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Abstract

Deregulation of the electricity markets has brought several interesting topics to the

research agenda. Switching from a monopoly based industry to the free market in-

dustry has not been straight forward. The competitive segments of the deregulated

electricity markets, the wholesale market and the retail market, have evolved in

different ways across the globe, and consequently there are different market de-

signs and different pricing mechanisms.

If we assume that a neoclassical economic model applies to the electricity market,

then the monotonically increasing supply curves of all generators would be aggre-

gated to create the industry supply curve. Similarly, the monotonically decreasing

demand curves of all consumers would be aggregated to create the industry de-

mand curve. The competitive equilibrium price for electricity would be set at the

level where the two curves intersect.

It is important to highlight that convexity is a property that economic models re-

quire for a competitive equilibrium. However electricity treated as a commodity

has several characteristics that do not fit into the neoclassical economic model.

First of all, electricity cannot be stored; therefore the total production should al-

ways match total consumption. In addition, electricity generators have several

operational requirements to avoid problems with the technology used, such as

minimum and/or maximum output, start-up and shut down costs, and minimum

ramp rates. These requirements generate non-convexities in the production func-

tion. Moreover, generators are committed to production in indivisible units, which

also creates non-convexities. On the demand side, it has been seen that the demand

function is extremely inelastic, which may contribute to high spikes in prices.

Non-convex cost structures can be a challenge for the price discovery process,



since the supply and demand curves may not intersect; or if they intersect, the

price found may not be high enough to cover the total cost of production.

In this dissertation, I review previous work on setting prices for the day-ahead

electricity market in a power pool auction. In addition, I propose an alternative

pricing mechanism using a Semi Lagrangean relaxation technique. This technique

provides a price that can be applied in the electricity pool markets. In this type

of markets a central system operator decides who produces and how much they

should produce.

The proposed pricing approach not only accommodates the non-convexities that

the electricity market has, but also provides a shadow value that represents the

price of the day-ahead electricity. At this price, the demand is fulfilled at mini-

mum cost and all generators are covering their fixed costs.

The Semi-Lagrangean technique is applied to examples from the literature. First to

a simple case, and then it is expanded so as to obtain prices not only for electricity

but for capacity as well. In addition, the technique is applied to a network model

to obtain different prices at the nodes, as well as to obtain prices in the congested

lines. The prices obtained are high enough to cover the producers total costs, and

follow the optimal resource allocation at a minimum cost. The prices found are an

alternative solution to the price discovery problem in non-convexities economies.

This approach sends better signals to market participants since it does not require

that the system operator offers side-payments or up-lifts. The technique is also

tried in a power exchange with block bids.
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1

Introduction

Pricing in a linear divisible world is straight forward with the use of linear mathematical pro-

gramming and its dual theory. However the problem begins to complicate when some of the

variables are indivisible, such as the number of generators to be engaged into production. The

problem becomes then a mixed integer programming problem (MIP), and in certain circum-

stances the dual prices are not longer an optimal price.

In an economic view, the optimal price is set-up where the demand function meets the sup-

ply function. This is under certain assumption of constant returns of scale and convexities,

which is similar to a linear mathematical problem. Electricity has several characteristics that

do not fulfil the requirements of a classical economical model. Therefore in this dissertation,

I study the problem of pricing in a non-convex electricity market. Non-convexities arise in

the electricity problem not only in the indivisibility of the generating unit, but also in the cost

function and in some of the technical and operative constraints that the generating unit has to

satisfied. The contribution of this thesis is to present an alternative pricing approach for the

day-ahead electricity market mainly based on an pool based market. The technique imple-

mented is a Semi-Lagrangean Relaxation, to obtain not only prices for electricity but also for

capacity and in the case of a network set up for nodal prices and congestion prices.

The thesis is organised in seven sections:

1



1. INTRODUCTION

The aim of Section 2 is to provide the reader with a background on electricity and economics,

as well as to give the reader an overview on how the industry established prices before dereg-

ulation and after deregulation. In addition a synopsis of the trading mechanisms is presented

along with a discussion on why the electricity market is complicated and what are the chal-

lenges with deregulation.

In section 3 the pricing approaches after deregulation are presented. The deregulation of the

market seems to have split USA and Europe in the way to approach and solve the pricing prob-

lem. The approaches and issues are summarised in this section.

The main objective of this thesis is to present a new approach to price in electricity market

based on a new technique built using a Lagrangean Relaxation. Therefore section 4 presents

the mathematical background on mathematical programming, primal and dual problems, along

with a review on Lagrange relaxation. Moreover it illustrates how a Walrasian equilibrium in

a Pool market may be complicated to achieve. In addition, it shows how the Unit Commit-

ment and Dispatch Problem is written mathematically. Finally, it points out where the non-

convexities arise in the Electricity Market.

