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Abstract 

In this thesis we investigate whether seasonality is a significant factor in natural gas futures 

prices. We test for seasonality by estimating the two-factor model of Schwartz & Smith (2000), 

using Kalman filtering techniques in Matlab1. Next, we extend the model with a trigonometric 

seasonality function, following Sørensen (2002), to see if the new factor is significant and leads 

to better estimation of other parameters in the model2.  

Our results indicate that Model 1 suffers from an omitted parameter bias, caused by the lack of 

a seasonal factor. After including seasonality in Model 2, the model improves significantly; 

leading us to conclude that seasonality is present in natural gas prices. This seasonality causes 

prices to be higher in winter months and lower in summer months. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1 We refer to this model as Model 1.  

2 We refer to this model as Model 2. 
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1. Introduction 

In order to try to capture all of the dynamics of a commodity price process, various authors 

have introduced several multifactor models since the 1990s. Important contributions are for 

instance the two-factor model by Gibson & Schwartz (1990) the three-factor model by Schwartz 

(1997), and the three-factor maximal model by Casassus & Collin-Dufresne (2005). Other 

authors, such as Sørensen (2002)  and Lucia & Schwartz (2002), have extended these models 

in order to capture the seasonal trait that seems to be evident in some commodities. 

In this thesis, we estimate the Schwartz & Smith (2000) model both with and without an 

extended seasonality function, following Sørensen (2002), to investigate whether seasonality is 

a significant factor in natural gas prices. 

Our thesis is structured as follows. First, we provide some qualitative insights into the natural 

gas market as well as a description of our data set. We then do a simple time series analysis on 

natural gas spot prices in order to figure out how we might approach modeling these prices. 

Most non-stationary traits in our data set indicate that the two-factor model of Schwartz & 

Smith (2000) is a good fit. An exception is what we believe is seasonality in prices. By 

estimating the original model of Schwartz & Smith (2000) as well as extending it with a 

seasonal factor, we study how state variables, parameter estimates and residuals are affected, 

making us able to infer whether seasonality is present in our data set or not. 
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2. Theory 

2.1 Market background and dynamics 

Natural gas is one of the most important commodities for producing heat and electricity in 

American homes and companies. Domestic production contributes to over 95% of the natural 

gas consumed in the U.S (U.S. Energy Information Administration, 2013a), causing natural gas 

prices to be driven primarily by domestic supply and demand. Seasonality seems to be present 

in both the demand and supply side in such a way that prices are higher in the winter and lower 

in the summer. This could affect natural gas prices causing them to follow a seasonal pattern. 

Before we introduce more quantitative models to investigate this trait, we first discuss the 

supply and demand side of natural gas to try and get a qualitative sense of why seasonality 

might be present. 

Figure 2.1 shows the total production, consumption, net imports and net storage withdrawal of 

natural gas in the United States from January 2001 to August 2013 (U.S. Energy Information 

Administration, 2013a). 

 

Figure 2.1 Production, consumption, net imports and net storage withdrawal 
of natural gas in the United States, 2001-2013 

Looking at the curves for consumption and net storage withdrawal, we see a clear seasonal 

pattern. Because of physical limitations on how much gas that can be transported through high-

pressure pipelines in one period, gas producers put a fraction of the gas they produce in storage 
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in low-demand periods of the year (Augustine, et al., 2006). These storage facilities are located 

all over the US. This makes them able to deliver natural gas locally when demand increases 

above the pipeline’s capacity. In the months of April to November, gas consumption is at a 

steady low, with some minor peaks in July and August. In this period, net withdrawals are 

negative meaning that more gas is stored than what is being used. In the colder winter months, 

however, gas consumption reaches its yearly maximum. On the storage side, this is shown by 

positive net withdrawals. Usually, stored natural gas cannot cover the entire excess demand in 

the winter, and since supply from production is constant, this is likely to put upward pressure 

on prices in this period (Augustine, et al., 2006). With excess supply in summer months, and 

lower consumption, prices should be lower. Seasonality is therefore likely to be evident in 

natural gas prices. 

Figure 2.2 shows the major sectors on the demand side in the natural gas market. Looking closer 

at some of these, we wish to explain why consumption tends to vary with season (U.S. Energy 

Information Administration, 2013a). 

 

Figure 2.2 Natural gas consumption in the United States in 2012 

The industrial sector uses natural gas mainly in production and manufacturing, causing 

consumption in this sector to be quite constant during the year. On the other hand, the 

commercial and residential sectors use natural gas for heating, causing their consumption to 

spike during the cold winter months, while dropping to a low in the warmer summer season. 

Lastly, there is the electric power sector, where the primary use of natural gas is for air 

conditioning. This causes the sector’s consumption to be relatively flat over the year, with a 
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small spike in the warmer summer months of July and August. Over all, demand tends to go up 

in winter months and down the rest of the year, except for the hottest parts of the summer – a 

clear seasonal pattern in demand. 

The short-run price elasticity of demand is almost inelastic (Bernstein & Madlener, 2011), 

especially in the commercial and residential sector. Combined with the seasonal patterns on the 

demand side, this should put an upward pressure on natural gas prices in the winter months and 

the opposite in the summer.  

Other factors also contribute to changes in natural gas prices, and are important to be aware of 

when we later will model its price dynamics. Unstable weather and unforeseen temperature 

changes affect prices especially in the short term, while severe weather phenomena like 

hurricanes and earthquakes can affect both short-term and medium-term prices. These effects 

affect prices through changes in both demand and supply. The price of substitute commodities 

like coal and oil, affect prices both in the short and longer term, mostly caused by reduced 

demand. Fluctuations in the national economy affect both demand and supply, moving long-

term gas prices. Breakthroughs in production technology, affects long-term supply, causing 

downward pressure on prices. The shale gas revolution caused by new technology development 

is an example of such a disruptive technology. 

2.2 How the trading is conducted 

Along with the variety of factors that influence the prices of natural gas, the natural gas market 

is highly competitive, consisting of thousands of producers that sell their gas either to local 

distribution companies, to marketers, or directly to the customers. The main market center in 

the U.S. is the Henry Hub (HH) in Louisiana, which is connected to 16 different inter- and 

intrastate pipelines and is the highest-volume trading point in all of North America. Henry Hub 

is used as the delivery point for the New York Mercantile Exchange’s (NYMEX) natural gas 

futures contract, and is a pricing reference point for virtually the entire North American natural 

gas market (Augustine, et al., 2006). 

The natural gas futures contracts (NG) traded on NYMEX can be traded for 72 consecutive 

months starting with the next calendar month. Each contract is for 10,000 million British 
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thermal units3 (mmBtu) of Natural Gas, and prices are quoted in dollars and cents per mmBtu 

(CME Group, 2013). 

Figure 2.3 shows number of natural gas contracts with 1 month to maturity (NG1) traded on the 

NYMEX each year between 1990 and 2012 reflecting the markets increasing popularity. The 

average daily contract volume for NG traded on NYMEX was 390,000 in 2013, making it the 

most liquid natural gas contract in the world (CME Group, 2013).  

 

Figure 2.3 NG1 contracts traded by year, 1990*-2012 
*Annual volume for 1990 begins in April 

2.3 Forward and Futures contracts 

Since our data analysis uses futures prices when modeling natural gas prices, and these are 

highly connected with forward prices, we now wish to highlight some important aspects of 

forward and futures contracts. A forward contract is an agreement between two parties to buy 

or sell an asset at a certain time in the future for a certain price (Hull, 2013). Forward contracts 

are traded in over-the-counter (OTC) markets. The person buying a forward contract holds a 

long position, while the person selling a forward contract holds a short position. 

                                                 
3 One British thermal unit (Btu) refers to the amount of energy needed to cool or heat one pound of water by one degree 

Fahrenheit, approximately equal to 1,055 joules. 
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A futures contract is similar to a forward contract, but differs because they are traded on an 

organized exchange, with standardized contract terms determined by that particular exchange. 

Further, a futures contract settles at the end of each trading day, through a margin account. 

When an investor buys a futures contract, he has to make a deposit, known as initial margin, to 

this margin account. The size of the deposit is determined by the exchange the trade is 

conducted at. At the end of each trading day, the margin account adjusts according to the 

investor’s gain or loss. The seller of the futures contract also has a margin account, which 

changes proportionally to the buyers account. As the futures price usually varies over time, one 

of the parties involved will have a cumulative loss, while the other has a cumulative gain at the 

end of each trading day. In order to reduce the cumulative loss, one of the investors can close 

out his position, by entering into the opposite trade as the original agreement (Hull, 2013). The 

ability to close out a position causes most futures contract to never end in delivery of the 

underlying asset. This margin account increases liquidity in futures compared to the forward 

market. 

In the next section, we describe the data set we use to look for seasonality in prices. Next, we 

will perform a simple time series analysis on the data in order to identify sources of non-

stationary factors in prices. It is important to have a clear picture of non-stationarity in prices, 

when we later model natural gas prices to see if we can infer anything about seasonality.  
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3. Data 

Our thesis’ quantitative analysis uses weekly Friday observations of NYMEX Natural Gas 

Futures, gathered from the open source data provider Quandl (2013). Contracts exist for all 

months of the year and are listed with maturity of 1 to 72 months. Prices can be collected as far 

back as April 6th, 1990. 

Contract 
Average 
Volume 

Dates missing 
1990-2013 

Dates missing 
2005-2013 

NG1 47434 60 5 % 13 1 % 

NG2 22639 60 5 % 13 1 % 

NG3 11457 60 5 % 13 1 % 

NG4 6484 61 5 % 14 1 % 

NG5 4369 61 5 % 14 1 % 

NG6 3227 62 5 % 14 1 % 

NG7 2442 62 5 % 15 1 % 

NG8 1893 62 5 % 15 1 % 

NG9 1562 64 5 % 16 1 % 

NG10 1270 63 5 % 16 1 % 

NG11 1003 68 6 % 16 1 % 

NG12 870 93 8 % 16 1 % 

NG13 707 169 14 % 19 2 % 

NG14 503 177 14 % 23 2 % 

NG15 397 187 15 % 29 2 % 

NG16 290 194 16 % 31 3 % 

NG17 238 218 18 % 48 4 % 

NG18 215 235 19 % 50 4 % 

NG19 187 432 35 % 55 4 % 

NG20 158 442 36 % 55 4 % 

NG21 118 451 37 % 59 5 % 

NG22 112 463 38 % 61 5 % 

NG23 97 474 39 % 63 5 % 

NG24 82 482 39 % 61 5 % 

NG30 31 555 45 % 63 5 % 

NG36 21 653 53 % 66 5 % 

NG42 11 865 70 % 67 5 % 

NG48 7 873 71 % 69 6 % 

NG54 5 870 71 % 66 5 % 

NG60 4 877 71 % 74 6 % 

NG66 1 909 74 % 105 9 % 

NG72 0 943 77 % 139 11 % 

Table 3.1 Average daily trading volume (1990-2013) and missing dates for 
selected contracts 

Table 3.1 shows the average daily trading volume from 1990 to 2013 for each contract with 

maturity from 1 to 24 months, and contracts with maturity 30, 36, 42, 48, 54, 60, 66 and 72 
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months. In addition, it shows the number and percentage of missing data for each contract from 

April 6th, 1990 to November 1st, 2013 and September 30th, 2005 to November 1st, 2013. The 

average daily trading volume decreases and number of missing dates increases when maturity 

increases.  

