8  100.0 99.9   10.1   5.0    16.2   9.0   80.3 68.3    100.0 99.9 

  4.2  1.4    11.5  6.9    56.4  41.7    99.9 99.8   24.6 16.0   36.9  28.3    90.2 82.8    99.9 99.9    16.1 10.5   25.7 15.9   80.0  67.8    99.9  99.9 

  5.6  1.4    10.2  4.9    47.7 37.3     99.9 99.8   24.5 14.0   36.6 25.7     88.3 84.0    99.9 99.9    15.5  7.2    22.1  12.7   75.8  66.6     99.9 99.9 

  4.7  1.6   15.7   9.6    72.0 60.0     99.9 99.9   27.0 17.9   50.8 39.2     94.9 90.8    99.9 99.9    16.4 10.3   34.6 24.2   87.9  80.7     99.9 99.9 

 

  3.8  1.5   11.6   5.8    65.3 51.1     99.9 99.9   26.5 16.3   47.6 35.4    94.6 90.5     99.9 99.9    14.9   8.1   28.7   6.9    86.6  77.5     99.9 99.9 

  3.5   1.1  19.9 11.9   97.8  96.0     99.9 99.9   40.1 24.3  83.0  71.4    99.9 99.9     99.9 99.9    17.7  8.3    11.6 61.0   17.4  12.4     13.9   7.4 

 

30.7 20.9  74.8 59.9   99.9  99.9     99.9 99.9    7.9    5.2    9.5     6.3    70.8  59.2    99.9  99.9   11.1  6.2     8.7    4.5   10.7    6.0      12.6   6.3  

 

 

 

Table 4.  Power for Static panel model (
1DGP ) and Dynamic panel model (

2DGP ) with ARMA(12.4) alternatives 

                                       ARMA(12,4).a                                                     ARMA(12,4).b                                                         ARMA(12,4).c       

(n,T)                (10,16)        (25,32)          (50,64)                 ( 10,16)            (25,32)            (50,64)                    (10,16)           (25,32)             (50,64)       

                      10%  5%      10%  5%        10%  5%               10%  5%           10%  5%          10%  5%                10%  5%           10%  5%           10%  5% 

1Z  

2Z  

1W  

2W  

1K̂  

2K̂  

BL  

BSY  

     16.0   7.6      34.0   27.0     66.5   57.5          11.8     6.0       34.3   26.0        67.1   58.0            11.0    8.1        39.0   18.0       65.2   55.2 

     13.9   7.4      31.6   22.6     68.9   53.1          11.7     6.0       31.8   21.2        63.3   56.1            11.3    6.1        31.5   17.3       61.1   49.6 

       1.0    0.0     43.2   29.9     96.8   95.2            0.1      0.0       34.4   22.8       95.5   95.5              0.0     0.0        37.1   25.8       94.3   93.6 

       0.0    0.0     34.8   26.2     96.8    95.6           0.0      0.0       16.5   28.9       95.5   94.4              0.0     0.0        28.9   19.6       94.4   93.9 

       0.0    0.0     35.0   24.1     93.0    90.3           0.0      0.0        11.6    5.9        95.8   95.0             0.0      0.0       23.0   24.0       94.8   93.7 

       0.0    0.0     27.7   19.1     94.1    91.5           0.0      0.0          7.3    3.2        96.1   94.4              0.0     0.0       16.3   10.2       94.4   93.9 

       2.7    0.0     29.1   17.7     19.4    12.3           2.0      0.0          8.6    5.0          6.2     3.5              2.0     0.0        16.2    9.8        14.7    7.2 
 

       0.0    0.0       9.5     4.7       6.6      2.9             0.0     0.0        33.9  23.7       22.9   14.8              0.0     0.0        21.0   12.4       17.1  10.3
 

 

 




