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ABSTRACT 
Nonlinear semi-parametric modeling of freight rates in the dry bulk market has gained 

increased recognition, although it has not been implemented extensively in previous 

studies. By allowing the data itself to dictate the functional form of our model we 

seek to decompose the physical time charter rate according to a combination of macro 

- and microeconomic variables. Our main goal is to identify quality related aspects of 

rate determinants and the possible existence of a quality premium. A spline 

interpolation technique is applied to exclude time–related modifications to the market 

index along with actual contract fixtures from 2001 to 2014 across the three main dry 

bulk segments. Supporting previous literature, we identify a clear non-linearity 

between variables and support for quality segmentation with respect to age and size. 

Furthermore Japan has increased its position as a provider of quality tonnage and 

there has been a shift in fuel efficiency, measured as consumption per ton-miles, over 

time. Contractual specification on cost allocations between shipowner and charterer 

suggest that the charterer obtains any possible quality related profits, showing 

evidence of split incentive barriers. In general we find that there has been a shift in 

market dynamics in time periods before and after 2008.  
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1. INTRODUCTION 
The goal of this paper is to investigate the relationship between vessel specifications 

and time-charter rates with an emphasis on energy efficiency. The nature of the 

shipping industry is highly volatile and cyclical where freight rates is said to be one of 

the most volatile commodities traded (Adland, 2013b). Gaining a deeper 

understanding of how the market prices vessel characteristics could be of great 

interest, as it might help market participants make sound operational and investments 

decisions. As with other competitive and homogenous markets, the maritime industry 

is dominated by cost-efficiency - where the quest for energy efficiency has grown to 

become one of the major components. Accompanied by economies of scale and 

increasing commodity prices, market participants seek ways to continuously improve 

profitability. In addition to this intrinsic market characteristic the Oil Pollution Act 

(1990, Oil Pollution Act) initiated a quest for regulatory changes considering quality 

tonnage, which has become prevailing in recent years.  

While the industry itself and regulators sees the need for efficiency measures, there is 

still a cost-benefit issue for both shipowners and charterers. Bunkers cost are the 

single most important item in voyage cost1, representing 47% of the total (Stopford, 

2009) and as oil prices continue to increase the fuel cost becomes progressively 

important. Consequently, as bunkers cost are closely related to efficiency measures 

we would assume the shipping markets to place some price premium on efficiency. 

Although the efficiency of maritime sea transportation is rarely disputed, there have 

been debates regarding the quantification of specific energy efficient characteristics of 

the world fleet (Smith et al., 2013). Skepticism has been directed towards 

unrepresentative input data in previous studies along with limited real world 

operational data. The “still water” design parameters often used in analyses of the 

world fleet has been cited as artificial and insufficient to reflect efficiency parameters. 

Although this critique is well founded, such real world data are irregular and hard to 

measure (Smith et al., 2013). Consequently, there is now an increasing interest in a 

more comprehensive analysis of energy efficiency. Further sophisticated modeling 

techniques is one way to cope with this prevailing data issue. 
                                                
1 Accounts for 40% of total cost. Variable voyage costs including fuel, port dues, tugs, pilotage and canal charges 
(Stopford, 2009) 
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The general idea behind the methodology applied is to allow the functional form of 

the relationships between model variables to take on any form. Hence we apply a 

model that avoids imposing distinctive parameter restrictions, which could lead to 

model misspecifications. We use a semi-parametric estimation technique within a 

Generalized Additive Model. By assuming less about how rates and underlying 

factors are related we believe to discover more accurate results. 

Opposed to previous research on the dry bulk market, our dataset includes fixtures for 

Capesize, Panamax and Handysize from 2001 to 2014. A large dataset allows us to 

combine time-periods during the extreme market conditions seen in recent years. In 

addition we investigate if various market indices used as benchmarks are adjusted for 

changes in the underlying specifications over time. Hence, when searching for 

efficiency causalities some of these, if not all, could already be incorporated in the 

index and would consequently be difficult to isolate. Therefore we try to eliminate the 

effect of changes over time by standardizing the data, making sure the same 

underlying vessel specifications are used as a comparable. Subsequently we use cubic 

spline interpolation to estimate a correct index proxy for contracts that falls outside 

given durations. Our understanding is that this modeling approach would better 

explain efficiency improvements over time.  

The question remains whether the incentives are correctly aligned and if the markets 

are willing to pay for efficiency practices to be implemented. Without a strong price 

signal there could be a lack of incentives to justify investments in energy efficiency or 

operational energy efficiency measures.  

 

Our contributions to existing literature lie in a comparison across all the three main 

dry bulk segments and a large fixture set of actual cross sectional data where periods 

before and after the financial crisis are considered. A weakness in comparable studies 

is the use of spot rates (BDI)2 as a proxy for period time charter rates. The spot rate 

                                                
2 Baltic Dry Index 
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does not include or differentiate between a market in contango or backwardation3. 

Hence, the length of the contracts is neglected when spot is used as a proxy. 

Henceforth we use an improved modeling of the market-rate component, using 

Clarksons time charter indices as proxies. 

A brief introduction to dry bulk shipping is presented in section 3 followed by 

efficiency discussions in section 4. Section 5 provides methodology and a theoretical 

framework. Section 6 outlines our empirical analysis along with a description of 

variables. Model specification and selection is discussed in section 7 followed by an 

analysis of our results in section 8. In section 9 we present a possible model 

application. Uncertainties regarding the model are presented in section 10 and finally 

our concluding remarks are given section 11.  

                                                
3 Contango refers to a situation where the future price of a commodity is higher than the expected future spot price, 
hence the forward cure is upward sloping. If a market is in backwardation, the opposite situation occurs and the 
forward curve is downward sloping.  
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2. LITERATURE REVIEW 
Our research topic suggests a three-folded approach when examining previous 

literature: namely freight rate determination, efficiency and quality aspects and 

various modeling techniques.  

Following the Oil Pollution Act (1990, Oil Pollution Act), researchers have examined 

the implications of the increasing importance of quality in dry bulk freight rates, 

where the focal point has been age as a proxy for quality. Strandenes’ (1994) research 

on the possibility of a two-tier tanker was in many ways a pioneering study setting the 

course for further research. Thanopoulou and Gardner (2012) argue that although 

various research methods have been applied, the findings are similar; no distinctive 

quality segmentation has yet been confirmed or can be deemed sustainable in the long 

run. Further they argue that the main limitations lie in the methodology used. The 

same authors also presents a detailed overview of candidate parameters for quality 

research where they suggest a closer and continuously monitoring of market attitudes 

along with more realistic and relevant information from charterers regarding how they 

rank freight rate determinants.  

Early studies by Hawdon (1978), Strandenes (1984) and Beenstock and Vergottis 

(1993) advocate that ocean freight rates are determined mainly through 

macroeconomic variables. More recent studies by Randers and Göluke (2007) also 

use such variables in a system dynamic approach to model and forecast freight rates. 

Furthermore Adland and Koekebakker (2007), Adland and Cullinane (2006) and 

Kavussanos and Alizadeh (2002) studied the time series dynamics of freight rates 

through univariate or multivariate models. Adland and Cullinane (2006) investigate 

the non-linear dynamics of spot freight rates in tanker markets through a non-

parametric Markov diffusion model. Their study suggests that a non-linear stochastic 

model can best describe the oil transportation market. Further they show that spot 

prices are mean reverting and that the volatility of the rate increases with freight 

levels. Alizadeh and Talley (2010) proposes that there has been no systematic 

investigation of microeconomic determinants. Hence, they investigate rate 

determination through market, vessel and contract specific factors in the dry bulk 

market along with differences in freight rates across routes, geographical distribution 

of shipping activities and the duration of the laycan period of shipping contracts. 
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Using a system of simultaneous equations along with a large sample of individual dry 

bulk charter contracts from January 2003 to July 2009, findings suggest that 

microeconomic ship specifications are important determinants of dry bulk rates. A 

positive relationship is shown between freight rates and dead weight tonnage (dwt) of 

a vessel and between rates and laycan periods. Findings also suggest that laycan 

period vary directly with rates and indirectly with rate volatility.  A possible existence 

of a two-tier voyage freight market for Panamax and Capesize vessels of differing age 

is studied in the works of Tamvakis & Thanopoulou (2000). Using data from four 

representative years since the end of the 1980s, in which the freight market conditions 

prevailed, they apply a semi-parametric multiple regression and find no statistically 

significant difference between rates paid to older and younger tonnage. Any signs of 

differentiation turn out to be too sporadic to alter current perceptions of the dry bulk 

carrier market. 

Glen (2006) provides an overview of the development of the quantitative modeling 

techniques so far applied to the analysis of dry bulk shipping markets. He finds that 

ever since Beenstock and Vergottis published their “Econometric Modelling of World 

Shipping” in 1993 the development of the quantitative modeling techniques of the 

shipping markets has shifted attention towards relatively more modern techniques, 

where specification and estimation of complete structural models has been more or 

less avoided. The uprising of econometric techniques has also changed the attention 

towards more specific aspects of the shipping markets, such as demand, the behavior 

of ship prices, seasonality and assumptions about expectations, which previously had 

been disregarded. The results also identifies the following modeling trends in recent 

literature: Reduced form rather than structural modeling, a greater focus on modeling 

rate volatility rather than rate levels, introduction of models of financial derivatives 

and their application to shipping markets and lastly segmented models of different 

vessel types along with higher frequency data.  

There are in particular two previous studies we find relevant regarding econometric 

modeling. For the first time, Adland and Koekebakker (2007) departs from time-

series analysis and studies actual cross sectional bulk ship sales data through a non-

parametric multivariate density estimation technique. Hence they allow for the 

presence of non-linearity in addition to microeconomic variables, which is also found 

to be an important issue in vessel valuation. Although they suggest that the second-
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hand value of a vessel can be found as a partially non-linear function of size, age and 

the state of the freight market, the model is not capable of fully explaining observed 

vessel values. Consequently they suggest other vessel-specific variables to be 

included in a semi-parametric framework as an extension of the proposed model.  

Köhn (2008) revisits the quality-issue and aims to verify the hypothesis of a quality-

based segmentation in the Panamax market based on vessel and contract specific 

determinants. By broadening the range of econometric tools applied in shipping 

economics through a semi-parametric estimation technique within a Generalized 

Additive Model, results suggest that freight differentiation has become visible in 

booming markets with high rates. The works of Köhn and Thanopoluou (2011) is 

primarily based on Köhn (2008) and results suggest that non-linearity and 

microeconomic variables are found to explain a great part of the variation in physical 

time charter rates.   
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3. DRY BULK SHIPPING 

3.1. OVERVIEW 
The dry bulk shipping market is by far the largest sector of the worlds shipping 

markets in terms of cargo weight and by 2013 the total dry bulk trade accounted for 

approximately 44% of total trade volumes (Clarksons Research, 2014). Iron ore and 

coking coal are the raw materials in steel production, which again is one of the main 

building blocks of the modern industrialized society. Growth in gross domestic 

product is closely linked to energy consumption and as long as the importance of coal 

continues to increase as a power generation source, it´s importance as a commodity is 

rarely undisputed. Grain supplies the world with bread, meat and other foods 

necessary for any society to grow and sustain. Due to their volume and demand, the 

three major bulk trades mentioned above form the major forces behind the dry bulk 

carrier market, accounting for almost one quarter of total seaborne cargo showing an 

annual growth of 4.4% from 1965-2005 (Stopford, 2009). It is worth mentioning that 

there is no simple pattern and each commodity has its own distinctive characteristic 

and growth trends.  

Dry bulk carriers are designed for low cost and simplicity and the fleet is made up of 

four main sectors. Out of the three segments listed below, Capesize is the smallest in 

number, but largest in terms of dwt. There is however a tradeoff between unit cost and 

cargo flexibility where smaller vessels are flexible but more expensive to operate, 

while larges vessels offers economies of scale4, but less flexibility. 

Capesize (>100,000 DWT) vessels are ships generally too large to transit the Suez 

Canal. These ships are used to carry coal, iron ore and other commodity raw materials 

on long-haul routes to the largest ports around the world.  

Panamax (60,000-99,999 DWT) vessels are used to carry the same commodities as 

Capesize ships in addition to minor bulks. Since these ships are able to pass through 

the Panama Canal5 they are more versatile in terms of access to different trade routes, 

although ships in the larger end of the range are unable to pass until the canal is 
                                                
4 Inverse relationship between quantities shipped and per unit fixed-cost.  

5 Maximum beam is 32.3 meters before canal expansion. (Canal de Panama, 2013) 
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extended. Usually, most of the ships within this category do not carry cargo-handling 

equipment on board.  

Handymax (40,000-59,999 DWT) vessels carry mostly grain and minor bulks and are 

used in a large variety of global trade routes. Compared to Panamax vessels these 

ships often carry cargo handling equipment, offering loading and unloading 

flexibility.  

 

3.2. THE FREIGHT MARKET 
Freight rates are the most important factor used by the market to adjust short-term 

capacity and long-run cost and service improvement. Supply and demand is adjusted 

by the freight mechanism, where a market balance between supply and demand is 

found when shipowners and charterers negotiate and establish a freight rate based on 

available ships and cargo. The conceptualization of the freight mechanism is more or 

less straightforward and can be found in most microeconomic theory. In a demand 

driven market, where demand dictates market supply, rates tend to be low. On the 

contrary, a supply driven market would result in higher rates. Adjustment to this 

mechanism will eventually bring the market in balance. An important remark 

considering the supply side is that since the shipowner has an option to put a vessel 

into lay-up if the rate is too low, it practically sets a minimum rate. The level of 

freight rates also determines the speed at which an owner will operate6. Thus, the 

market can increase supply capacity by increasing rates. Due to the convexity of the 

function, supply for shipping services is highly elastic at high freight rates and 

becomes inelastic at low freight rates, which can be explained by the availability of 

excess capacity when the market is in recession (Alizadeh and Nomikos, 2009). In 

good times rates can soar to exceptionally high levels. Mainly since the cost of 

transport relative to the value of the cargo is low and lack of alternative transport 

methods (Randers and Göluke, 2007). In response shipowners seek to increase supply 

of tonnage as long as there is adequate shipyard capacity and available funding.  

                                                
6 The supply function has a J-shaped curve.  
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In reality the supply function is more complex and depends on a variety of other 

aspects. A relatively long lead-time along with opportunistic market behavior 

reinforces market cycles, resulting in a highly volatile environment. Further 

explanation can be found in Stopford (2009). The demand function is almost vertical 

which reflects charterer’s inelasticity due to a lack of substitutes for transportation7. 

This effect could suggest different pricing of vessel specifications when the market 

peaks compared to a market trough. 

Contracts can be classified into various segments differing in terms of duration, 

freight rate calculation, cost allocation and commercial and operational 

responsibilities. Single-voyage, trip-charter and time-charter are the most common 

types of contracts used in the dry-bulk market (Alizadeh and Nomikos, 2009). Freight 

rates are strongly correlated over time, partly due to the strong degree of 

substitutability of cargoes among vessels and routes. Another contribution to this 

property is that speculators and financial institutions are indistinguishable with regard 

to type of trade and route (Randers and Göluke, 2007). 