In order to secure a high trading volume, but still include contracts with long maturities 

necessary for our model, we chose to include contracts with maturity from 1 to 24 months. 

Looking closer at our data set, we saw that several of the contracts had large gaps before the 

fall of 2005 (U.S. Department of Energy, 2009a). In order to reduce the risk of these gaps 

causing problems for our model, we chose to include prices from September 30th, 2005 to 

November 1st, 2013. 

For the dates that were missing4, we approximated the values using a linear interpolation5 in 

order to run the model more smoothly. When we later applied our model, we saw that by 

reducing our number of contracts to every third, we could reduce the running time of our model 

substantially without affecting the results significantly. 

This gave us a final dataset consisting of 423 weekly Friday settle prices ranging from 

September 30th, 2005 to November 1st, 2013 for eight futures contract with maturity 1, 4, 7, 10, 

13, 16, 19 and 22 months. 

3.1 Preliminary look at the data 

Before modeling prices and doing formal testing, we take a qualitative look at our data to see 

if it indicates drift, trends, seasonality or other non-stationarities that might be important for our 

model. The more our model is able to describe the dynamics of natural gas prices, the better we 

are able to isolate an eventual effect from a seasonal factor. 

Figure 3.1 shows the log of weekly futures prices with 1, 10 and 22 months to maturity. At first 

glance, there seems to be a slight downward trend in the prices from 2008 to 2013. The trend 

appears to be stochastic, but it could also be a deterministic drift. If prices are efficient, and 

follow a random walk, such a trend or drift should not be evident. Still, it is hard to judge if 

                                                 
4 Appendix A shows the exact dates that were missing. 

5 We approximated the missing prices using the following linear interpolation (example shows formula used if one date is 

missing): 𝑥𝑡 =
𝑥𝑡+1−𝑥𝑡−1

2
. 
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such traits are inherent in prices, since longer data samples might generate other results. Formal 

tests for a random walk, random walk with drift and trend-stationarity should therefore be 

performed. 

 

Figure 3.1 Log of weekly future prices for NG1, NG10 and NG22 

Further, the 1-month contract seems to fluctuate more than the 22-month contract, which is 

consistent with the Samuelson hypothesis (1965), arguing that the futures price volatility 

increases as the futures contract approaches maturity. Time-varying volatility of some sort 

might therefore be important when modeling natural gas prices. 

At first glance, it is hard to deduct any traits of seasonality in Figure 3.1. To get a closer look 

at this, we calculated average prices of each contract conditional on delivery month. Table 3.2 

shows the monthly average prices divided by the yearly average. A percentage higher than 

100% indicates that prices are higher in this month than the yearly average. As Table 3.2 shows, 

most prices seem to be highest when contracts mature in November to March and lowest when 

maturing in summer months. The one-month contract is the exception, showing less signs of 

seasonality.  
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Month NG1 NG4 NG7 NG10 NG13 NG16 NG19 NG22 

Jan 100 % 101 % 108 % 105 % 100 % 103 % 105 % 105 % 

Feb 102 % 102 % 106 % 108 % 104 % 103 % 106 % 107 % 

Mar 101 % 103 % 102 % 105 % 103 % 103 % 103 % 105 % 

Apr 100 % 93 % 96 % 99 % 98 % 94 % 96 % 97 % 

Mai 102 % 98 % 95 % 99 % 99 % 97 % 95 % 98 % 

Jun 101 % 98 % 98 % 97 % 99 % 97 % 98 % 97 % 

Jul 104 % 98 % 93 % 96 % 99 % 98 % 95 % 96 % 

Aug 100 % 100 % 97 % 96 % 100 % 101 % 98 % 96 % 

Sep 95 % 99 % 97 % 98 % 98 % 99 % 98 % 99 % 

Okt 94 % 102 % 97 % 94 % 97 % 100 % 99 % 96 % 

Nov 97 % 102 % 104 % 100 % 99 % 103 % 104 % 101 % 

Des 106 % 103 % 105 % 103 % 104 % 103 % 105 % 104 % 

Table 3.2 Monthly average prices relative to yearly average prices 

To look for seasonality in all contracts combined, we also calculated the combined average log 

price for all contracts conditional on delivery month, shown in Table 3.3. 

Month Mean Mean % Median Min Max St.dev 

Jan 1,68 105 % 1,90 1,00 1,98 0,39 

Feb 1,67 104 % 1,89 1,02 1,96 0,38 

Mar 1,65 103 % 1,84 1,02 1,94 0,37 

Apr 1,56 97 % 1,76 0,93 1,83 0,36 

Mai 1,56 97 % 1,75 0,95 1,81 0,35 

Jun 1,56 98 % 1,74 0,97 1,83 0,35 

Jul 1,57 98 % 1,75 0,93 1,84 0,36 

Aug 1,57 98 % 1,75 0,96 1,84 0,35 

Sep 1,57 98 % 1,75 0,97 1,85 0,35 

Okt 1,57 98 % 1,76 0,94 1,85 0,36 

Nov 1,62 101 % 1,82 0,99 1,90 0,36 

Des 1,66 104 % 1,87 1,03 1,94 0,37 

Table 3.3 Summary statistics of log prices for all contracts, conditional on 
delivery month 

 

The percentages in the third column are calculated by dividing the mean for each month by the 

yearly average. This once again shows that prices seem to follow a seasonal pattern, being 

higher than the yearly average in the winter and lower in the summer. Figure 3.2 provides a plot 

of the average prices found in Table 3.3 in order to show the pattern more visually. 
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Figure 3.2 Average log prices for all contracts, conditional on month 

3.2 Augmented Dickey-Fuller test 

To formally test for stationarity in our data set, we use the augmented Dickey-Fuller (ADF) 

test. This involves three different regression equations to test for the presence of a unit root 

(Enders, 2009). Figuring out which type of stationarity that is inherent in prices is important for 

modeling purposes. If prices turn out to be non-stationary, then explanatory factors, such as 

seasonality, might be significant. If prices follow a random walk or a random walk with trend, 

an AR(1) process or its continuous analog Geometric Brownian Motion can be used to model 

their dynamics. If prices follow a random walk with trend, they will be mean reverting, opening 

the possibility for the Ornstein-Uhlenbeck process as a good fit. 

Table 3.4 shows the result we obtained using Matlab’s “adftest” to run the three ADF tests on 

a time series of weekly log spot prices6. For the first and second ADF, we fail to reject the null 

hypothesis that the time series is non-stationary. For the third ADF however, we reject the null 

hypothesis in favor of the time series being a trend-stationary process. 

  

                                                 
6 We did similar tests on of the futures contracts’ prices in our data series, obtaining similar results. Since futures prices depend 

on spot prices, and the results are similar, we chose to only include the spot price results in this section. 
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Test 

 
P-value 

𝝓 
(S.E.) 

c 
(S.E.) 

𝜹 
(S.E.) 

 
BIC 

 

Adj 𝑹𝟐 

Ljung-Box Q of 
residuals (C.V.)7 

AR8 18.06% 0.9963 
(0.0029) 

  -757.48 95.35% 91.50 
(31.41) 

ARD9 8.39% 0.9713 
(0.0108) 

0.0424 
(0.0177) 

 -757.17 95.19% 87.31 
(31.41) 

TS10 2.88% 0.1283 
(0.0385) 

0.9376 
(0.0172) 

-0.0002 
(0.0001) 

-757.45 95.24% 83.11 
(31.41) 

The P-value is given from the F-test. The null hypothesis is rejected for P-value > 5% 

Table 3.4 Test results from Augumented Dickey-Fuller and Ljung-Box tests 

It is difficult to conclude which results are most valid, since both the adjusted 𝑅2, BIC11 and 

parameter significance were quite similar in all three tests. A usual practice in such cases is to 

select the most parsimonious model as a description of the time series. Either way this leads us 

to conclude that natural gas prices are indeed non-stationary. At the same time, the series might 

inhibit mean-reverting tendencies. The three tests therefore indicate that both a Geometric 

Brownian Motion and an Ornstein-Uhlenbeck process might be used to model the time series’ 

dynamics. 

If the time series can be fully explained using the processes in the tests, residuals should be 

generated from a white noise process, being independent and having a constant mean and 

variance. A white noise would therefore indicate that other factors are not present in the data 

series. This would reject the possibility of seasonality in the data. We therefore performed a 

Ljung-Box test for autocorrelation in residuals, shown in the rightmost column of Table 3.4. 

We were able to reject a null hypothesis of no autocorrelation when performing the Ljung-Box-

test on the residuals from all three ADF tests. This leads us to conclude that the time series is 

not solely generated from a Geometric Brownian motion or an Ornstein Uhlenbeck process. 

This opens the possibility for other factors, like seasonality, to be present in prices. 

  

                                                 
7 

Critical value in Ljung-Box is based on a significance level of 95%
 

8 𝐻0: 𝑦𝑡 = 𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡 − 𝑁(0, 𝜎2), 𝐻𝐴: 𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜖𝑡 , 𝜙 < 1 

9 𝐻0: 𝑦𝑡 = 𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡 − 𝑁(0, 𝜎2), 𝐻𝐴: 𝑦𝑡 = 𝑐 + 𝜙𝑦𝑡−1 + 𝜖𝑡, 𝜙 < 1 

10 𝐻0: 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡 − 𝑁(0, 𝜎2), 𝐻𝐴: 𝑦𝑡 = 𝑐 + 𝛿𝑡 + 𝜙𝑦𝑡−1 + 𝜖𝑡 , 𝜙 < 1 
11 Bayesian Information Criteria/Schwartz criterion 



23 

4. Model Description 

4.1 Why the Schwartz & Smith model 

In order to investigate further if seasonality is a significant feature in natural gas futures prices, 

we wish to use a model that can capture and isolate important features of the natural gas market. 

As mentioned earlier, both long-term changes like disruption in production technology, and 

short-term temporary shocks caused by weather and other temporary disturbances, affects 

supply and demand in the natural gas market. Further, our time series analysis show signs of 

both mean reversion and a random walk in spot prices. 

The two-factor model of Schwartz & Smith (2000) therefore seems to fit the natural gas market 

fairly well, with its short-term Ornstein Uhlenbeck- and long-term Geometric Brownian motion 

dynamics. In addition, this model is simple enough to be extended with a deterministic 

seasonality function to try and isolate the effect of seasonal variation. By estimating the model 

both with and without a seasonal factor, we can get a sense of whether or not seasonality 

contributes to the non-stationarity in natural gas futures prices. 