Section 5 presents the Semi-Lagrangean approach and how it is implemented in a Unit Com-

mitment and Dispatch Problem (UCDP). The different approaches to obtain a possible price

to the market are described. First, the general approach applied to the UCDP with a given

demand and with a price sensitive demand is presented. Then, prices in a second price auction

are discussed, followed by two extensions of the model to obtain prices for capacity and prices

in a network framework.

From the problems presented in Section 5, Section 6 shows the numerical results by solv-

ing the different models using examples from the literature. Finally, section 7 concludes and

discusses further research.

Section 8 contains the appendix with numerical results for some of the examples presented.

2



2

Deregulation of Electricity Industry

Deregulation of electricity markets started at the beginning of 1980’s in South America, and

since then many countries and regions around the world have followed the trend. Different mar-

ket designs and market structures have been developed due to the fact that each region, or coun-

try, will have different characteristics, natural resources,technologies, and politics (Baldick,

Helman, Hobbs, and O’Neill, 2005). In other words, there is not a single unique model that fits

all countries. In addition to this, several approaches and rules to discover the electricity price in

a competitive market structure have been implemented, and some of them have been discarded

because of its negative consequences. Therefore, it can be said that the establishment of an

electricity market is an ongoing process.

Deregulation is also known in some countries as liberalisation, privatisation or restructure of

the electricity market. In this work we use the term deregulation to mean the split of the four

elements of the supply chain in electricity: generation, transmission, distribution and retail en-

tities. The split has triggered the existence of a competitive market for generation and retail

and a natural monopoly for transmission and distribution. This is illustrated in Figure 2.11.

The electricity market has peculiar characteristics that introduce a higher level of complexity

to a market environment. These complexities were not a challenge under a monopoly environ-

ment where all the decisions were centrally made. However, in a competitive market structure,

these complexities can originate difficulties to find equilibrium in an economic sense; that is,

1Figure obtained from https://aepretailenergy.com/residential/get-started/aep-ohio/understanding-your-bill

3



2. DEREGULATION OF ELECTRICITY INDUSTRY

Figure 2.1: Elements of the Electricity Industry

to find prices at which all agents in the market maximise their surplus (i.e. consumers max-

imise benefits and producers maximise profits) and the aggregate quantity supplied equals the

aggregated quantity demanded.

Setting the right price in the electricity market is essential because it affects the subsequent

markets linked to the spot market. In some places, the spot electricity price is used to set

transmission charges, as well as create contracts such as forwards, futures and contracts for

differences.

2.1 Electricity and Economics

If a neoclassical economic model is assumed for electricity markets, then the monotonically

increasing supply curves of all generators would be aggregated to create the industry supply

curve, and similarly the monotonically decreasing demand curves of all consumers would be

aggregated to create the industry demand curve. The competitive equilibrium price for elec-

tricity, (P∗), would be set at the level where the two curves intersect as shown in Figure 2.2. It

is important to highlight that convexity in production and benefit functions is one of the most

important assumptions in the standard neoclassical economic model (Mas-Collel, Whinston,

and Green, 1995). In this set-up, marginal cost defines the market clearing prices. At this

point, social welfare is maximised, and it is depicted by the triangle ABC which represents

consumer’s utility minus producer’s costs.

4



2.1 Electricity and Economics

Figure 2.2: Neoclassical Economic Model

The electricity treated as a commodity, however, has several characteristics that do not fit into

the neoclassical economic view. First of all, the electricity cannot be stored; therefore the total

production should always match total consumption. In addition, electricity has several secu-

rity requirements, such as minimum and/or maximum output, start up costs, minimum ramp

rates and shut down costs, that generate non-convexities in the production function. Moreover,

generators are engaged into producing electricity in non-divisible units, which also creates

non-convexities. On the demand side it has been seen that the demand function is extremely

inelastic, which adds also complexity to the problem of finding a price in this market.

Figure 2.3 shows an incremental energy cost function and its corresponding energy supply

function for a given generator with start up costs (Hao, Angelidis, Singh, and Papalexopoulos,

1998). The total cost function is non-linear, therefore marginal pricing will not always provide

linear market clearing price that will support an equilibrium. It could also be that the supply

and demand functions do not intersect.

In summary, non-convexities in either of the participants’ functions may not yield to an equi-

librium in the economic sense since linear prices are not guaranteed and the prices obtained

may not maximise the market participants’ surplus. In many market structures the solutions

obtained are suboptimal solutions.