 

3.3. THE TIME CHARTER CONTRACT 
The time charter contract (TC) is an agreement where the charterer hires the vessel, 

including crew, for a predetermined fee per specified period, usually USD/day. This 

gives the charterer operational control and flexibility of the vessel as well as cost 

control, while ownership and management is left to the shipowner. The shipowner 

incurs capital–and operating costs, while the charterer covers all voyage expenses 

(bunkers, port charges and canal dues). Contractual arrangements along with legal 

responsibilities are set out in the charter party. Time-charter contracts are long-term 

contracts and cover more than one voyage. Under this arrangement freight market risk 

is redistributed according to owner or charterers risk preferences. By entering such an 

agreement ship owners could charter out vessels and obtain a steady revenue stream - 

reducing spot market exposure. On the other hand this would also limit any upside 

potential if market rates should increase. Although rates are freely negotiable there is 

a strong interest in recent transactions as they form the starting point for most 
                                                
7 Mainly a hypothesis from Stopford (2009) 
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negotiations. Opposed to other freight contracts the cost allocation between the 

shipowner and charterer has some market implications as the charterer incurs bunkers 

cost. For purposes related to the investigation of quality tonnage, the time charter 

contract is assumed suitable as it, per se, represents “pure” rates.  

A particularly interesting feature with the time charter contract is the intrinsic split 

incentive barrier, sometimes referred to as the principal-agent problem. According to 

economic theory this represents an economic market failure where efficiency 

measures are not implemented despite substantial cost savings potential (Rehmatulla, 

Smith and Wrobel, 2013). The problem arises when the shipowner is faced with the 

cost of efficiency improvements, while the charterer is receiving the benefits of these 

improvements through reduced fuel consumption. The shipowner might not be 

compensated for increased CAPEX through higher rates.  

 

 

 

 

  



 18 

4. ENERGY EFFICIENCY FOR OCEAN FREIGHT 

TRANSPORTATION 
 

4.1. THE EMERGENCE OF QUALITY DIFFERENCES IN A COMPETITIVE 

MARKET 
In line with the theoretical idea of perfect market competition the dry bulk market, 

except liner and some specialized subsectors, is commonly assumed to inherent the 

same characteristics; Ownership of capacity is well distributed and no independent 

company can manipulate supply, shipyards control only a small share of total capacity 

and vessels have great geographical mobility. Consequently, shipping services are 

traded on the assumption that each vessel of similar size and type are perfect 

substitutes for each other. Freight rates have until now been undifferentiated in terms 

of vessel characteristics with individual ship owners being price takers. It has also 

been shown empirically that traditional bulk shipping has historically been without 

significant barriers to entry (Thanopoulou and Gardner, 2012) (Beenstock and 

Vergottis, 1993). Competition has been characterized by cost-efficiency where 

participants try to survive volatile and cyclical patterns. It is well founded in theory 

that as long as markets remain fully competitive, the quality of products and services 

offered is of less importance since homogeneity is a fundamental condition. That is, 

fully competitive markets are not necessarily deprived of quality characteristics, 

however competition itself is not based on buyers having diverging perceptions of 

product characteristics. The Oil Pollution Act (1990) became a turning point for the 

industry, introducing unlimited liability for environmental damages. Followed by the 

institution of the International Safety Management Code the dry bulk sector became 

subject to a quality question. The International Maritime Organization (IMO) 

followed up with a retroactive legislation for dry bulk carriers, requiring structural 

modifications of vessels, which was also introduced by classification societies in 

1996. These regulatory changes stimulated research into quality segmentation, 

starting with the hypothesis of a two-tier tanker market (Strandenes, 1994).  
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Figure 4-1 – Age distribution in the dry bulk fleet 2014 (Clarksons Intelligence 

Network, 2014) 

As illustrated in figure 4-1 there has been a significant shift towards newer tonnage in 

the market. Approximately 50% of the current fleet is between 0-4 years old, 

reflecting the amount of new tonnage entering the market post the financial crisis. 

Intuitively this indicates that compared to the situation before the financial crisis, the 

distribution of tonnage is skewed towards newer vessels. In a presentation held by 

Clarksons for DNV-GL (Clarksons Research Services, 2014), they argue that between 

2003-2008 the industry ordered over $800 billions worth of new ships whereas 50% 

of the orders were placed in the booming years 2007-2008. Furthermore, majorities of 

the investment were related to standard designs and technology. A somewhat fair 

assumption would be that shipowners ordering vessels between 2007-2008 was less 

concerned about efficiency and emphasized on quick deliveries of ships that could 

enter the highly profitable market. Since the time aspect of delivery was of great 

importance, shipyards delivered highly standardized ships. In this regard it could be 

difficult to see any significant efficiency gains across vessels in recent years. ECO-

ship is a word prevailing in recent years as a term describing efficient vessels. The 

definition of an ECO vessel is somewhat relative to the concept of ageing and fuel 

thirsty vessels. Modern ECO–ships are not necessarily cheap as they features state-of-

the art design and equipment including sophisticated engineering solutions, which 
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partly due to an improved focus on environmental issues has become an increasingly 

important part of the agenda.  

4.2. EFFICIENCY  
A major factor associated with the operation of vessels is fuel costs, which fluctuates 

as a proportion of overall costs between ship types and sizes. Between May 2006 and 

January 2014 the 380cst bunker price in Rotterdam increased from 324 USD/ton to 

570 USD/ton. Notwithstanding the fact that future fuel prices are highly uncertain, the 

maritime industry will most likely face increasing prices as oil demand from 

developing countries rises, oil scarcity is likely to increase and the implementation of 

emission regulations. Also, geopolitical issues in North America and the Middle East 

will keep bunker prices volatile, at best. Bunker expenses are estimated to represent 

approximately 60% of total freight costs (Loyd’s List, 2012), which gives owners and 

charterers an incentive to focus on energy efficiency.   

According to the 2nd GHG IMO study (Buhaug et. al, 2009), improved energy 

efficiency means that the same amount of useful work is done, while consuming less 

energy. Consequently, as a result less fuel is burned and emissions of exhaust gases 

are reduced. From a regulators point of view the goal is to encourage efficiency and 

environmental objectives while at the same time sustain the interests of market 

participants. There are several options for improving energy efficiency, which can be 

divided into two main categories (Buhaug et. al, 2009): 

Technological measures through new-building or retrofitting processes:  

• Concept, design speed and capability 

• Hull and superstructure 

• Power and propulsion systems 

Operational measures through vessel operations: 

• Fleet management, logistics and incentives 

• Voyage optimization 

• Energy management 

In addition, a less prevailing but increasingly important, market-based mechanisms 

such as emissions trading and carbon taxes can be applied. Although there are 
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numerous technology-based approaches to improve vessel efficiency, operational 

changes have been promoted as the most cost-effective change to meet high fuel 

prices and volatile rates, especially in recent times where rates have been declining 

and price of bunkers rising, illustrated in figure 4-2.  

 

 

Figure 4-2 - Average BDI 4 TC rates Capesize and 380cst bunker price. 

(Clarksons Shipping Intelligence Network) 

 

4.3. EFFICIENCY AND TIME CHARTER RATE DYNAMICS 
Challenges such as the downturn in the global economy, oversupply, high fuel costs 

and falling freight rates put a substantial pressure on the maritime shipping value 

chain. In response the industry has to adapt quickly, which has resulted in a decline in 

newbuilding orders and more frequent lay-up and idling activity. Faced with this 

development, the market needs a commercially viable way to reduce costs quickly in 

order to stay in business. Fuel costs plays an important role in this development and 

one of the easiest and most effective ways to cut cost is through speed reductions.  
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Profit maximizing speed is given by: 

𝑉∗ =
24 ∗ 𝑅 ∗𝑊
𝐷 ∗ 𝛽 ∗ 𝑃! ∗ 𝛼

!
!!!

 

R=spot rate, W=Cargo intake, D=Distance, V=Speed, Pb=Bunker price, F=Fuel consumption and 𝛽 and 𝛼 are 

constants. 

Clearly the equation shows that as bunker prices increases or rate decreases, optimal 

speed is reduced. As a result one would expect reduced speed over the past years 

along with higher actual speed for premium-paying routes along with higher speed for 

legs with lower consumption, such as ballast legs (Adland, 2013b).  

According to recent shipping literature, ships operating at lower than design speed is 

said to be slow steaming8. Reduction in speed means that the engine is continuously 

running at a low load. To handle possible challenges when deviating from optimized 

load, operational measures needs to be followed. However, even though two-stroke 

engines are optimized for a load range of approximately 60% CMCR9, running at 

loads down to 10% is still possible without any engine modification (The Motorship, 

2012). In addition to engine limitations, factors such as minimum steering (6-7 knots) 

and contractual clauses sets external limits on speed (Adland, 2013b). 

Cost savings in a volatile, competitive and homogenous market is crucial and 

steaming at reduced speed may be the most effective measure to cut costs and reduce 

overcapacity. Reduced speed results in a longer voyage time, which again would 

reduce available transport capacity. Even though owners has the option to put vessels 

in lay-up, slow steaming would be preferable as it offers greater flexibility to meet 

market cycles and add capacity when the cycle turns.  

 

 

 

                                                
8 No clear definition on the term “slow steaming”, however reduced speed relative to “normal” speed is usually 
applied.   

9  Contract Maximum Continuous Revolution 
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4.3.1. SPEED-CONSUMPTION RELATIONSHIP 
The graph below illustrates the difference between fuel consumption for two ships 

with different speed/consumption relationships. As knots increase, consumption 

unsurprisingly increases. However the curve is exponential, indicating a greater 

advantage for low consumption vessels when steaming at higher speeds.  

 

Figure 4-3 - Speed/Consumption-curve (Adland, 2013b) 

Ideally a charterer would be able to save fuel cost corresponding to (A-B)*Price of 

bunkers. From another viewpoint he could operate a low consumption vessel at a 

higher speed while incurring the same fuel costs where the difference in speed equals 

B-C. Obviously as knots increases, fuel costs decrease although this advantage is 

more favorable at speeds above the slow steaming trends we have seen emerging in 

recent years. Current average speed for bulkers is approximately 2 knots below pre-

recession standard speeds (Clarksons Research Services, 2014). Henceforth we would 

assume the benefits of eco-ships to be greater in good times where slow steaming is 

less preferable. Note that in this scenario we assume that markets are competitive and 

shipowners are price-takers, hence we do not incorporate increased capital costs for 

shipowners due to increased costs for efficient ship measures and designs. If we were 

to study how owners would react, an analysis of how capital costs increase and at 

what breakeven point for speed low consumption vessels becomes profitable 

compared to standardized vessels is needed.  
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Charles R Weber, an independent US shipbroker firm, estimates that operational 

retrofitting could lead to 7.5% - 11.5% in fuel savings for a non-eco Capesize vessel 

(McCarthy, 2013). For a newbuilding the same savings amount to 10.5% - 16% 

through improved hydrodynamics and a new G-Type engine (MAN D&T, 2012) . 

Although savings are expected to be greater for newbuildings they also need a higher 

breakeven rate to compensate for higher CAPEX. Intuitively it might seem more 

reasonable for eco-ships to operate in the spot market rather than on TC-rates. When 

fixed on long-term rates the shipowner might not be able to recover increased CAPEX 

due to the contractual agreements on bunkers cost and the charterer will have greater 

incentives to focus on fuel consumption as discussed in section 3.2.   

 

4.3.2. EFFICIENT TIME CHARTER MARKET DYNAMICS 

 

Figure 4-4 - Efficient Time Charter Market Dynamics 

Following our argument in the previous section a simplified illustration of efficient 

market dynamics can be shown in figure 4-4 where bunkers price is constant. The x-

axis represents vessels where #1 and #100 is the least and most fuel-efficient, 

respectively. A charterer would be interested in the TC-rate plus the total bunkers cost 

for one specific vessel and the rate is observed from indices where the last quoted rate 

is presumed to be the reference. Assume a charterer choosing to hire vessel #70. In a 

competitive market he would be willing to pay a higher TC-rate compared to all 

TC#$
rate

$

Consump/on$Cost$

TC$+$Bunkers$Cost$

Consump/on$Cost$
Standard$Vessel$

1$ 4$ 7$ 10$ 13$ 16$ 19$ 22$ 25$ 28$ 31$ 34$ 37$ 40$ 43$ 46$ 49$ 52$ 55$ 58$ 61$ 64$ 67$ 70$ 73$ 76$ 79$ 82$ 85$ 88$ 91$ 94$ 97$ 100$

Market'Dynamics'
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vessels below #70 due to fuel cost savings. This rate premium equals the difference in 

consumption and he would be willing to pay maximum TC + Bunkers cost. This 

situation would describe an efficient market. 

However, if the agreed TC rate is deviating from the blue line, signs of market failure 

occur. Information asymmetries would work in the shipowners favor with respect to 

rate level. Surveys conducted by DNV-GL suggest that charterers might not be in a 

position to discover, or at least take advantage of, operational efficiencies. Although 

the charterer has operational control it is difficult to know whether the vessel has 

incorporated operational measures such as optimal trim or efficient propeller 

polishing. Although, more interesting and powerful is the presence of incentive 

barriers, discussed in section 3.2 and 4.3.1. Noticeably the charterer wants to hire the 

ship with the best specifications. However, it is questionable whether he is willing to 

pay a premium since the improved performance is exactly what he wants to keep and 

the shipowner might not be in a position to influence the rate. This argument proposes 

that the rate should be somewhere along the dotted line in figure 4-4. Should 

charterers identify this improved performance, one would assume the demand effect 

to increase rates in the time charter market. The NPV of this premium should at least 

equal increased CAPEX due to higher capital investments for more efficient vessels 

in order to incentivize shipowners. If this is not the case, and the shipowner is not 

compensated, he would be inclined to offer the vessels in the spot market instead and 

capture all the performance savings, assuming the whole market to be efficient. 

Contrary to our previous arguments, this suggests that the rate should be somewhere 

between the dotted and blue line.  

In essence this graph demonstrates that a ship with relatively higher fuel efficiency 

than the ship underlying the market index should receive a relatively higher rate 

compared to the index. Hence the rate should, according to our theory, be somewhere 

on the blue line in figure 4.4. 

In the following sections we pursue to verify to what extent efficiency is priced in the 

dry bulk market. Through a decomposition of the time charter rate we seek to reveal 

rate determinants and identify quality differences and their potential premiums. 
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5. METHODOLOGY 
The General Linear Model is widely used and desirable because it’s simple to fit, 

results are easy to interpret and there are a wide variety of useful techniques for 

testing the assumptions involved. However, intrinsic nonlinearities in the data may 

require semi - parametric modeling. 

