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Abstract 

 

In this thesis we examine the performance of a relative value strategy called Pairs 

Trading. Pairs Trading is one of several strategies collectively referred to as 

Statistical Arbitrage strategies. Candidate pairs are formed by matching stocks 

with similar historical price paths. The pairs, once matched, are automatically 

traded based on a set of trading rules. We conduct an empirical analysis using high 

frequency intraday data from the first quarter of 2014. Our findings indicate that 

the strategy is able to generate positive risk adjusted returns, even after controlling 

for moderate transaction costs and placing constraints on the speed of order 

execution. 
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1. Introduction 

 

In this paper we examine a popular quantitative investment strategy commonly 

referred to as “pairs trading”. The basic concept of pairs trading is remarkably 

simple; one identifies a pair of stocks that exhibit historical co–movement in prices. 

Subsequently, if significant deviations from the historical relationship are 

observed, a position is opened. The position is formed by simultaneously selling 

short the relative winner and buying long the relative looser. When the prices 

eventually converge the position is closed and a profit is made. The strategy builds 

upon the notion that the relative prices in a market are in equilibrium, and that 

deviations from this equilibrium eventually will be corrected. Applying a pairs 

trading strategy is therefore an attempt to profit from temporary deviations from 

this equilibrium.  

According to Gatev, Goetzmann & Rouwenhorst (2006) pairs trading strategies 

have been used by practitioners on Wall Street in various forms since the mid–

1980s. The strategy is often said to have originated within Morgan Stanley in a 

group led by Nunzio Tartaglia. The focus of the group was to develop quantitative 

trading strategies by employing advanced statistical models and information 

technology. The group sought to “mechanize” the investment process by developing 

trading rules that could be automated. Pairs trading was one of the resulting 

strategies. The group used this strategy with great success in 1987 – when the 

group is said to have generated a profit of $50 million – but were dissolved in 1989 

after a period of poor performance. In the last decades, as technology has become 

more accessible, the strategy has been increasingly popular with investors.  

 

Pairs trading is often placed in a group of quantitative trading approaches 

collectively referred to as statistical arbitrage strategies. The arbitrage part in this 

context is somewhat misleading as arbitrage implies a risk free profit opportunity 

at zero upfront cost. A pairs trading strategy is by no means risk free. There is no 

guarantee that the stocks in a pair will converge. They could even continue to 
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diverge, resulting in significant losses. Furthermore, the strategy is also often 

claimed to be “market–neutral”, meaning that the investor is unexposed to the 

general market risk. However, while it certainly is possible to create market 

neutral pairs, the total market risk of a position depends on the amount of capital 

placed in each stock and the sensitivity of the stocks to such risk. 

 

* 

 

In the first part of this thesis we explore the background and the theoretical basis 

for a pairs trading strategy. In addition we compare the performance of two 

existing pairs trading methods by applying them to sets of simulated data. 

In the latter part of the paper we conduct an empirical analysis of a concrete pairs 

trading strategy. Through this analysis, we seek to determine if a pairs trading 

strategy delivers returns that are superior when compared to a buy–and–hold 

strategy. We use high frequency data for stocks listed on the Oslo Stock Exchange. 

The obtained results indicate that it is possible to generate positive risk–adjusted 

returns by following a pairs trading strategy. The results are robust after 

controlling for transaction costs, and placing restrictions on the execution speed. 

Specifically, we report annualized returns as high as 12 after costs %. In addition, 

the standard deviations of the returns are low. This combination leads to an 

impressive Sharpe ratio exceeding 3. We find that the constructed portfolios have 

close to zero exposure to market risk.  
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2. The concept of pairs trading 

The pairs trading strategy is based on the concept of relative pricing. If two 

securities have identical payoffs in all states their price should also be identical. 

This is a variant of the principle commonly referred to as the Law of One price 

(LOP). Lamont and Thaler (2003, 191) defines the LOP as follows “[…] identical 

goods must have identical prices”. It is important to note that the prices do not 

need to be “correct”, from an economical point of view, for the LOP to be valid. The 

LOP simply asserts that stocks yielding identical payoffs should have the same 

current price. The law is therefore applicable to the relative pricing of the stocks in 

a market, even if the pricing is economically incorrect (Gatev et al., 2008). We can 

further extend the example with identical payoffs to a situation where the payoffs 

are very similar but not identical. In such a situation the prices of the securities 

should also be similar. If a temporary deviation from this relative pricing 

relationship occurs it should be possible to exploit this by taking a position that 

generates a profit when the deviation is corrected. Pairs trading is one example of a 

strategy aiming to profit from such temporary deviations. 

Before a pairs trading strategy can be implemented on a practical level we need to 

address some fundamental questions: What pairs of stocks are suitable? When 

should a position be opened or closed? How should one determine the amount of 

capital placed in the individual long/short positions? As we will see in section 4, 

there are multiple approaches to pairs trading, all offering different answers to 

these questions. Even so, the basic structure of a pairs trading strategy is common 

for all approaches. The first step involves identifying a pair of stocks whose prices 

appear to move together according to some fixed relationship. The period of time 

used to establish such a relationship is referred to as the formation period. After 

the suitable pairs are identified we enter the trading period. In this period we 

continue to observe the spread. If a significant deviation from the relationship is 

observed a position is opened. The investor then buys long some quantity of the 

relative looser and sells short some quantity of the relative winner.  
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The following figure graphically illustrates the concept of the pairs trading 

strategy.  

 
Figure 2.1 – A pairs trading example 

 

The figure shows two simulated stock prices on the left scale. In addition a dummy 

variable (right scale) indicates if a position is open     or closed    . A position is 

opened if the spread exceeds a previously calculated entry–threshold value. The 

position is closed at the next crossing of the prices. In this specific example, a 

position is opened at     , and later closed when the prices cross at       . At 

        a position is again opened. This position stays open until        . An 

intuitive way to understand the payoffs that would result from a trade is to think of 

the spread between the two stocks as a synthetic asset. When a position is opened 

the trader is effectively selling the spread short, speculating that it will decrease. 

When the stock prices later cross the value of the spread is zero. The trader then 

closes the position, and earns a profit equal to the value of the spread at the time 

the position was entered.  

Since pairs trading is a relative value strategy, a framework for assessing the 

relative value development in a pair is essential. In the hypothetical example above 

the two stock price series both start at unity. This makes calculating the relative 

changes in values simple. At any given point in time the cumulative returns to the 

series are directly observable. Any return differences between the stocks are 

therefore easily calculated.  
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Obviously, in a real situation the stock prices will not be as well behaved as in this 

example, but instead start at values that vary widely. This makes the comparison 

more complicated. In addition, Do, Faff & Hamza (2006,4) point out that the raw 

price spread between two stocks is not expected to stay at a constant level, even if 

the stocks yield identical returns1. This makes the raw price spread unsuitable as 

an indicator of when a position should be opened or closed. In order to overcome 

these issues we need to apply a transformation to the series. By transforming the 

price series we achieve price level independency and we are able to consistently 

assess the relative value development in the stocks.  

2.1  Normalization of stock prices 

 

In previous academic literature (Engelberg, Gao & Jagannathan, 2009; Gatev et al., 

2006), a common transformation to achieve price level independency is to construct 

cumulative return indexes for the stocks. These indexes reflect the total return 

since the beginning of a period, adjusted for dividends and splits. The indexes are 

then rebased to some constant common for all stocks considered. In the literature 

this transformation is usually referred to as normalization of the stock prices. 

 

Example – Normalized price series 

As the concept of normalization is central to this thesis we will provide a concrete 

practical example of the procedure. In the example we will consider the intraday 

development of the two stocks Seadrill and Fred Olsen Energy on January 6th 2014. 

The figure on the next page shows the raw price series. 

 

 

 

 

                                                           
1
 To see this, think of the spread between two stocks A and B currently trading at 15 and 20 NOK respectively.  

The spread   at time 0 is equal to                       . Now we assume a 100 % return in 
period 1. The spread then also doubles because                       . 
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Figure 2.2 – Raw price series 

 

We now normalize the series by rebasing both stocks to a value of one at the first 

observation. Mathematically this is done according to equation 2.1 

    
   

   
   

   
     2.1 

   

Where    
  is the normalized price of stock   at time   and    

    the raw price of stock 

  at time  . The next chart shows the normalized price series. 

 
Figure 2.3 – Normalized price series 

 

With the transformation applied the relative value development of the stocks is 

directly comparable. It is now possible to consistently quantify the level of 

divergence.  
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3. Pairs trading in previous literature 

In this section we will review some important work previously done on the topic of 

pairs trading. 

 

Gatev, Goetzman & Rouwenhorst –“Pairs Trading: Performance of a Relative Value Arbitrage 

Rule” (1998, 2006)  

This study is one of the earliest academic investigations of pairs trading, laying the 

foundation for much of the subsequent research. In the paper a simple trading 

strategy is back–tested. Pairs are identified by finding stocks that exhibit historical 

co–movement in prices. Specifically, stock pairs that minimize the total distance 

between normalized price series are identified as potential candidates. This 

approach is therefore commonly referred to as the distance approach. 

The dataset consists of daily closing prices from the US stock market over the 

period of 1962 to 2002. Significant excess returns of up to 11% annually (before 

costs) for self–financing pairs are reported. The authors attribute the excess 

returns to an unknown systematic risk factor not yet identified. They support this 

view by pointing out that there is a high degree of correlation between the returns 

to portfolios of non–overlapping pairs. The correlation is present even after 

accounting for common risk factors by applying an augmented2 version of the Fama 

and French three factor model. In addition, the analysis shows that the returns to 

the pairs trading strategy were lower in the latter part of the sample, something 

the authors attribute to lower returns to the mentioned unknown risk factor. The 

study was first circulated as a working paper in 1998. In 2006 the sample period 

was extended and the paper was officially published. 

 

 

 

                                                           
2
The model usually referred to as the Fama-French three-factor model was published by Eugene Fama and 

Kenneth French in 1992. The aim of the model is to attribute stock returns to exposure to different systematic 
risk factors. The three original factors included were the general market risk exposure, book-to-market ratio, 
and market capitalization. The augmented version used in this study includes momentum and reversal as two 
additional factors. For more information consult Fama & French (1992). 
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Vidyamurthy – “Pairs Trading, Quantitative Methods and Analysis” (2004).  

In this book the author proposes the use of the cointegration framework introduced 

by Engle and Granger in 1987. The property of cointegration is used both to 

identify pairs, and to generate trade signals. Intuitively, the idea of cointegration 

as used in this book can be explained in the following way. Consider two series each 

consisting of two components: one random component and one non–random 

component. In addition, assume that the random component is common for both 

series. Then, by combining the series in a specific ratio, we obtain a new series only 

consisting of the non–random components. By applying the cointegration 

framework Vidyamurthy attempts to identify pairs of stocks where the random 

components cancel out. Pairs with this property would be attractive for a pairs 

trading strategy as their spread would be expected to stay at a constant value. The 

book is essentially a practitioner’s guide to pairs trading and offers no empirical 

results. 

Elliot, Hoek & Malcom – “Pairs Trading” (2005).  

In this paper the authors present an approach to pairs trading where the spread is 

modelled as a random variable with mean–reverting properties. Specifically, it is 

assumed that the spread approximately follows an Ornstein–Uhlenbeck process. 

The approach offers some advantages. Because the spread is modelled as a variable 

with certain statistical properties it is possible to forecast time to convergence and 

probabilities for further divergence. The paper is purely theoretical and offers no 

empirical analysis of the approach.  

Lin, McCrae & Gulaty. –“Loss protection in pairs trading trough minimum profit bounds: A 

cointegration approach” (2006).  

The authors present a variant of the cointegration approach suggested by 

Vidyamurthy (2004). The cointegration coefficient (the slope in a regression 

between the two stocks in a pair) determines the ratio in which the stocks are 

bought or sold. Using this approach the necessary conditions for a trade to deliver a 

minimum profit is derived. The minimum profit is used to cover trading costs and 

profits. The empirical part of this study is limited to an analysis where one single 

pair of stocks is examined. 
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Engelberg, Gao & Jagannathan – “An Anatomy of Pairs Trading: The Role of Idiosyncratic News, 

Common Information and Liquidity” (2009).  

Following the approach outlined by Gatev et al. (2006) the authors document 

significant excess returns. In addition, the paper aims to explain the factors 

affecting the returns. Four main findings are reported. First, the return to a trade 

is sensitive to the time passed between divergence and convergence. The return 

potential decreases exponentially with time after divergence. The authors introduce 

a rule where a position failing to converge in the first 10 days is closed 

automatically. This leads to an increase in profits from 70 bps per month to 175 bps 

per month. Second, it is shown that the profits to a trade are related to news 

affecting the companies. If the observed divergence is the result of firm specific 

news, the divergence is more likely to be permanent. The third observation shows 

that if the information shock is common to both stocks, then some of the profits to 

the trade can be attributed to differences in the time the market needs to adjust the 

prices to reflect the news. Fourth, profits are affected by owner structure and 

analyst coverage. If both stocks in a pair are owned by the same institutional 

investor the profits are reduced. Similarly, if the stocks in a pair are both covered 

by the same analyst, the returns are generally lower. 

Do & Faff – “Does Naïve Pairs Trading Still work?” (2010)  

In this study the authors attempt to replicate the results found by Gatev et al., 

(2006) by using the same dataset as in the original study. Their results do agree 

with those found in the original study with only minor discrepancies. In 

addition, the authors expand the data sample to include observations up to the 

first half of 2008. In the subsample stretching from 2003 to 2008 the excess 

returns have declined to a point where they are essentially zero. The authors 

note that there seems to be an increased risk of non–convergence in this sub–

period, i.e. that the spread continues to widen after a position is opened. 

Bowen, Hutchsinson & O’Sullivan – “High Frequency Equity Pairs Trading: Transaction Costs, 

Speed of Execution and Patterns in Returns” (2010)  

This is one of very few academic studies we have found that examines a pairs 

trading strategy using high frequency data. Following the approach used by 
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Gatev et al. (2006), the authors analyze the year of 2007 in the UK stock 

market. Moderate excess returns are documented. The returns are found to be 

highly sensitive to timing and transaction costs. 

Hoel – “Statistical Arbitrage Pairs: Can Cointegration Capture Market Neutral Profits?”  (2013) 

Following a cointegration approach this paper back–test the performance of a 

pairs trading strategy over the years 2003 through 2013 in the Norwegian stock 

market. Hoel adopts the cointegration weighing approach proposed by Lin et al., 

(2006). The study shows that this implementation would have resulted in large 

losses, both cumulative and in most sub–periods. 

George Miao – “High Frequency and Dynamic Pairs Trading Based on Statistical Arbitrage Using a 

Two–Stage Correlation and Cointegration Approach” (2014).  

Using high frequency data from the US market Miao shows that pairs trading 

during 2012 and 2013 were extremely lucrative. The author reports that the 

strategy outperformed the S&P500 by 34 % over a 12–month trading period 

(before costs). The pairs formation procedure is divided in to two steps; in the 

first step, potential pairs are pre–selected based on their correlation coefficients. 

In the second step, a test for cointegration is applied to identify the best pairs. 

The selected pairs are then subsequently traded when deviations from the 

estimated relationship arise. 
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4.  Different approaches to pairs trading 

In this section we present the details of the most common pairs trading approaches. 

4.1  The Cointegration approach 

This approach relies on the statistical concept of stationary processes. Harris & 

Sollis (2003, 27) defines a time series   as stationary if the following three 

conditions are satisfied: 

  

   [  ]                       

     [  ]                       

       [       ]                       

If the spread between two assets can be confirmed to follow a stationary process it 

is possible that the pair can be used successfully in a pairs trading strategy. By 

satisfying condition 1 the expected value of the spread is constant at all times. This 

implies that the value of the spread is expected to revert to the mean should a 

deviation occur.   

Next, consider two series that are both integrated of first order (    ) and therefore 

non–stationary3. Generally any linear combination of two such series would also be 

     and non–stationary. However, if the series share common stochastic trends it 

might be possible that some linear combination of the series could result in a 

stationary      series. In that case the stochastic terms cancel out and we are left 

with the stationary part. This concept is referred to as cointegration. A more formal 

definition of cointegration found in Lin et al. (2006) is quoted below. 

Let                   be a sequence of I(1) time series. If there are nonzero real 

numbers              such that                        becomes an I(0) series, 

then                   are said to be cointegrated. 

 

This concept is essentially what we want to exploit in pairs trading. We want to 

identify stocks that are exposed to some set of common factors so that their relative 

                                                           
3
 A non-stationary series is a series not meeting the conditions for a stationary process. If a non-stationary 

series is integrated of order 1 the series must be first differenced once in order to become a stationary      
series. When first differencing a series the previous observation is subtracted from the current one. This 
yields a new series consisting of the period-to-period changes.  
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valuations can be reasonably well described as a fixed relationship. The prices of 

the stocks are then expected to follow similar paths and thus yield a stationary, and 

therefore mean–reverting, spread. 

 

The standard framework for evaluating cointegration and estimating the linear 

relationship between stocks is based on regression analysis. The regression takes 

the form of equation 4.1. As discussed in section 2.1 the raw spread between two 

stocks is unsuitable as an indicator of the relative value development. Recall that 

the spread between two stocks is not expected to stay at a constant level even if the 

stock returns are identical. In the cointegration framework, this problem is 

addressed by using the natural logarithm of the prices instead of raw prices. This 

transformation ensures price level independency. See appendix A for further details 

on the transformation. 

                          4.1 

 

The slope coefficient   is referred to as the cointegration coefficient between the two 

securities. In economic terms,   is the expected percentage increase in the price of 

stock A when the price of stock B increases with one percent. This translates to the 

expected return in stock A over some period, given the return in stock B over the 

same period. Vidyamurthy (2004, 106) argues that   should be interpreted as a 

premium that the investor receives for holding one unit of stock A instead of   units 

of stock B. It would also be possible to interpret   in a purely technical sense 

without any economical meaning. A third option is to run a regression with no 

intercept. 

 

After obtaining the coefficient estimate the spread between the two securities is 

defined as 

       ̂                    4.2 
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Given that the estimated relationship in 4.1 is valid, the variable    will be a 

stationary zero mean random variable. Notice that    in equation 4.2 is equal to    

in equation 4.1.  

 

Practically, we can test for cointegration by analyzing the residuals resulting from 

the regression described in equation 4.1. The residuals are tested for stationarity by 

using an appropriate test such as the Dickey–Fuller test. In the Dickey–Fuller test 

we attempt to describe the time series as an       process4 and then test for a unit 

root.  

 

             4.3 

 

If       in equation 4.3 and the results are significant5, we conclude that the 

series is stationary.  

 

The specific test of cointegration outlined here is usually referred to as the Engle–

Granger two–step approach, and is widely used to determine cointegration between 

two variables. While the Engle–Granger procedure is simple and seems to be 

preferred in previous literature, other tests for stationarity are possible. 