4.2 Overview – Model 1 

The model presented by Schwartz & Smith (2000) is a state-space model, which decompose 

the log spot price on a commodity into two unobservable stochastic variables, 𝜒 𝑎𝑛𝑑 𝜉, each 

one of them evaluated at time t:  

ln(𝑆𝑡) = 𝜒𝑡 + 𝜉𝑡 

Changes in the short-term factor 𝜒𝑡 represent temporary changes in price, which can be caused 

by several factors. This could for instance be difficulty in delivery of the commodity, extreme 

weather conditions, or unforeseen changes in demand. In essence, these changes are short-term 

and temporary, contrary to the 𝜉-factor. 

Temporary short-term changes are assumed to revert back to a mean over time. 𝜒𝑡 therefore 

follows an Ornstein-Uhlenbeck process with the following dynamics: 

𝑑𝜒𝑡 = −𝜅𝜒𝑡𝑑𝑡 + 𝜎𝑥𝑑𝑧𝑥, 
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where the parameter 𝜅 is a mean-reversion coefficient that reflects how fast prices reverts back 

to approach the mean level of the factor. 

Changes in the equilibrium price level 𝜉𝑡 are affected by overall macroeconomic quantities, 

technology factors etc. In natural gas prices interest rates, inflation, and of course the shale-gas 

revolution can be thought of as important examples. 

𝜉𝑡 therefore follows a Geometric Brownian Motion process: 

𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑧𝜉  

This process has a constant drift term, and a dispersion term containing a Wiener process. The 

two Wiener processes 𝑑𝑧𝜉 𝑎𝑛𝑑 𝑑𝑧𝜒 are correlated with 𝑑𝑧𝜉𝑑𝑧𝜒 = 𝜌𝜉𝜒𝑑𝑡. 

Estimating the model based on futures contract prices with different maturities makes us able 

to estimate the two factors. The model is set up such that changes in contracts with long-term 

maturities give us information about changes in the equilibrium price factor, while changes in 

the difference between near- and long-term futures prices give information about the short-term 

factor. (Schwartz & Smith, 2000) 

4.3 Deriving the distribution of the spot price 

As we are modeling futures prices, and the spot price is an important part of the futures curve, 

we have to obtain the distribution of the spot price in our model. Given initial values of 𝜒0 and 

𝜉0, Schwartz & Smith (2000) show that the two state variables are jointly normally distributed 

with the following expectation and covariance: 

𝐸[𝜒𝑡, 𝜉𝑡] = [𝑒−𝜅𝑡𝜒0, 𝜉0 + 𝜇𝜉𝑡] 

𝐶𝑜𝑣[𝜒𝑡 , 𝜉𝑡] =

[
 
 
 

(1 − 𝑒−2𝜅𝑡)𝜎𝜒
2

2𝜅

(1 − 𝑒−𝜅𝑡)𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
(1 − 𝑒−𝜅𝑡)𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
𝜎𝜉

2𝑡 ]
 
 
 

 

Given the same initial values, they continue to show that the log of the future spot price is 

normally distributed with: 

𝐸[ln(𝑆𝑡)] = 𝑒−𝜅𝑡𝜒0 + 𝜉0 + 𝜇𝜉𝑡 
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𝑉𝑎𝑟[ln(𝑆𝑡)] =
(1 − 𝑒−2𝜅𝑡)𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2𝑡 +
2(1 − 𝑒−𝜅𝑡)𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
 

From this, Schwartz & Smith (2000) infer that the spot price is log-normally distributed with: 

𝐸[𝑆𝑡] = 𝑒𝐸[ln(𝑆𝑡)]+
1
2
𝑉𝑎𝑟[ln(𝑆𝑡)]   12 

By taking the logarithm of both sides, they obtain: 

ln[𝐸[𝑆𝑡]] = 𝐸[ln(𝑆𝑡)] +
1

2
𝑉𝑎𝑟[ln(𝑆𝑡)] 

= 𝑒−𝜅𝑡𝜒0 + 𝜉0 + 𝜇𝜉𝑡 +
1

2
(
(1 − 𝑒−2𝜅𝑡)𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2𝑡 +
2(1 − 𝑒−𝜅𝑡)𝜌𝜒𝜉𝜎𝜒𝜎𝜉

𝜅
) 

This equation shows every parameter in our model’s contribution to the spot price. If the state 

variables and model parameters are estimated with confidence, it will indicate that our model 

is able to capture the non-stationary effects of natural gas prices. If this model can explain all 

variation in our natural gas prices, it would reject the possibility of a seasonal effect in prices. 

If it cannot explain all the variation, a seasonal factor might be present. 

4.4 Valuing futures contracts using the model 

We have now specified the dynamics and distribution of our short-term/long-term model. Since 

we estimate the model parameters based on futures data, we need a general expression of futures 

prices given that our observed prices follow the model’s distribution. According to Hull (2013, 

pp. 111-112), “when the short-term risk free interest rate is constant, the forward price for a 

contract with a certain delivery date is in theory the same as the futures price for a contract 

with the same delivery date”. Consequently, we will derive the general expression of the futures 

price using the price of a forward contract.  

The price 𝑐𝑡 of any derivative ℎ(𝑇) is given by the following equation: 

𝑐𝑡 = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡
𝑄[ℎ(𝑇)] 

                                                 
12 This can be derived using the fact that if 𝑋 = ln(𝑆𝑡) 𝑖𝑠 𝑁(𝜇, 𝜎2), then 

𝑌 = 𝑒𝑋 = 𝑒ln(𝑆𝑡) = 𝑆𝑡 𝑖𝑠 𝑁 (𝜇 +
1

2
𝜎2, 𝑒2𝜇+𝜎2

(𝑒𝜎2
− 1)) 
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If we consider a long forward contract maturing at date 𝑇 with delivery price 𝐹𝑡,𝑇, the value of 

this contract at maturity is [𝑆𝑇 − 𝐹𝑡,𝑇], where 𝑆𝑇 is the spot price of the underlying asset at 

maturity. Since one does not pay anything up front to enter a forward contract, we can write the 

equation above as 

0 = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡
𝑄[𝑆𝑇 − 𝐹𝑡,𝑇]. 

As the forward price is known at time 𝑡, this transforms to 

0 = 𝑒−𝑟(𝑇−𝑡)𝐸𝑡
𝑄[𝑆𝑇] − 𝑒−𝑟(𝑇−𝑡)𝐹𝑡,𝑇, 

which reduces further to 

𝐹𝑡,𝑇 = 𝐸𝑡
𝑄[𝑆𝑇], 

showing that forward prices (and subsequently futures prices) are equal to the expected future 

spot price under the risk-neutral process. 

Schwartz & Smith (2000) use this result and the risk neutral process of 𝑆𝑇 to derive the 

following futures price13: 

ln(𝐹0,𝑇) = ln(𝐸𝑄[𝑆𝑇]) 

= 𝐸𝑄[ln(𝑆𝑇)] +
1

2
𝑉𝑎𝑟𝑄[ln(𝑆𝑇)] 

= 𝑒−𝜅𝑇𝜒0 + 𝜉0 + 𝐴(𝑇), 

where 

𝐴(𝑇) = 𝜇𝜉
∗(𝑇) −

(1−𝑒−𝜅𝑇)𝜆𝜒

𝜅
+

1

2
(
(1−𝑒−2𝜅𝑇)𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2(𝑇) +
2(1−𝑒−𝜅𝑇)𝜌𝜉𝜒𝜎𝜒𝜎𝜉

𝜅
) 14 

                                                 
13 See Appendix B for the full derivation 

14 From now on we denote the risk-corrected drift of the equilibrium level as 𝜇𝜉
∗ ≡ 𝜇𝜉 − 𝜆𝜉 . 
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We now have the distributions and SDEs of our model of commodity future prices, in addition 

to an analytical solution of what we should expect the futures price to be given that the observed 

futures prices evolve according to our model. 

The next step is to estimate the original model using observed futures prices, by applying an 

iterative method called the Kalman filter. In order to use this method, we have to write our 

model in so-called state-space form. We do this in the next section. 

4.5 A state-space formulation of the Schwartz & Smith – 
model 

State-space models allow one to model and observe time series as being explained by a vector 

of state variables, each following a stochastic process. The state variables can be both observed 

and unobserved. One first selects which factors that are driving the phenomena in our model - 

here a long-term and short-term factor. Then one specifies how they are combined in order to 

yield the economic quantity the phenomenon is measured by. This gives us a measurement 

equation that is affected by some kind of noise. Next one also has to have some insight into 

how these state-variables evolve over time, which is stated in the transition equation – also 

affected by a noise term.  

Writing our model in state-space form therefore involves using two equations – the 

measurement- and transition equation.  
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Measurement equation 

The measurement equation of our two-factor model can be written as: 

yt = dt + Ft
′xt + vt, t = 1,… , nT, 

where 

yt ≡ [ln FT1, … , lnFTn] 

is an nx1 vector of observed log futures prices with time to maturity T1, T2, … , Tn; 

dt ≡ [A(T1),… , A(Tn)] is an nx1 vector; 

Ft ≡ [e−κT11,… , e−κTn1] is an nx2 matrix; 

𝑥𝑡 = [𝜒𝑡, 𝜉𝑡] is a 2x1 vector; and 

vt is an nx1 vector of serially uncorrelated, normally distributed distrubances with 

E[vt] = 0 and Cov[vt] = V 

The measurement equation describes the relation between the futures prices we observe, 𝑦𝑡, 

and what we should expect the futures prices to be given our analytically solved futures price, 

given by the terms dt + Ft
′xt.

15 We also assume that the observed futures prices, 𝑦𝑡, are 

measured with error, reflected in the measurement error term 𝑣𝑡. In this case, this error term 

can be thought of as noise in the observed futures prices, caused for instance by low trading 

volume, transaction costs, mistyped data etc. 

  

                                                 
15 One can easily observe that the right hand side of the measurement equation equals the analytical futures price from the last 

section, only written in matrix form for several maturities. 
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Transition equation 

The transition equation of the Schwartz & Smith (2000)-model is defined as: 

𝑥𝑡 = 𝑐 + 𝐺𝑥𝑡−1 + 𝑤𝑡, 𝑡 = 1,… , 𝑛𝑇 

where 

𝑥𝑡 ≡ [𝜒𝑡, 𝜉𝑡] is a 2𝑥1 vector of the state variables; 

𝑐 ≡ [0, 𝜇𝜉𝛥𝑡] is a 2𝑥1 vector; 

𝐺 ≡ [𝑒
−𝜅𝛥𝑡 0
0 1

] is a 2𝑥2 matrix; 

𝑤𝑡 is a 2𝑥1 vector of serially uncorrelated, normally distributed disturbances with 

𝐸[𝑤𝑡] = 0 and 𝑉𝑎𝑟[𝑤𝑡] = 𝑊 ≡ 𝐶𝑜𝑣[(𝜒𝛥𝑡, 𝜉𝛥𝑡)] 

𝛥𝑡 ≡ 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠; and 

𝑛𝑇 ≡ 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡. 

This transition equation describes the evolution of the state variables using their previously 

defined expectations. The term 𝑤𝑡 is assumed to reflect that also the state variables are subject 

to some kind of noise. We observe that 𝑐 + 𝐺𝑥𝑡−1 is equal to the expectation of (𝜒𝑡, 𝜉𝑡), whereas 

the term 𝑤𝑡 makes sure that the covariance structure of the state variables are equal to what we 

defined earlier. 