Since Generalized Linear Models (GLM) are specified in terms of the linear predictor 

many of the general concepts of linear modeling is applicable, although with some 

modifications. It allows for incorporation of other types of distributions of the 

exponential family and includes a link function, which links the estimated fitted 

values to the linear predictor (Wood, 2006). In essence GLMs are a generalization of 

the typical linear model where fewer assumptions are made. A basic structure of a 

GLM would look like  

𝑔 𝜇! = 𝑋!𝛽!         (1) 

Where 𝜇! ≡   𝐸(𝑌!) , g is a smooth monotonic link function, X is the 𝑖!! row of a 

model matrix, X, and 𝛽 is a vector of unknown parameters. 𝑌! are independent and 

follow some exponential family distribution, 𝑦~𝐸𝑥𝑝𝑜𝐹𝑎𝑚(𝜇,𝜎!).  

If a Gaussian distribution is assumed for the response variable along with equal 

variance of all observations and a direct link of the linear predictor and the expected 

value, i.e. 𝑋𝛽 = 𝜇, equation (1) would equal a typical linear regression.  

 

5.1. GENERALIZED ADDITIVE MODELS 
The Generalized Additive Model (GAM) is a subsequent step in the generalization 

process and is often seen as an ideal compromise between simple linear models and 

complex models such as neural nets (Beck, Jackman, 1998). The model uses an 

algorithm to fit a smooth curve to each variable and combine the results additively. 

Along with our assumptions as well as findings based on previous research there are 

several factors influencing the determination of time-charter rates in the dry bulk 

market that would suggest a non-linear relationship between rates and their 

determinants. (Adland R., Cullinane K., 2006) (Dick et. al, 1998). GAMs are 

designed to capitalize on the strengths of GLMs without requiring a priori assessment 
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of response curve shape or specific parametric function estimates. A set of smoothers 

is employed in order to generalize data into smooth curves by local fitting to 

subsections of the data. The idea is to plot the value of the dependent variable along a 

single independent variable and then calculate a smooth curve that passes through the 

data as good and parsimonious as possible. 

 

An approach to include nonlinearities is to apply a semi-parametric specification 

within a GAM model. This model offers enough flexibility to take such relations into 

consideration without making any specific assumptions regarding the functional form 

of the variables, except additivity of the model terms (Koehn, 2008). According to 

Hastie and Tibshirani (1990) the idea is to let the data dictate the relationship between 

the response variable and the explanatory variables. By assuming less, the model will 

hopefully discover more. When using samples of adequate size with a large number 

of variables there could be a problem with obtaining reliable results: as the number of 

predictors increases, the number of points in a local neighborhood for a particular 

focal point decreases and the regression becomes less local leading to an increase in 

bias of the estimates. (Andersen, 2007). This issue is referred to as the curse of 

dimensionality and can be avoided by applying a semi-parametric model. (Koehn, 

Thanopoulou (2011). However, this flexibility comes at a cost: A smooth function 

must be chosen and we need to decide how smooth it should be, represented by the 

basis dimension.  

Some theoretical background on GAM models can be found in the following section.  

A general GAM model would look like 

𝑔 𝜇! = 𝑋!∗𝜃 + 𝑓! 𝑥!! + 𝑓! 𝑥!! +⋯+ 𝑓!(𝑥!")     (2) 

Where 𝜇! ≡   𝐸(𝑌!) and 𝑌! is a response variable following some exponential family 

distribution. 𝑋!∗  is a row of the model matrix for any strictly parametric model 

components, 𝜃 is the corresponding parameter vector and 𝑓! are smooth functions of 

the covariates.  

The main difference between 1 and 2 is that in the latter the linear predictor 

incorporates some smooth, 𝑓(𝑥) ,function of the covariates. The model allows for 
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flexible specification of the dependence of the response on the covariates, and by 

using smoothing functions to specify the model we can avoid cumbersome modeling 

(Wood, 2006).   

 

 

 

 

 

 

 

 

 

 

 

 

An Illustration of how GAM modeling works is shown in the figure above. The 

example shows several different regression approaches. Obviously a simple 

polynomial regression will fail to capture some of the data relationships with a simple 

transformation of the predictors. A more flexible model, such as GAM, is needed in 

order to obtain a best possible fit of the data, as shown in the bottom right illustration.  

Consider the following model 

𝑦! = 𝑓 𝑥! + 𝜀!         (3)

  

where 𝑦!is the dependent variable, 𝑥! is  a covariate, 𝑓 a smooth function and 𝜀! a 

random variable with N(0,𝜎!). For simplicity assume 𝑥! to lie between (0,1). If we 

Figure 5-1 - Regression Fits (Clark, 2013) 
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were to use a standard technique such as OSL, 𝑓 need to be represented in a way that 

(3) becomes a linear model. By using a basis, defining the space of functions of which 

𝑓 is an element, this linear approximation is possible. This basis is often called a 

“spline-basis”. Now, consider the following model 

𝑓 𝑥 = 𝑏!(𝑥)𝛽!
!
!!!          (4) 

where 𝑏!(𝑥) is the 𝑗!! basis function with unknown parameters 𝛽!. Substituting (4) 

into (3) yields a linear model.  

 

5.2. SMOOTHER 
A smoother is a tool for summarizing the trend of a dependent variable as a function 

of one or more independent variables. Its called a smoother since it produces an 

estimate of the trend that is less volatile than the variable itself. The most important 

property of a smoother is its non-parametric nature. It does not assume a rigid form of 

the dependency between dependent and independent variables. Further it allows for 

an approximation with a sum of functions and not just one unknown. When 

estimating GAM models, the trick is the parsimony of the smooth curve. The curve 

might wiggle considerably and fail to represent a parsimonious fit. By dividing the 

data into subsections, joined together by knots, a low order polynomial or spline 

function is used to fit the curve where the condition is that the second derivative for 

each section joined together by a knot must be equal. This will result in a smooth and 

continuous curve (Wood, 2006)(Hastie, Tibshirani, 1990). 

In order to illustrate, imagine a univariate function, which can be represented using a 

cubic spline in the figure below. This is a curve made up of sections of cubic 

polynomials, joined together so that they are continuous in value as well as first and 

second derivatives. The points where the sections join are known as the knots of the 

spline. For a conventional spline, the knots occur wherever there is a datum. 

However, for other regressions splines the knots must be chosen. Knots may be 

evenly spaced through the range of observed x values or placed at quartiles of the 

distribution of unique x values.  
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Figure 5-2 - Cubic Spline Interpolation (Wood, 2006) 

 

5.3. DEGREE OF SMOOTHING 
For any regression spline the basis dimension is crucial for the degree of smoothing. 

The basis dimension could be determined through backward-selection and hypothesis 

testing. However, this is cumbersome and problematic since a model based on k-1 

evenly spaced knots is not necessarily nested within a model based on k evenly 

spaced knots. Backwards selection of knots is a possibility, but uneven knot spacing 

can lead to poor model performance. Also, for regression spline models, model fit 

tends to depend strongly on the locations chosen for the knots. (Wood, 2006).  

One alternative to controlling the smoothness by changing the basis dimension is to 

fix the basis dimension at a size slightly larger than believed to be necessary and 

control the smoothness by adding a penalty for wiggliness (Koehn, 2008). Following 

this procedure the trade off between goodness of fit to the data and the wiggliness of 

the function can be controlled by a smoothing parameter. A smoothing parameter 

reaching infinity leads to a straight line estimate for 𝑓 𝑥 , while a parameter equal to 

0 results in an un-penalized regression spline estimate. In essence, the problem of 

estimating the degree of smoothness for the model now becomes a problem of 

estimating the smoothing parameter.  
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Consider the following equation  

(𝑦! − 𝑓(𝑥!))! + 𝜆 𝑓!!(𝑥) !𝑑𝑥
!

!

!

!!!

 

Where 𝜆 is a fixed smoothing parameter with respect to the unknown regression 

function that is found on the basis of the data and a ≤ 𝑥! ≤ … ≤ 𝑥! ≤ b.  

Since we want to smooth the data instead of interpolating, a (cubic spline) smoother is 

a solution to the optimization problem above: among all functions 𝑓(𝑥!), with second 

continuous derivatives, find one that minimizes the penalized least square.  

The first term of the equation represents the OLS method. Only considering this part 

yields an interpolated curve, which would not be particularly smooth since it only 

measures closeness to the data without any curvature penalization. The second term 

measures the wiggliness of the function and penalizes curvature in the function. By 

applying a linear function the last term would equal 0.  

5.4. CHOOSING AN APPROPRIATE VALUE FOR THE SMOOTHING 

PARAMETER 
Assuming the basis dimension is large enough so that it is more flexible than we 

expect in order to represent 𝑓 𝑥 , the exact choice of basis and the precise selection of 

knot locations do not have significant influence on the model fit. It is rather the value 

of the smoothing parameter that determines model flexibility. Generalized Cross 

Validation (GVC) is an estimate of the mean square prediction error based on a leave-

one-out cross validation estimation process (Clark, 2013). It resamples the original 

sample and is the most commonly used method to choose the smoothing parameter. It 

uses n subsets of the data where each subset removes one observation from the 

dataset. In simple terms, GCV compares the fit of all models based on all possible 

values of the smoothing parameter and chooses the one with best fit. When 

determining the specific nature of the smoothing parameter, it is the GCV score that is 

minimized.  

𝐺𝐶𝑉 =
𝑛 ∗ 𝑠𝑐𝑎𝑙𝑒𝑑  𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠

(𝑛 − 𝑒𝑑𝑓 − 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐  𝑡𝑒𝑟𝑚𝑠 )! 
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5.5. THE THIN PLATE REGRESSION SPLINE 
Although there are several bases that could be used for modeling purposes, some 

impediments could pose particular concerns. The choice of knot locations introduces 

subjectivity to the model fit, certain bases are only useful for smoothing of one 

predictor variable and it is unclear whether some bases are better or worse than others. 

All these issues could to a degree be addressed by using thin plate regression splines 

(TPRS), producing knot free bases, for any number of predictors, that are in a limited 

sense optimal. In addition this spline treats the wiggliness in all directions equally 

(Wood, 2006).  

TPRS introduces a sophisticated and general solution to the smoothing estimation 

problem. According to Wood (2006), TPRS might be the closest to an ideal smoother 

we can find. It has been constructed by defining exactly what is meant by smoothness, 

exactly how much weight to give to the conflicting goals of matching the data and 

finding the function that best satisfies the smoothing objective. In other words we 

avoid the problem with knot placement and it is relatively cheap to compute.  

TPRS estimates the smooth function by finding the function fˆminimizing: 

𝑦 − 𝑓 ! + 𝜆𝐽!"(𝑓) 

Where y is the vector of 𝑦!  data and 𝑓 = (𝑓 𝑥! , 𝑓 𝑥! ,… , 𝑓 𝑥! )! . 𝐽!" 𝑓  is a 

penalty function measuring the wiggliness of f and 𝜆 is a smoothing parameter, 

controlling the tradeoff between goodness of fit of the data and smoothness of f.  

It is worth to keep in mind that the exact size of the basis dimension is not that 

critical. It sets only an upper bound on the flexibility of a term and it is the smoothing 

parameter that controls the actual effective degrees of freedom. Consequently, the 

model fit is rather insensitive to the basis dimension, assumed that it is not set 

restrictively too low to capture the true effects in the best way possible. Although 

GAM has its modeling simplicities, it should be noticed that there are some 

drawbacks: Hypothesis testing is merely approximate and by using a Bayesian 

posterior covariance matrix to estimate satisfactory interval estimates, p-values tend 

to be rather low since they are conditional on the smoothing parameter, which is 
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uncertain (Koehn, 2008). Hence results based on significance have to be interpreted 

with caution. As with other nonparametric techniques, theory and mathematical 

foundations for GAMs is a complex. Henceforth we outline only selected and relevant 

topics and refer to literature by Hastie and Tibshirani (1990) and Wood (2006) for 

further discussions.  

6. EMPIRICAL ANALYSIS 
We have chosen the three main segments in the dry bulk market for three main 

reasons. Out of the current markets, dry bulk is the one with largest activity within the 

time charter market. Furthermore the market is desirable from a modeling point of 

view as it features merely comparable characteristics. In addition the market has been 

subject to limited research using modern econometric techniques.  

6.1. DATA DESCRIPTION 
We use cross-sectional data provided by Clarksons Research Services for TC contract 

fixtures in the dry bulk market. The dataset contains 10738 reported contracts for 

Capesize, Panamax and Handymax from 1st of January 2001 until 16th of May 2014. 

For modeling purposes the dataset is divided in two periods; 2001-2007 and 2008-

2014.  The first period was an extremely good period with historically high rates, 

while the latter is best characterized as a market trough. Some fixtures have been 

excluded to create a complete and consistent dataset. Reported and non-positive 

values for rate, age, dwt, speed, consumption and contract length are assumed to be 

necessary for our study. Therefore any fixture not fulfilling these criteria is removed. 

Since our dataset is large and stems from an external source, potential outliers could 

pose modeling interference. Trimming of data to remove low-density observations 

etc. is found in comparable studies and might result in narrower confidence band. 

However, we chose otherwise to keep the data as authentic as possible. Nevertheless, 

obvious misspecifications are excluded or altered after thoroughly investigating data 

entries. The issue was found most prominent for option and contract length, number 

of days forward, dwt and age. Furthermore, fixtures with obviously misreported data 
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are also omitted10. After filtering out irrelevant, missing and misreported values our 

dataset consists of 7763 observations, or approximately 75% of the initial data.  

 

6.2. VARIABLE DESCRIPTION 
Since our goal is to investigate the relationship between ship specifications and TC-

rate we have included both macroeconomic and microeconomic variables assumed to 

be of relevance for rate determination. Microeconomic aspects are captured through 

ship and contract specific variables. 

Ship specific: 

• Age 

• Dwt 

• Fuel efficiency index (FEI) 

• Fuel 

• Flag 

• Builder country (BUILD) 

• Engine type (ENGT) 

• Gear 

• Speed 

• Consumption 

Contract specific: 

• Option length (OPTL) 

• Contract length (CONTL) 

• Number of days forward (NDF) 

• Place of delivery (POD) 

Macroeconomic elements are captured through market specific variables: 

• Index 

• Bunkers cost 
                                                
10 Some ships were reported with fixture values considered to be highly unlikable.  
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Information considering TC-rate, speed, consumption and dwt is fully available in 

reported fixtures. Note that since we use FEI (consumption per ton/mile), we do not 

explicitly include speed and consumption as they are highly correlated. Age is a 

explanatory factor for rate determination and for our purpose it is applicable since we 

use three size segments across time periods.  

6.2.1. SMOOTHED VARIABLES 
 

As a representation of the market weekly TC indices, figures for all vessel segments 

are gathered from Clarksons Shipping Intelligence Network. These indexes are 

matched by closest date (before and after actual date), and by ship type. Clarksons 

define “standard” ships as underlying for the indices, divided into several different 

ship types and specifications. This would adjust the technical specifications of a 

standard ship in order to reflect changes in fleet development over time. As size, 

speed and consumption changes, the underlying specifications of the standard ship 

used as a proxy for the market is altered accordingly. Since adjustment of the 

underlying index is changed over time, we suspect efficiency improvements to be 

incorporated in the index; hence it would be difficult to detect how each ship 

specification is reflected in TC-rates. This is an issue not properly addressed in 

previous research. A standardization of data to ensure that the same underlying ship 

specification is used as a comparable for the index during the whole time period 

would be preferable. After studying how Clarksons adjust their indexes we found that 

no significant adjustments were made and reported indexes are suitable.  