Vidyamurthy (2004) analyzes the resulting series of residuals obtained from the 

regression in equation 4.1. The number of times the series crosses the mean are 

measured. A high number of crossings are interpreted as evidence for stationarity.  

 

If the results from the stationarity test indicate cointegration the pair is selected 

for trading. In this step we monitor the value of the spread   . Any value except 

zero indicates a departure from the relationship estimated in 4.1. If the deviations 

exceed some threshold value q a position is opened. If         then, according to 

our estimates, stock A is overvalued compared to stock B. The trader then opens a 

short position in stock A and a long position in stock B. Conversely, if       then 

                                                           
4
 An       process is a process where the current value of the series is dependent on the previous value.  

           . If     we have that        and the series is a random walk. 
5
 The standard critical values do not apply in the DF test. Instead one must use custom critical values valid for 

use with the test. 
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stock A is relatively undervalued compared to stock B and the opposite positions 

are entered. The positions are closed when    decreases to a value lower than some 

threshold value.  

 

Vidyamurthy (2004, 75) makes an attempt to link the cointegration method to the 

arbitrage pricing theory (APT)6. It is argued that the cointegration coefficient 

should be interpreted as the relative risk factor exposure in the two stocks. So that 

one unit of stock A exposes the investor to the same amount of systematic risk as    

units of stock B. Do et al., (2006, 6) criticizes this argument by pointing out that it 

does not account for the risk free rate of return in a way consistent with the APT. 

Specifically, according to the APT an investor holding   units of stock B will receive 

  units of the risk free return in addition to any return due to systematic risk 

exposure. On the other hand, an investor holding one unit of stock A will receive 

one unit of the risk free return in addition to the return due to systematic risk 

exposure. Equations 4.4 and 4.5 illustrate the problem. 

Assume that 

                                    

                                  
4.4 

Where      is the excess return to the systematic risk factors,    the sensitivity to 

those factors and     the risk free return.We now compare a position equal to one 

unit of stock A to a position consisting of   units of stock B. 

                                                  

                                                   
4.5 

We can see that the return to position A will differ from the return to position B 

due to the difference in the risk free returns components.  

                                                           
6
 Stephen Ross introduced the APT in 1976 and argues that stocks are exposed to various systematic risk 

factors, and that the development in these factors dictates the returns to individual stocks. It then follows that 

stocks with identical factor exposures should have identical returns. If this is not the case then arbitrageurs 

would exploit this and thus eliminate the deviation. For more information on the APT we suggest that the 

reader consult the original paper by Ross (1976). 



Statistical Arbitrage: High Frequency Pairs Trading 

  

15 
 

In the light of the discussion above, we must point out that the cointegration 

approach is not the only pairs trading method with little support in current 

asset pricing models. Sparse support in such models is common for all existing 

pairs trading methods. If a pairs trading strategy is able to generate excess 

returns this could be an indication that the current asset pricing models fail to 

capture all sources of systematic risk.  

4.2  The Distance approach 

The distance approach is the most commonly used method in previous academic 

literature. Gatev et al., who introduced this method in their 1998 study, explain 

that it is based on conversations with traders actively applying a pairs trading 

strategy.  

Pairs are identified by calculating the sum of squared differences between 

normalized stock prices over some time period. The pairs are then ranked in 

descending order, based on their sum of squared differences. The procedure for 

calculating the sum of squared differences is shown in equation 4.6. 

  ∑   
  

 

   

  
    4.6 

Where   is the cumulative sum of squared differences between the normalized 

prices.    refers to the normalized stock prices. The pairs with the lowest sums will 

be the pairs with the highest degree of comovement and thus be the pairs with 

greatest potential for use in a pairs trading strategy.  

 

A property of this approach is the implicit assumption of return parity; I.e. this 

method matches stocks that yield the same return in the same period. This point is 

sometimes mentioned as a weakness of this method (Do et al., 2006). On the other 

hand the authors of the mentioned study point out that the nonparametric nature 

of this approach leaves less room for estimation errors than more complex methods. 

 

It is important to note that while cointegration is not explicitly tested in equation 

4.6, the distance approach also relies on the cointegration property. (Gatev et al., 

2006) argues that most, if not all, high–potential pairs identified, will be pairs of 
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cointegrated stocks. Theoretical justification for this assertion is found by assuming 

a pricing framework where asset prices are driven by the development in common 

non–stationary factors. Bossaerts & Green (1987) and Jagannathan & 

Viswatnathan (1988) are cited as examples of such pricing frameworks.  The pairs 

with the lowest sums of squared differences are expected to be pairs with near–

equal exposure to the same systematic factors. The pairs will therefore move 

together in a fashion that leads to cointegration. 

 

Assuming that an attractive pair is identified, we shift to the trading period. In this 

step the spread between the securities is calculated and monitored continuously. If 

the spread   exceeds some predefined value   a position is opened.  

 

             

  If                                             

  If                                              

 

4.7 

The position is closed when the spread converges to a value equal to a 

predetermined closing condition. In previous literature a position is often opened 

when the spread deviate by more than two standard deviations as measured over 

the formation period. (Gatev et al., 2006; Do & Faff, 2010). In the mentioned 

studies the position is closed at the next crossing of the normalized price series. 

Naturally, a higher threshold for entering a position would yield a higher profit per 

trade than a lower value. On the other hand, a lower threshold–value will lead to 

more trades, potentially increasing the total profits. It is therefore difficult to 

determine whether total profits increase or decrease with higher threshold values. 

 

4.3  The Stochastic approach 

In this framework the spread between two stocks is modelled as a stochastic 

variable with mean reverting properties.  

Previous literature does not offer any guidelines describing how to identify 

potential pairs. Instead it is assumed that such a pair is already identified. The 
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pairs identification could be done qualitatively, by choosing stocks with similar 

fundamental characteristics. Alternatively, one of the two previously discussed 

formation methods (the distance approach and the cointegration method) could be 

used. 

 

Assuming that a pair of appropriate stocks is identified we provide an outline of the 

method. The approach assumes a continuous time framework where the spread is 

modelled as an Ornstein–Uhlenbeck process. The Ornstein–Uhlenbeck process is 

often described as the continuous time counterpart to the discrete       process7 

(Neumaier & Schneider, 1998). The spread is defined as the difference in the 

prices8 between stock A and stock B. This difference is assumed to be driven by a 

state variable   that follow a state process described in equation 4.8. 

 

                     √      4.8 

   

Where  ,  and   are constants, and    is a Gaussian noise term with zero mean and 

a standard deviation of one. 

 

   will then be a normally distributed variable with the following properties  

 

 
          

   4.10 

 

With 

     
 

 
               4.11 

 

And 

   
   

   

         
               4.12 

 

If the value of     is such that         . Equation 4.8 can also be represented 

as 

 

                                                           
7
 For a description of the AR(1) process, see footnote 4. 

8
 In a review of the method Do et al., (2006) stresses the importance of using log-transformed prices in order 

to achieve a price-level independent spread. 
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                    4.13 

 

Where                  and     √ .  

We then let           with {            satisfying the stochastic differential 

equation 

 

       (       )             4.14 

 

where      is a standard Brownian motion. The parameters of the Ornstein–

Uhlenbeck process (A, B and C in equation 4.13) can now be estimated. The 

parameters can easily be estimated using OLS (an example is provided in appendix 

B). However, the previous literature also employs more sophisticated iterative 

algorithms such as the Kalman Filter9. The variable      is then normally 

distributed with an expectation conditional on the previous observation. Appendix 

C shows the calculation of the conditional expectation and the conditional 

probability distribution. 

 

The actual and observable spread   is then assumed to be equal to the state 

variable plus some noise. 

            4.15 

 

Where     and    is        . The spread is therefore also normally distributed 

with the same expectation as   .The trader can now compute the conditional 

expectation of    given     . A position is opened if the current spread deviates 

significantly from the estimated value. 

 

Do et al. (2006) point out that this method offer several advantages. Because the 

spread variable is assumed to be normally distributed the variable captures the 

property of mean reversion explicitly. Furthermore, it facilitates forecasting, 

allowing the trader to calculate, amongst other things, the estimated time until 

                                                           
9
 An iterative algorithm taking a series of noisy measurements observed over time as input and returns an 

estimate of the true value. The estimate at time t is a weighted average of the prediction given the 
observation at t-1 and the actual observation at time t. The method is named after Rudolf Kalman who 
developed the procedure. 



Statistical Arbitrage: High Frequency Pairs Trading 

  

19 
 

convergence. On the other hand, the mentioned authors also point out that this 

method, like the distance approach, assumes return parity. A perhaps more 

fundamental involves the implicit assumption of normality in the spread between 

two equities. This assumption does not hold empirically (Steele, 2014). 

 

Despite the mentioned advantages, the stochastic approach has not been tested 

much empirically. We have not been able to find papers empirically testing the 

stochastic approach. 

 

5. Simulation testing and choice of approach 

In this thesis we will focus on the distance and cointegration approaches. The 

methods both offer a complete strategy for pairs trading, including an algorithm for 

pairs selection. Furthermore, both approaches have been tested empirically and 

have been found capable of delivering excess returns (Gatev et al. 2006; Miao, 2014; 

Bowen et al., 2010).  

 

In this part of the thesis we generate simulated data. We use this data to test the 

performance of the distance method versus the cointegration approach. Based on 

the results from the testing we select the approach to be used in the empirical part 

of this paper. The tests we conduct will focus only on the procedures for pairs 

selection. The trading step of a pairs trading strategy requires us to specify several 

different parameters10. Determining the superior approach is then difficult as each 

parameter configuration will yield different, and perhaps contradictory, results. On 

the other hand, the pairs selection algorithms proposed in the previous literature 

yield unambiguous results without requiring us to specify any parameter values. 

We therefore base our choice of method by examining the performance of the two 

selection procedures.  

  

                                                           
10

 Parameters are amongst others: entry and exit thresholds, relative weight of capital placed in the long and 
short leg of a portfolio, number of pairs traded etc. 
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We generate simulated data using two different models. Common for both models is 

that the generated simulated stock pairs are moving according to a time–invariant 

relationship. The stock pairs generated will therefore mimic real world stock pairs 

that would be suitable for pairs trading. 

 

In the first model we produce pairs of stocks where the cumulative returns are in 

parity. (I.e. if stock A increases by 1% over some time period this is also expected to 

be the increase in stock B). In the second model we allow for some pairs to have 

returns that are not in parity.   

 

Both methods perform satisfactory under the first setup with the distance approach 

slightly outperforming the cointegration method. Using data generated with the 

second model we find that the distance approach still performs well but slightly less 

so than the cointegration approach. However, the most important insight resulting 

from the simulation testing is not directly related to the pairs ranking. The results 

show that the cointegration coefficient estimates appear to be very sensitive to 

noisy data. The estimates quickly deteriorate as the level of noise increases. Based 

on the results found in this part we decide to use the distance approach in the 

empirical part of this thesis. In the following section we present the procedure for 

the simulation testing and discuss the results in detail. The python code used to 

implement the pairs identification procedures is found in appendix D. 

 

5.1 Model one – The granger representation theorem 

The data used in the first part of the simulation testing is generated using a set of 

equations commonly referred to as the Granger representation theorem. 

 

We have 

 

 

                           

                           
5.1 

 

Where    and    are the rates of error correction, specifying at which rate the series 

return to the equilibrium after deviations occur.   specifies the equilibrium 
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distance between the two series. For simplicity we set      and            

meaning that the equilibrium distance between the series is zero. Furthermore,    

is always equal to    . The error terms are two normally distributed random 

variables with zero mean and a standard deviation of one. We examine different 

specifications for the error terms. In the base case the terms are uncorrelated. In 

the alternative cases we specify various levels of correlation between the terms. All 

series generated will consist of an arbitrarily selected number of 5 000 

observations. 

 

We define ten groups each consisting of ten simulated pairs. The groups are 

distinguished by only containing pairs with a specific value of    . The sets of error 

terms are common for all groups. This means that the first pair in the first group 

will use the same set of error terms as the first pair in the second group and so on. 

Therefore, the first pair in any group will be identical to the first pair in any other 

group except for the different values of   . The same is true for the second, third 

etc. pairs in each group. This is important as it ensures a consistent ranking by 

isolating the impact of changing the error correction rates. 

 

Table 5.1 – Simulation parameter values 

Group     No. of pairs in group 
1 0.001 10 

2 0.005 10 

3 0.01 10 

4 0.02 10 

5 0.05 10 

6 0.1 10 

7 0.2 10 

8 0.3 10 

9 0.4 10 

10 0.5 10 

Notes: This table presents the parameter configuration for the tests on data generated by 

 the modified granger representation model. We test the methods for  pairs 

 formation by their ability to assign the pairs to their respective groups. 

 

    Error correction rate. Determines the magnitude of the error correction that 

 follows  deviations from the equilibrium between the series. Note that        . 

 

 

We will vary the error correction rate    according to the table above. Recall that 

        so we are effectively varying both    and   . The maximum value we 
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specify for the error correction rates 0.5. This value results in the closest possible 

relationship11 between the stocks in a pair. Values lower or higher than 0.5 leads to 

under– or over–corrections compared to the case where        . 

 

The outlined setup results in a total of 100 pairs. We apply the pairs formation 

algorithms to the simulated pairs and observe which pairs that are identified as 

having the highest potential for pairs trading. Pairs with low values for    is 

expected to be placed at the bottom of the ranking. The reason for this is that the 

series in a pair will only loosely follow each other when the error correction rates 

are low. In contrast, pairs with higher values for the error correction rates tend to 

follow each other closely and should be ranked higher. Therefore, applying the 

pairs ranking algorithms to the 100 simulated pairs should sort all pairs in 

descending order based on their error correction rate values. As we test ten 

different error correction rate values, this translates to assigning the pairs to ten 

different groups  

 

5.1.1 Results  

The complete ranking of the pairs is found in Appendix E. The distance approach 

places all 100 pairs in the expected groups with no exceptions. The cointegration 

approach also assign all pairs to their respective groups when regressing series   

on series  . However, reversing the variable ordering and regressing   on   turns 

out to misplace two pairs. This observation exposes an undesirable property of the 

cointegration approach; the ranking is sensitive to the ordering of the variables in 

the regression setup. In other words, regressing series   on series   gives a 

different test–statistic and cointegration coefficient than regressing   on  .  

 

The above discussed problem of order sensitivity is previously discussed in Hoel 

(2013) and in Gregory (2011). We note that in the first paper the cointegration 

coefficient is used as the hedging factor. i.e. how much to go long/short in each stock 

in a pair.  Hoel points out that if the OLS regression is used to determine the 

                                                           
11

 This argument is based on simulation results.  We run 1 000 000 trials changing the error correction rate 
randomly between 0 and 1 and found 0.5 to be the optimal value. Code and results are available on request.  
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coefficients, the resulting hedge factors12 would be inconsistent. The solution 

suggested in the two mentioned papers is to replace the OLS regression procedure 

with a different procedure called orthogonal regression. The OLS yields an 

expression that minimizes the vertical distance to the fitted line. Using the 

orthogonal regression the perpendicular distance from the data–points to the fitted 

line is minimized. This results in invertible coefficients, and yield test statistics 

that are insensitive to variable ordering. A more elaborate description of the 

orthogonal regression procedure is found in Appendix F.  

When using the orthogonal regression 98 out of 100 pairs are assigned to the 

expected groups. The same pairs that were “misplaced” when using OLS is 

misplaced also when applying the orthogonal regression.  

 

In addition to the test setup described above, we explored several cases where the 

error terms in equation 5.1 were correlated. These cases are important to 

investigate as pairs formed from related stocks are likely to experience correlated 

idiosyncratic shocks. Consider the two soft drink producers Pepsi and Coca Cola. It 

is plausible that a negative event affecting Coca Cola will result in higher sales for 

Pepsi. An example of such a scenario could be a case where Coca Cola experiences 

sudden delivery problems. Obviously this would negatively impact the revenues of 

Coca Cola.  At the same time it is possible that some consumers originally planning 

to buy Coca Cola instead buys Pepsi and therefore contribute positively to the 

revenues of Pepsi. We model such a relationship by allowing for correlated error 

terms. We found no significant changes when such correlations (both positive and 

negative) were specified. Both methods produced rankings identical to the case 

with uncorrelated error terms. 

 

5.2 Model two – The Stock & Watson Common trends model 

Looking at the results from the previous analysis it becomes apparent that the 

Granger representation theorem produces pairs of simulated stocks with parity in 

the returns. This conclusion is motivated by the obtained cointegration coefficient 

                                                           
12

 In this setting this means that the positions taken in each stock a pair would be different in the case where 
the trader regress stock   on stock   compared to the case where stock   is regressed on stock  . 
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estimates (appendix E). The cointegration coefficient values are essentially one for 

the majority of the pairs. The interpretation of the slope variable in a log–log 

regression is the change expected in   conditional on the change in  . A 

cointegration coefficient equal to one therefore implies that the cumulative returns 

of the simulated stocks are in parity. This could be a problem for the validity of our 

results. Do et al. (2006, 4) criticizes the distance approach for implicitly assuming 

return parity between the stocks in a pair. It is claimed that this assumption is a 

serious limitation of the method and that the distance approach only is able to 

identify pairs with parity in the returns. Our setup, producing only pairs with 

parity in returns, might therefore unintentionally be biased in favor of the distance 

approach. For that reason it is necessary to explore how the methods fare when we 

allow for pairs to have returns related in other ways than in a one to one ratio. For 

this purpose we will use a modified version of a model commonly referred to as the 

Stock & Watson common trends model (Vidyamurthy 2004). 

 

The original Stock & Watson model is shown in equation 5.2. The series both 

consist of a common nonstationary component   and an individual stationary 

component    and   . 

 

 

 

              

              
5.2 

 

The series share the common trend    but their exposure to the trend vary 

depending on the values of    and   . This implies that it is possible to construct a 

new series   by forming a linear combination of   and   such that the common non–

stationary component cancels out. This would leave us with a series consisting only 

of the stationary components. 

 

 

 

                         (            

=                       
5.3 

 

In order for the common trend to cancel out we must have that 
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5.4 

 

By setting   equal to the value found in 5.4, we are left with only the components. 

 

             5.5 

 

Recall that a stationary series has the property of mean reversion. Two stocks that 

can be combined to produce a stationary spread therefore have the potential to be 

used for pairs trading. 

 

As previously mentioned we will use a slightly modified version of the Stock & 

Watson model. The modifications enable us to control how closely the stock returns 

are related. The model we use is specified in equation 5.6. 

 

 

 

                     

                     
5.6 

 

Where    is a non–stationary trend that is specific for each series.    is a constant. 