Since both the measurement equation and transition equation is affected by noise, this gives us 

a challenge when estimating the system’s parameters later on. 
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5. Estimation of our state space model 

The parameters in both the measurement and the transition equation are unknown and have to 

be estimated. The only concrete information we have starting out is the futures prices for each 

contract and the two state variables given by our model. Since our model is based on 

unobservable variables, we cannot infer parameter values using ordinary methods, such as least 

squares estimation16. This means that we have to use another method. The solution is a 

likelihood-based inference called the Kalman filter. The method is named after Rudolf E. 

Kálmán, and is described in detail in (Kalman, 1960). 

5.1 A combination of maximum likelihood and the Kalman 
Filter 

The Kalman filter is an iterative procedure that allows us to construct a likelihood function 

associated with our state-space model. It is designed to produce estimates of unobserved 

variables using observed data that is assumed to contain noise. Before deriving the Kalman 

filter, we need to construct a likelihood function, to be able to estimate parameters. 

Assume that we observe a time series {𝑦𝑡}𝑡=1
𝑇 , of futures prices that we want to describe by the 

measurement- and transition equation we previously defined. Assume that we have values of 

the model’s parameter set, 𝜃 = {𝜅, 𝜎𝜒, 𝜆𝜒, 𝜇𝜉 , 𝜎𝜉 , 𝜇𝜉
∗ , 𝜌𝜉𝜒, 𝜎𝐻}. Let the sample density associated 

with the state-space model containing the parameters 𝜃 be denoted by 𝑓(𝑦1, 𝑦2, … , 𝑦𝑇|𝜃). Since 

all observations have the same distribution and are independent, we can write this density 

function as 

𝑓(𝑦𝑇|𝜃) = 𝑓(𝑦1, 𝜃)𝑓(𝑦2|𝑦1, 𝜃)𝑓(𝑦3|𝑦2, 𝑦1, 𝜃)…𝑓(𝑦𝑇|𝑦𝑇−1, … , 𝑦1, 𝜃)     17 

This sample density is often represented as 

𝐿 (𝜃; 𝑦𝑇) = 𝑓(𝑦𝑇|𝜃) = ∏ 𝑓(𝑦𝑡|𝑦
𝑡−1, 𝜃)𝑇

𝑡=1 . 

                                                 
16 The only way one could use least squares estimation, is by fitting the parameters of the futures price formula such that it fits 

observations of several futures curves. This would lead to estimates of the risk-neutral parameters of our model, but we would 

not obtain the values of the state variables or the parameters related to the physical process. We need both the state variables 

and the physical drift parameter when we look for seasonality traits later. 

17 𝑦𝑇 = {𝑦1, 𝑦2, … , 𝑦𝑇} ∀ 𝑇 ≥ 1, 𝑦0 = ∅ 
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By holding 𝑦𝑇 fixed and varying the parameters 𝜃, we can maximize the likelihood of obtaining 

the “correct” parameter estimates. This is usually referred to as maximum likelihood estimation. 

In order to construct the likelihood function, we thus need to derive the densities: 

𝑓(𝑦𝑡|𝑦
𝑡−1, 𝜃), 𝑡 = 1, 2, … , 𝑇 

Since the system is linear and its errors Gaussian, these densities can be obtained using the 

Kalman filter. 

5.2 Kalman filtering 

Kunst (2007) describes Kalman filtering as an iterative procedure involving the following four 

steps, which we have modified to fit our model: 

1. Initialization step 

The first step when running the Kalman filter is to provide some initial values. The algorithm 

needs starting values of the transition equation 𝑥0 = [𝜒0, 𝜉0] and an estimate of its covariance 

matrix 𝐶0. Using these initial values, the Kalman filtering process can start with the prediction 

step. 

2. Prediction step 

We first estimate the mean and covariance matrix of (𝜒𝑡, 𝜉𝑡), conditional on what we know at 

period t-1 (starting at t-1 = 0): 

𝐸[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡−1, 𝜉𝑡−1)] = 𝑎𝑡 ≡ 𝑐 + 𝐺𝑚𝑡−1 

𝐶𝑜𝑣[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡−1, 𝜉𝑡−1)] = 𝑅𝑡 ≡ 𝐺𝑡𝐶𝑡−1𝐺𝑡
′ + 𝑊 

These conditional expectations of the state variables are based on the transition equation, which 

we previously defined in the state-space formulation of our model. We define 𝑚𝑡 under step 3.  

Using the observed futures prices in our data set, 𝑦𝑡, we can construct the forecast error at time 

t by subtracting the estimated value: 

𝑢𝑡 = 𝑦𝑡 − 𝐸(𝑦𝑡|𝑦𝑡−1) = 𝑦𝑡 − (𝐹𝑡
′𝑎𝑡 + 𝑑𝑡) 

We observe that the latter term is the conditional expectation of the measurement equation. 
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Since these forecast errors are Gaussian, it follows that 𝑢𝑡~𝑁(0, 𝑉 + 𝐹𝑡′𝑅𝑡𝐹𝑡). Furthermore, 

since we can write 𝑦𝑡 = 𝑢𝑡 + 𝐸(𝑦𝑡|𝑦𝑡−1), it follows that 𝑓(𝑦𝑡|𝑦
𝑡−1; 𝜃) = 𝑓(𝑢𝑡; 𝜃).  We have 

thus shown that the distribution of the forecast errors 𝑢𝑡 is equal to the distribution of the 

conditional expectation of the futures prices given all information up to time t-1 and the 

parameter set 𝜃. 

Given 𝑎𝑡 and 𝑅𝑡, we can now compute 𝑓(𝑦𝑡|𝑦
𝑡−1, 𝛿) from the normal density function: 

𝑓(𝑦𝑡|𝑦
𝑡−1, 𝜃) = 𝑓(𝑢𝑡; 𝜃) =

1

√(2𝜋) ∗ |𝑉 + 𝐹𝑡
′𝑅𝑡𝐹𝑡| 

𝑒−
𝑢𝑡

′(|𝑉+𝐹𝑡
′𝑅𝑡𝐹𝑡|)

−1
𝑢𝑡

2  

Consequently, to compute an estimate of the next set of futures prices, 𝑓(𝑦𝑡+1|𝑦
𝑡, 𝜃), we need 

the expectation and covariance structure of our state variables conditional on all information 

up until time t. This is given by:  

𝑚𝑡 = 𝐸[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡|𝜉𝑡)]  

𝐶𝑡 = 𝑉𝑎𝑟[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡, 𝜉𝑡)] 

3. Correction step 

Observing the real futures prices 𝑦𝑡, we can update the predictions 𝑎𝑡 and 𝑅𝑡 according to the 

Kalman (1960) formulae:  

𝑚𝑡 = 𝐸[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡|𝜉𝑡)] ≡ 𝑎𝑡 + 𝐴𝑡(𝑦𝑡 − 𝑓𝑡) 

𝐶𝑡 = 𝑉𝑎𝑟[(𝜒𝑡, 𝜉𝑡)|(𝜒𝑡, 𝜉𝑡)] ≡ 𝑅𝑡 − 𝐴𝑡𝑄𝑡𝐴𝑡
′ , 

where 

𝑓𝑡 = 𝐸[𝑦𝑡|𝑦
𝑡−1, 𝜃] ≡ 𝑑𝑡 + 𝐹𝑡

′𝑎𝑡 

𝑄𝑡 = 𝐶𝑜𝑣[𝑦𝑡|𝑦
𝑡−1, 𝜃] ≡ 𝐹𝑡

′𝑅𝑡𝐹𝑡 + 𝑉, 

and 

𝐴𝑡 ≡ 𝑅𝑡𝐹𝑡𝑄𝑡
−1 
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𝑓𝑡 and 𝑄𝑡 are the expectation and covariance of the period-t log futures prices given information 

up to time t-1. The matrix 𝐴𝑡 corrects the predicted state variables, 𝑎𝑡, based on the difference 

between the log prices observed at time t, 𝑦𝑡, and the predicted time-t price vector 𝑓𝑡.  

The corrected prediction 𝑚𝑡, is thus a linear combination of the state variable’s expectation 

conditional on time 𝑡 − 1, 𝑎𝑡, and the current prediction error 𝑦𝑡 − 𝑓𝑡. The larger the variances 

in the estimates of the state variables, the larger 𝐴𝑡 becomes, and more weight is focused on the 

observed difference between the real and estimated futures price. 𝐴𝑡 is chosen such that it 

minimizes the state variables’ prediction error variance. 𝑚𝑡 is thus the best estimate we have of 

the state variables’ values, based on information up until time t. 

4. Likelihood construction 

By going through the prediction and correction step for each observation in the data set, one 

obtains a value of 𝑓(𝑦𝑡|𝑦
𝑡−1, 𝜃) in each step. We are thus able to construct the likelihood 

function as: 

𝐿(𝑦𝑇 , 𝜃) = ∏𝑓(𝑦𝑡|𝑦
𝑡−1, 𝜃)

𝑇

𝑡=1

= ∏
1

√(2𝜋) ∗ |𝑉 + 𝐹𝑡
′𝑅𝑡𝐹𝑡| 

𝑒−
𝑢𝑡

′(|𝑉+𝐹𝑡
′𝑅𝑡𝐹𝑡|)

−1
𝑢𝑡

2

𝑇

𝑡=1

 

The best estimate for the parameter set 𝜃 is found by maximizing this function with respect to 

the model’s parameter set. A useful result here is that if one maximizes the logarithm of a 

function with respect to a parameter set, it has the same solution as if one maximizes the 

function itself, before taking the logarithm. We therefore want to maximize the following log-

likelihood function, in order to obtain our parameter set 𝜃: 

𝑙𝑛𝐿(𝑦𝑇 , 𝜃) = −
𝑇 ∗ 𝑛

2
ln(2𝜋) −

1

2
∑ln|𝑉 + 𝐹𝑡

′𝑅𝑡𝐹𝑡|

𝑇

𝑡=1

−
1

2
∑𝑢𝑡

′ |𝑉 + 𝐹𝑡
′𝑅𝑡𝐹𝑡|

−1𝑢𝑡

𝑇

𝑡=1

 

where n is the number of futures contracts used. 
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5.3 Kalman Filtering routine in Matlab 

The lecture by Fusai (2012), as well as the Kalman filtering explanation in Sørensen (2002) and 

Schwartz & Smith (2000), made it easier for us to understand the Matlab syntax and Kalman 

filtering algorithm.  

To estimate our model, we created a Matlab code that performs Kalman filtering through the 

same steps described in the previous section, based on our data set of futures prices. The code 

iterates successively between each observation of the futures curve, doing the prediction and 

estimation step, giving value to the log-likelihood function.  

To find the optimal parameter values, we used Matlab fmincon18 function to optimize the log-

likelihood function by changing the parameter set 𝜃 around its pre-set initial values. The 

function will only find a local maximum around an initial set of parameters. We therefore 

selected initial parameters randomly, and made Matlab find the local maximum of the log-

likelihood around these values. After doing this several times, we used the parameter set with 

the highest log likelihood as the best estimate of our parameter set.  