 

Three different indices for each ship size group is used; 1-month, 6 months, 1 year 

and 3 year contracts. Since there are no reported figures for the 1-mont index, average 

spot earnings are used as a proxy11.  The various indexes would be piecewise linear 

between each contract length, but obviously not linear in time. As a result a contract 

that does not match any index with respect to length would obtain a value that does 

not reflect the actual contract length. To solve this non-linearity issue we use a 

smooth cubic normal spline function that passes through each observation non-
                                                
11 Spot earnings exclude contractual TC costs and are therefore assumed to be an appropriate proxy.  
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linearly to determine a correct index proxy. We believe this proxy is a better 

representation of the market since its possible for us to eliminate the time component 

and only differentiate on ship specifications. In this case, use of BDI does not reflect 

differences with respect to contract lengths. The effects of option length are not 

addressed. (See Adland & Koekebakker (2006)) 

 

 

 

 

 

 

 

 

 

Figure 6-1 illustrates an example of the spline interpolation based on given index 

contract lengths. The dark line represents the piecewise linearity between actual 

contract lengths, while the red line is the spline-interpolated curve. Clearly contracts 

between 500 and 1000 days would obtain a higher index value based on linear 

assumptions than by assuming a non-linear relationship.  

Prior to 2008 there exists no index values for 5-year contracts. Therefore the closest 

approximation was to use the 3-year index as a proxy. This might overestimate the 

index proxy values since the spline now assigns 3-year values to 5-year contracts. 

However, only 2% of the contracts in our dataset, evenly distributed among segments, 

are affected. 

A comparable bunkers price is obtained though the same source as for index data. 

Data from all stated suppliers are gathered for HFO and IFO and further averaged to 

create two bunkers indices. The data are matched by ship fuel type and closest date to 

0 500 1000 1500

25
00

0
30

00
0

35
00

0
40

00
0

Spline example

Contract length (days)

In
de

x
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assign one bunkers price per fixture. Fixtures containing HFO fuel type is matched to 

the HFO index. Since our dataset only contains fixtures with HFO and IFO fuel type, 

those not containing any bunkers information are assigned IFO.  

By constructing a parameter measuring consumption in tons per million ton-mile we 

are able to compare consumption between vessels of various size. Initially we 

included consumption as a measure of efficiency, though no significant effect was 

observed. Another reason for using FEI is the correlation between speed and 

consumption. By including FEI and excluding consumption and speed we assume to 

remove some modeling bias.  

 

𝐹𝐸𝐼 =
𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  𝑡𝑜𝑛𝑠/𝑑𝑎𝑦  

𝑑𝑤𝑡 ∗ 𝑠𝑝𝑒𝑒𝑑 ∗ 24 ∗ 10! 

 

As earlier studies have seen signs of a two-tier market (Koehn, 2008)(Strandenes, 

1994), we correspondingly assume age to be a significant indicator of quality 

differences in the market. The age we use in our model is computed as the difference 

from the contract year and the year of build.  

Since there is a speculative element of forward and time charter contracts the timing 

of the contracts is an important element. Laycan period and contract date are both 

reported in our fixture data. Although it is uncertain exactly at what date the vessel is 

supposed to be delivered we use the latest date as an assumption along with the stated 

contract date.  

6.2.2. FACTOR VARIABLES 
 

Factor variables take on a limited number of different values, which are often referred 

to as categorical variables. These variables enter into statistical models differently 

than continuous variables and storing data as factors insure that the modeling function 

treats such data correctly. In our model we use factor variables to quantify textual 

variables. Usually they are also known as dummy variables.  
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The only information regarding place of delivery in our dataset is delivery area. 

Timmermann & McConville (1996) and Rowlinson (1996) discuss the distribution of 

quality tonnage between the Pacific and Atlantic Ocean where the authors argue that 

there has been an increasing concentration of high quality tonnage in the Pacific basin 

at the expense of available capacity in the Atlantic. As a consequence, market rates 

between these two oceans are found to differ significantly (Koehn, 2008). We have 

therefore searched and matched each fixture to either the Pacific or Atlantic Ocean 

based on proximity.  

According to fixtures data, contract length is given as a time period, e.g. 5-8 months. 

We have interpreted the first value as contract length and set the option period equal 

to the difference, which would be a fair assumption. In this example the contract 

length and option period would be 5 and 3 months, respectively.   

According to representatives from DVN-GL, these variables could represent quality 

differences in tonnage. For both variables the dataset has been sorted descending and 

by accumulated percentage for comparable reasons. All observations within the 90% 

accumulated range are used as individual countries or flags, while those outside this 

interval are categorized as “other” within these variables.  

6.3. SUMMARY STATISTICS SMOOTHED VARIABLES 
 

 

 

mean sd min max mean sd min max

RATE 47019 32526 7000 178000 45194 45376 6000 210000
NDF 31 48 0 453 20 40 0 380
AGE 9 6 0 28 8 6 -1 27
DWT 163568 14118 111695 211485 171062 11375 100336 239999
SPEED 14.1 0.8 11.5 17.0 14.5 0.6 12.0 16.2
CONS 54 7 32 90 57 7 32 75
FEI 0.9709 0.1205 0.5410 1.8400 0.9625 0.0870 0.5410 1.3000
CONTL 407 466 30 4320 283 320 60 3600
OPTL 40 34 0 360 60 35 0 270
BUNKERS 261 95 108 520 538 126 228 765
INDEX 52881 35570 9563 187552 50519 49795 3544 200096

CAPESIZE

2001-2007 n=749 2008-2014 n=494
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Table 6-1 - Summary Statistics Smoothed Variables 

 

Across all segments and both time periods there is a great variability in observed 

rates, illustrated by standard deviations. However there seems to be consistently 

higher rates for Capesize vessels. Although the volatility increases in all periods the 

mean rate is lower in the last period. Average numbers of days forward, contract 

length and option length is higher in the first period along with higher volatility. In 

addition option length is longer in the last period. Contract length has increased with 

size and decreased between the two periods. This could illustrate that charterers 

prefers more flexibility post 2007 and are reluctant to enter relatively long-term 

contracts. Average age is fairly unchanged, which could seem contrary to our 

suggestion earlier where 50% of the current fleet is between 0-4 years; however, note 

that the vessel age in our dataset is reported from the contracting day. The average 

Fuel Efficiency Index (FEI) for all segments has declined; thus it could be reasons to 

expect some efficiency improvements. As anticipated there is no significant 

differences in speed due to the fact that reported speed in contract fixtures are design 

speed, which haven’t changed considerably. The same argument is also valid for 

consumption.  

mean sd min max mean sd min max
RATE 31489 19386 3750 105000 29067 22732 4000 100500
NDF 18 37 0 558 14 30 0 702
AGE 7 5 0 30 8 5 0 39
DWT 73020 3469 60158 98362 75337 3852 61455 95712
SPEED 14.1 0.6 12.0 17.8 14.2 0.5 11.5 16.3
CONS 33 4 22 82 34 3 22 55
FEI 1.3417 0.1521 0.9910 2.6800 1.3183 0.1052 0.9910 2.2900
CONTL 232 223 5 1800 217 219 4 3600
OPTL 49 35 0 720 58 36 0 720
BUNKERS 264 98 107.04 527.61 536 124 228.04 778.1
INDEX 31623 19200 6181.4823 93002.016 29287 22691 3476.4321 87592.178

2001-2007 n=2803 2008-2014 n=2186

PANAMAX

mean sd min max mean sd min max
RATE 28750 14576 4200 77000 22774 16615 3000 89000
NDF 18 32 0 411 8 22 0 424
AGE 7 6 0 27 6 5 0 29
DWT 49240 4296 40048 59076 52725 4131 40045 59888
SPEED 14.1 0.6 10.5 17.0 14.3 0.5 10.5 16.9
CONS 29 4 10 48 30 3 14 61
FEI 1.7475 0.2237 0.7400 3.8100 1.6753 0.1679 0.7400 3.2600
CONTL 215 197 10 1800 169 141 40 1080
OPTL 47 24 0 90 47 26 0 210
BUNKERS 288 94 107.89 515.92 544 125 228.04 778.1
INDEX 30025 15414 7100 73500 23886 17158 7750 70500

HANDYMAX
2001-2007 n=687 2008-2014 n=843
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6.4. ADDITIONAL VARIABLES 
Fuel type, engine, gear and ship discharge are also considered as important factor 

variables influencing the rate. However, the distribution within our dataset might 

suggest that they are not suited for modeling purposes. Table 6-2 includes a 

description of the factor variables considered. 

China has increased its share of total vessel supply in our reported dataset and the 

distribution is considered to be suitable for model inclusion. Between fuel types there 

seem to be an even distribution between HFO and IFO, although HFO has reduced its 

share for both Panamax and Handymax. On the engine side MAN B. & W. is clearly 

the leading provider. The delivery pattern between Pacific and Atlantic seems to be 

consistent for Handysize, while Capesize and Panamax delivery in the Pacific seems 

to be dominating. The distribution of loading and unloading gear on vessels is 

obvious. Capesize vessels do not carry such gear, only one percent of Panamax and 

98% of Handymax. Between flag states there seems to be no obvious changing 

pattern, however Panama is the leading flag state and there seems to be a greater 

distribution within the Handymax segment.  
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  2001$2007 2008$2014 2001$2007 2008$2014 2001$2007 2008$2014

China-P.R. 9"% 26"% 9"% 19"% 12"% 28"%
Japan 33"% 31"% 63"% 60"% 66"% 53"%
South-Korea 37"% 33"% 21"% 16"% 7"% 4"%
Other 20"% 11"% 7"% 5"% 15"% 15"%

HFO 77"% 81"% 73"% 67"% 69"% 56"%
IFO 23"% 19"% 27"% 33"% 31"% 44"%

MAN-B.-&-W. 88"% 92"% 73"% 86"% 78"% 89"%
Sulzer 11"% 5"% 26"% 14"% 18"% 7"%
Other 0"% 3"% 1"% 1"% 4"% 3"%
Unknown 0"% 0"% 0"% 0"% 0"% 0"%

Atlantic 29"% 9"% 33"% 22"% 28"% 33"%
Pacific 62"% 87"% 61"% 76"% 68"% 66"%
Unknown 9"% 4"% 5"% 2"% 4"% 1"%

Yes 0"% 0"% 1"% 1"% 99"% 100"%
No 97"% 99"% 96"% 97"% 0"% 0"%
Unknown 3"% 1"% 3"% 2"% 0"% 0"%

World-Wide 95"% 99"% 95"% 96"% 92"% 88"%
Other 1"% 1"% 4"% 4"% 8"% 12"%
Unknown 4"% 0"% 2"% 0"% 0"% 0"%

Bahamas 3"% 1"% 3"% 4"% 3"% 3"%
China-P.R. 2"% 1"% 9"% 3"% 3"% 2"%
Cyprus 2"% 2"% 5"% 5"% 1"% 1"%
Greece 9"% 14"% 10"% 11"% 6"% 5"%
Hong-Kong 9"% 13"% 10"% 12"% 13"% 14"%
Liberia 11"% 7"% 8"% 10"% 6"% 6"%
Malta 9"% 10"% 7"% 6"% 10"% 11"%
Marshall-Is. 6"% 13"% 10"% 13"% 14"% 19"%
Panama 24"% 19"% 22"% 23"% 21"% 21"%
Singapore 7"% 5"% 1"% 1"% 3"% 5"%
South-Korea 5"% 6"% 2"% 2"% 2"% 1"%
Other 14"% 9"% 11"% 9"% 18"% 12"%

POD

GEAR

DIS

FLAG

CAPESIZE PANAMAX HANDYMAX

BUILD

FUEL

ENGT

Table 6-2 - Factor Variable Data Description 
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6.5. CORRELATION 
 

A correlation matrix can be used to gain some prior understanding of linear 

relationships between variables (Appendix 1). There is however worth to notice that 

these correlation coefficients reflects isolated relations between two variables and 

does not capture all non-linear or multivariate relations between two or more 

variables. Correlation only applies to linear relationships and even though there is a 

strong non-linear relationship, the correlation coefficient may be misleading due to 

curved relationships. Therefore one could expect deviations from the linear 

correlation matrix and the results from our model. Furthermore we refer to these 

relationships whenever found relevant in the following sections.  

  



 43 

7. MODEL DESCRIPTION 

7.1. MODEL SPECIFICATION 
We apply thin plate regression splines as a basis to represent the smooth terms in our 

model, which selects the default dimension k=10. This sets an upper limit equal to k-1 

in order to handle the identifiability constraint. For all models we apply a Gamma 

distribution on the response variable and the natural logarithm has been used as a link 

function. A log transformation of the response variable is often used to make 

regression modeling more applicable. Nevertheless, since we assume a Gamma 

distribution we see no need for a response variable transformation. Distribution of the 

response variable can be found in appendix 2.  

7.2. MODEL SELECTION  
Model selection is primarily based on a combination of data mining, maritime 

economic theory and rationale assessments where the first was applied to study 

patterns in our dataset whilethe two latter was used to assess each variables predicted 

influence on the response variable. Initially we listed all factors assumed to be of 

relevance, including ship-, vessel and contract specific variables. Furthermore we 

used an algorithm to find an optimized model GCV-score. This method raised some 

concerns since it always chose the model with larges amount of variables. A 

correlation matrix was then used to investigate linear relationships. Due to the nature 

of vessel characteristics, most of ship specific variables are highly correlated. Hence, 

dwt was chosen as measurement of size, FEI represents speed and consumption. 

Correlation between dwt and FEI was insignificant, thus we assume no model 

interference. Bunkers price and index showed a high correlation in the first time 

period and close to no relationship in the last. After model testing, excluding the 

variable did not change model fit or power and was therefore excluded in the first 

period for all models. A procedure similar to Koehn (2008), where we added the 

chosen variables stepwise proved additivity of the model. Explanatory power 

increased along with reduced GCV score. As a model check, plots of residual 

deviance vs. theoretical quantiles and residuals vs. linear predictors were studied12. 

                                                
12 gam.check() in R was used to study model fit 
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We emphasize that the final model is not a result of data mining, but rater a reflection 

of the relationships we set out to analyze. 

 

7.2.1. CAPESIZE 
 

𝑔 𝐸(𝑅𝐴𝑇𝐸! . ) = 𝛾! + 𝑠 𝐼𝑁𝐷𝐸𝑋! + 𝑠 𝐵𝑈𝑁𝐾𝐸𝑅𝑆! + 𝑠 𝐶𝑂𝑁𝑇𝐿! + 𝑠 𝐴𝐺𝐸! + 𝑠 𝐷𝑊𝑇!