As in the original model    is the common non–stationary trend. The stationary 

component of the series is equal to a constant plus some Gaussian noise:         

   .  This model enables us to control the return relationship between the simulated 

stocks by adjusting    and   . In addition we can control the strength of the 

relationship between the stocks by increasing or decreasing the sensitivity to the 

non–stationary factors. This is done by specifying different values for    and   . As 

in the previous test we will create a total of 100 pairs with 5 000 observations in 

each series. The table below shows the parameter configuration setup used to 

generate the data. The parameters not specified in the table are discussed 

separately. 
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Table 5.2 – Simulation parameter values 

          =     Group  
Number of 

pairs 

0.1 1 

 0.1  1  5 

 0.5  2  5 

 1  3  5 

 2  4  5 

 3  5  5 

0.25 1 

 0.1  6  5 

 0.5  7  5 

 1  8  5 

 2  9  5 

 3  10  5 

0.5 1 

 0.1  11  5 

 0.5  12  5 

 1  13  5 

 2  14  5 

 3  15  5 

1 1 

 0.1  16  5 

 0.5  17  5 

 1  18  5 

 2  19  5 

 3  20  5 

Notes: This table presents the parameter configuration for the tests on data generated by 

 the modified Stock & Watson common trends model. We test the methods for  pairs 

 formation by their ability  to rank the pairs according to the setup in this table. 

 

    Sensitivity to  the non–stationary factor common for both simulated stocks 

   Sensitivity to the non–stationary factor specific for the simulated stock.
  

 

 

As seen in the table above, the sensitivity to the common factor in series   is always 

set to one      ). Therefore, as an example, if we set        and run a regression 

on the form of equation 4.113, we expect the estimated value of   to be close to 0.5. 

Likewise, we expect     if we reverse the order of the regression.  

The non–stationary terms    and    are the cumulative sums of a series of random 

variables that are        . Finally we set                 and        =         . 

This means that the stationary component for both series oscillates around a value 

of 1 00014. The second and third components of the series are the random walk 

elements introduced by the two non–stationary terms. Five sets of noise are 

generated and used in all groups. As discussed earlier this is helpful when trying to 

isolate the impact resulting from changes in the parameters. This setup will 

generate pairs with close relationships when the exposure to the individual non–

stationary factors    and    are low.  

                                                           
13

 That is                        
14

 The value 1 000 is selected in order to avoid negative observations. 
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5.2.1 Results  

The cointegration approach correctly identifies all the pairs least sensitive to the 

specific non–stationary factors i.e. the most closely related series. However, as the 

amount of noise added to the series increases we observe some deviations. 

Generally, the approach seems capable of identifying pairs, even when the returns 

are not in parity. Observing the results from the distance approach we find that 

pairs with       and low sensitivity to the non–stationary terms are ranked as 

the most promising candidates for trading. This is not surprising; recall the 

criticism put forward by Do et al. (2006).  The way the ranking algorithm in the 

distance approach is constructed leads it to rank pairs with parity in the returns 

higher than pairs with no such parity. However, in spite of the parity assumption 

the distance measure also returns a decent ranking of the pairs not in parity. As in 

the previous case, specifying correlations between the error terms does not change 

the results. The complete ranking is found in appendix G. 

 

5.3 Consequences of inaccurate cointegration coefficient estimates 

Analyzing the results from the tests we notice an unexpected property of the 

cointegration coefficient estimates. The cointegration approach produces good 

estimates of the coefficient when the level of noise added to the series is low. 

However, as the noise level increases the estimates quickly deteriorate. When we 

examine the bottom half of the ranking tables, (appendix E and G) we see that 

several of the coefficient estimates are very poor. The most extreme cases are 

observed when applying the orthogonal regression; many of the estimates have the 

wrong sign. In addition, some of the estimated coefficients have two–digit values 

and are clearly absurd. The results using OLS is somewhat better but a significant 

fraction of the estimates still have the wrong sign and are generally inaccurate15.  

 

When practically implementing a pairs trading strategy the trader would use 

financial time series to determine the relationship between the stocks in a pair. 

                                                           
15

 It is important to notice that the inaccuracies are observed even if the Dickey Fuller tests show that the 
series are highly cointegrated with test statistic values below -20. 
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Even in the case where two stocks are identically exposed to the same risk–factors 

it is reasonable to assume that the observed relationship between the stocks would 

be a noisy realization of the underlying true relationship. This is due to random 

idiosyncratic shocks16 affecting stocks. As our results show, noisy data might result 

in inaccurate estimates of the cointegration coefficient.  

 

When basing a pairs trading strategy on the cointegration approach the 

cointegration coefficient estimate is crucial. The estimate is used in all steps of the 

process. A signal instructing the trader to open a position is generated when the 

value of the spread exceeds the threshold value. The amount of capital placed in 

stock A relative to stock B will be dictated by the estimated coefficient value. 

Finally, the position is closed when the spread decreases to a level below the exit 

threshold. Imagine what would happen should the estimated coefficient be 

incorrect: Entering and exiting positions would be dictated by a false or inaccurate 

relationship. In addition the ratio of which the stocks are bought and sold would 

also be determined by an invalid relationship. It is easy to imagine that this would 

lead to unexpected results, and perhaps significant losses. 

 

5.4 Choice of method 

Given the ranking results produced by the two methods and the observed 

inaccuracies of the coefficient estimates, we decide to use the distance approach for 

the empirical analysis. This has two potential consequences; at one hand we might 

exclude possible profitable trading opportunities because we risk overlooking pairs 

without parity in the returns. On the other hand, given that the distance approach 

requires less parameter estimates, we reduce the risk of losses resulting from 

inaccurate estimates.  

 

 

                                                           
16

 This could be market shocks such as liquidity shocks or business related shocks such as fires, equipment 
malfunction etc. 
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6  Testing a high frequency pairs trading strategy 

In the last part of this thesis we back–test a pairs trading by strategy applying the 

distance approach described in the theoretical part. We first discuss the setup of 

the test before presenting the results.  

6.1  Data 

Our dataset consists of three months of high frequency intraday data. The sample 

period starts at January 2nd 2014 and ends on March 31st. During this period there 

were a total of 63 business days. The universe of stocks considered are the stocks 

listed on the OBX17 index. The OBX index consists of the largest 25 stocks listed on 

the Oslo Stock Exchange. This results in a total of 276 possible pairs. Considering 

only the largest stocks ensures that the stocks we use will have an adequate level of 

liquidity. The liquidity of the stocks selected for trading is a critical factor when 

testing any strategy that involves selling shares short. In low liquidity stocks there 

are often a low supply of shares made available for shorting. This could make a 

seemingly profitable opportunity impossible to exploit.  

All data were downloaded daily from the Norwegian web broker Netfonds trough 

an automated process. The data were manually adjusted for dividends and 

corporate actions (see appendix H for a complete list of the adjustments made).  

The raw data is listed in a chronological Tick–by–Tick format. The nature of the 

lists is such that whenever a change in the price quotes occurs, a new entry is 

appended. Each entry consists of a timestamp, the bid price and the ask price. The 

uneven update frequency of the lists leads to two practical problems. First, the 

                                                           
17. One stock – pharmaceutical company Algeta – is excluded from our universe. The background 

for this exclusion is an offer to buy all shares in Algeta for 362 NOK per share put forward the 

19th of December 2013. This offer effectively pegged the price of Algeta stock to a small range 

just below the bid price. The trade volume also dropped significantly after this bid.  This makes 

the stock unsuitable for pairs trading as the stock no longer is affected by factors common with 

other stocks but only reacts to news regarding the transaction. Due to the low trade volume in it 

is also unclear whether it would have been possible to short Algeta during this period. We 

therefore argue that a trader following a Pairs Trading strategy would have excluded Algeta 

from the possible pairs based on information available at the time. The bid was accepted in 

February 2014 and Algeta was eventually delisted in the beginning of March 2014.  
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price observations of the various stocks do not coincide in time; there can easily be 

a change in one stock at one time without a corresponding change in any other 

stock. Second, the number of observations will vary from stock to stock as there is a 

different number of price changes occurring in different stocks. Both these 

problems are however easy to overcome. The lists contain all changes happening 

over the trading day. This implies that if no change is recorded at a given point in 

time, the bid and ask prices offered must still equal to the prices in the previous 

entry. It is therefore possible to compare the observations and “stretch” out the lists 

by copying the last observation. This ensures that all stocks will have the same 

number of observations, and that the observations coincide in time. We illustrate 

the expansion procedure with a concrete example. 

 

Example – Expanding lists of observations 

Stock A  Stock B 

Time 

(HHMMSS) 
Bid Ask  

Time 

(HHMMSS) 
Bid Ask 

090000 100 100.1  090000 51 51.5 

090002 100 100.2  090001 51.1 51.4 

090003 99.9 100.1  090004 51.1 51.2 

… … …  … … … 

Lists with raw observations  

 

In this example we have lists of observations of two fictional stocks. As we can see, 

the timing of the observations is not equal. While both stocks have an observation 

at time 09:00:00, only stock B has an observation one second later. Due to the fact 

that the lists are updated only when changes in quotes occur we can easily solve 

this problem.  The information at time 09:00:01 in stock A must be equal to the 

quote at 09:00:00. We therefore create a new observation at 09:00:01 with identical 

values as the 09:00:00 observation. This process is repeated for both stocks and for 

all timestamps. The tables below show the lists of observations that would result 

when applying the process to the lists in this example. 

 

 



Statistical Arbitrage: High Frequency Pairs Trading 

  

31 
 

Stock A  Stock B 

Time 

(HHMMSS) 
Bid Ask  

Time 

(HHMMSS) 
Bid Ask 

090000 100 100.1  090000 51 51.5 

090001 100 100.1  090001 51.1 51.4 

090002 100 100.2  090002 51.1 51.4 

09003 99.9 100.1  09003 51.1 51.4 

09004 99.9 100.1  09004 51.1 51.2 

… … …  … … … 
Lists with observations after completion of the expansion procedure. 

 

After the expansion procedure is completed for all stocks we trim the lists by 

keeping only the last observation in a given second. This gives us 26 400 

observations for each stock each day, equally spaced at one second intervals. 

Trimming the lists has two benefits: First, it significantly reduces the time needed 

for computation. Second, it enables us to analyze the impact on the returns if we 

enforce a delay between trade signal and order execution.  

6.2  Formation and trading periods 

We specify a length of the formation period that is twice the length of the trading 

period, as this seems to be the standard in the academic literature (Gatev et al., 

2006; Do & Faff, 2010; Miao 2014). We further follow the mentioned studies and 

construct a series of overlapping sample periods. This is important to maintain a 

separation between the in and out of sample periods. The figure below shows a 

graphical representation of the formation and trading periods. 

 

First formation period 
First trade 

period       

  
Second formation period 

Second trade 

period     

    
… … 

  

      
Last formation period 

Last trade 

period 

Figure 6.1 – Graphical representation of trading and formation periods.  

 

In this thesis we test the strategy using two different lengths for the periods. In the 

first setup we let the formation period be two days followed by a one day trading 

period. In the second setup we double the timeframe and specify formation and 
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trading periods of four and two days respectively. Engelberg et al., (2010) show that 

the profits to a pairs trading strategy are related to news events. Specifically, it is 

shown that there is a delay between the time a news event is published and the 

time the stock prices fully reflect the news. The speed in which the market 

participants react to such news sometimes differs slightly from stock to stock. 

These differences cause a lead–lag relationship in the prices that could explain 

some of the profits to a pairs trading strategy. A two day trading period therefore 

allows us to capture profits arising from situations where prices diverge on one day 

and return to equilibrium the subsequent day.  

 

6.3  Practical Implementation of the distance approach 

6.3.1  Pairs formation 

The pairs are formed by applying the distance approach. Pairs are ranked based on 

their total sum of squared deviations when comparing the normalized stock prices. 

The top n pairs are then selected for trading. A more detailed description of the 

procedure is available in section 4.2.  

Practically we must adjust for missing quotes in the opening seconds. This is 

necessary because there are small inequalities as to when trading in the different 

stocks start. Normally quotes are available for all stocks within the first 20 seconds 

of the trading day. By staggering the start of the calculation until all stocks have 

quotes we ensure an equal number of observations for all pairs. We use the 

midpoint of the bid and ask prices as an approximation for the true price of the 

asset. The use of mid–prices greatly simplifies the practical aspect of implementing 

the formation algorithm.  

6.3.2  Pairs Trading  

With the candidate pairs identified we continue to the trading period. As in the 

formation period we use the midpoint between the bid and ask quotes as an 

estimate of the true price. We then use these prices to calculate and monitor the 

level of the spread. When the spread signals a trade the transaction is carried out 
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using the actual bid and ask prices. This is crucial as the indirect transaction costs 

resulting from the bid/ask spread could erode any profitable patterns found using 

mid–prices. 

We enter a position when the spread between the two stocks exceeds the specified 

entry–threshold (  in equation 4.6). The position is closed at the next crossing of 

the normalized price series. After a crossing the pair is immediately available for 

trading should the prices diverge again. If a position is open at the end of the 

trading period the position is automatically closed. We follow Gatev et al. (2006) 

and let the proportions of the long and short positions be equal. That is; the market 

value of the long position is equal to the market value of the short position.   

When a specific pair is evaluated we wait until both stocks in the pair have quotes 

before we start the trading. As previously mentioned all stocks are usually trading 

normally within 20 seconds after the exchange opens. We allow for trading on 

quotes posted between 09:00 and 16:19:5918. As suggested by Nath (2003) and 

Caldeira & Moura (2012) we implement an option to specify a stop–loss limit.  This 

function will automatically unwind a position when a loss of a certain amount 

occurs. If a position is closed because the stop–loss limit was exceeded the pair 

cannot be reopened for the rest of the trading period. 

We make an attempt to protect the strategy from losses resulting from entering 

irrational positions. By an irrational position we mean a position that would 

immediately result in a loss due to excessive costs. Specifically, we will not enter a 

position if the estimated loss resulting from the bid/ask spreads together with the 

approximate commission costs (L), are larger than the potential profit ( ) that 

would result from convergence.  

The estimated transaction costs are calculated according to equation 6.1. 

   
    

       
    

 
  

    
       

    

 
     6.1 

                                                           
18

 The opening hours for Oslo Stock Exchange are from 09:00 to 16:30. However, at 16:20 the continuous 
trading stops and a closing auction is initiated. During this auction existing orders are matched before trading 
is closed. The nature of the auction makes the bid/ask quotes posted unreliable as there is no guarantee that 
an order would be filled.  Therefore trading after 16:20 is not permitted in our tests. 
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The approximate commission per trade C is multiplied19 by 4. Equation 6.2 shows 

the calculation of the potential profits using mid–prices. 

       
            

        
 6.2 

 

A position cannot be entered if       . When performing this check we implicitly 

assume that the spreads will be equal both when we enter and exit the positions. 

Obviously we can only observe the spreads when we enter a position. Therefore a 

trade could still result in a loss even if the above condition is fulfilled. 

The python code for the trading routine is found in appendix I. 

 

6.4  Return computation 

As the strategy involves taking simultaneous short and long positions it is not 

immediately clear how profits should be calculated. The reason for this is due to the 

possibility of financing a significant part of the long leg with the proceeds from the 

short leg.  This results in a gearing effect and it is unclear how much additional 

capital the investor needs to commit to the strategy.  This complicates the return 

calculation. 

 The payoffs to a long/short pair are a series of positive cash–flows that occurs at 

different times during the trading period, whenever a trade is successfully 

completed. In addition, at the end of the period any open position is closed, either 

resulting in a profit or in a loss. It is also possible that no position was opened 

during the trading period. Obviously, in that case there would be no cash–flows 

from the pair.  

We will follow Gatev et al. (2006) and compute the returns as the return to total 

committed capital. This is a conservative method that acknowledges the fact that 

there are certain margin requirements that need to be met when going selling stock 

short. Expression 6.3 shows how returns to committed capital are computed. 

                                                           
19

 We multiply the commission per trade by four since a total roundtrip consists of two transactions when 
entering the position and two transactions when exiting. This is an approximation because the costs 
associated with exiting a position are dependent of the actual value of the position at the time of realization. 
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∑   

 
   

    
  6.3 

 

Where the numerator is the sum of the cash flows generated by the pair. L and S 

refer to the amount of capital placed in the long and short positions.   refers to the 

capital requirement fraction as a percentage of the market value of the position 

being sold short. This fraction ranges from as low as 15 and up to 100 %, depending 

on the specific volatility, recent history etc. of the asset. We therefore follow Gatev 

et al. (2006) and Hoel (2013) and set    .  This will result in more conservative 

return estimates than had a lower value been specified.  

Profits from a pair during a period are reinvested so that the sum of the cash flows 

is the compounded return to the pair over the period. When forming portfolios of 

several pairs we let the amount of capital committed to each pair be equal. The 

total portfolio returns are therefore simply the arithmetic average of the returns 

from the pairs in the portfolio.  

Calculating returns as described here ensures that the returns we obtain will be 

comparable with the returns reported by Gatev et al. (2006) and Hoel (2013). The 

latter study is of special interest as it is the only paper we know of that examines 

pairs trading strategy in the Norwegian stock market.  

 

6.5  An algorithmic representation of the test setup 

We have now outlined all major steps in the trading strategy we will test. In order 

to sum up these steps we now present an algorithmic representation of the 

complete testing procedure. 

1.  Construct cumulative return indexes for the stocks over the formation 

period. The indexes include dividends and corporate actions. Normalize the 

indexes so that they all start with a value equal to one. 

2. Calculate the sum of squared differences for all possible combinations of 

stocks. Rank the pairs based on their sum of squared differences. The   pairs 

with the lowest sums are selected for trading. 
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3. From this point on we consider a specific pair selected for trading. Normalize 

the prices over the trading period by following the same procedure as in step 

1.  

4. Monitor the spread    between the two stocks. If the absolute value of the 

spread exceeds the limit   a trading signal is given.  

4.1  If                                                        

4.2 If                                                       

4.3 Control for costs using expression 6.1. If the estimated costs (L) are 

lower than the current spread (  ) open a position in accordance with 

the trading signal.  

5. Exit an open position if one of the following occurs: 

5.1 The stocks converge so that    crosses zero. The pair is still available 

for trading, return to step 4.  

5.2  The position is closed by the stop loss condition being met when the 

value of the position declines to a value below the maximum loss 

tolerated. The pair is no longer available for trading. 

5.3 The trading period is over.  

6. Calculate and report return on pair. Return to step 3 if there are still pairs 

left to be considered. 

7.  Report total portfolio return (the average return to the top   pairs) for the 

trading period.  

8. Report compounded returns for all trading periods. 

 

6.6  Results 

We now present the results of the empirical analysis. We will first consider an 

unrestricted case where pairs are allowed to be formed with stocks from different 

industry sectors. Next, we examine a restricted case where pairs are formed only by 

matching stocks that both operate within the same industry sector.  

We report the results gross of trading costs before examining the impact of such 

costs in detail. In addition we will assess the impact when the trader faces a delay 

between trade signal and order execution. 
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6.6.1  Unrestricted pairs matching 

The table below shows the results from the unrestricted case. The returns, 

standard deviation and Sharpe ratios are annualized figures.  The trade column 

shows the number of roundtrips completed during the three month sample period.  