The process was very time consuming and took up a lot of processing power19. To try to limit 

the amount of computer time, we put the following constraints on which random values the 

initial values could take20: 

Parameter Boundary 

𝜅 [0, 4] 

𝜎𝜒 [0, 1] 

𝜆𝜒 [-1, 1] 

𝜇𝜉  [-1, 1] 

𝜎𝜉  [0, 1] 

𝜇𝜉
∗  [-1, 1] 

𝜌𝜒𝜉  [-1, 1] 

Table 5.1 Bounds on random initial values 

                                                 
18 This function actually finds a minimum of a function, but finding the minimum of –f(x) is the same as finding the maximum 

of f(x). 

19 For instance, running one optimization routine with one set of initial values, takes about 25 seconds using data for the original 

Shcwartz & Smith (2000) article on a double four-core processor and 8 gigabytes of RAM. With millions of combinations of 

initial values, checking all of them would take a substantial amount of time. 

20 The values of 𝜎𝜒, 𝜎𝜉 𝑎𝑛𝑑 𝜌𝜒𝜉are always between 0 and 1. The drift coefficients 𝜇𝜉 , 𝜇𝜉
∗  and the drift reduction term 𝜆𝜒 usually 

have percentage values on an annual basis. They will therefore seldom have a value greater than 1 in absolute terms. We seldom 

found a 𝜅 greater than 2 when trying out different initial values and optimizing parameter sets. We therefore set the range of 𝜅 

to between 0 and 4.  
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5.3.1 Obtaining standard errors of parameter estimates by inverting 
the Hessian 

An advantage of using Matlab’s fmincon function is that it can output the Hessian matrix from 

each optimization routine. The Hessian matrix contains the second derivatives of the 

Lagrangian expression of a constrained optimization problem. A very useful result is that by 

taking the inverse of the Hessian matrix, the elements on the diagonal form the squared standard 

errors of the parameters in the optimization problem. We are therefore able to measure the 

confidence of our parameter estimates 𝜃: 

𝜃𝑆𝐸 = √𝑑𝑖𝑎𝑔(𝐻−1) 

5.3.2 Forcing measurement errors to be zero 

In Schwartz & Smith (2000), they assume that the covariance matrix for the measurement errors 

(V) is diagonal with elements (𝑠1
2, 𝑠2

2, … , 𝑠𝑛
2). In their estimation routine, the authors have forced 

the model to have close to zero measurement error in the 13-month contract, by forcing 𝑠4
2 to 

be equal to zero. This choice was done in order to yield the highest maximum-likelihood value. 

With N futures contracts in the data set, this will lead to N! different combinations of 

measurement errors that can be set equal to zero. Adding this to the possible millions of 

combinations in our random parameter set would demand a huge amount of computer power. 

When we implemented our models, we instead did a simplified analysis. We set a constant 

starting value for 𝜃, 𝜒0, 𝜉0, 𝑚0 𝑎𝑛𝑑 𝐶0, varying only the measurement errors forced to zero. We 

then compared the values of the optimized likelihood functions. The combination yielding the 

highest log-likelihood determined which contracts we forced to have zero measurement errors. 

  



36 

6. A replication of the Schwartz & Smith – model 

In order for us to be certain that our code is working correctly, we used it to estimate the 

parameter set in the original Schwartz & Smith (2000) article based on the same data. We 

downloaded weekly NYMEX oil futures prices ranging from 1/2/90 to 2/17/95 with the same 

maturities of 1, 5, 9, 13 and 17 months from Quandl (2013). After running the optimization 

routine 2500 times with randomized initial values, the following parameter estimates had the 

highest log-likelihood value: 

Parameters Optimized values S&S (2000) values 

𝜅 1.5040 
(0.0403) 

1.49  
(0.03) 

𝜎𝜒 0.3223  
(0.0155) 

0.286  
(0.01) 

𝜆𝜒 0.0604  
(0.0304) 

0.157  
(0.144) 

𝜇 -0.0324  
(0.0628) 

-0.0125  
(0.0728) 

𝜎𝜉 0.1642  
(0.0074) 

0.145  
(0.005) 

𝜇𝜉
∗  0.0085  

(0.0020) 
0.015  

(0.0013) 

𝜌𝜒𝜉   0.4292  
(0.0623) 

0.30  
(0.0044) 

𝑠1 0.0427  
(0.0002) 

0.042  
(0.002) 

𝑠2 0.0053  
(0.0000) 

0.006  
(0.001) 

𝑠3 0.0033  
(0.0000) 

0.003  
(0.000) 

𝑠4 0 
(0) 

0  
(0.000) 

𝑠5 0.0039 
(0.0000) 

0.004  
(0.000) 

Ln L 4040 5140 

Standard errors in parenthesis 

Table 6.1 Parameter results from replicating Schwartz & Smith (2000) data 

We observe that most of the parameters have similar values as the ones in Schwartz & 

Smith (2000), but there are some differences in the reliability of the estimates. The 

estimate of 𝜆𝜒 is much more reliable from our estimation, whereas 𝜇𝜉
∗ , which contains 

information about 𝜆𝜉, is equally unreliable as in in Schwartz & Smith (2000). 
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In the article they refer to this as being caused by the fact that price expectations are 

unobserved quantities. They are therefore difficult to estimate, and require a lot more 

data to be estimated precisely.  

The estimate of 𝜌𝜒𝜉  is less reliable. The parameter value of the correlation coefficient 

is still within two standard deviations away from the estimate in Schwartz & Smith 

(2000).  

We believe that if we had more time, we could run the optimization routine for a longer 

period of time, and thus get more accurate parameters. We do however see that the 

model errors fit the data in pretty much the same way as in the article: 

 Mean error Standard deviation of error Mean absolute error 

1 Month -0.0061 
(-0.0053) 

0.0413 
(0.0414) 

0.0306 
(0.0314) 

5 Month 0.0004 
(0.0005) 

0.0035 
(0.0044) 

0.0027 
(0.0035) 

9 Month -0.0002 
(-0.0002) 

0.0029 
(0.0025) 

0.0023 
(0.0020) 

13 Month 0 
(0) 

0 
(0) 

0 
(0) 

17 Month 0 
(0) 

0.0038 
(0.0035) 

0.0030 
(0.0028) 

Article values in parenthesis 

Table 6.2 Errors in the model fit to the logarithm of futures prices 

We observe that our log-likelihood is different from the result in in Schwartz & Smith 

(2000), which might be caused by differences in the data set. In Schwartz & Smith 

(2000), the authors used 259 sets of futures prices ranging from 1/2/1990 to 2/17/95. In 

this analysis we used 268 sets of futures prices, indicating that more prices from the 

period are available today. If some prices in the data had errors that were corrected after 

2000, this would affect our estimations. In addition, a difference in length in the time 

series would affect the value of the log likelihood. There is no summary statistics of the 

data in Schwartz & Smith (2000), so a further comparison of the two data sets is difficult.  

In Figure 6.1 and Figure 6.2 we show the estimated spot and equilibrium prices given 

by our estimates, compared to the original figure from Schwartz & Smith (2000). The 

estimated spot price and equilibrium price are given by 𝑒𝜒𝑡+𝜉𝑡 𝑎𝑛𝑑 𝑒𝜉𝑡  respectively. 
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Figure 6.1 Estimated Spot and Equilibrium Prices for the 
Futures Data (Schwartz & Smith, 2000) 

 

Figure 6.2 Estimated Spot and Equilibrium Prices for the 
Futures Data 

 

Based on these results, we conclude that our estimation of the state parameters and parameter 

set 𝜃 are similar to those in the original article of Schwartz & Smith (2000). This is a good 

indication that our estimation routine in Matlab is working correctly. 
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7. Results from Model 1 

After running the Kalman filter optimizing procedure 5000 times, using random initial values 

of the parameter set 𝜃, [𝜒0, 𝜉0] and 𝐶0 we got the following results: 

Parameters Optimized values 

𝜅 0.6308 
(0.0113) 

𝜎𝜒 0.6664  
(0.0113) 

𝜆𝜒 -0.2288  
(0.1024) 

𝜇𝜉  -0.1530 
(0.0906) 

𝜎𝜉  0.3046  
(0.0120) 

𝜇𝜉
∗  -0.1436 

(0.1546) 

𝜌𝜒𝜉  -0.7120  
(0.0234) 

𝑠1𝑀  0.1262  
(0.0011) 

𝑠4𝑀 0  
(0) 

𝑠7𝑀 0.0822  
(0.0005) 

𝑠10𝑀  0.0613 
(0.0002) 

𝑠13𝑀  0.0653 
(0.0003) 

𝑠16𝑀  0.0809 
(0.0005) 

𝑠19𝑀 0.0834 
(0.0005) 

𝑠22𝑀  0.0108 
(0.0001) 

Log Likelihood 4309.2 

Standard errors in parenthesis 

Table 7.1 Parameter results from Model 1 

If seasonality is indeed present in natural gas prices, this could cause an omitted variable bias 

in the model affecting its parameter values. It is thus useful to analyze and compare our results 

both before and after we introduce the seasonality factor. 



40 

The short-term and long-term volatilities, 𝜎𝜒 𝑎𝑛𝑑 𝜎𝜉 , are estimated with confidence, and the 

larger value of 𝜎𝜒 𝑣𝑠 𝜎𝜉, seems to fit well with the Samuelson hypothesis, stating that the 

volatility of futures contracts increase when approaching maturity. We do observe that the 

volatilities are quite high, especially compared to the estimated oil price volatilities in in 

Schwartz & Smith (2000) of 28.6% and 14.5% respectively. Natural gas prices may be twice 

as volatile as oil prices, but one should also consider the possibility that seasonality could 

increase volatility through large variation in prices over the course of the year. 

The positive and significant value of the mean reversion parameter, 𝜅, indicates that the short-

term factor, 𝜒𝑡, exhibits mean reversion in its dynamics. Consider now that seasonality is 

present, and leads to a period of high prices above the long-term mean in winter months. 

Reverting to the annual mean would take a longer time if prices stay high the entire winter. If 

seasonality was not present, the mean reversion should be faster. Thus the value of 𝜅 might be 

downward biased in this model if seasonality is present in natural gas prices. 

Looking at the estimates of the drift rates, 𝜇𝜉 and 𝜇𝜉
∗ , we see that these are not estimated 

significantly different from zero. If seasonality is causing vast swings in prices, this could make 

estimation of drift rates difficult. If investors anticipate a seasonal effect on futures prices, this 

could also affect the risk premium they require for natural gas. This might be the reason for the 

barely significant short run risk premium 𝜆𝜒, and the insignificant 𝜆𝜉 inherent in 𝜇𝜉
∗ = 𝜇𝜉 − 𝜆𝜉 . 

Other reasons for the insignificance here might be that risk premia are unobserved quantities 

and often require a large set of data to be estimated precisely (Schwartz & Smith, 2000). 