+ 𝑠 𝐹𝐸𝐼! + 𝑠 𝑁𝐷𝐹! + 𝛾𝐹𝑈𝐸𝐿
!"#

𝐼!!"#$ + 𝛾𝑃𝑂𝐷
!"#

𝐼!!"# + 𝛾𝐹𝐿𝐴𝐺
!"#$

𝐼!!"#$

+ 𝛾𝐵𝑈𝐼𝐿𝐷
!"#$%

𝐼!!"#$% + 𝛾𝐸𝑁𝐺𝑇
!"#$

𝐼!!"#$ 

 

7.2.2. PANAMAX & HANDYMAX 
 

𝑔 𝐸(𝑅𝐴𝑇𝐸! . ) = 𝛾! + 𝑠 𝐼𝑁𝐷𝐸𝑋! + 𝑠 𝐵𝑈𝑁𝐾𝐸𝑅𝑆! + 𝑠 𝑂𝑃𝑇𝐿! + 𝑠 𝐶𝑂𝑁𝑇𝐿! + 𝑠 𝐴𝐺𝐸!

+ 𝑠 𝐷𝑊𝑇! + 𝑠 𝐹𝐸𝐼! + 𝑠 𝑁𝐷𝐹! + 𝛾𝐹𝑈𝐸𝐿
!"#

𝐼!!"#$ + 𝛾𝑃𝑂𝐷
!"#

𝐼!!"#

+ 𝛾𝐹𝐿𝐴𝐺
!"#$

𝐼!!"#$ + 𝛾𝐵𝑈𝐼𝐿𝐷
!"#$%

𝐼!!"#$% + 𝛾𝐸𝑁𝐺𝑇
!"#$

𝐼!!"#$ 

 

As discussed, bunkers were removed from the first period due to problems of 

multicollinearity. Model testing indicated that there was no significant difference 

when the variable was excluded. Low data density on option length along with 

insignificant results suggested that the variable was removed from the Capesize 

model.  
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8. RESULTS 
Since our models include both parametric and non-parametric variables the model 

output consists of two panels. Parametric regression is represented by point estimates 

along with significance and relationships can be interpreted directly. The absence of 

regression parameters for non-parametric variables reflects an important characteristic 

of GAMs; there are no coefficients for smoothed parameters. The fitted smooth curve 

needs to be plotted in order to reveal any estimated nonlinearities in the relationship 

between the dependent and smoothed parameters since the effects of the components 

differs with scale. Confidence bands are plotted as guidance to the degree of 

estimation error. The results are represented in terms of effective degrees of freedom 

(EDF), which reflects the degree of non-linearity, along with significance of the 

variables. Table 8-1 presents the results for our three models for both time periods. 

 

Table 8-1 - Model Output Summary 

 

Parametric coeff Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig. Estimate Sig.
(Intercept) 10.6446 *** 10.3770 *** 10.1946 *** 10.1387 *** 9.8928 *** 9.7800 ***
BUILD Japan 0.0176 0.0710 * -0.0241 ** 0.0200 ** 0.0199 . 0.0273 *
BUILD Other -0.0126 -0.0017 -0.0333 ** -0.0121 0.0330 * 0.0321 *
BUILD South Korea 0.0134 0.0213 -0.0244 ** 0.0016 0.0130 -0.0246
FUEL IFO 0.0117 0.0139 0.0044 -0.0143 ** -0.0086 -0.0022
FLAG China P.R -0.1708 *** 0.0888 0.0120 -0.0147 0.0544 . -0.0282
FLAG Cyprus -0.0861 . 0.0531 0.0214 -0.0006 0.0319 0.0121
FLAG Greece -0.0765 * 0.0964 0.0110 -0.0191 0.0410 . 0.0213
FLAG Hong Kong -0.0912 ** 0.0875 0.0172 -0.0066 0.0133 0.0085
FLAG Liberia -0.0912 ** 0.0739 0.0213 . -0.0077 0.0353 -0.0222
FLAG Malta -0.0825 * 0.0926 0.0600 *** 0.0274 . 0.0439 * 0.0137
FLAG Marshall Is. -0.0595 0.0972 0.0302 * -0.0059 0.0447 * 0.0251
FLAG Other -0.0887 ** 0.1284 0.0271 * 0.0053 0.0326 0.0102
FLAG Panama -0.0859 ** 0.0866 0.0238 * -0.0039 0.0303 0.0085
FLAG Singapore -0.0684 . 0.1096 0.0342 -0.0324 0.0066 -0.0278
FLAG South Korea -0.0909 * 0.0258 0.0284 . -0.0089 0.0268 0.0011
ENGT Other 0.0605 -0.0728 0.0103 -0.0155 0.0197 -0.0405
ENGT Sulzer -0.0306 . -0.0122 0.0014 -0.0050 -0.0042 -0.0449 *
POD Pacific -0.0499 *** -0.1789 *** -0.0298 *** -0.1566 *** -0.0054 -0.1461 ***
POD Unknown -0.0283 -0.1611 ** -0.0389 ** -0.0869 *** -0.0433 . -0.2219 ***
Smooth coeff edf Sig. edf Sig. edf Sig. edf Sig. edf Sig. edf Sig. 
s(NDF) 1.0010 . 4.1790 ** 6.1720 *** 5.8460 *** 2.4390 * 2.8710 *
s(AGE) 3.5170 *** 8.9920 *** 7.8470 *** 8.1350 *** 1.6440 *** 1.0000 ***
s(DWT) 2.8550 *** 8.4740 *** 6.2550 *** 4.1300 *** 5.2160 *** 2.0130
s(FEI) 3.6060 * 2.3020 5.5510 ** 6.1770 ** 7.8840 *** 1.3620
s(CONTL) 6.8920 *** 3.7730 ** 8.1180 *** 9.0000 *** 6.8840 *** 2.0830 .
s(OPTL) - 8.3190 *** 5.2880 *** 1.8690 * 1.0010 **
s(INDEX) 5.7020 *** 7.4730 *** 8.8220 *** 8.1980 *** 7.0680 *** 5.3880 ***
s(BUNKERS) - 4.0320 *** - 5.6990 *** - 2.2910 **
n
R-sq(adj)
GCV
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

0.0163 0.0282 0.0108 0.0119 0.0075 0.0197
0.8990 0.9630 0.9560 0.9790 0.9760 0.9620
750 494 2803 2186 687 843

Capesize Panamax Handymax
2001-2007 2008-2014 2001-2007 2008-2014 2001-2007 2008-2014
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Parametric terms are constructed such that reported results in figure 8.1 is 

benchmarked to the first alphabetic variable, which is normalized to 0. This is to 

avoid the dummy variable trap13. The parametric model outputs should henceforth be 

compared to the one not listed in the table, but stated in table 6.2. E.g. all BUILD 

variables are benchmarked to the performance of China P.R.  

The explanatory power of all models is remarkably high, indicating they are able to 

predict the rate with a high degree of accuracy. Although the index itself, fairly 

regardless of choice within this market, would probably represent a significantly high 

share, we believe our choice of index proxy contributes to further increase the overall 

power of the model. Referring to our discussion in section one, this is in line with our 

initial objective. Since our models are comparable to Koehn (2008) we find an overall 

higher explanatory power for all models, which indicate that our choice of index is 

more accurate.  

Capesize vessels built in Japan seem to receive a 7% higher rate compared to China in 

the second period, while the other countries are insignificant. For the Panamax 

segment South Korea obtained the best rate in the first period, although they were 

lower than China. In the second period the relationship changes and rates for vessels 

built in Japan are 2% higher than China compared to negative 1.7% in the first period. 

South Korea and other countries appear to have no significant impact on rates. 

Handymax vessels built in South Korea received a higher rate in both periods and the 

change is fairly minor for both Japan and other countries. Japan looks to have no 

significant impact. According market participants, such as DNV-GL and Wikborg 

Rein, Japanese shipyards are known for quality and timely delivery. This could 

support our findings and suggest that quality has become more pronounced in recent 

years (Willumsen, 2014). 

Regarding flag state the most interesting result is that during the first period several 

countries received a lower rate compared to Bahamas. China P.R is the most 

noticeable significant variable with a discount of 17%, although a fairly small amount 

of the observations has a Chinese flag. Panama, Malta, Hong Kong and Liberia have a 
                                                
13 Perfect multicollinearity between the dummy variables and the intercept. (Brooks, 2008) 
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relatively large amount of total observations and the discount is quite similar in the 

first period. The second period for all segments reveals no clear significant results. 

One possible hypothesis could be that Chinese built ships with Chinese flag appears 

more risky due to political and regulatory insecurities. Data from Clarksons World 

Fleet Monitor shows that there is an almost perfect correlation between Chinese flag 

and ownership.  

Out of the parametric variables reported, place of delivery has the most interesting 

result. POD Pacific is highly significant, except Handymax in the first period. Rates 

are consistently lower for Pacific compared to Atlantic and there is a substantial 

increase in discount in the last period. Since we have emphasized on Pacific and 

Atlantic delivery we place no further comment on unknown delivery, although we 

note that there seems to be an increase in discount as well for the last period. This 

result is in line with findings in Koehn & Thanopoulou (2010). Apparently it seems 

that Atlantic delivery is more preferable where the assumption is that less tonnage 

capacity in Atlantic would put an upward pressure on rates. Furthermore a theory 

could be that as dry bulk trade follows a pattern from west to east, delivery in the 

Pacific seems less attractive as it would require a ballast leg. Figure 8-1 presents a 

graphical illustration of the POD results.  

Vessel gear is only relevant for Handymax, however table 6-2 shows that the 

distribution within this segment is fairly undistributed. It would therefore not be 

relevant to include this parameter. Model testing with and without the parameter also 

shows that there is no change in results or model fit when excluded.  
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Figure 8-1 - Plot of Place of Delivery 
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8.1.1. AGE 
 

 

Figure 8-2 - Plot Age 

 

As expected, age has a significant negative impact on charter rates across all 

segments. Previous studies have found evidence for a two-tier market, which is 

further supported by our results. Compared to Koehn (2008) we find a different 

dynamic for Panamax in the first period. Apparently the market shows minor 

differentiation between 20-25 years, compared to a strong differentiation the last 

period. An explanation could be a shift in the quality of vessels built in the early 

1980s compared to 1990s and beyond. We see that the market places a clear discount 

for Capesize vessels older than 10 years in the first period and there are no structural 

shifts. With the assumption that new vessels are preferred over older ones, our 

assessment would be that pre 2008 the market situation dictated that high demand for 

vessels resulted in high degree of fleet utilization. This would eventually lead to a 

smooth downward trending rate as age increases. On the contrary this trend does not 

continue post 2008 as the market was in a trough, yielding high overcapacity. Rates 
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altered from being driven by supply to demand and older vessels was either put in lay 

up or demolished. Available contracts were assigned to relatively newer vessels at 

low rates.  

Possible due to the same reasons, increasing confidence band from 17 years for 

Capesize in the upper right panel indicates fewer observations and higher uncertainty. 

There seems to be no obvious explanation for the sudden increase in rates from 

between year 20-23, hence we assume it to be caused by data driven inference. For 

Handymax vessels the relationship is fairly linear, indicated by ~1 effective degrees 

of freedom, with a negative trend. This could suggest a possible n-tier market. 

However, the uncertainty increases with age, especially in the last period.  
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8.1.2. DWT 

 

It seems apparent that, across all segments, rate increases with size in the first period 

and the relationships are non-linear. For Panamax the confidence interval beyond 

85000 reveals some uncertainty. This relationship changes in the last period. For mid 

size vessels rate increases with size. Some large Capesize vessels seem to have 

obtained large rates, though the number of observations is limited. There is an 

increasing discount for Panamax vessels above 85000 dwt. Observations in our 

dataset reveals that the beam of these vessels is larger than the Panama Canals 

limitations or other limitations on logistical infrastructure. One possible explanation 

could be that the reduction in rate is due to reduced flexibility compared to their 

smaller peers. Charterers who do not need the flexibility to pass through the canal 

might as well choose a small Capesize. Lower rates for the largest vessels are 

obviously demand driven and one explanation to why the shipowner accepts lower 

rates, compared to smaller vessels, is the relatively higher lay-up costs.   
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Figure 8-3 - Plot Size (DWT)	  
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8.1.3. FEI  

 

Figure 8-4 - Plot Fuel Efficiency (FEI) 

Residuals are included for the FEI variable. Contrary to the interpretation of other 

results we draw our attention towards the distribution of observations. Although the 

significance is fairly low or non-existing for most of the variables, we discover some 

interesting results. The Capesize segment shows limited or no change in observations, 

which also is illustrated by significance levels. However, for Panamax vessels there 

seems to be a clear shift towards lower consumption per ton-mile in the last period. 

The distribution is altered further to the left on the x-axis, suggesting a more efficient 

fleet. These results are also supported by the data description where average FEI is 

reduced by 2% between periods. Also, there is some evidence suggesting that 

increased efficiency yields higher rates, seen by the downward trending graph. Due to 

increased confidence bands for the last period we find it difficult to make any 

reasonable interpretations. We find the same results for Handymax vessels. The 

variable has a significant effect on rates and there is a downward sloping trend. 

Average FEI is reduced by 4% between periods, however results for the last period is 

not significant. Following our argument for Panamax vessels, there could be evidence 
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of efficiency premiums in the Handymax market as well. Although it might be 

reasonable to assume that these effects could be explained by reduced design speed 

between time periods along with increased consumption and size. We find that speed 

has increased slightly over time, which could indicate the economies of scale of larger 

vessels. Drawing our attention towards the rate influence of FEI we see that the graph 

is fairly flattened around observations of high density. Considering our discussion in 

section 4.3.2 this could indicate that rate levels lie along the dotted line, where the 

charterer obtains any existing efficiency premiums. Following the arguments we 

should be able to detect a shift from the time charter market to the spot market. 