Table 6.1 – Results Unrestricted Case 

 Portfolio 

Parameters   
Top 5 Ranked Pairs  Top 10 Ranked Pairs  All Pairs 

No SL q Time 
 

Return   SR Trades 
 

Return   SR Trades 
 

Return   SR Trades 

1 2 % 1 2:1 
 

-60.81 % 5.4 % -11.8 903 
 

-56.33 % 4.2 % -14.2 1 709 
 

-42.68 % 3.1 % -14.6 26 664 

2 2 % 2 2:1 
 

-45.14 % 5.8 % -8.3 473 
 

-39.29 % 4.6 % -9.2 879 
 

-24.17 % 2.5 % -11.0 12 026 

3 2 % 3 2:1 
 

-36.87 % 5.4 % -7.4 300 
 

-29.28 % 4.1 % -7.8 564 
 

-14.56 % 1.7 % -10.2 6 484 

4 2 % 5 2:1 
 

-26.46 % 4.2 % -7.0 148 
 

-20.26 % 3.3 % -7.1 271 
 

-6.58 % 1.0 % -9.3 2 296 

 
                  5 5 % 1 2:1 

 
-60.47 % 5.2 % -12.2 903 

 
-54.31 % 4.2 % -13.8 1 712 

 
-42.71 % 3.4 % -13.4 26 709 

6 5 % 2 2:1 
 

-44.48 % 5.6 % -8.5 473 
 

-37.34 % 4.8 % -8.4 880 
 

-23.62 % 2.7 % -9.9 12 040 

7 5 % 3 2:1 
 

-35.89 % 5.1 % -7.7 300 
 

-26.92 % 4.3 % -7.0 564 
 

-14.34 % 2.0 % -8.8 6 488 

8 5 % 5 2:1 
 

-24.26 % 3.7 % -7.4 148 
 

-16.40 % 3.2 % -6.0 271 
 

-6.62 % 1.5 % -6.5 2 298 

 
                  9 None 1 2:1 

 
-60.47 % 5.2 % -12.2 903 

 
-54.31 % 4.2 % -13.8 1 712 

 
-43.06 % 3.5 % -13.1 26 709 

10 None 2 2:1 
 

-44.48 % 5.6 % -8.5 473 
 

-37.34 % 4.8 % -8.4 880 
 

-23.81 % 2.8 % -9.8 12 040 

11 None 3 2:1 
 

-35.89 % 5.1 % -7.7 300 
 

-26.92 % 4.3 % -7.0 564 
 

-14.44 % 2.0 % -8.7 6 488 

12 None 5 2:1 
 

-17.23 % 3.7 % -5.5 148 
 

-16.40 % 3.2 % -6.0 271 
 

-6.18 % 1.4 % -6.7 2 298 

 
                  13 2 % 1 4:2 

 
-41.24 % 5.5 % -8.1 452 

 
-38.85 % 3.9 % -10.8 857 

 
-24.86 % 2.9 % -9.5 12 180 

14 2 % 2 4:2 
 

-30.98 % 5.5 % -6.2 240 
 

-27.07 % 4.5 % -6.7 447 
 

-12.62 % 2.1 % -7.4 5 560 

15 2 % 3 4:2 
 

-20.76 % 4.8 % -5.0 157 
 

-20.76 % 3.9 % -6.1 283 
 

-6.83 % 1.6 % -6.0 3 078 

16 2 % 5 4:2 
 

-21.25 % 3.3 % -7.3 78 
 

-17.91 % 2.8 % -7.4 137 
 

-2.17 % 1.1 % -4.7 1 106 

 
                  17 5 % 1 4:2 

 
-37.00 % 5.6 % -7.1 464 

 
-38.32 % 4.6 % -9.0 869 

 
-23.31 % 3.5 % -7.4 12 293 

18 5 % 2 4:2 
 

-29.17 % 6.3 % -5.1 245 
 

-26.73 % 5.5 % -5.4 452 
 

-11.14 % 2.7 % -5.2 5 582 

19 5 % 3 4:2 
 

-22.46 % 5.6 % -4.6 159 
 

-19.60 % 4.7 % -4.8 285 
 

-6.22 % 2.2 % -4.3 3 082 

20 5 % 5 4:2 
 

-15.56 % 4.2 % -4.4 80 
 

-13.88 % 3.2 % -5.3 139 
 

-3.10 % 1.6 % -3.9 1 110 

 
                  21 None 1 4:2 

 
-37.00 % 5.6 % -7.1 464 

 
-38.32 % 4.6 % -9.0 869 

 
-23.27 % 3.5 % -7.4 12 294 

22 None 2 4:2 
 

-28.66 % 6.2 % -5.1 245 
 

-26.47 % 5.4 % -5.5 452 
 

-11.00 % 2.7 % -5.2 5 582 

23 None 3 4:2 
 

-21.90 % 5.5 % -4.6 159 
 

-19.31 % 4.6 % -4.8 285 
 

-5.63 % 2.1 % -4.2 3 082 

24 None 5 4:2 
 

-15.56 % 4.2 % -4.4 80 
 

-13.88 % 3.2 % -5.3 139 
 

-1.96 % 1.3 % -3.8 1 110 

Notes:  This table presents the annualized returns on a pairs trading strategy where the pairs are forced to be 

 formed with stocks from the same industry sector. 

 

No Parameter identification number 

SL Stop–loss threshold 

Time  Length of formation period : Length of trading period 

   Annualized standard deviation on portfolio 

q  Threshold for opening a position. Numbers of standard deviations. 

SR  Annualized Sharpe ratio. 

Trades  Number of roundtrips during the 3M testing period. One roundtrip translates to four trades. Two when 

 opening a position and two when the position is closed. 
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We test several different configurations for the different trade parameters (the 

entry–threshold value  , the stop–loss threshold and the period lengths). In 

addition we vary the number of pairs traded. The table is interpreted in the 

following way: each line describes a different parameter configuration that is 

specified in the leftmost group of columns. The next three column groups show the 

results for the Top 5 Pairs, Top 10 and Pairs and All Pairs portfolios20 given the 

specified parameter configuration. 

The returns to the strategy are negative for all tested configurations of the 

parameters. We do however make some interesting observations. It is clear that 

some parameter configurations consistently yield better results than other.  

First, we observe that the results notably improve when the length of the 

estimation and trade periods are doubled. We speculate that the main reason for 

this is due to premature exits from positions that would eventually have converged 

had they not been closed. When the trading period is only one day a large fraction 

of pairs are still open at the end of the trading period. In our setup any position still 

open at the end of the trading period is automatically closed, possibly resulting in a 

loss. Extending the trading period to two days allows for a number of these pairs to 

converge and yield a profit. Although not tested in this paper it is possible that 

further extending the periods could yield even better results.  

The next observation involves the stop–loss threshold. Raising the stop–loss 

threshold appears to lead to improved results. Similarly to the first observation, 

this indicates that low stop–loss threshold values lead to premature exits from 

positions that otherwise would eventually converge. As an interesting side note, we 

observe that raising the threshold above 5 % has close to zero impact on the results. 

This indicates that only a marginal fraction of the positions results in losses 

exceeding 5 %. 

The last observation concerns the entry threshold. Changing this parameter has a 

substantial impact on the returns. Specifically, higher values lead to considerable 

increases in the returns. There might be several explanations for this. It is possible 

                                                           
20

 Recall that in the formation period we rank all pairs based on their attractiveness for pairs trading. The Top 
  notation here refers to the portfolios formed by selecting the top n pairs for trading.  
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that our attempt to control for the impact of the bid/ask spread (equation 6.1) is 

inadequate. A high trade frequency could then lead to losses due to the transaction 

costs imposed by this spread. A different explanation could be related to the two 

previous observations: a low threshold value might open many positions that fail to 

converge before the trade period is over because they first continue to diverge. It is 

possible that the pairs would have converged given enough time.  

In sum, the observations we make provide us with some insight as to what an 

optimal parameter configuration for a pairs trading strategy might look like.  

 

6.6.2  Restricted case – Pairs from corresponding industries 

We now examine the returns to the case where the components of the pairs are 

required to be stocks belonging to the same industry sector. Gatev et al. (2006) 

examine the returns to a restricted case where all stocks are assigned to one of four 

major industry groups as defined by Standard & Poor’s. The four groups are 

Utilities, Financials, Transportation and Industrials. When enforcing the 

restrictions the authors report slightly lower annualized returns compared to the 

unrestricted case. On the other hand Do & Faff (2010) argue that forming portfolios 

of restricted pairs can be seen as a first step to implement fundamental factors in a 

pairs trading strategy. Do & Faff report significant improvements in the returns 

when a more refined classification scheme is implemented. In their study stocks are 

assigned to industry categories by applying a classification system introduced by 

Fama and French (1997). Following this system stocks are assigned to one of 48 

categories.   

Oslo Stock Exchange uses the GICS21 system to classify the listed stocks. When 

matching stocks in the restricted case, we specify that a pair can only be formed if 

the stocks have identical22 GICS identification codes. The introduction of this 

                                                           
21

 The Global Industry Classification Standard is a classification system developed by the American company 
MSCI. The GICS system is made up of 10 sectors, 24 industry groups, 67 industries and 156 sub-industries. 
22

 It would also be possible to specify a less stringent restriction in which only some of the digits must be 
identical.  
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condition reduces the number of possible pairs23 to 17. Not surprisingly a large 

proportion of these pairs consist of companies from within the oil & gas industry. 

The complete list of industry matched pairs is available in appendix J.  

Table 6.2 – Returns Restricted Case 

 Portfolio 

Parameters   
Top 5 Pairs  Top 10 Pairs  All Pairs 

No SL q Time 
 

Return   SR Trades 
 

Return S SR Trades 
 

Return S SR Trades 

25 2 % 1 2:1   -46.30 %       -9.0 703 
 

-40.35 % 5.3 % -8.2 1244 
 

-32.72 % 4.7 % -7.6 1793 

26 2 % 2 2:1   -19.28 %       -4.5 349 
 

-17.29 % 4.5 % -4.5 581 
 

-10.83 % 3.5 % -3.9 790 

27 2 % 3 2:1   -13.07 %       -3.7 187 
 

-8.30 % 3.5 % -3.2 316 
 

-4.70 % 2.7 % -2.9 410 

28 2 % 5 2:1   -3.57 %       -2.4 72 
 

-4.28 % 2.3 % -3.2 107 
 

-1.15 % 1.8 % -2.3 131 

         
 

 
            29 5 % 1 2:1   -46.00 %       -8.8 703 

 
-38.67 % 5.2 % -8.1 1250 

 
-30.85 % 4.5 % -7.5 1800 

30 5 % 2 2:1   -18.95 %       -4.4 349 
 

-14.20 % 4.2 % -4.1 583 
 

-8.25 % 3.3 % -3.5 793 

31 5 % 3 2:1   -13.24 %       -3.7 187 
 

-5.15 % 3.2 % -2.6 316 
 

-1.14 % 2.2 % -1.9 410 

32 5 % 5 2:1   -3.07 %       -2.3 72 
 

0.05 % 1.6 % -1.9 107 
 

2.55 % 1.3 % -0.3 131 

         
 

 
            33 None 1 2:1   -46.00 %       -8.8 703 

 

-38.67 % 5.2 % -8.1 1250 
 

-30.44 % 4.4 % -7.6 1800 

34 None 2 2:1   -18.95 %       -4.4 349 
 

-14.20 % 4.2 % -4.1 583 
 

-7.58 % 3.2 % -3.3 793 

35 None 3 2:1   -13.24 %       -3.7 187 
 

-5.15 % 3.2 % -2.6 316 
 

-1.14 % 2.2 % -1.9 410 

36 None 5 2:1   -3.07 %       -2.3 72 
 

0.05 % 1.6 % -1.9 107 
 

2.55 % 1.3 % -0.3 131 

         
 

 
            37 2 % 1 4:2   -25.67 %       -4.4 340 

 

-27.46 % 5.6 % -5.5 573 
 

-24.59 % 5.1 % -5.4 819 

38 2 % 2 4:2   5.49 %       0.4 170 
 

-2.37 % 5.1 % -1.0 272 
 

-0.59 % 3.7 % -1.0 371 

39 2 % 3 4:2   4.53 %       0.4 83 
 

-1.67 % 3.4 % -1.4 138 
 

-1.00 % 2.4 % -1.7 178 

40 2 % 5 4:2   16.53 %       4.8 35 
 

8.81 % 2.0 % 2.9 53 
 

3.40 % 1.4 % 0.3 62 

         
 

 
            41 5 % 1 4:2   -13.22 %       -3.1 349 

 

-17.02 % 5.0 % -4.0 585 
 

-17.66 % 4.8 % -4.3 832 

42 5 % 2 4:2   16.95 %       3.0 171 
 

7.86 % 4.7 % 1.0 275 
 

5.58 % 3.5 % 0.7 374 

43 5 % 3 4:2   9.40 %       1.8 83 
 

5.74 % 3.4 % 0.8 138 
 

4.03 % 2.5 % 0.4 178 

44 5 % 5 4:2   16.87 %       4.8 35 
 

12.61 % 2.8 % 3.5 53 
 

5.66 % 1.8 % 1.5 62 

         
 

 
            45 None 1 4:2   -13.22 %       -3.1 349 

 
-15.81 % 5.0 % -3.8 585 

 
-17.54 % 0.5 % -45.6 832 

46 None 2 4:2   16.95 %       3.0 171 
 

7.71 % 4.8 % 1.0 275 
 

5.50 % 3.5 % 0.7 374 

47 None 3 4:2   9.40 %       1.8 83 
 

5.60 % 4.4 % 0.6 138 
 

3.95 % 2.5 % 0.4 178 

48 None 5 4:2   16.87 %       4.8 35   12.61 % 2.8 % 3.5 53   5.66 % 1.8 % 1.5 62 

Notes:  This table presents the annualized returns on a pairs trading strategy where the pairs are forced to 

 be formed with stocks from the same industry sector. 

 

No Parameter identification number 

SL Stop–loss threshold 

Time  Length of formation period : Length of trading period 

   Annualized standard deviation on portfolio 

q  Threshold for opening a position. Numbers of standard deviations. 

SR  Annualized Sharpe ratio. 

Trades  Number of roundtrips during the 3M testing period. One roundtrip translates to four trades. Two 

 when opening a  position and two when the position is closed. 

                                                           
23

 We refer to the previous discussion regarding the exclusion of Algeta. We point out that in this restricted 
setup Algeta would have been excluded in all cases. This because it was the only pharmaceutical company 
listed on the OBX index. 
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The above table presents the full set of results obtained under this setup.  The 

results are very interesting. Trough analyzing the results from the unrestricted 

case we identified a set of parameter configurations that were associated with 

better returns. The same parameterization is superior also in this case; higher 

entry–threshold values and stop–loss values increase returns. In addition, as in the 

unrestricted case, the returns are greatly improved when the formation and trade 

periods are extended to four and two days respectively.  

The restricted case results support the observations we made when examining the 

unrestricted returns: the ideal set of parameters reduces the risk of entering 

positions that would later be prematurely exited. Even more interestingly, the 

combination of the favorable parameter configurations and the augmented pairs 

matching procedure yields returns as high as 16.95 % annually. This is an 

indication that a carefully designed pairs trading strategy could in fact generate 

positive excess returns.  

We note that that as the threshold–value for entering a position is increased the 

standard deviations of the returns decrease. This property leads to high Sharpe 

ratios in the cases where the entry–threshold is set to high values. Furthermore, as 

one would expect, high entry–threshold values significantly reduces the trading 

frequency. This last observation is important as the transaction costs resulting 

from excessive trading could drive the profits from the strategy down. We will later 

examine the effects of transaction costs in detail.     

* 

In the unrestricted case the returns are strongly negative even when the most 

desirable parameter configurations are specified. Switching to the restricted case 

the same parameter configurations yield extremely lucrative returns, with Sharpe 

ratio values as high as 4.8. Given these differences in returns it is natural to raise 

the question of what causes these discrepancies. The answer is simply that 

different pairs are selected for trading as we move from the unrestricted to the 

restricted case. We investigate the pairs selected in both cases and find that the 
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overlap in the Top 5 portfolios formed is negligible24. There could be multiple 

reasons for this. One possibility is that some of the estimated relationships are 

completely spurious. This happens if stocks move closely over the course of the 

formation just out of chance. This is to some extent supported by our data; in the 

unrestricted case there is little consistency in the pairs selected from period to 

period. In addition, a large fraction of high ranking pairs is made up by stocks that 

appear to be completely unrelated when comparing properties such as industry, 

geographical area of operation etc. Turning to the restricted case we find that some 

pairs are consistently identified as the most lucrative pairs and therefore included 

in the Top 5 Pair portfolio in several periods.  

Our results are in line with those reported by Do & Faff (2010); there are 

substantial gains to be made when the distance approach is augmented by pre–

screening the possible pairs based on industry. 

 

6.7  Impact of transaction costs and timing constraints 

The initial results suggest that it could be possible to generate significant excess 

returns by following a pairs trading strategy. In this section we will examine how 

the returns are affected when we deduct commissions and short fees. In addition, 

we will also investigate the impact on the returns when the trader faces timing 

constraints. Specifically, we investigate if the returns decline when there is a 

difference between the time a trade is signaled and the time the trade is executed.  

Obviously, the parameter configuration setups that resulted in losses before 

transaction costs will still do so after subtracting such costs. For that reason we 

will focus only on the parameter configurations that resulted in positive returns25 

during the previous tests.  

 

                                                           
24

 Specifically, we considered the selected pairs resulting from a formation period of four days. We compared 
the top 5 pairs in the restricted and unrestricted cases and found overlap in only 7 of 28 periods. In none of 
these seven periods were there more than one pair being selected in both cases. 
25

 The configurations considered will be the Top5/10/All portfolios in the restricted case with parameter 
identification numbers 38 to 48 excluding number 41 and 45 in table 6.2.  
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6.7.1  Commissions and short fees 

We will now analyze whether the positive results found are robust when controlling 

for trading costs. Do & Faff (2012) review a large body of literature concerning price 

anomalies in the stock market. In a large proportion of the reviewed studies 

positive returns disappear when transaction costs are controlled for. It will 

therefore be interesting to see if the return to the pairs trading strategy remains 

positive after such costs. 

In the later years the commission on stock transactions has been declining. At the 

time of writing the most price–competitive Norwegian retail brokers offer 

commission at rates between 3 and 10 basis points per trade26. It is plausible that 

an institutional investor would achieve even better rates. We will test two levels of 

commissions: one low level of 3 bps. and one high level of 10 bps. 

In addition to commission an investor wanting to sell stock short would have to pay 

a fee to do so. This is the price the trader needs to pay in order to borrow the stock 

being sold short. In the retail market the annual short fee rates are in the range of 

400 – 500 bps. In all our tests we specify a level of 500 bps. If a trade is opened and 

closed within one trading day we subtract shorting fees for one full trading day. 