5



2. DEREGULATION OF ELECTRICITY INDUSTRY

Figure 2.3: Incremental energy cost and energy supply functions for a given generator

2.2 Prior to Deregulation

Before deregulation took place, generating units were owned by a single entity that minimised

the total cost of producing electricity so as to cover a given demand. This entity was a regulated

utility that accepted the price set by a government regulation. This regulation could be based

on a rate-of-return, a cost-plus or any other scheme decided by the government.

Some researchers pointed out the difficulties to set a completely deregulated spot electricity

market before the deregulation of the market (Westfield, 1988). The author shows concern

about addressing the technical characteristics that the electricity market may present. Indeed,

many deregulated electricity structures have kept a centralized scheme with a unit commitment

and dispatch problem solved by a System Operator or Market Operator.

2.3 Deregulation

Deregulation was intended to increase efficiency in the electricity market. This means to have

a market that provides a price which in turn sends the correct signals to the market participants

about their investment decision. That is, to promote investment in the most efficient technolo-

gies. An efficient market will allocate the resources in the most economical way, that would

imply that the electricity will be provided at the least cost mix of inputs, and all the resources

are allocated economically Stoft (2002). In many countries, deregulation meant the creation of

a tough and competitive generation market that would provide large efficiency gains and cost

6



2.3 Deregulation

savings to consumers.

Under deregulation, price is not set any longer by a government rule; instead, it is set by the

market open competition. As mentioned earlier, different countries have adopted different mar-

ket structures, and within them the trading mechanisms have evolved in different ways. So far,

there have been two main generic trading models: bilateral contracts and centralised markets.

Within centralised markets there are power pools and power exchanges. These mechanisms are

described in the following section.

2.3.1 Trading Mechanism

• Bilateral Trading. Under this scheme, the market participants arrange contracts amongst

them with specific terms and conditions and the price is unique to each transaction. For

a review of a bilateral trading model the reader can find Bower and Bunn (2000) inter-

esting.

• Centralised Markets. This scheme are modelled as an auction with a central entity

who receives bids from all the market participants (sellers and buyers) and then it sets

the winners as well as the quantities that should be traded and the price that clears the

market (Motto, Galiana, Conejo, and Huneault, 2001). There are different approaches

to settle the prices and quantities. The structures mainly used are a pool based power

structure and a power exchange structure. It seems that the USA has implemented the

former, while in Europe the latter is found in most markets.

a) Power Pools. In this type of market, the system operator receives information

from all the generators regarding their cost structure and operating limitations. The

information is provided in a bid format that usually contains fixed costs, start up

costs, production range, minimum and maximum down times, and ramp rate. The

system operator in turn, as a central scheduler, solves a problem known as the Unite

Commitment and Dispatch Problem (UCDP) and specifies which generators will

be engaged, how much energy each of them will produce and also what the energy

price will be. There are also several approaches to settle the price and quantities,

which are reviewed in the next section.

7



2. DEREGULATION OF ELECTRICITY INDUSTRY

b) Power Exchanges. In contrast to power pools, market participants in power ex-

changes determine their own production and consumption, that is, they are self-

committed given the price observed. The UCDP is not used and therefore, the

market operator does gather neither cost nor benefit functions nor operating con-

straints. Price is set at the point where supply and demand intersects. For a review

on power exchanges in Europe please refer to Madlener and Kaufmann (2002).

The design of an electricity market is not fixed, but an evolving task. There is no right or wrong

format, since each country will apply or create the one that suits best its endowments. Some

advantages and disadvantages of the pools versus exchanges can be found in Wilson (1998)

and Stoft (2002)

2.3.2 Why the electricity market is a complicated market?

This section aims to highlight some of the characteristics in the electricity market that make

the design complicated.

The electricity prices are usually calculated in a day-ahead basis. In addition to energy, gener-

ating units should provide ancillary services to the market. Ancillary services keep the market

reliable by covering last minute differences in the energy quantities demanded and supplied.

The different ancillary services, such as reserves, along with energy production create multiple

interdependent products that are offered in to the market on different time periods (O’Neil,

Helman, and Sotkiewicz, 2001). Therefore, one problem is what to include in the price: energy

only; energy and capacity; capacity energy and ancillary services.

The centralised market structure is based on an auction format, and again, each country or

region has implemented different type of auctions as well as settlement rules. Some countries

implemented initially pay-as-bid formats and later discovered that it could create high peaks in

the prices. Other countries implemented uniform pricing, while others have a mix of uniform

pricing and an additional side payment to compensate any loss for committing.