However, no clear indication of market shifts is identified (see appendix 3).  
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8.1.4. NDF 
 

 

Figure 8-5 - Plot Number of Days Forward (NDF) 

There seems to be no significant change in rates for contracts between 0 and 50 days 

forward in the first period. Beyond 50 days rates receive a small discount, however 

the results are relatively more non-linear for Panamax. In the second period we see an 

opposite effect for Capesize and Handymax between 0 and roughly 75 days, where 

the rates have a significant increase. Beyond roughly 30 days Panamax contracts 

receive a slight increasing discount until 260 days. The most distant contracts are 

heavily discounted. I line with financial theory we see a trend where contracts entered 

more than 2-3 months in advance are discounted. Also, there has been a reduction in 

contracts entered more than 50 days in advance after 2008.   
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8.1.5. CONTL 

 

Figure 8-6 - Plot Contract Length (CONTL) 

Compared to findings in Koehn (2008) we find the same clusters around 3, 12 and 24 

months in the first period, although the dynamics are different. All significant 

variables across segments and time periods have a negative trend for contracts up to 

approximately 6 months, which seems to be a global trough for rates after 2008, 

except Capesize and Handy in the first period. Rates for Capesize vessels appear to be 

less influenced by the length of the contract. Since these vessels tend to be hired on 

longer contracts it could explain this result. Panamax vessels seem to be more volatile 

to longer contracts in the latest period. The rate increases up to roughly 24 months 

and decreases beyond this point. Compared to the first period this shifting trend is not 

as evident. It appears that the market is rather indifferent between approximately 15 

and 27 months. In the Handymax segment there seems to be a preference for shorter 

contracts along with contracts between 15 and 24 months, though the reliability of the 

estimates decreases. In general it appears that a premium is attached to contracts 

deviating from the mean. 
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8.1.6. OPTL 
 

 

Figure 8-7 - Plot Option Length (OPTL) 

A general observation is that longer options results in a rate discount. This effect is 

however more consistent in the last period. For both Panamax and Handymax there is 

a cluster around 30 and 60 days in the first period. Data density is low for other 

periods. Option length on contracts in the last period seems to be more linear related 

with a negative impact.  Due to the fact that there is not enough observation different 

from zero in the Capesize segment, option length has been excluded from the model.  
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8.1.7. INDEX 
 

 

Figure 8-8 - Plot Index 

Observations from the correlation matrix suggest an almost perfect positive 

correlation between index and rate. However, plots in figure 8-8 reveal a technical 

non-linear relationship with parsimonious confidence bands. Taking the logs of index 

data would normalize the data around the mean14 and result in a more linear 

relationship. Variable transformation due to possible heteroskedasticity was 

considered and we refer to section 9.1 for further discussions.   
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8.1.8. BUNKERS 

 

Figure 8-9 - Plot Bunkers 

 

During the first period there was a substantial demand pressure in the market where 

we assume that the bunkers price had a relatively small impact on the rate, as it 

represented only a marginal part. However, in the last period when the market was 

tougher there is a nonlinear relationship. At a bunkers price of roughly below $500, 

Capesize and Panamax rates receive a discount. For Handymax vessels this trend is 

evident between $500-600. After a dramatic increase from 2010 the price of bunkers 

has been relatively stable from mid 2011 while rates has slightly recovered. This 

could indicate a market shift where the price of bunkers became relatively less 

important, explaining the inverse relationship between Capesize and Panamax at high 

bunkers levels.  
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9. MODEL APPLICATION 
 

As an extension to our research we create two scenarios where we use our models to 

predict rates for two individual Panamax vessels measured over time. One is specified 

as a standard ship while the other is a hypothetical ECO-ship. In scenario one we 

compare two vessels with different age, size and consumption. Scenario two only 

considers different consumption, ruling out the effects of size and age. Input 

parameters for both scenarios are shown in table 9-1. Please note that for each 

scenario there are two models shown in one continuous graph, clearly visible before 

and after 2008.   

 

Table 9-1 - Vessel Specifications 

 

The prediction technique takes a fitted GAM object produced from our model in 

section 9 and produces predictions given a new set of values for the model covariates. 

Hence, we keep the original coefficients and apply new input data. This way we can 

calculate a rate for any vessel, given its specifications, using the relationships found in 

the original models. Figure 9-1 shows the difference between estimated rates for our 

ECO-ship and standard ship for both scenarios. Pre 2008 the ECO-vessel in scenario 

1 receives a constantly lower rate than the standard vessel, although the difference is 

relatively low. In scenario two the ECO-vessel obtains a moderately increasing rate 

premium. The fact that the ECO-vessel is both larger and younger in scenario 1 does 

not seem to make a difference in the market. From 2008 and beyond the results 

become more interesting. First of all rate and size seems to make a difference as 

scenario one is constantly above the second, illustrating the results for age and size 

Input&parameters Standard ECO Input&parameters Standard ECO
NDF 16 16 NDF 16 16
Age 10 4 Age 7 7
DWT 74000 80000 DWT 75000 75000
*FEI 1.3272 1.0435 *FEI 1.3095 1.0747
CONTL 360 360 CONTL 360 360
OPTL 50 50 OPTL 50 50
BUILD Japan Japan BUILD Japan Japan
FUEL HFO HFO FUEL HFO HFO
FLAG Panama Panama FLAG Panama Panama
ENGT MAN2B.2&2W. MAN2B.2&2W. ENGT MAN2B.2&2W. MAN2B.2&2W.
POD Atlantic Atlantic POD Atlantic Atlantic

Scenario21 Scenario22



 60 

found in section 8. Note that from the results in section 8 the effect from size is 

probably most prominent as the age coefficients are fairly different between 4 and 10 

years. In addition our ECO-vessel in scenario 2 has a lower consumption and hence a 

lower FEI. Our prediction indicates that an ECO-vessel should be able to obtain a 

higher rate, given the current market dynamics in the last period. Apparently the 

market dynamics changed before and after 2008. One remark regarding this 

simulation is that as smoothed terms result in point estimates opposed to a linear 

regression. Hence, it only considers threshold values given out input variables. 

Choosing a greater difference for age and size between the vessels would change the 

relationship depending on the size of the estimated coefficient at that particular point. 

The question remains whether the positive difference in the last period justifies 

investments in more capital-intensive new buildings. Retrofitting is less costly, it is 

however not considered any further. From our point if view, an average difference of 

approximately $1000/day over a lifetime of 20-25 years might not be sufficient. The 

same technique can also be applied to model effects of other variables as well, such as 

the presence of options and its effect on rates.  
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10. MODEL UNCERTAINTY 

10.1. GENERAL 
Conventional tests for heteroscedasticity are not applicable for GAM models and 

according to Wood (2006), the most intuitive way for detecting issues with non-

constant variance around the error term is to examine data plots of variables. 

Common practice to deal with heteroscedasticity is to manually transform variables 

assumed to inherit such characteristics to make them more normally distributed. It 

would also be possible to apply models such as General Additive Mixed Models or 

Generalized Additive Models for Location, Scale and Shape to investigate random 

and fixed effects, distributions along with structural behavior of variables. This is, 

however, considered to be beyond our scope. 

The relationship between rate and index seen in figure 10.1 is clearly linear and there 

seems to be no consistent indication of a significant increase in variance around the 

mean. A log transformation of the index variable was tested in the model, without 

yielding any obvious differences with regard to standard errors. Hence, we assume no 

suspect inferences with regard to rate and index.  
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10.2. KNOT LOCATIONS 
As mentioned there are other splines that could have been applied, given that knot 

locations was chosen. Manually deciding number of knots to variables such as index 

could be applied, however we found this approach to be more uncertain and 

computational costly due to the amount of model coefficients, in addition to be 

somewhat out of our scope.  

 

10.3. SELECTION BIAS  
One concern regarding the intentions of our study is the possibility of a skewed 

distribution between vessels operating within the spot and time charter market. The 

idea is that if efficient vessels were consistently operating in the spot market, which 

would be a reasonable assumption if the time charter market does not compensate 

efficiency, the results from our model would be inaccurate. This is referred to as 

selection bias. Possible selection bias is investigated by plotting the FEI for our 

dataset against the total fleet from Clarksons World Fleet Register. Vessels in our 

dataset are removed from the total fleet such that vessels remaining in the fleet have 

never been in the time charter market since 2001. From the graphs in section 13.3 the 

distributions seems to be fairly equal and no obvious bias is assumed.  

 

10.4. DATA UNCERTAINTY 
Since we use reported fixture data we are aware that design parameters such as speed 

and consumption, might be different from actual operational data. However, as 

pointed out earlier real world data is hard to obtain and measure. Misreported values 

are obviously a concern since they stem from an external source, though we see no 

realistic alternative other than being aware of the issue. Another concern is that there 

probably exists a large amount of contracts not reported in the data from Clarksons, 

which could indicate results that are not representative. Yet, we see this as a data 

limitation problem we cannot influence.  
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11. CONCLUDING REMARKS 
In this thesis our aim has been to test whether quality premiums are evident in the dry 

bulk market. By identifying relevant determinants we have decomposed the rate 

according to market, vessel and contractual specific variables through a semi-

parametric generalized additive model. Some of the questions asked in this thesis are 

studied in previous literature, which gave us some prior expectations of the 

relationship between rate and its determinants. Hence, we further support previous 

results along with identifying other relevant variables that could be related to 

efficiency. In addition to what has been done in existing literature we employ a much 

larger dataset across the three main dry bulk segments. Furthermore we have applied 

a more comprehensive composition of the index variable, which accounts for a great 

part of rate determination, along with a combination of speed, consumption and size 

in an attempt to incorporate the impact of those variables in a more realistic manner.  

Beginning with market based variables we find a clear non-linear relationship 

between time charter rates and the index. By interpolating the index variable and 

excluding time effects we found a significant increase of the explanatory power in the 

model. By eliminating time-driven effects of the underlying index specifications, we 

assume to have increased possible significance of other variables expected to be of 

relevance. Based on our knowledge this would not have been accounted for in 

previous research, resulting in possible model interference. Supporting previous 

literature we find a rate discount for vessels delivered in the Pacific. In addition we 

discover that the rate discount has increased over the two time periods considered. 

Generally we see one possible explanation: Along with increased production activity 

in the Far East, trade flow from west to east increased considerably leading to greater 

supply of tonnage in the Pacific basin. Another explaining factor is the need for 

backhaul sailing.  

Through analysis of vessel specific variables related to efficiency we see a change in 

the impact of flag state. A shift can be found between time periods where as an 

example China has gone from being discounted in rates to insignificant with regard to 

flag in the second period. One possible rationalization could be that regulation 

differences between flag states has been reduced over time. Furthermore Japan has 

apparently gained increased recognition over time as a quality provider as it yields a 
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substantial discount compared to China and South Korea. Age has a non-linear 

negative effect on rates across segments and time periods, showing possible existence 

of a two-tier market or even an n-tier market for Panamax and Handysize vessels. 

Following results from Koehn (2008) this relationship seems to have been consistent 

over time. Also, we find evidence for increasing rate with size, confirming economies 

of scale. Between time periods there has been a change for Capesize and Panamax 

where the largest Panamax vessels receive a discount while there is a premium for 

Capesize. A possible reason could be that Panamax vessels in the largest end of the 

scale are unable to pass through the Panama Canal, leading to reduced flexibility, and 

that large Capesizes are built for special purposes or through non-standard contracts. 

Results in both ends of the size range are clouded due to low-density observations. 

According to consumption per ton mile there has been a shift towards more efficient 

vessels in the last period. However, one drawback is that a decomposition of the 

influence of each variable within the FEI is limited. Within high density observation 

ranges the relationships seems to be leveled, indicating that the Charterer obtains any 

vessel specific efficiency gains. This contradicts the assumptions of efficient markets 

we discussed in section 4 and results in shipowners not being sufficiently 

compensated for efficiency investments, confirming the notion of split incentive 

barriers.  

Most of the limitations within out thesis lie in the chosen methodology. Our model is 

able to capture non-linear dynamics and hence serves its purpose well. However, 

further research on the topic could take advantage of more sophisticated models such 

as Generalized Additive Mixed Models. In addition one could deviate from default 

choices in the model, such as splines and knot selections to explore relationships even 

further. Further a more detailed study of each segment separately could result in more 

thorough insight on how ship specific variables are related. 
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13. APPENDICES  
 

APPENDIX 1 - CORRELATION 
 

 

 

Capesize(2 2008,2014
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.1134 1
AGE 0.0318 :0.0798 1
DWT 0.0124 0.0156 :0.5939 1
FEI :0.0986 0.0561 :0.2361 :0.0482 1
CONTL 0.0894 0.4709 :0.0630 0.0132 0.0639 1
OPTL :0.2194 :0.1478 :0.0565 0.0682 :0.0040 :0.2170 1
BUNKERS :0.0135 :0.0873 :0.1889 0.2188 0.0037 :0.0171 0.1795 1
INDEX 0.9680 0.1356 0.0995 :0.0750 :0.0948 0.1162 :0.2407 :0.0142 1

Capesize(1 2001,2007
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.0263 1
AGE :0.1649 :0.0518 1
DWT 0.2357 0.0543 :0.5649 1
FEI :0.0381 :0.0799 0.1564 :0.3441 1
CONTL :0.0783 0.3816 :0.1089 0.1426 :0.0300 1
OPTL :0.0341 :0.2415 0.1118 :0.1191 0.0877 :0.3092 1
BUNKERS 0.6613 0.1023 :0.0525 0.1883 :0.0068 0.1207 :0.0753 1
INDEX 0.9129 0.0802 :0.0057 0.1157 0.0186 :0.0619 :0.0395 0.7318 1

Panamax&2 2008*2014
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.0757 1
AGE 90.0279 90.0404 1
DWT 90.1464 90.0224 90.6813 1
FEI 90.0254 0.0054 0.0554 90.0472 1
CONTL 0.0232 0.5235 90.0783 0.0537 0.0512 1
OPTL 90.2430 0.0061 90.0253 0.1030 0.0490 0.0866 1
BUNKERS 0.0695 0.0053 90.0268 0.1505 90.0281 0.0243 0.1374 1
INDEX 0.9810 0.1078 0.0131 90.1777 90.0096 0.0445 90.2328 0.0694 1

Panamax&1 2001*2007
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.1005 1
AGE 90.0183 90.0230 1
DWT 0.2179 0.0855 90.7478 1
FEI 90.0793 90.0425 0.3543 90.2949 1
CONTL 90.0161 0.4485 90.0276 0.1008 90.0155 1
OPTL 90.0871 90.1242 90.0241 90.0324 90.0272 90.1454 1
BUNKERS 0.6755 0.1579 0.0433 0.2225 90.0775 0.0552 90.0976 1
INDEX 0.9257 0.1450 0.0660 0.1546 90.0365 90.0022 90.1147 0.7143 1
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Handymax(2 2008,2014
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.1358 1
AGE 0.0775 ;0.0053 1
DWT ;0.2620 ;0.0308 ;0.8394 1
FEI 0.0192 0.0348 0.3095 ;0.3375 1
CONTL 0.0516 0.3456 ;0.0350 0.0041 0.0005 1
OPTL ;0.0257 ;0.1272 0.0071 0.0333 ;0.0187 0.0236 1
BUNKERS ;0.0149 ;0.0683 ;0.0601 0.2255 ;0.0381 ;0.1336 0.1065 1
INDEX 0.9727 0.1412 0.1442 ;0.3240 0.0668 0.0282 ;0.0526 ;0.0177 1

Handymax(1 2001,2007
RATE NDF AGE DWT FEI CONTL OPTL BUNKERS INDEX

RATE 1
NDF 0.0841 1
AGE ;0.1614 ;0.0457 1
DWT 0.3027 0.1268 ;0.6679 1
FEI ;0.1439 ;0.0778 0.3446 ;0.3578 1
CONTL 0.0434 0.4937 ;0.1161 0.2131 ;0.1221 1
OPTL ;0.1650 ;0.2539 0.1035 ;0.1608 0.0766 ;0.5319 1
BUNKERS 0.7179 0.1834 ;0.0996 0.3074 ;0.1349 0.1593 ;0.1557 1
INDEX 0.9762 0.1130 ;0.0479 0.2062 ;0.0900 0.0580 ;0.1549 0.7256 1
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APPENDIX 2 - RESPONSE VARIABLE DISTRIBUTION 
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APPENDIX 3 - SELECTION BIAS 
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HANDYMAX 
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APPENDIX 4 – R CODE 
 

Throughout our thesis, we have extensively used R as our modeling tool. R is a 

software package for statistical computing and graphics and provides a wide variety 

of statistical and graphical techniques. In the following section we have described a 

subset of code used in our modeling.   