Similarly, if the position is held overnight we will deduct fees as if the position were 

open over the entire two days. In practice it is seldom the case that the broker 

would charge the investor fees for intraday short positions. Therefore, our chosen 

implementation of short–fees could lead to some overestimation of the actual fees. 

It is our belief that it is better to report a more conservative level of returns than to 

report artificially high returns due to a failure to account for all costs. 

 

                                                           
26

 Netfonds.no charges a fee of 5 bps for standard costumers. For costumers whose trading volume exceeds 
10M NOK monthly the rate is 3 bps. Nordnet.no charges fees ranging from 3.9 to 10 bps depending on trade 
volume.  
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Figure 6.2 – Impact of transaction costs. SL: stop–loss threshold value, q: entry threshold.  

 

The chart above shows the results for the top 5 pairs given the various parameter 

configurations. Controlling for costs significantly reduces profits irrespective of 

parameter values. As is to be expected the difference is most pronounced in cases 

with low thresholds for entering a position. The number of roundtrips made in the 

cases where entry threshold is lowest (two standard deviations) is around 170.  In 

contrast, only 35 roundtrips are made in the high–threshold cases (five standard 

deviations). A roundtrip consists of four trades; two when a position is opened and 

two upon exiting. The returns in the low–threshold cases are completely eroded by 

the transaction costs. 

Shifting to the high–threshold cases the impact of costs is also clearly visible: the 

profits decline by about 15 % (42 %) when comparing the annualized returns before 

and after 3 bps (10 bps.) are charged per transaction in addition to the short fees. 

Interestingly, a strategy parameterized so that it avoids excessive trading still 

delivers in economically significant returns after costs. For the configurations 

where a five standard deviation threshold is specified, the annualized returns after 

costs are still very lucrative at just above 14 % (3 bps. commission). The complete 

set of results with additional statistics is available in appendix K. 
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6.7.2  Speed of execution 

We now turn to the issue of execution speed. So far we have assumed that a trade 

can be executed in the exact moment a trade is signaled. However, a trader might 

face constraints with respect to how fast a trade can be executed. In a study from 

2010 using intraday data Bowen et al. report significant reductions in the returns 

when implementing a “wait–one–period” restriction27. Similarly, Gatev et al. (2006) 

report considerably lower returns when they enforce a one day delay from the time 

a trade is signaled to the time of execution.  

Studying the effects of execution speed is interesting for two reasons. Obviously, it 

is of great interest to see if the strategy tested in this paper remains profitable after 

implementing the restriction. However, analyzing how fast profitable opportunities 

disappear in a market is very interesting subject in its own right. The 

disappearance of such opportunities reveals something about the efficiency of the 

market studied. In a market with a high degree of efficiency such opportunities 

should be eliminated by arbitrageurs (such as traders applying a pairs trading 

strategy like the one we test) shortly after they come in to existence. 

In this test we will investigate the impact of timing on returns by delaying the 

execution of a trade by 1, 10 and 60 minutes. The results for the Top 5 Pairs with 

different parameter configurations are presented in the figure below. Note that the 

results are gross of commission and other fees. The full set of results is available in 

appendix L. 

 

                                                           
27

 Their dataset consists of observations at 60 minute intervals. Their restriction therefore translates to a full 
60 minute delay between trade signal and execution. 
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Figure 6.3 – Impact of a delay between trade signal and trade execution. SL: stop–loss 

threshold, q: entry threshold.  

 

The results are in line with findings in the previous literature (Bowen et al., 2010). 

The returns are significantly reduced when enforcing a delay. The parameter 

configurations that were most profitable before any delay see the returns decline by 

around 50 % when a 60 minute delay is enforced. However, the strategy remains 

positive even when implementing a very conservative delay such as 60 minutes. 

Today, with the aid of computers most sophisticated traders are able to execute a 

trade within seconds. It is therefore the results given more moderate delays that 

are most interesting. The results show that strategy still remains very lucrative 

after specifying moderate delays of 60 or even 600 seconds. 

It is interesting to see that the returns are still positive even when a delay of 60 

minutes is specified. This indicates that the market participants did not fully 

exploit the possible profit opportunities that were present in the market during the 

time of our sample. 

As an interesting side note, we observe that the returns to the portfolios with a low 

entry–threshold actually increase when specifying moderate delays. We speculate 

that this is because a significant share of the positions entered at such a low 
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threshold continues to diverge after entry. If the stocks continue their trends in the 

delay period the divergence would be larger when we eventually enter the position. 

This would lead to increased profits. In other words: a setup with a low entry 

threshold combined with a enforcing a delay would be similar to a setup with a 

higher threshold and no delay. 

   

6.7.3  Concluding remarks regarding commissions and execution speed 

We have shown that pairs trading remains positive even after controlling for 

transaction costs and enforcing restrictions to the speed of order execution. 

However, we have examined at the impact of costs and timing separately. In a 

realistic case the trader would face both. We now assess the returns under 

conditions that an institutional investor might face when practically implementing 

a pairs trading strategy. We will specify a 60 second delay and deduct transaction 

costs of 3 bps. per trade. In addition we specify short fees equal to 500 bps. 

annually. The table on next page shows the results given these conditions.  

The Top 5 pairs portfolio with high values specified for entry and stop–loss 

thresholds perform well under this setup, delivering high annualized returns with 

low annual standard deviations. The same is true for the portfolios comprised of the 

Top 10 pairs, given that the entry level is set to a level above two standard 

deviations. Sharp ratio values exceeding 3 indicate that the pairs trading stagey is 

able to generate abnormal risk adjusted returns.  

The annualized returns to the OSEBX index over the sample period was 9.6 % with 

a corresponding standard deviation of 10.6 %. These figures results in a Sharpe 

ratio of 0.63. In a longer perspective, the average annual Sharpe ratio for the 

Norwegian stock market in the years 1900 – 2010 was 0.22. (Dimson, March and 

Staunton, 2011).    
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Table 6.3 – Controlling for Transaction Costs and Timing Constraints 
Portfolio 

Parameters   
Top 5 Pairs  Top 10 Pairs  All Pairs 

No SL q 
 

Return   SR Trades 
 

Return   SR Trades 
 

Return   SR Trades 

38 2 % 2  -10.02 % 6.0 % -2.2 166  -11.83 % 5.2 % -2.9 268  -8.85 % 3.8 % -3.1 367 

39 2 % 3  3.19 % 3.7 % 0.1 83  -2.15 % 3.0 % -1.7 138  -2.48 % 2.4 % -2.3 178 

40 2 % 5  12.09 % 3.0 % 3.0 35  6.03 % 2.2 % 1.4 53  1.32 % 1.7 % -1.0 62 

                  

42 5 % 2  1.28 % 4.7 % -0.4 171  -2.12 % 4.6 % -1.1 275  -2.87 % 3.6 % -1.6 374 

43 5 % 3  3.95 % 3.6 % 0.3 83  1.47 % 3.4 % -0.5 138  0.30 % 2.6 % -1.0 178 

44 5 % 5  12.32 % 3.0 % 3.1 35  9.53 % 2.9 % 2.2 53  3.41 % 2.0 % 0.2 62 

                  

46 None 2  1.28 % 4.7 % -0.4 171  -2.46 % 4.7 % -1.2 275  -3.07 % 3.7 % -1.7 374 

47 None 3  3.95 % 3.6 % 0.3 83  1.11 % 3.4 % -0.5 138  0.10 % 3.4 % -0.8 178 

48 None 5  12.32 % 3.0 % 3.1 35  9.53 % 2.9 % 2.2 53  3.41 % 2.0 % 0.2 62 

Notes: This table presents the annualized returns on a pairs trading strategy after controlling for transaction 

 costs and timing  restrictions. 

 

No Portfolio parameter identification number 

SL  Stop–loss threshold 

q   Threshold for opening a position. Numbers of standard deviations. 

   Annualized standard deviation on portfolio 

SR  Annualized Sharpe ratio. 

Trades  Number of roundtrips during the 3M testing period. One roundtrip translates to four trades. Two when 

 opening a position and two when the position is closed. 

 

6.6.4  Trade slippage 

In addition to the direct trading costs we have examined, there exists another, more 

subtle, trading cost that is hard to control for. This cost is the result of the market 

impact caused by the trader when a position is opened or closed. This is commonly 

referred to as trade slippage and is defined by H. Zhang & Q. Zhang (2006, p. 1512) 

as “[…] the spread between the expected price and the price actually paid”. In our 

study this translates to the difference between the price where the algorithm 

signals entry or exit, and the price at which the trader is able to execute the order. 

We can illustrate this concept with a simple example. Assume that the algorithm 

monitors the current ask price of a stock and that a profitable opportunity at price 

100 NOK is identified. A trade signal is issued instructing the trader to buy 100 

shares. However, in the order book there might be only be 50 shares offered at 100 

NOK. The remaining shares will have to be bought at the next best (or third best 

etc.) price available and therefore pushes up the average price per share.  

The costs due to the slippage effect will be more of a problem in smaller less liquid 

stocks and when the positions traded are large. We argue that slippage would have 
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a low impact on the results presented in this study. The background for this is that 

our universe of stocks is limited to the 25 most liquid stocks listed on the Oslo 

Stock Exchange. Furthermore, the impact of slippage can be approximated in terms 

of higher transaction costs per trade. Our examination of transaction costs shows 

that even after deducting commissions of 10 basis points per trade, the strategy 

still results in annual returns just short of ten percent. This level of returns 

indicates that the returns to strategy are likely to be positive even after a moderate 

increase in costs due to slippage (or for that matter, any other cost not controlled 

for in this study). That being said, slippage would be a limiting factor when trying 

to implement the strategy at larger scales. The investor would eventually cause 

market impacts so large that all profits are eliminated. 

 

6.8  Exposure to market risk 

In previous studies (Gatev et al. 2006; Hoel 2013) it is documented that the 

exposure to market risk is close to zero for a pairs trading strategy. As mentioned 

in the introduction, the exposure to market risk depends on the amount of capital 

placed in each leg of a pair, and the market risk exposure in the socks included in 

the position.  

 

We analyze the exposure to market risk using the CAPM28 framework. We compare 

the returns to the pairs trading strategy (before transaction costs) with the returns 

to the OSEBX29 index. Our results are in line with the results previous literature. 

The results strongly suggest that the pairs trading strategy, as it is implemented in 

this paper, is insignificantly exposed to market risk. All the coefficient estimates 

are close to zero. In addition none of the coefficients are statistically significant 

even at a 20 % significance level. Given that the strategy involves simultaneously 

buying and selling stocks – from the same sector and in equal amounts – the 

results are not surprising. Intuitively if the two stocks share a similar exposure to 

market risk the exposure in the long position should be offset by the exposure in 

                                                           
28

 The Capital Asset Pricing Model is a model for determining the required rate of return for an asset. The 
model was introduced by Treynor, Sharpe, and Mossin in the mid-1960s.  
29

 This index is a weighted average of all stocks listed on the Oslo Stock Exchange. 
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the short position. The risk exposure coefficients for the stocks considered in the 

restricted case are included in appendix J. 

 

Table 6.4 – Exposure to market risk – Restricted Case  

Portfolio 

Parameters 

  

Top 5 Pairs 
 Top 10 Pairs  All Pairs 

No. SL q 
 

Return     t-value 
 

Return     t-value 
 

Return     t-value 
38 2 % 2  5.49 %       -0.03 -0.36  -2.37 % 5.1 % -0.03 -0.33  -0.59 % 3.7 % -0.03 -0.52 
39 2 % 3  4.53 %       0.03 0.43  -1.67 % 3.4 % 0.03 0.59  -1.00 % 2.4 % 0.01 0.27 
40 2 % 5  16.53 %       -0.03 -0.54  8.81 % 2.0 % 0.00 0.10  3.40 % 1.4 % -0.01 -0.49 

                  
42 5 % 2  16.95 %       -0.04 -0.51  7.86 % 4.7 % -0.08 -0.97  5.58 % 3.5 % -0.06 -1.09 
43 5 % 3  9.40 %       0.01 0.16  5.74 % 3.4 % -0.02 -0.34  4.03 % 2.5 % -0.03 -0.64 
44 5 % 5  16.87 %       -0.02 -0.44  12.61 % 2.8 % -0.03 -0.72  5.66 % 1.8 % -0.03 -1.08 

                  
46 None 2  16.95 %       -0.04 -0.51  7.71 % 4.8 % -0.08 -0.98  5.50 % 3.5 % -0.06 -1.09 
47 None 3  9.40 %       0.01 0.16  5.60 % 4.4 % -0.02 -0.36  3.95 % 2.5 % -0.03 -0.65 
48 None 5  16.87 %       -0.02 -0.44  12.61 % 2.8 % -0.03 -0.72  5.66 % 1.8 % -0.03 -1.08 

Notes: This table presents the exposure to market risk for a pairs trading strategy. 

 

No. Portfolio parameter identification number 

SL  Stop–loss Threshold 

q   Threshold for opening a position. Numbers of standard deviations. 

   Annualized standard deviation on portfolio 

  Coefficient of exposure to market risk according to the CAPM 

t-value Test statistic used to determine whether the coefficient values are statistically significant or not. 

 

In addition to testing the exposure to market risk in the restricted case, we 

repeated the tests for the unrestricted case, where pairs can be formed across 

industries. The results from these tests are very similar to the ones discussed 

above: the coefficient values are small and not statistically significant30. 

It is important to note that even though exposure to market risk is negligible, there 

are several other sources of risk affecting a long short strategy such as this. As an 

example, imagine a scenario where a trader holds a long/short position and the 

company in the long leg of the position goes bankrupt. This would result in 

substantial losses. Similarly, losses would occur if the company sold short increases 

rapidly in price as a response to a tender offer. However, due to their infrequency it 

is difficult to quantify the risks associated with such events. 

                                                           
30

 These results are not included in this thesis but are available upon request. 
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6.9 Is pairs trading a masked mean reversion strategy? 

In the 1990 paper “Evidence of Predicable Behavior of Security Returns” N. 

Jegadeesh show that following a strategy where past winners are sold short and 

past losers are bought long yields abnormal returns. Since then various forms of 

mean reversion strategies have been popular with investors. In the light of this it is 

natural to ask if pairs trading is merely an exotic variant of a mean reversion 

strategy. This question has been explored in previous literature. Gatev et al. (2006) 

argue that the excess results found in their study cannot be explained by mean 

reversion. This view is based on the results from two tests. The first approach is a 

factor analysis of the returns. The exposure to reversion and momentum factors are 

too small to fully explain the positive results. The second test involves applying a 

bootstrap technique. When the algorithm indicates that it is time to take a position 

in a pair both stocks are substituted for a pair where the stocks are randomly 

selected. Each stock is substituted with a random stock from the same return 

decile, measured over the previous month. This is analog to following a mean 

reversion strategy with the times for entry and exit determined by the pairs 

trading algorithm. When the bootstrapping procedure is implemented the returns 

are significantly lower than when trading the true pairs. Based on the results from 

the two outlined tests, the authors conclude that the mechanisms behind a pairs 

trading strategy and a pure mean reversion strategy are fundamentally different.  

We support the view held by the authors in the discussed paper. In addition we 

would like to point out that pairs trading do not necessarily rely on mean reversion 

in the stock prices. It is the spread between the two stocks that need to exhibit 

mean reverting properties. A pairs trading strategy can yield positive results even 

if both stocks are trending strongly in the same direction, exhibiting properties 

normally associated with momentum in returns. The following figure illustrates 

such a scenario. 
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Figure 6.4 – A hypothetical pairs trading scenario with stocks exhibiting momentum 

 

In this hypothetical situation the prices of stock A and stock B are both increasing. 

However, in the start of the series the price of stock A increases more rapidly than 

the price of Stock B. This leads to divergence and a position where A is shorted and 

B bought long is entered. The position is opened at the time marked by the first 

vertical line. After entering the position both stock prices climb at faster rates than 

before. However the price of B is increasing even faster than the price of A. After 

some time the price of stock B has increased to a point where the two stocks are 

again equal in value. The position is unwound and a profit is realized. The gains 

from the long position in stock B more than offset the losses from the short position 

in stock A. This illustrates that while mean reversion in stock prices could lead to 

profits when following a pairs trading strategy, it is not a necessary condition for 

the strategy to be successful. 
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7.  Conclusion 

In this paper we have explored various methods for implementing a pairs trading 

strategy. We conduct tests on simulated data in order to determine the optimal 

approach to pairs trading. In addition we conduct an empirical test of a pairs 

trading strategy in the Norwegian stock market using high frequency data. We find 

that a strategy where pairs are matched by considering past statistical 

relationships alone is unprofitable. Refining the formation procedure, by allowing 

only stocks from the same industry sector to be matched, we find that the strategy 

is able to generate significant returns with low standard deviations. This results in 

attractive Sharpe ratio values, indicating that the strategy is able to generate 

abnormal risk–adjusted returns. The results are robust to moderate transaction 

costs and the returns are uncorrelated with those of the general market, 

represented by the OSEBX index.  

The positive returns obtained are generated by analyzing past price information. 

We also add a crude fundamental component to the strategy when we restrict the 

stocks in a pair to belong to the same sector. According to the Efficient Market 

Hypothesis (EMH) it should be impossible to obtain risk–adjusted returns better 

than the average market return. Our results could therefore indicate that the 

semi–strong form of the EMH did not hold in the Norwegian stock market over the 

period studied. Another explanation, as suggested by Gatev et al. (2006), could be 

that the returns are attributable to exposure to an unknown systematic risk factor. 

Furthermore our sample covers a relatively short period of time and we test a 

number of parameter configurations. It is therefore necessary to replicate the 

results using data from different time periods before concluding that the EMH is 

violated. 
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Appendices 

 

Appendix A – Logarithmic spread 

An alternative approach to the normalization procedure is to compute the 

spread as the difference of the natural logarithms of the prices. This is possible 

because of the fact that the price at any point in time is equal to the price at   , 

multiplied by the cumulative returns up until time t. 

 

                                     

           
    

A1 

 

The product rule for logarithms states that                     . Therefore, 

assuming that    
        

    we have that  

 

                              
                 

       

              
     [             

    ] 

                  

A2 

 

We see that the spread of the logarithms is constant and equal to the spread at 

t=0, and that this holds true even for different levels of     and    . Thus the 

logarithmic transformation secures a consistent measure of the relative value 

development of the two stocks. 
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Appendix B – Estimating the parameters of the Ornstein–Uhlenbeck process 

using OLS31  

Here we give an example of how to estimate the parameters of an Ornstein–

Uhlenbeck process when we observe a series of realizations created by the 

process. 

 

The stochastical differential equation used in this example is given by  

 

                       B1 

 

Where   is the speed in which the series reverts to the long term mean  . The 

volatility of the process is given by  .    is a standard wiener process. 