When looking at the standard errors of the measurement equation, 𝑠𝑖, we observe that these are 

significantly different from zero. If seasonality is present, and the model is not able to capture 

it, these estimations should be affected. 
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7.1 Estimated state variables – Model 1 

 

Figure 7.1 Plot of estimated state variables from Model 1 

Looking at Figure 7.1, the long-term state variable, 𝜉𝑡, seems to be fluctuating in a wave pattern 

with a slightly downward trend. The fluctuations have an annual wavelength, with higher peaks 

in winter months. This fits well with our seasonality hypothesis. The short-term variable, 𝜒𝑡, is 

more volatile than the long-term variable, with several large spikes. It also seems to revert to a 

mean around zero (as one would expect). Although it is hard to say anything certain about 

seasonality only from looking at this plot, it appears seasonality is affecting long-run prices 

more than short-run prices, which are more affected by temporary shocks. This seasonality is 

captured by the long-term factor 𝜉𝑡, which might cause the difficulty in estimating parameters. 

7.2 Residual analysis – Model 1 

If our model is able to capture all of the non-stationary properties of natural gas futures prices, 

its residuals should be a stationary white noise process. In other words, the residuals should be 

independent with a zero mean and a constant variance (Enders, 2009). If the residuals are not a 

white noise, it will be an indication that other factors, for instance seasonality, are present in 

the prices. We therefore start by looking at the mean and standard deviations of our different 

futures contracts’ residuals:  

 

-$1,50

-$1,00

-$0,50

$0,00

$0,50

$1,00

$1,50

$2,00

$2,50

$3,00

Se
p

-0
5

M
ar-0

6

Se
p

-0
6

M
ar-0

7

Se
p

-0
7

M
ar-0

8

Se
p

-0
8

M
ar-0

9

Se
p

-0
9

M
ar-1

0

Se
p

-1
0

M
ar-1

1

Se
p

-1
1

M
ar-1

2

Se
p

-1
2

M
ar-1

3

Se
p

-1
3

Short-term Factor Long-term Factor



42 

 NG1 NG4 NG7 NG10 NG13 NG16 NG19 NG22 

Mean -1.67% 
(0.61%) 

0 
(0) 

0.19% 
(0.40%) 

-0.03% 
(0.30%) 

-0.32% 
(0.32%) 

-0.15% 
(0.39%) 

-0.16% 
(0.40%) 

0.02% 
(0.02%) 

StDev 12.53% 0 8.20% 6.12% 6.54% 8.07% 8.23% 0.50% 

Standard errors of estimate in parenthesis 

Table 7.2 Summary statistics of residuals from Model 1 

From the summary statistics, we observe that all contracts, except for the 1M contract, have a 

mean significantly centered on zero. The standard deviations are interesting when we compare 

them to the ones from Model 2 later. 

To get a sense of how the residuals vary across the year, we estimated mean residual values for 

each contract conditional on delivery month. The results are shown in Table 7.3. It seems that 

residuals for contracts delivered in the winter months of December, January, February and 

March are generally positive. This means that our model is underestimating prices in these 

months. In the warmer months of July to October, our model seems to overestimate prices. 

 1M 7M 13M 19M 

January 7,4 % 13,6 % 9,5 % 13,2 % 

February 5,8 % 7,7 % 6,4 % 12,1 % 

March 4,2 % -0,6 % 1,0 % 6,8 % 

April 4,2 % -7,5 % -7,9 % -1,7 % 

May 6,0 % -7,3 % -7,6 % -3,1 % 

June 4,6 % -4,5 % -5,2 % -2,4 % 

July -0,4 % -1,5 % 0,4 % -2,0 % 

August -6,5 % -2,4 % -0,6 % -4,7 % 

September -17,1 % -3,9 % -3,8 % -8,7 % 

October -19,6 % -3,8 % -3,3 % -9,4 % 

November -8,6 % 3,0 % 0,7 % -4,7 % 

December 1,7 % 10,3 % 6,2 % 2,4 % 

The 16M, 19M and 22M show similar traits, whereas the 
4M is set to zero measurement error 

Table 7.3 Mean residual value by delivery month, Model 1 

In contracts delivered in April to June, the futures contracts seems to be overestimated in long-

term futures prices, whereas the 1M contract seems to be underestimated. A reason for this 

might be that weather conditions are somewhat predictable in the short term, whereas in longer 

time horizons, investors cannot get a sense of how the weather is going to turn out. Long-term 

investors would therefore use less volatile long-term trends in temperatures in their estimates, 

whereas short-term investors would incorporate volatile short-term weather predictions, if they 

believe seasonality is present. Seasonality traits would, in this case, be more evident in long-

term than short-term contracts. Another explanation might be that the short-term shocks 
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captured by 𝜒𝑡 are distorting the seasonal effect on short-run prices. Since short-term shocks 

are less present in the long term, seasonality might be more apparent in longer contracts. 

Overall, an underestimation in winter months and overestimation in summer months seem to 

infer that a seasonal effect is present, and that our model is not able to capture this.  

To formally test for time-independent residuals, a requirement for a white noise process, we 

perform a Ljung-Box-Q test. With a critical value of 31.41, we can reject the null hypothesis in 

favor of auto-correlated residuals, for all relevant futures contracts21: 

1M 4M 7M 10M 13M 16M 19M 22M 

1762 25 1814 2417 1759 2689 2080 370 

Critical value of Q is 31.41 

Table 7.4 Ljung-Box Q-test statistics for residual autocorrelation 

This autocorrelation is also evident in the sample ACF of the residuals. We include the plot 

since it shows tendencies of seasonality in the residuals - the residuals seem to be positively 

correlated with residuals from some parts of the year, and negatively correlated with residuals 

from other parts.  

 

Figure 7.2 ACF-plot Model 1, sample autocorrelation for lags up to two years 

The preceding results leads us to conclude that the residuals of Model 1 are not from a white 

noise process, and that other factors, like seasonality, are likely to be present in the true data 

generating process.  

                                                 
21 Since the 4M contract is set to have a zero measurement error, its residuals will always be a white noise. 
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8. Extending the model further – allowing for 

seasonality 

We now extend our model with a deterministic seasonality factor to see how parameter 

estimates, state variables and residuals are affected. This will give us an indication as to if 

seasonality is indeed present in our data. 

8.1 Extending with deterministic seasonality 

Sørensen (2002) extends the two-factor model of Schwartz & Smith (2000) with the following 

trigonometric seasonality function to better capture the seasonality in corn-, soybean- and wheat 

futures:  

𝑔(𝑡) = ∑(𝛾𝑖 cos(2𝜋𝑖𝑡) + 𝛾𝑖
∗ sin(2𝜋𝑖𝑡))

𝐼

𝑖=1

 

We believe this model extension should be able to capture seasonal features in our data if they 

are present. This is because trigonometric functions have a wavelike pattern similar to what we 

observe in seasonal patterns.  

This type of seasonality modeling was initially proposed by Hannan, Terrell and Tuckwell 

(1970) as an alternative to seasonality functions using standard dummy variables. The 

parameter I is chosen freely, but for simplicity, we choose to follow Sørensen (2002) and use 

I=2.22  

After adding the seasonal component, the log spot price is given by: 

ln(𝑆𝑡) = 𝑔(𝑡) + 𝜒𝑡 + 𝜉𝑡 

                                                 
22 In Sørensen (2002) they tried different values of K, and obtained the optimal Akaie Information Criterion (AIC) with K=2. 

In our thesis we only wish to show that seasonality is present in the time series, and to save time, we have used the same K 

value without a similar analysis when extending our model. Other values of K might prove to be a better description of the 

seasonality traits of the series. 
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We can already observe that if the seasonality component is significant, it could lead to other 

parameter values of our state variables.23 

8.1.1 Dynamics and futures price 

The added seasonality component does not affect the dynamics of the state variables. The basic 

idea when using this model is that “𝑔(𝑡) captures price movements that are entirely related to 

season” (Sørensen, 2002, p. 6) while the two other state variables have the same interpretation 

as before. This makes us able to model seasonality in prices separatly from the long-term and 

short-term factors. This will make us able to see if the extension is significant. 

Sørensen (2002) states the analytical solution to the futures price at time t, with maturity on 

date 𝜏 as:  

𝐹𝑡,𝜏 = 𝑒𝑔(𝜏)+𝐴(𝜏−𝑡)+𝑒−𝜅(𝜏−𝑡)𝜒𝑡+𝜉𝑡. 

Here, 𝐴(𝜏 − 𝑡) is defined exactly as in the Schwartz & Smith (2000) model, only substituting 

T with (𝜏 − 𝑡), 𝑡 is here given as the value of the trading date of the futures contract24. Each 

succesive date is then equal to 𝑡 + 𝛥, where 𝛥 equals the time increment. 𝜏 relates to the 

maturity date of the contract25. The 𝑔(𝑡) function is constructed such that every 𝑔(𝑡) value 

from 𝑡 = 0 to 𝑡 = 1 is repeated for every 𝛥 = 126. The constant A depends the distance between 

todays date and delivery, (𝜏 − 𝑡). All of this means that we have to both take into account the 

time of year trading is conducted, which time of year the contract matures as well as time to 

maturity, when estimating this extended model. 

                                                 
23 A ln spot price of 5$ might for instance be explained by 𝜒𝑡 + 𝜉𝑡 = 5 in Model 1. If 𝑔(𝑡) = 1 for the same date in Model 2, 

this would imply a value of 𝜒𝑡 + 𝜉𝑡 = 4, in order to yield the same ln spot price. 

24 The first observation in the sample has a value according to which day in the year the data series starts. If the first date is the 

3rd of January, t=3/365. 

25 If the contract matures on January 28th the same year, 𝜏 would equal 28/365, whereas if it matures on January the 28th the 

next year, it would equal (28+365)/365 etc. 

26 This means that each January value will be the same for subsequent January months forward in time. 
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8.1.2 Extra parameters and new measurement equation 

The only other thing that is changed in our estimation procedure is the inclusion of four new 

parameters (𝛾1, 𝛾1
∗, 𝛾2, 𝛾2

∗), as well as a modified measurement equation taking the new seasonal 

factor into account: 

 𝑦𝑡 = 𝑔(𝜏) + 𝑑𝑡 + 𝐹𝑡
′𝑥𝑡 + 𝑣𝑡, 

where 

𝑔(𝜏) = γ1 cos(2𝜋𝜏) + 𝛾1
∗ sin(2𝜋𝜏) + 𝛾2

∗𝑐𝑜𝑠(4𝜋𝜏) + 𝛾2
∗ sin(4𝜋𝜏), 

and 

𝑑𝑡, 𝐹𝑡 , 𝑥𝑡 𝑎𝑛𝑑 𝑣𝑡 are defined as in Model 1. 