 

#################### 
###  FORMATTING  ### 
#################### 
 
##INDEX## 
 
####CAPESIZE#### 
#Remove empty rows.  
capei <- subset(CapesizeIndexes, !is.na(WEEK)) 
 
#Make date-row a factor 
factor(capei$DATE) 
 
#Transform date from text to date object and store in data.frame 
capei$DATE <- as.Date(capei$DATE,"%d.%m.%y") 
 
####PANAMAX#### 
#Remove empty rows.  
panai <- subset(PanamaxIndexes, !is.na(WEEK)) 
 
#Make date-row a factor 
factor(panai$DATE) 
 
#Transform date from text to date object and store in data.frame 
panai$DATE <- as.Date(panai$DATE,"%d.%m.%y") 
 
####HANDYMAX#### 
#Remove empty rows.  
handyi <- subset(HandymaxIndexes, !is.na(WEEK)) 
 
#Make date-row a factor 
factor(handyi$DATE) 
 
#Transform date from text to date object and store in data.frame 
handyi$DATE <- as.Date(handyi$DATE,"%d.%m.%y") 
 
 
##BUNKERS## 
#Remove empty rows 
bunkers <- subset(Bunkers, !is.na(X380)) 
#Factor date column 
bunkers$DATE <- factor(Bunkers$DATE) 
#Transform date from text to date object 
bunkers$DATE <- as.Date(bunkers$DATE,"%d.%m.%y") 
#Remove text column 
bunkers$Date <- NULL 
 
##DATA## 
#Transform date column from text to date object 
fullData$DATE <- as.Date(fullData$DATE, "%d.%m.%y") 
 
#SUBSETTING DATA# 
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##CAPESIZE 
dataCapeAll <- subset(fullData, DWT >= 100000) 
 
##PANAMAX 
dataPanaAll <- subset(fullData, DWT < 100000) 
dataPanaAll <- subset(dataPanaAll, DWT >= 60000) 
 
##HANDYMAX 
dataHandyAll <- subset(fullData, DWT >= 40000) 
dataHandyAll <- subset(fullData, DWT < 60000) 
 
#Split data into 2 periods for each segment 
CAPE_1 <- subset(dataCapeAll, DATE < as.Date("2008-01-01") ) 
CAPE_2 <- subset(dataCapeAll, DATE > as.Date("2008-01-01") ) 
HANDY_1 <- subset(dataHandyAll, DATE < as.Date("2008-01-01") ) 
HANDY_2 <- subset(dataHandyAll, DATE > as.Date("2008-01-01") ) 
PANA_1 <- subset(dataPanaAll, DATE < as.Date("2008-01-01") ) 
PANA_2 <- subset(dataPanaAll, DATE > as.Date("2008-01-01") ) 
 
#FILTER DATA# 
 
#Remove entries with missing values 
CAPE_1 <- subset(CAPE_1, RATE > 0) #1459 
CAPE_1 <- subset(CAPE_1, DWT > 0) #1444 
CAPE_1 <- subset(CAPE_1, DRAUGHT > 0) #1325 
CAPE_1 <- subset(CAPE_1, SPEED > 0) ##1308 
CAPE_1 <- subset(CAPE_1, FEI > 0) #1029 
CAPE_1 <- subset(CAPE_1, CONTL > 0) #1012 
CAPE_1 <- subset(CAPE_1, OPTL >= 0) #713 
 
 
#EXAMPLE OF RE-GROUPING OF FACTOR VARIABLES 
fullDataCopy <- fullData 
levels(fullDataCopy$BUILD) <- c(levels(fullDataCopy$BULD), "Other") 
fullDataCopy$BUILD[fullDataCopy$BUILD == ""] <- 'Other' 
fullDataCopy$BUILD <- factor(fullDataCopy$BUILD) 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Philippines'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Denmark'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Italy'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'South Korea'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Romania'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Spain'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Taiwan'] <- 'Other' 
fullDataCopy$BUILD[fullDataCopy$BUILD == 'Vietnam'] <- 'Other' 
 
 
########################################## 
#### INDEX/BUNKERS MATCHING & SPLINE  #### 
########################################## 
 
#Function to match two dates. Return value is the closest date or 01-01-1970 
closestDt <- function(searchDate, dateList, roundDown=FALSE)  
  as.Date( sapply( searchDate , function (x) if( roundDown ){  
    max( dateList[ dateList <= x ] ) } else { 
      min( dateList[ dateList >= x])  }  
  ), "1970-01-01") 
   
 
 
#Iterate through every row in given data.frame 
for (i in 1:nrow(HANDY_2)) 
{ 
  
 #Copy the current fixture row 
  currentFixture <- HANDY_2[i,] 
 
 #Find the closest date in a data.frame containing indices   
  date <- closestDt(currentFixture$DATE,handyi$DATE) 
  
 #Get the index entry for given date and store it in a variable 
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  indexData <- handyi[which(handyi$DATE == date),] 
  
 #Store each index value in a y variable 
  y <-
c(indexData$X1MONTH,indexData$X6MONTH,indexData$X1YEAR,indexData$X3YEAR,inde
xData$X5YEAR) 
  
 #Store length as days in a x variable 
  x <- c(0.083*360,0.5*360,1*360,3*360,5*360) 
 
 #Spline x and y using a spline function with method "natural", and store in 
variable 
  indexSpline <- spline(x,y,n=1770,method="natural") 
 
 #Use contract length in fixture to find correct index value 
  fixtureIndex <- indexSpline$y[which(abs(indexSpline$x-
currentFixture$CONTL)==min(abs(indexSpline$x-currentFixture$CONTL)))] 
   
 #Store the index value in data.frame 
  HANDY_2[i,]$INDEX <- fixtureIndex[1] 
} 
 
#Iterate though all data and match with a bunkers value 
for (i in 1:nrow(fullData)) 
{ 
  currentFixture <- fullData[i,] 
  date <- closestDt(currentFixture$DATE,bunkers$DATE) 
  bunkersData <- bunkers[which(bunkers$DATE == date),] 
  if(currentFixture$FUEL == "HFO"){ 
    fullData[i,]$BUNKERS <- bunkersData$X380 
  }else{ 
    fullData[i,]$BUNKERS <- bunkersData$X180 
  } 
} 
 
 
#Correlation and description 
write.table(cor(PANA_1), file = "Correlation_PANA_1.csv", sep = ",", 
col.names = NA, qmethod = "double") 
write.table(describe(PANA_1), file = "Description_PANA_1.csv", sep = ",", 
col.names = NA, qmethod = "double") 
 
 
 
 
 
############################# 
#### MODEL OPTIMIZATION  #### 
############################# 
 
##Method is derived from page 130 in wood 
 
##INPUT PARAMETERS 
parameters <- 
c("s(INDEX)","s(BUNKERS)","s(OPTL)","s(CONTL)","s(BEAM)","s(AGE)","s(SPEED)"
,"s(CONS)","s(DWT)","s(FEI)","s(LOA)","s(NDF)","POD","DIS","FLAG","BUILD","E
NG","FUEL") 
 
 
##DECIDE DATA INPUT 
dataInput <- dataPana 
 
##CREATE AN EMPTY ARRAY FOR PARAMETER ORDER COMBINATIONS 
parameterArray <- array(1:100,c(length(parameters),length(parameters))) 
 
##CREATE AN EMPTY ARRAY FOR ALL COMBINATIONS OF PARAMETERS 
allParametersArray <- 
array(1:100,c(length(parameters)*length(parameters),length(parameters))) 
 
##FILL INN ARRAY FOR ORDER COMBINATIONS 
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for(x in 1:length(parameters)) 
{ 
  parameterArray[x,] <- parameters 
  object <- parameters[1] 
  parameters <- c(parameters,object) 
  parameters <- parameters[-1] 
} 
 
##MAKE ALL THE COMBINATIONS OF THE PARAMETERS 
zeros = 1 
parameterSelection = 1 
for (r in 1:(length(parameters)*length(parameters))) 
{ 
  para <- parameterArray[parameterSelection,] 
  allParametersArray[r,] = 
c(para[1:zeros],rep(c(0),times=length(parameters)-zeros)) 
  zeros <- zeros + 1 
  if(zeros > length(parameters)) 
  { 
    zeros =  1 
    parameterSelection = parameterSelection + 1 
  } 
} 
 
 
##DELETE DUPLICATE ROWS 
deleteIndex = 0 
for(p in 1:length(parameters)) 
{ 
  if(p!=1) 
  { 
    allParametersArray <- allParametersArray[-(p*length(parameters)-
deleteIndex),] 
    deleteIndex = deleteIndex+1 
  } 
} 
 
#CREATE EMPTY LISTS FOR RESULTS 
models = list() 
gcv = c() 
radj = c() 
nHandy = c() 
##ITERATE THROUGH ALL COMBINATIONS AND DO THE REGRESSION. STORE THE RESULTS 
for(row in 1:nrow(allParametersArray)) 
{ 
  clean <- allParametersArray[row,] 
  clean <- clean[clean!=0] 
  model <- gam( 
as.formula(paste("RATE~",paste(clean,collapse="+"))),family=Gamma(link="log"
),data=dataInput) 
  models <- list(models,allParametersArray[row,]) 
  gcv[row] <- model$gcv.ubre 
  radj[row] <- summary(model)$r.sq 
  nHandy[row] <- summary(model)$n 
} 
 
 
#REMOVE USED VARIABLES 
remove(clean) 
remove(deleteIndex) 
remove(object) 
remove(p) 
remove(para) 
remove(parameters) 
remove(parameterSelection) 
remove(r) 
remove(row) 
remove(x) 
remove(zeros) 
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##PLOT RESULTS 
plot(gcv, type="l", col="blue") 
 
 
 
 
#CHECK AND PRINT ONE SPECIFIC MODEL 
checkModel <- function(modelNumber){ 
  clean <- allParametersArray[modelNumber,] 
  clean <- clean[clean!=0] 
  model <- gam( 
as.formula(paste("RATE~",paste(clean,collapse="+"))),family=Gamma(link="log"
),data=dataInput) 
  return(summary(model)) 
} 
 
#PRINT THE BEST MODEL BASED ON GCV 
printBestModel <- function(){ 
   
  clean <- allParametersArray[which(gcv==min(gcv)),] 
  clean <- clean[clean!=0] 
  model <- gam( 
as.formula(paste("RATE~",paste(clean,collapse="+"))),family=Gamma(link="log"
),data=dataInput) 
  return(summary(model)) 
} 
 
#GET THE BEST MODEL AS A VARIABLE 
bestModel <- function(){ 
  clean <- allParametersArray[which(gcv==min(gcv)),] 
  clean <- clean[clean!=0] 
  model <- gam( 
as.formula(paste("RATE~",paste(clean,collapse="+"))),family=Gamma(link="log"
),data=dataInput) 
  return(model) 
} 
 
#PLOT 
par(mfrow=c(1,1)) 
plot(pana1, residuals=T, pch=10, cex=0.25, scheme=1, col='#FF8000', 
shade=T,shade.col='gray90') 
 
 
 
############################################ 
#################  MODELS  ################# 
############################################ 
 
#MODEL TESTING EXAMPLE#  
 
#MODEL TEST 1 
cape1 <- gam(RATE ~  
             s(INDEX) 
             ,family = Gamma(link="log")    
             ,data=CAPE_1)  
summary(cape1) 
 
#MODEL TEST 2 
cape1 <- gam(RATE ~  
             s(INDEX) 
          +  s(AGE) 
             ,family = Gamma(link="log")    
             ,data=CAPE_1)  
summary(cape1) 
 
#MODEL TEST 3 
cape1 <- gam(RATE ~  
             s(INDEX) 
          +  s(AGE) 
          +  s(DWT) 
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             ,family = Gamma(link="log")    
             ,data=CAPE_1)  
summary(cape1) 
 
#MODEL TEST 3 
cape1 <- gam(RATE ~  
             s(INDEX) 
          +  s(AGE) 
          +  s(DWT) 
          +  s(FEI) 
             ,family = Gamma(link="log")    
             ,data=CAPE_1)  
summary(cape1) 
 
############################# 
#####  FINISHED MODELS  ##### 
############################# 
 
##CAPESIZE## 
 
#CAPE1 - 2001-2007 
cape1 <- gam(RATE ~ s(NDF) + s(AGE) + s(DWT) + s(FEI) + s(CONTL) + s(INDEX) 
+ BUILD + FUEL + FLAG + ENGT + POD ,family = Gamma(link="log") ,data=CAPE_1)  
summary(cape1) 
 
#CAPE2 - 2008-2014 
cape2 <- gam(RATE ~ s(NDF) + s(AGE) + s(DWT) + s(FEI) + s(CONTL) + s(INDEX) 
+ s(BUNKERS) + BUILD + FUEL + FLAG + ENGT + POD  
,family = Gamma(link="log")    ,data=CAPE_2)  
summary(cape2) 
 
##PANAMAX## 
 
#PANA1 2001-2007 
pana1 <- gam(RATE ~  
s(NDF) + s(AGE) + s(DWT) + s(FEI) + s(CONTL) + s(OPTL) + s(INDEX) + BUILD  
+ FUEL + FLAG + ENGT + POD ,family = Gamma(link="log") ,data=PANA_1)  
summary(pana1) 
 
#PANA2 2008-2014 
pana2 <- gam(RATE ~  
s(NDF) + s(AGE) + s(DWT) + s(FEI) + s(CONTL) + s(OPTL) + s(INDEX)  
+ s(BUNKERS) + BUILD + FUEL + FLAG + ENGT + POD  
,family = Gamma(link="log")   ,data=PANA_2)  
summary(pana2) 
 
##HANDYMAX## 
 
#HANDY1 - 2001-2007 
handy1 <- gam(RATE ~  s(NDF)+ s(AGE)+ s(DWT)+ s(FEI)+ s(CONTL) + s(OPTL) + 
s(INDEX) + BUILD  + FUEL + FLAG + ENGT + POD + GEAR   
,family = Gamma(link="log")   ,data=HANDY_1)  
summary(handy1) 
 
#HANDY2 - 2008-2014 
handy2 <- gam(RATE ~ s(NDF) + s(AGE) + s(DWT) + s(FEI) + s(CONTL) + s(OPTL) 
+ s(INDEX) + s(BUNKERS) + BUILD + FUEL + FLAG + ENGT + POD + GEAR 
,family = Gamma(link="log")   ,data=HANDY_2)  
summary(handy2) 
 
 
 
############################# 
#### KNOTS OPTIMIZATION  #### 
############################# 
 
 
testgcv1<-0 
for (i in 1:60) 
{ 
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  gamTEST <- gam(RATE ~ s(INDEX,k=i) 
                 ,family = Gamma(link="log") 
                 ,data = dataPana,gamma=1.4) 
  testgcv1[i] <- gamTEST$gcv.ubre 
   