The solution to the stochastic differential equation given by the following 

 

 

         
     (      )  [  √

       

  
]     B2 

 

The function is continuous and   is the fixed time step for each sample.   is 

normally distributed noise term with mean and standard deviation equal to zero 

and one respectively. 

 

The observed values are listed in the table below. In addition we also list the 

specific random terms used to create the series. The following parameter values 

are used in this example.    ,    ,      ,    . 

 

 

 

 

 

 

                                                           
31

 Example adapted from http://www.sitmo.com/article/calibrating-the-ornstein-uhlenbeck-model  
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i N~(0,1) X(i) 

0 -0.8541 3.0000 

1 1.0821 2.7976 

2 -1.4730 2.0733 

3 1.7487 2.2237 

4 0.7765 2.1252 

5 -1.4525 1.5542 

6 0.3774 1.5153 

7 0.2297 1.4523 

8 1.0682 1.5891 

9 -0.7589 1.2905 

10 0.4854 1.3339 

11 -0.2990 1.1937 

12 -1.1972 0.8854 

13 -0.1042 0.8876 

14 1.3718 1.2167 

15 -1.7744 0.7753 

 

We now want to estimate the parameters of the process given the observations 

we have of X. We estimate the following relationship with OLS.        ̂  

  ̂      ̂  . 

The parameters are then found by analyzing the regression results:  

 

 ̂    
     ̂ 

 
  ,   ̂   

 ̂

   ̂
 and  ̂         √

       ̂ 

     ̂  
. 

 

Applying the above procedure on the dataset in this example gives us the 

following estimates. 

 

Parameter Estimate True value 

  0.9406 1 

  0.9681 1 

  0.5601 0.5 
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Appendix C – Conditional probability density function of the Ornstein–

Uhlenbeck process 32  

 

The conditional probability distribution function for the process described in 

Appendix 2a is given by 

 

 
     

 

√   ̂ 
    [

         
               

  ̂ 
] C1 

 

Where  ̂            

  
. 

 

The conditional expectation is found using the expression: 

 

  [       ]                   C2 

 

In the figure below we apply C1 and C2 using the parameter values from 

appendix B. The previous observation      is set to 1.5 in this example. 

 

 

 

 

 

 

                                                           
32

 Example adapted from http://www.math.ku.dk/~susanne/StatDiff/Overheads1b 

-1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5

E[Xt+1|xt=1.5] = 1,3894 
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Appendix D – Python code – Pairs identification procedures 

 

1. Pairs ranking using the Distance approach 

import statsmodels.api as sm  

import statsmodels.tsa.stattools as ts  

import math  

import numpy as np  

import scipy.odr.odrpack as odrpack  

import scipy.stats  

import itertools 

 

def sumsq(f1,f2): 

 """This function returns the sum of squared differences between two    lists, in addition the 

standard deviation of the spread between the two lists are calculated and reported""" 

 

    Y = f1     #Define each series 

    X = f2 

    spread = []    #Initialize variables 

    std = 0 

    cumdiff = 0 

     

     

    for i in range(len(X)):   #Calculate and store the sum of squares 

        cumdiff += (X[i]-Y[i])**2 

        spread.append(X[i]-Y[i]) 

     

    std = np.std(spread)   #Calculate the standard deviation 

    return(cumdiff,( std)) 

 

2. Pairs ranking using the Cointegration Coefficient approach - OLS regression 

import statsmodels.api as sm  

import statsmodels.tsa.stattools as ts  

import math  

import numpy as np  

import scipy.odr.odrpack as odrpack  

import scipy.stats  

import itertools 

 

def coint(f1,f2):                                                

    """This function takes two lists and returns the DF-Test statistics""" 

     

    Y = f1           #Define each series 

    X = f2 

 

    for i in range(len(X)):     #Ln transform the prices 

        X[i] = math.log(X[i]) 

        Y[i] = math.log(Y[i]) 

     

    X = sm.add_constant(X)      #Set mode to regression with constant term 

     

     

    model = sm.OLS(Y,X)         #Specify the model to be used 

    results = model.fit()       #Run the regression 

     

    R = results.resid            #Store residuals 
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    intercept = results.params[0]       #Store Intercept value 

    beta = results.params[1]            #Store coefficient value 

    rsq = results.rsquared             #Store Rsquared 

     

 

    adf = ts.adfuller(R,0,"c",None,True,True) #Run dickey fuller test on the obtained 

residuals 

 

    z = adf[0]                           #Store test statistics 

    pval = adf[1] 

 

    return(z,pval,beta) 

 

3. Pairs ranking using the Cointegration Coefficient approach - ODR regression 

import statsmodels.api as sm  

import statsmodels.tsa.stattools as ts  

import math  

import numpy as np  

import scipy.odr.odrpack as odrpack  

import scipy.stats  

import itertools 

 

def odrcoint(y,x): 

    """This function takes two lists and returns the DF-Test statistics""" 

 

    for i in range(len(x)):            #Ln transform the prices 

        x[i] = math.log(x[i]) 

        y[i] = math.log(y[i]) 

 

     def f(B, x):                 #Definine the model to be estimated 

        return B[0] + B[1]*x 

     

     

    linear = odrpack.Model(f)       #Regress y on x (Y = a +bx)  

    mydata = odrpack.RealData(x, y, sx=1, sy=1)  

 

 

    myodr = odrpack.ODR(mydata, linear, beta0=[0,-1]) 

    myoutput = myodr.run() 

     

    intercept = myoutput.beta[0]      #Store the regression coefficients  

    beta = myoutput.beta[1] 

     

     

      

    resid = [] 

 

    for i in range(len(x)):            #Calculate the residuals 

        est = intercept +(beta*x[i]) 

        res = y[i] - est 

        resid.append(res) 

 

    adf = ts.adfuller(resid,0,"c",None,True,True) #Run dickey fuller test on the obtained 

residuals 

    z = adf[0]                                          #Save test statistics 

    pval = adf[1] 

 

    return(z,pval,beta) 
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Appendix E – Resulting ranking of simulated data generated by the Granger 

representation theorem 

Z–values and P values refer to the dickey fuller test. The   values are interpreted as the 

percentage return in Y given a one percentage return in X. 

Sum of squares rank 
 

Cointegration rank  

(Reg y on x)  

Cointegration rank  

(Reg x on y)  
Orthogonal regression 

Group/Pair Sum 

 

Pair Z-val. P-val. Est ϒ 

 

Pair Z-val. P-val. Est ϒ 

 

Pair Z-val. P-val. Est ϒ 

10 1  9.8k 
 

10 9 -72.7 0 1.00 
 

10 9 -72.7 0.00 0.99 
 

10 9 -72.9 0.00 1.003 
10 2  9.9k 

 
10 4 -71.2 0 1.00 

 
10 4 -71.2 0.00 1.00 

 
10 4 -71.3 0.00 0.999 

10 8  9.9k 
 

10 6 -71.0 0 0.99 
 

10 6 -71.0 0.00 0.99 
 

10 6 -71.3 0.00 0.998 
10 4  9.9k 

 
10 1 -70.8 0 1.00 

 
10 1 -70.8 0.00 1.00 

 
10 1 -70.9 0.00 1.000 

10 9  10.0k 
 

10 5 -70.5 0 1.00 
 

10 5 -70.5 0.00 1.00 
 

10 5 -70.7 0.00 1.001 
10 7  10.1k 

 
10 2 -70.3 0 0.99 

 
10 2 -70.3 0.00 0.99 

 
10 2 -70.6 0.00 1.002 

10 6  10.1k 
 

10 7 -69.8 0 1.00 
 

10 7 -69.8 0.00 1.00 
 

10 1 -70.0 0.00 0.998 
10 10  10.1k 

 
10 10 -69.6 0 0.99 

 
10 10 -69.6 0.00 0.99 

 
10 7 -69.9 0.00 1.002 

10 3  10.2k 
 

10 3 -69.2 0 0.99 
 

10 3 -69.2 0.00 1.00 
 

10 3 -69.3 0.00 0.998 
10 5  10.2k 

 
10 8 -68.3 0 0.99 

 
10 8 -68.3 0.00 0.99 

 
10 8 -68.5 0.00 1.002 

9 1  10.3k 
 

9 9 -59.5 0 1.00 
 

9 9 -59.5 0.00 0.99 
 

9 9 -59.6 0.00 1.003 
9 2  10.3k 

 
9 4 -58.2 0 1.00 

 
9 4 -58.2 0.00 1.00 

 
9 4 -58.3 0.00 0.999 

9 4  10.3k 
 

9 5 -58.0 0 1.00 
 

9 5 -58.0 0.00 1.00 
 

9 5 -58.1 0.00 1.001 
9 9  10.4k 

 
9 6 -57.9 0 0.99 

 
9 6 -57.9 0.00 0.99 

 
9 6 -58.1 0.00 0.998 

9 7  10.4k 
 

9 1 -57.7 0 1.00 
 

9 1 -57.7 0.00 1.00 
 

9 1 -57.8 0.00 1.000 
9 8  10.5k 

 
9 7 -57.3 0 1.00 

 
9 7 -57.3 0.00 1.00 

 
9 2 -57.5 0.00 1.003 

9 6  10.5k 
 

9 2 -57.3 0 0.99 
 

9 2 -57.3 0.00 0.99 
 

9 7 -57.3 0.00 1.002 
9 5  10.6k 

 
9 10 -56.9 0 0.99 

 
9 10 -56.9 0.00 0.99 

 
9 10 -57.2 0.00 0.997 

9 10  10.6k 
 

9 3 -56.6 0 0.99 
 

9 3 -56.6 0.00 1.00 
 

9 3 -56.7 0.00 0.997 
9 3  10.7k 

 
9 8 -55.6 0 1.00 

 
9 8 -55.6 0.00 0.99 

 
9 8 -55.8 0.00 1.003 

8 9  11.7k 
 

8 9 -47.7 0 1.00 
 

8 9 -47.7 0.00 0.99 
 

8 9 -47.8 0.00 1.004 
8 7  11.7k 

 
8 5 -46.9 0 1.00 

 
8 5 -46.9 0.00 0.99 

 
8 5 -46.9 0.00 1.001 

8 1  11.8k 
 

8 4 -46.5 0 0.99 
 

8 4 -46.5 0.00 1.00 
 

8 4 -46.6 0.00 0.998 
8 2  11.9k 

 
8 6 -46.2 0 0.99 

 
8 6 -46.2 0.00 0.99 

 
8 6 -46.4 0.00 0.997 

8 4  11.9k 
 

8 1 -46.2 0 1.00 
 

8 1 -46.2 0.00 1.00 
 

8 1 -46.2 0.00 1.000 
8 5  12.0k 

 
8 7 -46.2 0 1.00 

 
8 7 -46.2 0.00 1.00 

 
8 7 -46.2 0.00 1.003 

8 6  12.1k 
 

8 2 -45.8 0 0.99 
 

8 2 -45.8 0.00 0.99 
 

8 2 -46.0 0.00 1.004 
8 10  12.2k 

 
8 10 -45.7 0 0.98 

 
8 10 -45.7 0.00 0.99 

 
8 10 -45.9 0.00 0.996 

8 8  12.2k 
 

8 3 -45.5 0 0.99 
 

8 3 -45.5 0.00 1.00 
 

8 3 -45.5 0.00 0.996 
8 3  12.3k 

 
8 8 -44.4 0 0.99 

 
8 8 -44.4 0.00 0.99 

 
8 8 -44.6 0.00 1.004 

7 7  15.3k 
 

7 9 -36.5 0 1.00 
 

7 9 -36.5 0.00 0.99 
 

7 9 -36.5 0.00 1.006 
7 9  15.3k 

 
7 5 -36.1 0 1.00 

 
7 5 -36.1 0.00 0.99 

 
7 5 -36.2 0.00 1.002 

7 5  15.4k 
 

7 4 -35.4 0 0.99 
 

7 4 -35.4 0.00 1.00 
 

7 4 -35.4 0.00 0.997 
7 1  15.6k 

 
7 7 -35.4 0 1.00 

 
7 7 -35.4 0.00 0.99 

 
7 7 -35.4 0.00 1.004 

7 2  15.8k 
 

7 1 -35.2 0 1.00 
 

7 1 -35.2 0.00 1.00 
 

7 6 -35.3 0.00 0.995 
7 4  15.9k 

 
7 6 -35.1 0 0.98 

 
7 6 -35.1 0.00 0.99 

 
7 1 -35.2 0.00 1.000 

7 10  16.0k 
 

7 10 -34.9 0 0.98 
 

7 10 -34.9 0.00 0.99 
 

7 10 -35.1 0.00 0.995 
7 6  16.0k 

 
7 2 -34.8 0 0.99 

 
7 2 -34.8 0.00 0.98 

 
7 2 -34.9 0.00 1.005 

7 3  16.3k 
 

7 3 -34.7 0 0.99 
 

7 3 -34.7 0.00 1.00 
 

7 3 -34.8 0.00 0.994 
7 8  16.4k 

 
7 8 -33.8 0 0.99 

 
7 8 -33.8 0.00 0.98 

 
7 8 -33.9 0.00 1.006 

6 5  26.9k 
 

6 5 -24.2 0 0.99 
 

6 9 -24.2 0.00 0.98 
 

6 5 -24.3 0.00 1.003 
6 7  27.1k 

 
6 9 -24.2 0 1.00 

 
6 5 -24.2 0.00 0.99 

 
6 9 -24.3 0.00 1.012 

6 9  27.3k 
 

6 1 -23.3 0 1.00 
 

6 1 -23.3 0.00 1.00 
 

6 10 -23.4 0.00 0.989 
6 1  28.1k 

 
6 7 -23.3 0 1.01 

 
6 7 -23.3 0.00 0.99 

 
6 1 -23.4 0.00 0.999 

6 10  28.6k 
 

6 4 -23.3 0 0.99 
 

6 4 -23.3 0.00 0.99 
 

6 7 -23.4 0.00 1.009 
6 2  28.9k 

 
6 10 -23.2 0 0.96 

 
6 10 -23.2 0.00 0.98 

 
6 4 -23.4 0.00 0.995 

6 6  29.2k 
 

6 6 -23.2 0 0.97 
 

6 6 -23.2 0.00 0.99 
 

6 6 -23.3 0.00 0.990 
6 4  29.4k 

 
6 3 -22.9 0 0.98 

 
6 3 -22.9 0.00 1.00 

 
6 3 -23.0 0.00 0.989 

6 3  29.5k 
 

6 2 -22.8 0 0.98 
 

6 2 -22.8 0.00 0.97 
 

6 2 -23.0 0.00 1.010 
6 8  30.1k 

 
6 8 -22.3 0 0.99 

 
6 8 -22.3 0.00 0.97 

 
6 8 -22.5 0.00 1.012 
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5 5  50.2k  5 5 -16.7 0 0.99  5 5 -16.7 0.00 0.97  5 5 -16.8 0.00 1.007 
5 7  52.6k  5 9 -16.5 0 1.00  5 9 -16.5 0.00 0.96  5 9 -16.6 0.00 1.025 
5 9  52.7k  5 1 -16.0 0 0.99  5 1 -16.0 0.00 0.99  5 1 -16.0 0.00 0.999 
5 1  54.2k  5 6 -15.8 0 0.94  5 6 -15.8 0.00 0.98  5 6 -16.0 0.00 0.981 
5 2  55.6k  5 7 -15.7 0 1.01  5 7 -15.7 0.00 0.98  5 10 -15.9 0.00 0.978 