In the next section, we will show the results from this estimation, and how the new seasonality 

factor has affected parameters, state variables and residuals. 
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9. Results from Model 2 

After running the Kalman filter optimizing procedure 1400 times using random initial values 

of the parameter set 𝜃, 𝜒0, 𝜉0  and 𝐶0 we got the following results: 

Parameters Model 1 Model 2 

𝜅 0.6308 
(0.0113) 

1.4093 
(0.0202) 

𝜎𝜒 0.6664  
(0.0113) 

0.5440 
(0.0257) 

𝜆𝜒 -0.2288  
(0.1024) 

-0.4103 
(0.0702) 

𝜇𝜉  -0.1530  
(0.0906) 

-0.1081 
(0.0521) 

𝜎𝜉  0.3046  
(0.0120) 

0.1461 
(0.0084) 

𝜇𝜉
∗  -0.1436  

(0.1546) 
-0.0266 
(0.0047) 

𝜌𝜒𝜉  -0.7120  
(0.0234) 

0.1123 
(0.0347) 

𝑠1𝑀  0.1262  
(0.0011) 

0 
(0) 

𝑠4𝑀 0  
(0) 

0.0640 
(0.0003) 

𝑠7𝑀 0.0822  
(0.0005) 

0.0568 
(0.0002) 

𝑠10𝑀  0.0613 
(0.0002) 

0.0388 
(0.0001) 

𝑠13𝑀  0.0653 
(0.0003) 

0.0320 
(0.0001) 

𝛾1  0.0606 
(0.0010) 

𝛾1
∗  

 
-0.0025 
(0.0010) 

𝛾2  
 

0.0272 
(0.0010) 

𝛾2
∗  0.0030 

(0.0010) 

Log Likelihood 4309.2 5511.3 

Standard errors in parenthesis 

Model 1 results are included for comparison 

Table 9.1 Parameter results from Model 2 

We observe that all of our parameters are significantly different from zero on a 95 % confidence 

level. This implies that the new seasonality factor have improved the model’s ability to estimate 

parameter values. 
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The degree of mean reversion, 𝜅, is higher when including the seasonality term in our model. 

This fits well with the hypothesis of possible underestimation of 𝜅 caused by seasonality, as 

described in the results of Model 1.  

Looking at the volatility parameters, 𝜎𝜒 𝑎𝑛𝑑 𝜎𝜉, we observe that both estimates are lower 

compared to the estimates in Model 1. This fits well with our a priori assumption that 

seasonality might cause large swings in prices over the course of the year. When correcting for 

seasonality through 𝑔(𝑡), the underlying volatility appears to have become much lower. The 

Samuelson hypothesis still holds with a higher volatility in the short-term factor, 𝜎𝜒, than in the 

long-term factor’s volatility, 𝜎𝜉. This indicates that our model is still capturing important 

aspects of our futures prices’ dynamics. 

In Model 1, neither 𝜇𝜉 nor 𝜇𝜉
∗  were significantly different from zero. We now observe that the 

extended model is able to estimate both parameters significantly on a 95% level. Correcting for 

seasonality may thus have made it easier to infer the underlying growth rate of our state 

variables. 

The two risk premium coefficients, 𝜆𝜉 𝑎𝑛𝑑 𝜆𝜒, are also captured with better significance in this 

version of the model. This is another indication of improvement from the new model. Since we 

are able to extract risk-premiums and risk-neutral growth rate in the new model it seems that 

investors in natural gas futures consider seasonality, when determining the value of futures 

contracts. If for instance a long-term price in natural gas is 4$, and an investor knows that this 

long-term price will tend to be 3$ in the summer and 6$ in the winter, its futures price will 

incorporate this, even though the risk premium for the investor can be constant over the course 

of the year. If we do not consider this in our model, this might lead to difficulty in estimating 

the risk premium. This may be what we observed in Model 1, which might explain why, when 

accounting for seasonality in Model 2, our estimates improved.  

Looking at the standard deviations of the errors in the measurement equation, 𝑠𝑖, we observe 

that they are smaller compared to those in Model 2, except for the 22-month contract. This 

might indicate that Model 2 is more able to fit the cross-section of futures prices than Model 1.  

Another indication of Model 2’s better ability to fit the data is the log likelihood value of 5511.3. 

Compared to Model 1, the addition of the seasonality factor yields a log likelihood that is 1292.1 
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higher27. The inclusion of seasonality has therefore significantly increased the likelihood of 

obtaining the true parameters of our model. 

Turning to the deterministic seasonal factor, we see that all its parameters are estimated 

significantly different from zero. Looking at the plotted seasonality function shown in Figure 

9.1, we observe that prices are higher from the middle of August to the start of April when they 

turn lower. The significant seasonal factor thus seems to exhibit the kind of price variations we 

would expect a priori. 

 

Figure 9.1 Plot of the estimated seasonality factor 

                                                 
27 According to Schwartz & Smith (2000) the relevant test statistic for this comparison is the chi-squared distribution with 3 

degrees of freedom with a 99th percentile equal to 11.34. 
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9.1 Estimated state variables – Model 2 

 

Figure 9.2 Plot of estimated state variables from Model 2 

Looking at the long-term state variable, 𝜉𝑡, in Figure 9.2, the downward trend is still evident, 

but the seasonality traits have disappeared. It appears that the seasonal factor has captured this 

effect, leading to less variance in 𝜉𝑡, as observed in the lower 𝜎𝜉. The short-term factor is still 

reverting to a mean of zero, with several short-term spikes. Compared to Model 1, the 

magnitude of these spikes seems to have been reduced, and they seem to be lasting for shorter 

time periods. This is reflected in our parameters through a lower 𝜎𝜒 and a higher 𝜅. The new 

seasonality factor thus seems to have removed the seasonality traits in the long-term factor, as 

well as reduced volatility in both.  

9.2 Residual analysis Model 2 

Our previous results indicate that the deterministic seasonality function has improved our 

model’s description of the natural gas market through better parameter estimates and log 

likelihood value. We now look at the residuals of the model, to assess how they are affected by 

the new factor. As we previously mentioned, if the model is capturing the most important 

features of the market, its residuals should be a strict white noise. 

From the summary statistics shown in Table 9.2, we observe that all residuals have a mean 

significantly centered on zero. Their volatility is significantly smaller in this model compared 
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to the residuals in Model 1, which we see as a sign of the model’s improvement from the 

seasonality factor28. 

Contract 1M 4M 7M 10M 13M 16M 19M 22M 

Mean 0 
(0) 

0.4% 
(0.31%) 

0.31% 
(0.27%) 

0.14% 
(0.19%) 

0.09% 
(0.15%) 

0.06% 
(0.12%) 

0.11% 
(0.16%) 

0.23% 
(0.23%) 

Std. dev. 0 6.34% 5.61% 3.81% 3.03% 2.52% 3.24% 4.79% 

Std. dev. Model 1 12.53% 0 8.20% 6.12% 6.54% 8.07% 8.23% 0.50% 

Standard errors of estimate in parenthesis 
Model 1 std.dev. results are included for comparison 

Table 9.2 Summary statistics of residuals from Model 2 

Looking at the mean residual values by delivery months, we observe that the seasonality 

patterns are much less evident in this model. The values seem to be randomly distributed around 

zero, and vary randomly across months from contract to contract. The residuals are, in addition, 

a lot smaller than in Model 1 indicating that the new seasonality factor has improved overall 

results. Our model no longer seems to be underestimating winter prices and overestimating 

summer prices as was evident as in Model 1. Since this variation is significantly captured by 

our new factor, we believe this is a strong indication of a presence of seasonality in our data 

set. 

 4M 7M 13M 19M 

1 2,5 % 0,7 % -0,3 % 0,3 % 

2 -0,4 % -0,8 % -0,3 % 0,5 % 

3 -0,1 % 1,3 % 1,0 % 0,6 % 

4 2,3 % 1,7 % -1,4 % -1,9 % 

5 4,6 % 1,6 % 0,2 % -0,5 % 

6 2,6 % 0,7 % -0,5 % -0,6 % 

7 -0,8 % 1,1 % -0,1 % 0,1 % 

8 -3,4 % 0,5 % -0,2 % -0,1 % 

9 -2,9 % -0,6 % -0,3 % -0,1 % 

10 -1,0 % -2,3 % 0,7 % 1,3 % 

11 -0,7 % -1,5 % 0,2 % 1,3 % 

12 2,2 % -0,1 % -0,8 % -0,1 % 

The 16M, 19M and 22M show similar traits, whereas the 
1M is set to zero measurement error 

Table 9.3 Mean residual value by delivery month, Model 2 

Table 9.4 show the results from the Ljung-Box Q-test for autocorrelation. They indicate that 

there still is autocorrelation in all relevant contracts’ residuals29. Therefore, the extension of the 

                                                 
28 The volatilities in the 1M and 4M contracts are not comparable, since these are set to zero measurement-error when estimating 

model 2 and model 1 respectively. 

29 Except for the 1M contract with a pre-set zero measurement error 
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model did not lead to white noise residuals, meaning other significant factors may still be 

present in the data. Looking at the relevant values of the test statistics30, we observe that these 

are lower compared to the results in Model 1. This indicates that the residuals in Model 2 are 

closer to a white noise than the one’s in Model 1. 

1M 4M 7M 10M 13M 16M 19M 22M 
22.29 1201 1977 1502 980 917 920 2023 

Critical value of Q is 31.41 

Table 9.4 Ljung-Box Q-test statistics for residual autocorrelation 

Autocorrelation is also evident from the ACF plot, as shown in Figure 9.3, but we observe that 

both the seasonality and variance of the autocorrelation function have been reduced 

significantly, compared to those in Model 1. 

 

Figure 9.3 ACF-plot Model 2, sample autocorrelation for lags up to two years 

There are still some seasonality traits left in the ACF, but these are of smaller magnitude. This 

might suggest that our seasonality factor is not able to fully capture the seasonality in natural 

gas prices. Explanations for this might be that we have chosen a deterministic seasonal factor. 

If there is a trend or time variation in seasonality, our deterministic seasonality function could 

be too small or too high in some of the years. This will reduce the seasonality in residuals, but 

there will still be some seasonality left. Another explanation might be that our data set is too 

small to be able to capture the seasonal factor properly. Sørensen (2002) used a data sample of 

                                                 
30 Remember, in this model, we forced the 1M contract to have zero measurement errors, whereas in model 1, this was done in 

the 4M contract. 
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25 years of weekly data when estimating the seasonal factors for other commodities. This is a 

larger data set compared to ours, with only eight years of weekly data. A third hypothesis 

explaining this could be that seasonality is present only in long-term contracts affecting the 

estimation of the seasonality function.  

Over all, the residuals do not seem to be generated from a white noise process. This leads to the 

possibility that other factors are present in the prices. At the same time, the significant 

seasonality function has reduced the mean, variance and autocorrelation in residuals indicating 

an improvement from the new seasonality function.  
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10. Concluding remarks 

In this thesis we have estimated the Schwartz & Smith (2000) model both with and without a 

deterministic seasonal factor to see whether seasonality is a significant factor in natural gas 

prices. 

In our initial time series analysis of our futures data, we find traits of seasonality in futures 

contracts with maturities longer than 4 months, whereas these traits are less evident in the 1-

month contracts. The seasonal traits are characterized by prices being higher for contracts 

delivered in winter months and lower for contracts delivered in summer months. The time series 

also indicates that spot prices are non-stationary, either following a random walk, a random 

walk with drift or a trend-stationary process. At the same time, the residuals from these 

processes indicate that other factors are likely to be present in the series, such as seasonality.  