} 
 
gam_pana5 <- gam(RATE ~ s(LOA) + s(NDF) + POD + DIS + FLAG + BUILD + ENG + 
FUEL +  
                 s(INDEX) + s(BUNKERS) + s(OPTL) + s(CONTL) +  
                 s(BEAM) + s(AGE) + s(SPEED) + s(CONS) + s(DWT) 
               ,family = Gamma(link="log") 
               ,data = dataPana) 
indexOfModel <- c(1:length(gcv)) 
 
for(i in 1:nrow(comparisonArray)) 
{ 
  comparisonArray[i,2] <- gcv[i] 
  comparisonArray[i,3] <- radj[i] 
} 
 
######################################### 
#### MODEL APPLICATION / SIMULATION  #### 
######################################### 
 
#Create standard ship 
standardShip <- NULL 
standardShip$NDF <- 16 
standardShip$AGE <- 10 
standardShip$DWT <- 74000 
standardShip$FEI <- 1.32722e-06 
standardShip$CONTL <- 360 
standardShip$OPTL <- 50 
standardShip$INDEX <- 0 
standardShip$BUILD <- "Japan" 
standardShip$FUEL <- "HFO" 
standardShip$FLAG <- "Panama" 
standardShip$ENGT <- "MAN B. & W." 
standardShip$POD <- "Atlantic" 
standardShip$BUNKERS <- 500 
 
#Modify standard ship to create eco ship 
ecoShip <- standardShip 
ecoShip$DWT <- 80000 
ecoShip$FEI <- 1.04353e-06 
ecoShip$AGE <- 4 
 
#Divide index into two time periods 
panai_1 <- subset(panai, DATE < as.Date("2008-01-01") ) 
panai_2 <- subset(panai, DATE >= as.Date("2008-01-01") ) 
 
#Divide bunkers into two time periods 
bunkers_1 <- subset(bunkers, DATE < as.Date("2008-01-01") ) 
bunkers_2 <- subset(bunkers, DATE >= as.Date("2008-01-01") ) 
 
#Iterate through the index 
for (i in 1:nrow(panai_2)) 
{ 
  #Set index for each ship 
  ecoShip$INDEX <- panai_2[i,]$X1YEAR 
  standardShip$INDEX <- panai_2[i,]$X1YEAR 
  #Set bunkers for each ship 
  ecoShip$BUNKERS <- standardShip$BUNKERS <- bunkers_2[i,]$X380 
  #Use model to predict new rate with eco/standard ship and store values 

panai_2[i,]$ECO <- 
Gamma(link="log")$linkinv(predict.gam(pana22,ecoShip))     
panai_2[i,]$STD <-    
Gamma(link="log")$linkinv(predict.gam(pana22,standardShip)) 

} 
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#Plot the results 
par(new=TRUE) 
plot(panai_2$ECO-
panai_2$STD,type="l",col="blue",xaxt="n",yaxt="n",xlab="",ylab="") 
axis(4) 
mtext("y2",side=4,line=3) 
legend("topleft",col=c("red","blue"),lty=1,legend=c("y1","y2")) 
 
 
 
############################### 
#### DISTRIBUTION FITTING  #### 
############################### 
 
plot(ecdf(PANA_1$RATE),main="Empirical cumulative distribution function") 
 
z.norm<-(PANA_1$RATE-mean(PANA_1$RATE))/sd(PANA_1$RATE) ## standardized data  
qqnorm(z.norm) ## drawing the QQplot 
abline(0,1) ## drawing a 45-degree reference line 
 
curve(dgamma(PANA_1$RATE, scale=1.5, shape=2),from=0, to=15, main="Gamma 
distribution") 
 
alpha <- mean(PANA_1$RATE)/var(PANA_1$RATE) 
beta <- (mean(PANA_1$RATE))*2/var(PANA_1$RATE) 
 
x.gamma = rgamma(n=1000,scale=0.83,shape=10.59) 
x.weibull = rweibull(n=1000,scale=3.5,shape=14.1) 
 
hist(x.gamma) 
qqplot(PANA_1$RATE,x.gamma) 
plot(density(CAPE_2$RATE)) 
plot(d) 
plot(density(x.weibull)) 
hist(x.weibull) 
qqplot(PANA_1$RATE,x.gamma) 
 
d <- density(PANA_1$RATE) 
d1 <- density(PANA_2$AGE) 
p <- density(CAPE_1$RATE) 
p1 <- density(CAPE_2$RATE) 
 
c <- density(FDF_HANDY$FEI) 
c1 <- density(FNF_HANDY$FEI) 
plot(c1, main="Kernel Density of RATE",col="red") 
points(c,t="l") 
 
polygon(c1, col="black", border="black") 
polygon(c1, col="black", border="red") 
 
colfill<-c(2:(2+length(levels(cyl.f))))  
legend(locator(1), c("1","2"), fill=c("black","red")) 
 
###################### 
#### MODEL PLOTS  #### 
###################### 
 
par(mfrow=c(3,2)) 
 
#AGE 
plot(cape1,select=2,scheme=1,ylim=c(-
0.5,0.3),xlim=c(0,26),xlab="AGE***",main="Capesize 2001-2007",seWithMean=T)     
plot(cape22,select=2,scheme=1,ylim=c(-
0.5,0.3),xlim=c(0,26),xlab="AGE***",main="Capesize 2008-2014",seWithMean=T)     
plot(pana1,select=2,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,26),xlab="AGE***",main="Panamax 2001-2007",seWithMean=T)     
plot(pana22,select=2,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,26),xlab="AGE***",main="Panamax 2008-2014",seWithMean=T)     
plot(handy1,select=2,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,26),xlab="AGE***",main="Handymax 2001-2007",seWithMean=T)     
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plot(handy22,select=2,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,26),xlab="AGE***",main="Handymax 2008-2014",seWithMean=T)  
 
 
#DWT 
plot(cape1,select=3,scheme=1,ylim=c(-
0.5,0.8),xlim=c(140000,220000),xlab="DWT***",main="Capesize 2001-
2007",seWithMean=T)     
plot(cape22,select=3,scheme=1,ylim=c(-
0.5,0.8),xlim=c(140000,220000),xlab="DWT***",main="Capesize 2008-
2014",seWithMean=T)     
plot(pana1,select=3,scheme=1,ylim=c(-0.3,0.3),xlab="DWT***",main="Panamax 
2001-2007",seWithMean=T)     
plot(pana22,select=3,scheme=1,ylim=c(-0.3,0.3),xlab="DWT***",main="Panamax 
2008-2014",seWithMean=T)     
plot(handy1,select=3,scheme=1,ylim=c(-0.2,0.2),xlab="DWT***",main="Handymax 
2001-2007",seWithMean=T)     
plot(handy22,select=3,scheme=1,ylim=c(-0.2,0.2),xlab="DWT",main="Handymax 
2008-2014",seWithMean=T)  
 
#FEI 
plot(cape1,select=4,scheme=1,ylim=c(-0.2,0.4),xlim=c(6.0e-07,1.2e-
06),xlab="FEI*",main="Capesize 2001-
2007",seWithMean=T,residuals=T,pch=1,cex=0.3,)     
plot(cape22,select=4,scheme=1,ylim=c(-0.2,0.4),xlim=c(6.0e-07,1.2e-
06),xlab="FEI",main="Capesize 2008-
2014",seWithMean=T,residuals=T,pch=1,cex=0.3)     
plot(pana1,select=4,scheme=1,ylim=c(-0.2,0.2),xlim=c(1.0e-06,2.3e-
06),xlab="FEI**",main="Panamax 2001-
2007",seWithMean=T,residuals=T,pch=1,cex=0.3)     
plot(pana22,select=4,scheme=1,ylim=c(-0.2,0.2),xlim=c(1.0e-06,2.3e-
06),xlab="FEI**",main="Panamax 2008-
2014",seWithMean=T,residuals=T,pch=1,cex=0.3)     
plot(handy1,select=4,scheme=1,ylim=c(-0.2,0.2),xlim=c(1.3e-06,2.5e-
06),xlab="FEI***",main="Handymax 2001-
2007",seWithMean=T,residuals=T,pch=1,cex=0.3)     
plot(handy22,select=4,scheme=1,ylim=c(-0.2,0.2),xlim=c(1.3e-06,2.5e-
06),xlab="FEI",main="Handymax 2008-
2014",seWithMean=T,residuals=T,pch=1,cex=0.3)  
 
#CONTL 
plot(cape1,select=5,scheme=1,ylim=c(-
0.15,0.15),xlim=c(0,1100),xlab="CONTL***",main="Capesize 2001-
2007",seWithMean=T)     
plot(cape22,select=5,scheme=1,ylim=c(-
0.15,0.15),xlim=c(0,1100),xlab="CONTL**",main="Capesize 2008-
2014",seWithMean=T)     
plot(pana1,select=5,scheme=1,ylim=c(-
0.15,0.15),xlim=c(0,1100),xlab="CONTL***",main="Panamax 2001-
2007",seWithMean=T)     
plot(pana22,select=5,scheme=1,ylim=c(-
0.2,0.4),xlim=c(0,1100),xlab="CONTL***",main="Panamax 2008-
2014",seWithMean=T)     
plot(handy1,select=5,scheme=1,ylim=c(-
0.1,0.15),xlim=c(0,700),xlab="CONTL***",main="Handymax 2001-
2007",seWithMean=T)     
plot(handy22,select=5,scheme=1,ylim=c(-
0.1,0.15),xlim=c(0,700),xlab="CONTL.",main="Handymax 2008-
2014",seWithMean=T)  
 
#OPTL 
plot(pana1,select=6,scheme=1,ylim=c(-
0.2,0.2),xlim=c(0,110),xlab="OPTL***",main="Panamax 2001-2007",seWithMean=T)     
plot(pana22,select=6,scheme=1,ylim=c(-
0.2,0.2),xlim=c(0,150),xlab="OPTL***",main="Panamax 2008-2014",seWithMean=T)     
plot(handy1,select=6,scheme=1,ylim=c(-
0.3,0.3),xlim=c(0,100),xlab="OPTL*",main="Handymax 2001-2007",seWithMean=T)     
plot(handy22,select=6,scheme=1,ylim=c(-
0.15,0.15),xlim=c(0,120),xlab="OPTL**.",main="Handymax 2008-
2014",seWithMean=T)  
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#INDEX 
plot(cape1,select=6,scheme=1,ylim=c(-1.5,2),xlab="INDEX***",main="Capesize 
2001-2007",seWithMean=T)     
plot(cape22,select=6,scheme=1,ylim=c(-1.5,2),xlab="INDEX***",main="Capesize 
2008-2014",seWithMean=T)     
plot(pana1,select=7,scheme=1,ylim=c(-1.5,1.5),xlab="INDEX***",main="Panamax 
2001-2007",seWithMean=T)     
plot(pana22,select=7,scheme=1,ylim=c(-1.5,1.5),xlab="INDEX***",main="Panamax 
2008-2014",seWithMean=T)     
plot(handy1,select=7,scheme=1,ylim=c(-
1.5,1.5),xlab="INDEX***",main="Handymax 2001-2007",seWithMean=T)     
plot(handy22,select=7,scheme=1,ylim=c(-
1.5,1.5),xlab="INDEX***",main="Handymax 2008-2014",seWithMean=T)  
 
 
 
#NDF 
plot(cape1,select=1,scheme=1,ylim=c(-
0.5,0.5),xlim=c(0,200),xlab="NDF.",main="Capesize 2001-2007",seWithMean=T)     
plot(cape22,select=1,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,200),xlab="NDF**",main="Capesize 2008-2014",seWithMean=T)     
plot(pana1,select=1,scheme=1,ylim=c(-
0.4,0.2),xlim=c(0,350),xlab="NDF***",main="Panamax 2001-2007",seWithMean=T)     
plot(pana22,select=1,scheme=1,ylim=c(-
0.1,0.1),xlim=c(0,50),xlab="NDF***",main="Panamax 2008-2014",seWithMean=T)     
plot(handy1,select=1,scheme=1,ylim=c(-
0.5,0.5),xlim=c(0,200),xlab="NDF*",main="Handymax 2001-2007",seWithMean=T)     
plot(handy22,select=1,scheme=1,ylim=c(-
0.5,0.5),xlim=c(0,200),xlab="NDF*",main="Handymax 2008-2014",seWithMean=T)  
 
 
#BUNKERS 
#plot(cape1,select=7,scheme=1,ylim=c(-
0.2,0.15),xlab="BUNKERS",main="Capesize 2001-2007",seWithMean=T)     
plot(cape22,select=7,scheme=1,ylim=c(-
0.2,0.15),xlab="BUNKERS***",main="Capesize 2008-2014",seWithMean=T)     
#plot(pana1,select=8,scheme=1,ylim=c(-
0.1,0.1),xlab="BUNKERS***",main="Panamax 2001-2007",seWithMean=T)     
plot(pana22,select=8,scheme=1,ylim=c(-
0.1,0.1),xlab="BUNKERS***",main="Panamax 2008-2014",seWithMean=T)     
#plot(handy1,select=8,scheme=1,ylim=c(-
0.15,0.1),xlab="BUNKERS",main="Handymax 2001-2007",seWithMean=T)     
plot(handy22,select=8,scheme=1,ylim=c(-
0.15,0.1),xlab="BUNKERS**",main="Handymax 2008-2014",seWithMean=T)  
 
#POD 
termplot(cape1,se=T,ylim=c(-0.25,0.05),term="POD",main="Capesize 2001-
2007",col.term="black",col.se="black",lty.se=2,xlab="POD***") 
termplot(cape22,se=T,ylim=c(-0.25,0.05),term="POD",main="Capesize 2008-
2014",col.term="black",col.se="black",lty.se=2,xlab="POD***") 
termplot(pana1,se=T,ylim=c(-0.2,0.05),term="POD",main="Panamax 2001-
2007",col.term="black",col.se="black",lty.se=2,xlab="POD***") 
termplot(pana22,se=T,ylim=c(-0.2,0.05),term="POD",main="Panamax 2008-
2014",col.term="black",col.se="black",lty.se=2,xlab="POD***") 
termplot(handy1,se=T,ylim=c(-0.2,0.05),term="POD",main="Handymax 2001-
2007",col.term="black",col.se="black",lty.se=2,xlab="POD") 
termplot(handy22,se=T,ylim=c(-0.2,0.05),term="POD",main="Handymax 2008-
2014",col.term="black",col.se="black",lty.se=2,xlab="POD***") 
 
#BUILD 
termplot(pana1,se=T,ylim=c(-0.05,0.05),term="BUILD",main="Panamax 2001-
2007",col.term="black",col.se="black",lty.se=2,xlab="BUILD") 
termplot(pana2,se=T,ylim=c(-0.05,0.05),term="BUILD",main="Panamax 2008-
2014",col.term="black",col.se="black",lty.se=2,xlab="BUILD") 
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