5 10  55.7k 
 

5 4 -15.7 0 0.97 
 

5 4 -15.7 0.00 0.99 
 

5 4 -15.8 0.00 0.991 
5 6  57.7k 

 
5 10 -15.7 0 0.93 

 
5 10 -15.7 0.00 0.97 

 
5 7 -15.8 0.00 1.017 

5 4  58.2k 
 

5 2 -15.5 0 0.97 
 

5 2 -15.5 0.00 0.93 
 

5 2 -15.7 0.00 1.021 
5 3  58.6k 

 
5 3 -15.4 0 0.96 

 
5 3 -15.4 0.00 1.00 

 
5 3 -15.4 0.00 0.977 

5 8  59.0k 
 

5 8 -15.1 0 0.98 
 

5 8 -15.1 0.00 0.94 
 

5 8 -15.3 0.00 1.024 

4 5  120.4k 
 

4 9 -10.4 0 1.01 
 

4 9 -10.4 0.00 0.90 
 

4 9 -10.5 0.00 1.064 
4 9  129.8k 

 
4 5 -10.2 0 0.97 

 
4 5 -10.2 0.00 0.94 

 
4 5 -10.4 0.00 1.015 

4 1  130.6k 
 

4 1 -10.0 0 0.98 
 

4 1 -10.0 0.00 0.99 
 

4 6 -10.1 0.00 0.952 
4 2  131.3k 

 
4 6 -9.9 0 0.86 

 
4 6 -9.8 0.00 0.95 

 
4 1 -10.1 0.00 0.996 

4 7  134.2k 
 

4 2 -9.7 0 0.93 
 

4 2 -9.7 0.00 0.85 
 

4 2 -10.0 0.00 1.052 
4 10  145.9k 

 
4 7 -9.5 0 1.02 

 
4 7 -9.5 0.00 0.94 

 
4 10 -9.6 0.00 0.941 

4 6  146.5k 
 

4 4 -9.5 0 0.93 
 

4 4 -9.4 0.00 0.97 
 

4 4 -9.6 0.00 0.979 
4 4  148.4k 

 
4 10 -9.3 0 0.82 

 
4 10 -9.3 0.00 0.91 

 
4 7 -9.6 0.00 1.041 

4 8  148.8k 
 

4 8 -9.2 0 0.94 
 

4 8 -9.2 0.00 0.85 
 

4 8 -9.5 0.00 1.059 
4 3  166.3k 

 
4 3 -8.8 0 0.90 

 
4 3 -8.8 0.00 1.00 

 
4 3 -8.9 0.00 0.944 

3 2  244.9k 
 

3 9 -7.3 0 1.02 
 

3 9 -7.4 0.00 0.82 
 

3 9 -7.5 0.00 1.132 
3 5  250.2k 

 
3 1 -7.2 0 0.96 

 
3 1 -7.2 0.00 0.98 

 
3 6 -7.3 0.00 0.905 

3 1  251.2k 
 

3 6 -7.1 0 0.76 
 

3 2 -7.0 0.00 0.75 
 

3 2 -7.3 0.00 1.097 
3 9  268.5k 

 
3 2 -6.9 0 0.87 

 
3 6 -7.0 0.00 0.90 

 
3 1 -7.2 0.00 0.988 

3 7  277.9k 
 

3 5 -6.8 0 0.93 
 

3 5 -6.9 0.00 0.88 
 

3 5 -7.0 0.00 1.026 
3 4  297.0k 

 
3 4 -6.7 0 0.87 

 
3 7 -6.6 0.00 0.89 

 
3 4 -6.8 0.00 0.954 

3 6  302.5k 
 

3 7 -6.6 0 1.03 
 

3 4 -6.6 0.00 0.95 
 

3 10 -6.7 0.00 0.887 
3 10  305.3k 

 
3 10 -6.4 0 0.68 

 
3 8 -6.3 0.00 0.73 

 
3 7 -6.7 0.00 1.079 

3 8  308.7k 
 

3 8 -6.2 0 0.87 
 

3 10 -6.3 0.00 0.82 
 

3 8 -6.5 0.00 1.121 
3 3  389.1k 

 
3 3 -5.7 0 0.80 

 
3 3 -5.6 0.00 0.97 

 
3 3 -5.8 0.00 0.895 

2 2  435.2k 
 

2 9 -5.2 0 1.04 
 

2 9 -5.3 0.00 0.68 
 

2 2 -5.5 0.00 1.180 
2 1  491.9k 

 
2 1 -5.1 0 0.91 

 
2 2 -5.3 0.00 0.61 

 
2 9 -5.5 0.00 1.290 

2 5  567.8k 
 

2 2 -5.1 0 0.77 
 

2 1 -5.1 0.00 0.97 
 

2 6 -5.3 0.00 0.819 
2 9  590.9k 

 
2 6 -5.0 0 0.60 

 
2 6 -4.8 0.00 0.79 

 
2 1 -5.2 0.00 0.971 

2 7  592.4k 
 

2 4 -4.7 0 0.76 
 

2 7 -4.7 0.00 0.81 
 

2 10 -4.8 0.00 0.807 
2 4  614.0k 

 
2 7 -4.7 0 1.05 

 
2 4 -4.6 0.00 0.91 

 
2 4 -4.8 0.00 0.900 

2 10  626.5k 
 

2 10 -4.5 0 0.49 
 

2 5 -4.4 0.00 0.74 
 

2 7 -4.8 0.00 1.152 
2 8  637.1k 

 
2 5 -4.3 0 0.84 

 
2 8 -4.3 0.00 0.53 

 
2 5 -4.6 0.00 1.080 

2 6  684.7k 
 

2 8 -4.1 0.01 0.74 
 

2 10 -4.2 0.00 0.63 
 

2 8 -4.5 0.00 1.301 

2 3  892.9k 
 

2 3 -3.7 0.04 0.63 
 

1 2 -3.9 0.00 0.21 
 

1 2 -3.9 0.00 3.100 

1 2  1400.2k 
 

1 10 -3.0 0.07 -0.08 
 

2 3 -3.5 0.01 0.86 
 

2 3 -3.8 0.00 0.808 

1 5  2758.1k 
 

1 2 -2.7 0.08 0.53 
 

1 8 -2.9 0.04 0.00 
 

1 10 -3.0 0.04 -0.209 
1 8  2974.9k 

 
1 6 -2.7 0.10 0.02 

 
1 9 -2.9 0.04 0.10 

 
1 8 -3.0 0.04 -85.776 

1 1  3030.4k 
 

1 4 -2.6 0.23 0.24 
 

1 5 -2.1 0.25 0.23 
 

1 9 -2.9 0.04 8.691 
1 7  3129.4k 

 
1 1 -2.1 0.31 0.58 

 
1 7 -2.0 0.27 0.51 

 
1 6 -2.7 0.07 0.027 

1 10  3431.9k 
 

1 8 -1.9 0.36 -0.01 
 

1 1 -2.0 0.28 0.86 
 

1 4 -2.6 0.10 0.302 
1 3  4141.2k 

 
1 3 -1.8 0.41 0.18 

 
1 4 -2.0 0.31 0.90 

 
1 1 -2.3 0.18 0.761 

1 4  4693.3k 
 

1 7 -1.8 0.43 0.82 
 

1 6 -1.9 0.33 0.03 
 

1 5 -2.2 0.21 2.099 
1 9  4973.5k 

 
1 9 -1.7 0.68 0.65 

 
1 10 -1.9 0.35 -0.13 

 
1 7 -2.1 0.25 1.427 

1 6  7295.7k 
 

1 5 -1.2 0.01 0.36 
 

1 3 -1.6 0.49 0.29 
 

1 3 -1.9 0.33 0.403 

Notes: This table presents the results when ranking data generated by the Granger representation theorem. 

 

Est ϒ Actual cointegration coefficient obtained when regressing one series on the other. 
Sum Sum of squared differences between the series 

Z-val Test statistic from the dickey fuller test 

P-val P value for the test statistic observation 
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Appendix F – OLS vs orthogonal regression 

 

The OLS algorithm minimizes the sum of squared vertical errors from the fitted 

line as illustrated in the figure below. The coefficients, test statistics and 

residuals are therefore sensitive to the ordering of the variables in the 

regression. This is a problem as the residuals are analyzed when determining 

whether two series are cointegrated or not. 

 

 

OLS minimizes the vertical distance to the fitted line 

 

Instead of minimizing the vertical distance to the fitted line the orthogonal 

regression minimizes the perpendicular distance. This is illustrated in the figure 

below. This approach yields coefficients, test statistics and residuals that are 

indifferent to the ordering of the variables. 

 

 

Orthogonal regression minimizes the orthogonal distance to the fitted line 

 

This type of regression is sometimes referred to as Total Least Squares or Deming 

regression in the two–variable case. 
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Appendix G –Ranking of simulated pairs generated with the common trends 

model 

Z–values and P values refer to the dickey fuller test. The   values are interpreted as the 

percentage return in Y given a one percentage return in X. 

Sum of squares rank 
 

Cointegration rank  

(Reg y on x)  

Cointegration rank  

(Reg x on y) 

   True ϒ  No. Sum 

 

   True ϒ No. Z-Val 
P-
val 

Est ϒ 

 

   True ϒ No. Z-Val P-val Est ϒ 

0.1 1 1 5881k  0.1 0.25 2 -70.694 0 0.141  0.1 0.5 0 -72.953 0 0.517 
0.1 1 2 6279k  0.1 0.1 0 -70.385 0 0.091  0.1 1 3 -71.691 0 1.002 
0.1 1 0 6362k  0.1 0.25 4 -70.19 0 0.082  0.1 1 0 -71.678 0 0.938 
0.1 1 3 6543k  0.1 0.1 4 -70.114 0 0.034  0.1 0.5 1 -71.525 0 0.46 
0.5 1 1 6577k  0.1 0.25 0 -69.899 0 0.198  0.1 0.25 2 -71.349 0 0.247 
0.1 0.5 1 6916k  0.1 0.1 2 -69.656 0 0.03  0.1 0.1 0 -70.989 0 0.201 
0.1 0.5 3 7191k  0.1 0.1 1 -69.254 0 0.037  0.1 0.5 2 -70.603 0 0.538 
0.1 1 4 7284k  0.1 0.5 0 -69.092 0 0.339  0.1 0.25 0 -70.499 0 0.231 
0.1 0.5 2 7468k  0.1 0.5 1 -68.83 0 0.213  0.1 0.25 4 -70.464 0 0.146 
0.1 0.1 3 7540k  0.1 0.25 3 -68.646 0 0.1  0.1 0.5 4 -70.342 0 0.41 

0.5 0.5 1 7635k  0.1 0.5 4 -68.492 0 0.273  0.1 1 4 -70.114 0 1.334 
0.5 0.5 3 7942k  0.1 0.25 1 -67.905 0 0.173  0.1 0.1 4 -70.111 0 0.099 
0.5 1 2 7945k  0.5 0.25 0 -66.838 0 0.248  0.1 0.1 2 -69.731 0 0.071 
0.5 0.5 2 8000k  0.1 0.1 3 -66.764 0 0.057  0.1 0.1 1 -69.336 0 0.067 
1 1 1 8775k  0.1 0.5 2 -66.308 0 0.257  0.1 1 2 -69.331 0 0.934 

0.5 0.25 2 9008k  0.5 0.25 2 -66.027 0 0.044  0.1 0.25 1 -69.27 0 0.297 
0.5 0.5 0 9189k  0.1 1 1 -65.524 0 0.871  0.1 1 1 -69.136 0 0.986 
1 0.5 1 9263k  0.1 0.5 3 -65.044 0 0.277  0.1 0.25 3 -69.114 0 0.16 

0.5 0.1 2 9307k  0.5 0.5 1 -63.927 0 0.196  0.1 0.5 3 -68.252 0 0.554 
0.1 0.1 4 9534k  0.5 0.1 2 -63.869 0 0.014  0.5 0.25 0 -67.603 0 0.287 

0.1 0.5 0 9628k  0.5 0.1 4 -62.92 0 0.022  0.1 0.1 3 -67.329 0 0.189 
1 0.1 2 9846k  0.5 0.5 0 -62.559 0 0.351  0.5 0.1 0 -66.216 0 0.545 
1 0.1 0 11009k  0.5 0.1 0 -62.447 0 0.268  0.5 1 0 -66.135 0 0.766 

0.5 0.1 0 11027k  0.1 1 3 -62.273 0 0.665  0.5 0.25 2 -65.935 0 0.105 
0.5 1 3 11339k  0.1 1 0 -62.136 0 0.558  0.5 0.5 1 -65.89 0 0.431 
0.1 0.1 2 11491k  0.5 0.5 2 -62.009 0 0.24  0.5 0.5 0 -65.761 0 0.521 
1 0.5 0 11562k  0.5 0.1 1 -61.645 0 -0.062  0.5 0.5 2 -65.242 0 0.48 

0.1 0.5 4 11637k  0.5 1 1 -60.773 0 0.834  0.5 1 4 -65.083 0 3.806 
0.5 0.1 1 11663k  0.5 1 0 -60.329 0 0.53  0.5 0.1 2 -63.883 0 0.051 
0.1 0.1 0 11694k  1 0.25 0 -59.736 0 0.3  0.5 1 1 -63.803 0 0.946 

0.1 0.25 2 11748k  0.1 1 2 -59.699 0 0.5  0.5 1 3 -63.026 0 1.035 
0.1 0.1 1 11868k  1 0.25 2 -58.877 0 -0.109  0.5 0.1 4 -62.91 0 0.035 
0.5 1 0 12012k  0.5 1 2 -57.375 0 0.394  0.5 0.1 1 -61.865 0 -0.14 
1 0.5 2 12500k  0.5 0.5 4 -57.184 0 -0.087  0.5 1 2 -61.864 0 0.655 
1 0.5 3 12605k  0.5 0.25 1 -55.827 0 0.298  1 0.25 0 -60.557 0 0.347 

0.5 0.1 3 12615k  0.5 1 3 -55.778 0 0.698  1 0.1 0 -60.19 0 0.87 
1 1 2 13481k  0.1 1 4 -55.216 0 0.319  1 0.25 2 -59.976 0 -0.297 
2 0.1 0 13695k  1 0.1 0 -53.742 0 0.491  0.5 0.25 1 -57.653 0 0.42 
1 0.1 1 13798k  0.5 0.25 4 -53.144 0 -0.222  0.5 0.5 4 -57.426 0 -0.164 

0.1 0.25 3 14244k  1 0.1 2 -52.799 0 -0.032  0.5 0.5 3 -56.776 0 0.875 

0.1 0.25 1 14571k  1 0.5 2 -52.113 0 0.254  0.5 0.25 4 -55.037 0 -0.606 
2 0.5 1 14951k  1 1 0 -52.038 0 0.468  1 1 0 -54.989 0 0.621 
2 1 1 17602k  0.5 0.5 3 -52.028 0 0.255  0.5 0.1 3 -54.603 0 2.018 
1 0.25 0 18569k  1 0.5 1 -51.816 0 0.23  1 0.5 2 -53.908 0 0.417 
2 0.25 0 19985k  0.5 0.25 3 -50.938 0 -0.073  1 0.5 1 -53.895 0 0.53 
3 0.1 0 20010k  1 1 1 -50.433 0 0.777  1 1 4 -53.366 0 106.283 

0.5 0.25 0 21442k  1 0.5 0 -49.823 0 0.338  1 0.1 2 -53.093 0 -0.165 
2 0.1 2 21816k  1 1 2 -49.794 0 0.242  1 1 1 -52.724 0 0.897 
1 0.25 2 22329k  1 0.1 4 -48.561 0 0.033  1 0.5 0 -52.034 0 0.513 

0.1 0.25 4 23868k  1 0.1 1 -47.874 0 -0.166  0.5 0.25 3 -51.075 0 -0.15 
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3 0.5 1 23881k  2 0.25 0 -44.038 0 0.37  1 1 2 -50.858 0 0.365 
0.1 0.25 0 25460k  1 1 3 -43.363 0 0.688  1 0.1 1 -50.264 0 -0.594 
1 1 3 25926k  2 0.25 2 -41.776 0 -0.215  1 0.1 4 -48.561 0 0.04 
2 0.1 1 26043k  2 0.1 0 -41.24 0 0.779  1 1 3 -48.178 0 1.065 
2 0.5 0 26048k  1 0.5 4 -41.157 0 -0.565  1 0.5 3 -47.765 0 5.247 

0.5 0.1 4 26740k  0.5 0.1 3 -40.894 0 0.245  1 0.5 4 -46.557 0 -1.331 
0.5 1 4 27415k  1 0.25 1 -40.438 0 0.376  2 0.1 0 -46.491 0 1.171 
0.5 0.25 1 28714k  2 1 2 -38.98 0 0.042  2 0.25 0 -44.735 0 0.431 
1 1 0 29613k  0.5 1 4 -38.936 0 0.237  2 0.5 3 -44.714 0 -4.029 
3 0.25 0 30954k  1 0.5 3 -36.672 0 0.101  1 0.25 4 -44.711 0 -2.663 

3 1 1 32336k  2 1 0 -36.348 0 0.358  1 0.1 3 -43.696 0 3.547 
0.5 0.25 3 32649k  2 0.1 2 -35.56 0 -0.095  2 0.25 2 -42.493 0 -0.451 
2 0.5 2 34282k  2 0.5 2 -35.082 0 0.283  1 0.25 1 -41.831 0 0.491 
2 0.5 3 34344k  2 0.5 1 -34.256 0 0.352  2 1 2 -38.984 0 0.055 
2 1 2 36056k  2 1 1 -33.804 0 0.653  2 0.25 4 -37.538 0 -13.797 

0.5 0.5 4 37935k  1 0.25 4 -33.054 0 -0.511  2 1 0 -37.352 0 0.444 
1 0.1 3 40666k  3 0.25 0 -32.726 0 0.407  2 0.5 4 -36.963 0 -3.896 

0.5 0.25 4 46752k  3 1 2 -31.897 0 -0.055  2 0.5 1 -36.931 0 0.823 
3 0.1 2 48311k  2 0.5 0 -31.72 0 0.277  2 0.1 2 -36.103 0 -0.329 
3 0.1 1 48918k  3 0.1 0 -31.37 0 0.907  2 0.5 2 -35.786 0 0.378 

3 0.5 0 53519k  1 0.25 3 -30.429 0 -0.167  3 0.5 3 -35.683 0 -2.9 
1 0.25 1 57832k  2 0.1 4 -29.758 0 0.042  2 1 1 -35.279 0 0.803 
1 0.1 4 72435k  3 0.25 2 -29.176 0 -0.202  2 0.1 1 -35.072 0 -2.125 
1 0.25 3 72510k  2 0.1 1 -28.428 0 -0.203  3 0.1 0 -34.947 0 1.298 
3 0.5 3 72633k  2 1 3 -26.954 0 0.616  3 0.25 0 -33.296 0 0.483 
3 0.5 2 73104k  3 1 0 -26.922 0 0.28  2 0.5 0 -32.9 0 0.472 
3 1 2 73973k  2 0.5 3 -26.526 0 -0.432  3 1 2 -31.923 0 -0.066 
2 1 3 83740k  1 1 4 -26.363 0 -0.043  1 0.25 3 -31.805 0 -1.155 
1 0.25 4 89110k  2 0.5 4 -25.8 0 -1.409  2 1 4 -31.75 0 -3.543 
1 1 4 89573k  3 0.1 2 -25.746 0 -0.107  3 0.25 4 -31.676 0 98.286 

2 1 0 99947k  1 0.1 3 -25.573 0 0.434  2 0.1 4 -29.76 0 0.047 
1 0.5 4 104034k  3 0.5 2 -25.385 0 0.29  2 1 3 -29.608 0 1.119 
2 0.25 2 104792k  3 0.5 1 -25.367 0 0.446  3 0.25 2 -29.318 0 -0.417 
2 0.25 1 154201k  3 1 1 -24.626 0 0.544  3 0.5 4 -28.44 0 -7.447 
2 0.1 3 169118k  2 0.25 1 -24.362 0 0.419  3 0.5 1 -27.824 0 0.983 
3 1 3 179737k  3 0.5 3 -23.345 0 -0.726  3 1 0 -27.396 0 0.336 
2 0.25 3 208417k  3 0.5 0 -22.581 0 0.219  3 0.1 2 -26.002 0 -0.285 
3 1 0 217122k  3 0.1 4 -20.802 0 0.042  3 0.5 2 -25.788 0 0.361 
2 0.25 4 219670k  3 0.1 1 -19.114 0 -0.118  3 1 1 -25.691 0 0.721 
2 0.1 4 244451k  3 1 3 -19.074 0 0.551  2 0.1 3 -25.62 0 4.283 

3 0.25 2 261680k  2 1 4 -18.037 0 -0.351  2 0.25 1 -25.23 0 0.521 
3 0.25 1 301413k  3 0.25 1 -17.437 0 0.411  3 0.1 1 -25.068 0 -4.578 
2 1 4 337197k  3 0.5 4 -16.944 0 -1.952  3 0.5 0 -23.3 0 0.416 
2 0.5 4 346994k  2 0.25 4 -15.7 0 -0.551  2 0.25 3 -20.997 0 123.297 
3 0.1 3 394038k  2 0.25 3 -15.031 0 -0.078  3 1 4 -20.99 0 -2.138 
3 0.25 4 411354k  2 0.1 3 -13.971 0 0.492  3 1 3 -20.818 0 1.188 
3 0.25 3 419236k  3 1 4 -13.392 0 -0.377  3 0.1 4 -20.805 0 0.046 
3 0.1 4 523969k  3 0.25 3 -10.052 0 0.117  3 0.25 1 -18.064 0 0.495 
3 0.5 4 737635k  3 0.25 4 -9.689 0 0.082  3 0.1 3 -17.284 0 4.163 
3 1 4 749234k  3 0.1 3 -9.369 0 0.439  3 0.25 3 -16.068 0 27.526 

Notes: This table presents the results when ranking data generated by the Stock & Watson common trends model. 

 

   Sensitivity to specific non-stationary noise factor. Higher values results in series with random walk properties. 

True ϒ The expected cointegration coefficient when regressing one series on the other. 