The estimated parameters in Model 1 show signs of an omitted parameter bias. The presence of 

seasonality seems to have lead to an underestimation of the mean reversion parameter, 𝜅, and 

overestimation of the volatility parameters 𝜎𝜒 and 𝜎𝜉 in Model 1. After including the seasonal 

factor in Model 2 this effect is removed. Another argument for an omitted parameter bias in 

Model 1 is the insignificant drift parameters, the barely significant short-term risk premium and 

insignificant long-term risk premium. When introducing the seasonality factor in Model 2, all 

parameters are estimated significantly, indicating that the included seasonality factor has 

improved the model. The significant seasonality factor clearly shows a tendency of prices being 

higher in winter months and lower in the summer. Comparing standard measurement errors and 

the log-likelihood of both models, this shows that the added seasonality factor has improved 

the model’s ability to capture the dynamics in the data, indicating that seasonality is present and 

significant in natural gas prices. 

The estimated state variables in Model 1 show seasonal tendencies in the long-term factor, 

whereas this is less evident in the short-term factor. After including the seasonality factor in 

Model 2, these seasonality traits are more or less eliminated in the state variables, showing that 

the new factor has captured this effect. 

The residuals in Model 1 show signs of seasonality when estimating mean values conditional 

on delivery month. In Model 2 this is not longer evident. The residuals in Model 2 have lower 

variance as well, indicating a better fit to the data. We lastly find that the residuals in both 
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models are auto correlated, indicating that neither model fully explains variation in natural gas 

prices. Even though other factors may still be present in natural gas prices, seasonality seems 

to have made a significant improvement to our model. 

From our results, we conclude that seasonality seems to be a significant factor in natural gas 

prices. 

  



56 

11. Assumptions, limitations and improvements 

Although our results show clear tendencies of seasonality in natural gas prices, we wish to 

highlight some limitations to our approach, as well as suggest topics further study. 

While natural gas futures have been traded on NYMEX as far back as 1990, we only used data 

from September 2005 to November 2013. Although gathering data for a longer time period 

might let us say more about the development in the state variables and the seasonal factor, small 

volumes throughout the 1990s and large gaps in prices went into our choice of time period. 

For the few missing dates in our dataset, we chose to use linear interpolation in order to fill in 

the short gaps. This could have led to us missing some short-term shocks, as for instance 

hurricane Katrina led to a shutdown in trading of Natural Gas futures on NYMEX (U.S. 

Department of Energy, 2009a). However, we have tried to correct for this by looking for sources 

of the missing prices, and for our data set, the missing prices seem to come mainly from holiday 

trading stops, rather than factors that would cause the prices to fluctuate. 

In our model we use a deterministic seasonal factor to describe monthly price variations over 

the year. More advanced functions like a stochastic seasonal factor, might be better at 

explaining seasonal variation, but will require extra parameters to be estimated and probably a 

longer period of data. Our estimated seasonality function implicitly assumes that the seasonality 

effect on spot prices is equal across all maturities. This might be a simplifying assumption, and 

further studies should formally investigate if this is indeed the case. 

Observable variables like weather reports, interest rates and inventory levels might provide a 

better picture of why winter prices are higher than summer prices in our data set. Including 

these in our model could make us able to pin down the exact reasons for seasonality in prices, 

as well as enable better forecasting of the magnitude of seasonality in prices.  In our thesis we 

only show that seasonality traits exist, but do not quantitatively tie them down to explanatory 

factors. This would be an interesting topic for further study. 

In our model, we use constant risk premiums with no assumptions of their dynamics. A constant 

risk premium makes an implicit assumption that its correlation between other assets in the 
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economy is constant. This might be a too simplifying assumption. Different papers31 indicate 

that time-dependent risk premiums may affect the degree of mean reversion, because of 

negative correlation between the spot price and risk premium. Looking at interest rates, one 

might also be tempted to think about a possible level-dependent correlation between risk 

premia. If interest rates are low, people in the economy will demand more goods, driving the 

overall prices up. This might reduce risk premiums if demand for commodities increases 

because of this. The opposite applies if interest rates are high. For further study one could 

incorporate interest rate dependent, or spot-price dependent risk premia. One would then have 

to specify the dynamics of the two risk-premia parameters as well as their relationship to other 

dependent variables. This would lead to a more complicated model. In our thesis, however, we 

only wish to show that seasonality is present, so a simplified risk premium might not affect the 

results too much. 

More advanced features could also be added to the stochastic processes of our state variables32. 

For instance jump features or volatility clustering might be present, distorting parameter values 

in our model, making it harder to isolate the effects of seasonality. At the same time, our model 

is good enough to indicate seasonality, which is the main purpose of our thesis. 

When running the Kalman filter optimizing procedure in Matlab, the objective was to find the 

initial values that would produce the highest maximum likelihood. In order to find the global 

maximum however, the procedure would have to run through all possible initial values. We 

only ran our two models’ optimizing procedures for 2500 and 1400 initial values respectively, 

but we wish to highlight that this procedure optimized for local maxima around these starting 

values. Although running the procedure for a longer time might have marginally increased the 

maximum likelihood function, we possessed neither the computer power nor the time to do this. 

Since we were using Matlab code for model estimation and time series analysis, we wish to 

highlight the possibility of errors in code arising from mistypings’ etc. The replicated results in 

section 6 do not indicate that such errors exist, but we cannot offer any guarantees. 

                                                 
31 ”However, allowing for time-varying risk premia is important since, as argued by Fama & French (1987), negative 

correlation between risk premia and spot prices may generate mean reversion in spot prices” (Casassus & Collin-Dufresne, 

2005, p. 2285). 

32 See for instance “Maximal Convenience Yield Model” by Cassasus & Dufrence (2005), a three-factor model using both 

observed and unobserved variables in a very complicated way to model commodity prices.  
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12. Appendices 

12.1 Appendix A 

The following dates were missing for all eight futures: 25.11.05, 06.04.07, 21.03.08, 04.07.08, 

10.04.09, 03.07.09, 23.10.09, 25.12.09, 01.01.10, 02.04.10, 24.12.10, 22.04.11, 29.03.13 

For the remaining missing dates, they were only missing for some or one of the futures contracts 

NG4: 14.04.06 

NG7: 14.04.06, 24.11.06,  

NG10: 14.04.06, 25.08.06, 24.11.06,  

NG13: 30.12.05, 06.01.06, 14.04.06, 25.08.06, 13.10.06, 24.11.06,  

NG16: 14.10.05, 28.10.05, 18.11.05, 02.12.05, 09.12.05, 16.12.05, 30.12.05, 14.04.06, 

25.08.06, 01.09.06, 13.10.06, 03.11.06, 24.11.06, 01.12.06, 05.01.07, 09.02.07, 09.03.07,  

NG19: 30.09.05, 28.10.05, 04.11.05, 11.11.05, 18.11.05, 02.12.05, 09.12.05, 16.12.05, 

30.12.05, 14.04.06, 28.04.06, 18.08.06, 25.08.06, 01.09.06, 29.09.06, 13.10.06, 20.10.06, 

27.10.06, 03.11.06, 10.11.06, 17.11.06, 24.11.06, 08.12.06, 22.12.06, 05.01.07, 09.02.07, 

23.02.07, 02.03.07, 09.03.07, 16.03.07, 23.03.07, 20.04.07, 27.04.07, 26.08.11, 02.09.11, 

09.09.11, 16.09.11, 23.09.11, 30.09.11 

NG22: 30.09.05, 21.10.05, 28.10.05, 11.11.05, 18.11.05, 02.12.05, 09.12.05, 16.12.05, 

23.12.05, 30.12.05, 14.04.06, 18.08.06, 25.08.06, 01.09.06, 08.09.06, 22.09.06, 29.09.06, 

13.10.06, 20.10.06, 03.11.06, 10.11.06, 17.11.06, 24.11.06, 01.12.06, 08.12.06, 15.12.06, 

22.12.06, 05.01.07, 23.02.07, 09.03.07, 23.03.07, 30.07.07, 20.04.07, 27.04.07, 04.05.07, 

18.05.07, 01.06.7, 08.06.07, 15.06.07, 26.08.11, 02.09.11, 09.09.11, 16.09.11, 23.09.11, 

30.09.11 
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12.2 Appendix B 

To derive the analytical futures price of our model, we have to use the risk-neutral processes of 

the state variables. Given initial values 𝜒0 and 𝜉0, S&S (2000) show that the risk-neutral 

processes of 𝝌𝒕 and 𝝃𝒕 are jointly normally distributed with mean vector and covariance matrix: 

𝐸𝑄[(𝜒𝑡, 𝜉𝑡)] = [𝑒−𝜅𝑡𝜒0 −
(1 − 𝑒−𝜅𝑡)𝜆𝜒

𝜅
, 𝜉0 + 𝜇𝜉

∗𝑡] 

𝐶𝑜𝑣𝑄[(𝜒𝑡, 𝜉𝑡)] = 𝐶𝑜𝑣[(𝜒𝑡, 𝜉𝑡)] 

They continue to show that under Q the logarithm of the spot price is normally distributed with: 

𝐸𝑄[ln(𝑆𝑡)] = 𝑒−𝜅𝑡𝜒0 + 𝜉0 −
(1−𝑒−𝜅𝑡)𝜆𝜒

𝜅
+ 𝜇𝜉

∗𝑡, 

𝑉𝑎𝑟𝑄[ln(𝑆𝑡)] = 𝑉𝑎𝑟[ln(𝑆𝑡)]. 

Using the fact that the futures price is equal to the expected future spot price under Q, we can 

solve for the analytical futures price: 

ln(𝐹𝑡,𝑇) = ln(𝐸𝑄[𝑆𝑇]) = 𝐸𝑄[ln(𝑆𝑇)] +
1

2
𝑉𝑎𝑟𝑄[ln(𝑆𝑇)] 

= (𝑒−𝜅(𝑇−𝑡)𝜒0 + 𝜉
0
−

(1 − 𝑒−𝜅(𝑇−𝑡))𝜆𝜒

𝜅
+ 𝜇

𝜉
∗(𝑇 − 𝑡)

+
1

2
(
(1 − 𝑒−2𝜅(𝑇−𝑡))𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2(𝑇 − 𝑡) +
2(1 − 𝑒−𝜅(𝑇−𝑡))𝜌

𝜉𝜒
𝜎𝜒𝜎𝜉

𝜅
) 

= 𝑒−𝜅𝑇𝜒0 + 𝜉0 + 𝐴(𝑇 − 𝑡) 

where 

𝐴(𝑇 − 𝑡) = 𝜇𝜉
∗(𝑇 − 𝑡) −

(1 − 𝑒−𝜅(𝑇−𝑡))𝜆𝜒

𝜅
+

1

2
(
(1 − 𝑒−2𝜅(𝑇−𝑡))𝜎𝜒

2

2𝜅
+ 𝜎𝜉

2(𝑇 − 𝑡) +
2(1 − 𝑒−𝜅(𝑇−𝑡))𝜌𝜉𝜒𝜎𝜒𝜎𝜉

𝜅
) 