Est ϒ Actual cointegration coefficient obtained when regressing one series on the other. 
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Appendix H – Adjustments of price series 

 

Adjustments for dividends and splits 

Ticker  Event date  Event 

GOGL  March 5th 2014  Ex. Dividend 0.0025 USD 

MHG  February 19th 2014  Ex. Dividend 1.2 NOK 

MHG  January 21st 2014  Reverse split 10:1 

PRS  February 14th 2014  Ex. Dividend 0.16 USD 

RCL  February 14th 2014  Ex. Dividend 0.25 USD 

SDRL  March 5th 2014  Ex. Dividend 0.98 USD 

Notes:  This table presents the set of valid pairs under the restricted setup. 
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Appendix I – Python code implementing the pairs trading routine 

 

def trade(AmidN,BmidN,Abidlist,Aasklist,Bbidlist,Basklist,threshold): 

 

"""This function calculates the return generated from trading a pair of stocks over some time 

period. The function requires two lists of midprices for the two stocks as input. In addition four 

lists containting the actual bid/ask prices must be supplied. Lastly the entry threshold must be 

defined""" 

 

         

    wait = 60             #Order execution delay parameter, seconds 

    comission = 0.0003   #Comissionaction cost parameter 

    shortcost = 0.05     #Short fee parameter 

     

    shortlen = 0          #Initializing variables 

    spread = 0 

    prevspread = 0 

 

    longpos = 0 

    shortpos = 0 

    trades = [] 

 

    longleg = "" 

     

    openpos = False 

    crossing = False 

    Overval ="" 

    slippage = 0 

 

#Calculate the spread at each setof observatins 

    for i in range(len(AmidN)-wait): 

        spread = (AmidN[i]-BmidN[i])       

         

#Trading signal for entering a trade 

         if openpos == False: 

            if abs(spread) > threshold:        

  

#Heuristically control for comissionaction costs 

Transcost = ((Aasklist[i]-Abidlist[i])/2)+((Basklist[i]-Bbidlist[i)/2)+(4*comission)  

                 

                if Transcost < abs(spread):  

                            

                    if spread > 0: 

                            Overval = "A"     

                    else: 

                            Overval = "B" 

                                              

#Stock A is relatively overvaluedand therefore shorted. B bought long. 

                    if Overval == "A":       

                        longleg = "B"  

       

#Must buy and sell stock at ask/bid price 

                        short = Abidlist[i+wait]     

                        long = Basklist[i+wait]      

#Opposite of above case. 

                    else: 
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                        longleg = "A"                 

        

                        short = Bbidlist[i+wait]                  

                        long = Aasklist[i+wait] 

                         

                    openpos = True 

#Check if exit conditions are fulfilled 

   

        if openpos == True:                      

                 

#Calculate current position value 

            if longleg == "B":   

                        longpos = 100*(Bbidlist[i]/long)     

                        shortpos = -100*(Aasklist[i]/short)    

            if longleg == "A": 

                    longpos = 100*(Abidlist[i]/long) 

                    shortpos = -100*(Basklist[i]/short) 

                     

               

#Stoploss function 

            if longpos+shortpos<-10: 

                        

#Calculate value of position considering bid/ask prices 

                    if longleg == "B":                

considering the bid/ask spread 

                            longpos = 100*(Bbidlist[i]/long) 

                            shortpos = -100*(Aasklist[i]/short)  

                    if longleg == "A": 

                            longpos = 100*(Abidlist[i+wait]/long) 

                            shortpos = -100*(Basklist[i+wait]/short) 

#Calculate short fee      

                    if i > 26400:              

                            shortlen = 2 

                    else: 

                            shortlen = 1 

                             

                    trades.append((longpos*(1-comission))+(shortpos*(1+comission))- 

   (2*comission*100)-((shortlen/365)*100*shortcost)) 

                    return trades 

                 

 

#Determine if prices cross at current set of observations         

            if spread < 0 and  prevspread > 0:      

 

                crossing = True 

            if spread < 0 and  prevspread > 0: 

                crossing = True 

 

#Exit position if prices cross 

              if crossing == True:                                 

                    if longleg == "B":  

      

#Calculate value of position considering the bid/ask spread 

                               longpos = 100*(Bbidlist[i+wait]/long)     

                            shortpos = -100*(Aasklist[i+wait]/short)  

                             

                                              

                    if longleg == "A": 
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                            longpos = 100*(Abidlist[i+wait]/long) 

                            shortpos = -100*(Basklist[i+wait]/short) 

#Calculate short fee 

                    if i > 26400:                         

                            shortlen = 2 

                    else: 

                            shortlen = 1 

#Store the result of the trade 

                                                             

                    trades.append((longpos*(1-comission))+(shortpos*(1+comission))- 

    (2*comission*100)-((shortlen/365)*100*shortcost))  

                    openpos = False 

                    crossing = False 

                                    

 

            prevspread = spread 

                     

#This is the end of the trading period. A position still open is automatically closed. 

                      

    if openpos == True:      

         

#Calculate value of position considering the bid/ask spread 

 

        if longleg == "B": 

            longpos = 100*(Bbidlist[i+wait]/long)     

            shortpos = -100*(Aasklist[i+wait]/short)  

#Store the result of the trade 

            trades.append((longpos*(1-comission))+(shortpos*(1+comission)) 

                          -(2*comission*100)-((2/365)*100*shortcost))             

            openpos = False 

        if longleg == "A": 

#Store the result of the trade          

            longpos = 100*(Abidlist[i+wait]/long) 

            shortpos = -100*(Basklist[i+wait]/short) 

            trades.append((longpos*(1-comission))+(shortpos*(1+comission)) 

                          -(2*comission*100)-((2/365)*100*shortcost))               openpos = False                 

                 

    return trades 
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Appendix J – Possible pairs in the restricted setup 

 

Possible pairs in the Restricted Case 

 

Stock A Stock B 

 CAPM   Stock 

A 

CAPM   

Stock B 

  difference (Absolute 

value) 

AKSO PRS  1.57 1.2 0.37 

AKSO PGS  1.57 1.71 0.14 

AKSO SUBC  1.57 1.43 0.14 

AKSO TGS  1.57 1.49 0.08 

DETN PRS  1.21 1.2 0.01 

DETN PGS  1.21 1.71 0.5 

DETN SUBC  1.21 1.43 0.22 

DETN TGS  1.21 1.49 0.28 

FOE SDRL  1.19 0.99 0.2 

MHG ORK  1.15 0.73 0.42 

PGS SUBC  1.71 1.43 0.28 

PGS PRS  1.71 1.2 0.51 

PGS TGS  1.71 1.49 0.22 

PRS SUBC  1.2 1.43 0.23 

PRS TGS  1.2 1.49 0.29 

Notes:  This table presents the set of valid pairs under the restricted setup. 

Stock A  First stock in pair 

Stock B  Second stock in pair 

CAPM   The associated market coefficient of the stock when assessed with the CAPM.  

  difference The absolute difference in the CAPM   values when comparing stock A and stock B 

 

.  
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Appendix K –Results in the restricted case controlling for transaction costs 

 

Results Restricted Case –  Impact of Transaction costs 

Portfolio 

Parameters  
Top 5 Pairs  Top 10 Pairs  All Pairs 

No SL q Fee 
 

Return   SR Trades 
 

Return   SR Trades 
 

Return   SR Trades 

38 2 % 2 0   5.49 %       0.4 170  -2.37 % 5.1 % -1.0 272  -0.59 % 3.7 % -1.0 371 

39 2 % 3 0   4.53 %       0.4 83  -1.67 % 3.4 % -1.4 138  -1.00 % 2.4 % -1.7 178 

40 2 % 5 0   16.53 %       4.8 35  8.81 % 2.0 % 2.9 53  3.40 % 1.4 % 0.3 62 
                       

42 5 % 2 0   16.95 %       3.0 171  7.86 % 4.7 % 1.0 275  5.58 % 3.5 % 0.7 374 

43 5 % 3 0   9.40 %       1.8 83  5.74 % 3.4 % 0.8 138  4.03 % 2.5 % 0.4 178 

44 5 % 5 0   16.87 %       4.8 35  12.61 % 2.8 % 3.5 53  5.66 % 1.8 % 1.5 62 

                       

46 None 2 0   16.95 %       3.0 171  7.71 % 4.8 % 1.0 275  5.50 % 3.5 % 0.7 374 

47 None 3 0   9.40 %       1.8 83  5.60 % 4.4 % 0.6 138  3.95 % 2.5 % 0.4 178 

48 None 5 0   16.87 %       4.8 35   12.61 % 2.8 % 3.5 53   5.66 % 1.8 % 1.5 62 
 

38 2 % 1 3 
 

-4.84 % 5.7 % -1.4 170 
 

-10.14 % 5.1 % -2.6 272 
 

-7.00 % 3.7 % -2.7 371 

39 2 % 2 3 
 

-0.65 % 3.5 % -1.0 83 
 

-5.77 % 3.5 % -2.5 138 
 

-4.15 % 2.4 % -2.9 178 

40 2 % 3 3 
 

14.04 % 2.8 % 4.0 35 
 

7.08 % 1.9 % 2.1 53 
 

2.26 % 1.4 % -0.5 62 
 

    
    

 
    

 
    

42 5 % 1 3 
 

5.44 % 4.6 % 0.5 171 
 

-0.81 % 4.7 % -0.8 275 
 

-1.27 % 3.5 % -1.2 374 

43 5 % 2 3 
 

3.96 % 3.5 % 0.3 83 
 

1.34 % 3.4 % -0.5 138 
 

0.74 % 2.5 % -0.9 178 

44 5 % 3 3 
 

14.38 % 2.8 % 4.1 35 
 

10.79 % 2.7 % 2.9 53 
 

4.48 % 1.8 % 0.8 62 
 

    
    

 
    

 
    

46 None 2 3 
 

5.44 % 4.6 % 0.5 171 
 

-0.95 % 4.7 % -0.8 275 
 

-1.35 % 3.5 % -1.2 374 

47 None 3 3 
 

3.96 % 3.5 % 0.3 83 
 

1.21 % 3.4 % -0.5 138 
 

0.66 % 2.5 % -0.9 178 

48 None 5 3 
 

14.38 % 2.8 % 4.1 35 
 

10.79 % 2.7 % 2.9 53 
 

4.48 % 1.8 % 0.8 62 
 

38 2 % 2 10 
 

-21.85 % 5.6 % -4.4 169 
 

-23.28 % 5.1 % -5.15 271 
 

-18.07 % 3.7 % -5.7 370 

39 2 % 3 10 
 

-9.92 % 3.5 % -3.7 83 
 

-9.92 % 3.5 % -3.70 138 
 

-9.89 % 2.5 % -5.1 178 

40 2 % 5 10 
 

9.45 % 2.7 % 2.4 35 
 

3.80 % 1.8 % 0.44 53 
 

0.09 % 1.4 % -2.0 62 
 

    
    

 
    

 
    

42 5 % 2 10 
 

-13.50 % 4.6 % -3.6 170 
 

-15.46 % 4.7 % -3.96 274 
 

-13.12 % 3.5 % -4.6 373 

43 5 % 3 10 
 

-5.73 % 3.5 % -2.5 83 
 

-6.57 % 3.4 % -2.83 138 
 

-5.29 % 2.6 % -3.2 178 

44 5 % 5 10 
 

9.78 % 2.7 % 2.5 35 
 

7.40 % 2.6 % 1.72 53 
 

2.27 % 1.8 % -0.4 62 
 

    
    

 
    

 
    

46 None 2 10 
 

-13.50 % 4.6 % -3.6 170 
 

-15.58 % 4.7 % -3.96 274 
 

-13.19 % 3.5 % -4.6 373 

47 None 3 10 
 

-5.73 % 3.5 % -2.5 83 
 

-6.70 % 3.4 % -2.84 138 
 

-5.36 % 2.6 % -3.2 178 

48 None 5 10 
 

9.78 % 2.7 % 2.5 35 
 

7.40 % 2.6 % 1.72 53 
 

2.27 % 1.8 % -0.4 62 

Notes: This table presents the annualized returns on a pairs trading strategy after controlling for transaction costs. 

No Portfolio identification number 

SL  Stop–loss threshold 

q   Threshold for opening a position. Numbers of standard deviations. 

Fee  Transaction costs for one single trade, number of basis points 

Time  Length of formation period : Length of trading period 

   Annualized standard deviation on portfolio 

SR  Annualized Sharpe ratio. 

Trades  Number of roundtrips during the 3M testing period. One roundtrip translates to four trades. Two when 

 opening a position and two when the position is closed. 
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Appendix L –Results in the restricted case controlling for execution speed 

Results Restricted Case –  Impact of Order Execution Speed 

Portfolio 

Parameters   Top 5 Pairs  Top 10 Pairs  All Pairs 

No SL q Del. 
 

Return   SR Trades 
 

Return   SR Trades 
 

Return   SR Trades 

38 2 % 2 0   5.49 % 5.7 % 0.4 170  -2.37 % 5.1 % -1.0 272  -0.59 % 3.7 % -1.0 371 

39 2 % 3 0   4.53 % 3.5 % 0.4 83  -1.67 % 3.4 % -1.4 138  -1.00 % 2.4 % -1.7 178 

40 2 % 5 0   16.53 % 2.8 % 4.8 35  8.81 % 2.0 % 2.9 53  3.40 % 1.4 % 0.3 62 
 

42 5 % 2 0   16.95 % 4.6 % 3.0 171  7.86 % 4.7 % 1.0 275  5.58 % 3.5 % 0.7 374 

43 5 % 3 0   9.40 % 3.6 % 1.8 83  5.74 % 3.4 % 0.8 138  4.03 % 2.5 % 0.4 178 

44 5 % 5 0   16.87 % 2.9 % 4.8 35  12.61 % 2.8 % 3.5 53  5.66 % 1.8 % 1.5 62 
 

46 None 2 0   16.95 % 4.6 % 3.0 171  7.71 % 4.8 % 1.0 275  5.50 % 3.5 % 0.7 374 

47 None 3 0   9.40 % 3.6 % 1.8 83  5.60 % 4.4 % 0.6 138  3.95 % 2.5 % 0.4 178 

48 None 5 0   16.87 % 2.9 % 4.8 35   12.61 % 2.8 % 3.5 53   5.66 % 1.8 % 1.5 62 
 

38 2 % 2 1  0.32 % 6.2 % -0.4 166  -3.72 % 5.3 % -1.3 268  -2.06 % 3.9 % -1.30 367 

39 2 % 3 1  9.35 % 3.8 % 1.7 83  2.71 % 3.1 % -0.1 138  1.17 % 2.4 % -0.78 178 

40 2 % 5 1  14.86 % 2.2 % 5.3 53  7.98 % 2.2 % 2.2 53  2.61 % 1.7 % -0.23 62 
 

42 5 % 2 1  14.04 % 4.7 % 2.3 171  7.71 % 4.6 % 1.0 275  4.86 % 3.6 % 0.51 374 

43 5 % 3 1  10.16 % 3.7 % 1.9 83  6.48 % 3.4 % 1.0 138  4.04 % 2.6 % 0.40 178 

44 5 % 5 1  15.09 % 3.1 % 4.0 35  11.57 % 3.0 % 2.9 53  4.74 % 2.1 % 0.84 62 
 

46 None 2 1  14.04 % 4.7 % 2.3 171  7.33 % 4.7 % 0.9 275  4.64 % 3.7 % 0.45 374 

47 None 3 1  10.16 % 3.5 % 2.1 83  6.11 % 3.5 % 0.9 138  3.89 % 2.7 % 0.31 178 

48 None 5 1  15.09 % 3.1 % 4.0 35  11.57 % 3.0 % 2.9 53  4.74 % 2.1 % 0.84 62 

 

38 2 % 2 10  1.40 % 5.6 % -0.3 167  -3.26 % 4.7 % -1.3 269  -2.41 % 3.3 % -1.65 365 

39 2 % 3 10  8.53 % 3.6 % 1.5 82  2.82 % 2.9 % -0.1 137  1.32 % 2.0 % -0.84 176 

40 2 % 5 10  8.86 % 2.2 % 2.6 35  7.24 % 2.6 % 1.6 53  3.02 % 1.7 % 0.01 62 
 

42 5 % 2 10  10.33 % 4.7 % 1.6 169  4.61 % 4.2 % 0.4 273  1.03 % 3.3 % -0.60 370 

43 5 % 3 10  10.24 % 3.6 % 2.0 82  5.94 % 3.4 % 0.9 137  2.39 % 2.7 % -0.23 177 

44 5 % 5 10  8.98 % 2.3 % 2.6 35  7.76 % 1.9 % 2.5 53  2.44 % 1.9 % -0.29 62 
 

46 None 2 10  10.33 % 4.7 % 1.6 169  4.15 % 4.3 % 0.3 273  0.77 % 3.4 % -0.66 370 

47 None 3 10  10.24 % 3.6 % 2.0 82  5.47 % 3.5 % 0.7 137  2.12 % 2.7 % -0.32 177 

48 None 5 10  8.98 % 2.7 % 2.3 35  7.76 % 2.7 % 1.8 53  2.44 % 1.9 % -0.29 62 
 

38 2 % 2 60  3.08 % 4.4 % 0.0 162  1.49 % 4.2 % -0.4 264  -0.84 % 3.1 % -1.23 353 

39 2 % 3 60  1.21 % 3.0 % -0.6 75  0.39 % 3.2 % -0.8 128  -1.41 % 2.5 % -1.78 166 

40 2 % 5 60  8.06 % 2.7 % 1.9 32  7.31 % 2.9 % 1.5 49  2.40 % 2.0 % -0.30 57 
 

42 5 % 2 60  3.95 % 4.2 % 0.2 164  2.45 % 4.4 % -0.1 266  0.09 % 3.3 % -0.88 335 

43 5 % 3 60  2.38 % 2.8 % -0.2 78  1.05 % 3.5 % -0.6 131  -0.63 % 2.7 % -1.34 169 

44 5 % 5 60  8.17 % 2.6 % 2.0 32  6.93 % 2.9 % 1.3 49  2.19 % 2.1 % -0.39 57 
 

46 None 2 60  3.95 % 4.2 % 0.2 164  1.87 % 4.5 % -0.2 266  -0.24 % 3.4 % -0.94 355 

47 None 3 60  2.38 % 2.8 % -0.2 78  0.48 % 3.7 % -0.7 131  -0.96 % 2.8 % -1.40 169 

48 None 5 60  8.17 % 2.6 % 2.0 32  6.93 % 2.9 % 1.3 49  2.19 % 2.1 % -0.39 57 

Notes: This table presents the annualized returns on a pairs trading strategy after controlling for delays in the 

 speed of transaction. 

No Portfolio identification number 

SL  Stop–loss threshold 

q   Threshold for opening a position. Numbers of standard deviations. 

Del.  The delay between trade signal and trade execution. Minutes 

   Annualized standard deviation on portfolio 

SR  Annualized Sharpe ratio. 

Trades  Number of roundtrips during the 3M testing period. One roundtrip translates to four trades 

 