There are different trading methods and pricing criteria that yield to different quantity and

financial settlements. This gives a further complication into the market design when it comes

to deciding market rules and bid formats. There can be single bids, multiple bids, block bids

8
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and in addition the market can set specific rules regarding what to include in the bids. Some

rules may require that bids reflect marginal costs, or total costs, or that generators submit sepa-

rately variable costs and start-up costs along with security and physical constraints, or that bids

should be strictly convex.

Power auctions face more challenges than standard auction models. There are more issues and

difficulties involved in designing efficient energy auctions, these can be found in Elmaghraby

et al. (2004) and O’Neill (2009). In Elmaghraby et al. (2004), the authors suggests that a mar-

ket in electricity may need three components, namely a commodity price, a capacity price and

production quantities. In O’Neill (2009) the author addresses the market design process for

market power mitigation, optimal dispatch, pricing and the role of price signals. In Baldick

et al. (2005) the authors address several design issues connected to the integrated or centralised

spot market scheme with a clear view into the US markets.

In addition, the mechanisms to set prices could vary also if the system is considered as a

network or not, if the transmission constraints are included in the model or not. This leads

to different pricing approaches such as nodal pricing and zonal pricing. This will be covered

further in Section 3.5

2.3.3 Challenges with deregulation

After deregulation, one of the market designs was to set the electricity market as an auction.

An auction is efficient when it maximises the total surplus from trade given the bids submitted

by the participants. In addition, the price obtained sends clear signals to the participants for

investments and supports an efficient production and consumption decisions amongst the par-

ticipants. Moreover, it provides a competitive short term resource allocation.

In a competitive market, the participants are price takers and their decision to take part in the

market and how much to produce or consume should be based on their independent profit/benefit

expectations as well as on the market price and conditions. In theory, the market price obtained

from the market should be a sufficient incentive not only to equate supply and demand, but

also to satisfy the security of the system, without the need of a central intervention. However,

this is still a challenge for the electricity markets. Prices for electricity market will generally

need to be higher than that obtained from the auction, not only to cover the operational costs of

9



2. DEREGULATION OF ELECTRICITY INDUSTRY

the generators, but also to send the right investment signal to the market participants. In fact,

one feature in the electricity wholesale market that seems persistent across market designs is

the ”missing money problem”. This problem arises when the generators cannot recover their

investment cost through energy payments only. The wholesale spot price for electricity is not

high enough for the generators to cover their investment costs (Joskow, 2008).
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Pricing approaches after deregulation

Before deregulation took place, generating units were owned by a single entity that minimised

the total cost of producing electricity so as to cover a given demand. This entity was a regu-

lated utility that accepted the price set by a government regulation. This regulation could be

based on a rate-of-return, a cost-plus or any other scheme decided by the government. After

deregulation different approaches were set in place to allow the new market to set prices.

In this section I will review the literature and explain some of the pricing approaches suggested

in different market designs, such as a pool and an exchange. I will start first by describing in

general how the USA markets differ from the European markets and then show how marginal

pricing can be a problematic approach. I end the section by describing concepts for pricing in

a network model.

3.1 USA and Europe

Both market structures for trading, Power Pools and Power Exchanges, have some disadvan-

tages. Power Pools have long-run inefficiencies due to the wrong signals in the market for

investment in capacity. This is mainly caused by the side payments and uplifts usually present

in a Power Pool. The drawbacks of granting uplifts to the generators that incur in losses are

mainly two. The first one is wrong signals to the market in terms of what technology to invest

into; the second one, is that some generators may be tempted to bid cost curves higher than they

actually are. This is due to the learning process where they will learn that if they are scheduled

and incur in losses, they will be compensated. Power Exchanges, on the other hand, present
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3. PRICING APPROACHES AFTER DEREGULATION

short-run inefficiencies in terms of finding the least cost schedule. If one or the other is the best

option in a deregulated electricity market for economic efficiency remains an open question

that requires further research.

The problem seems to be in that either we minimised costs and obtain a right efficient sched-

ules, or maximised social welfare which give the right pricing signals. The first problem is

found mainly in power pools, and the prices obtained are somewhat deviated from a linear

pricing. The second case is seen more in Power Exchanges, where a suboptimal solutions in

term of welfare may be implemented.

Power Pools are more present in the USA (PJM, New England, New York, ERCOT, Mid West

SO), while the Power Exchanges are more used in Europe. Figure 3.1 shows an overview of

the USA Electric power markets, while Figure 3.2 shows the restructuring state or deregulation

state in the country.

Figure 3.1: USA Electric Power Market Overview
Source: FERC.gov

The four largest power exchanges in Europe are: Nordpool for the Nordic market covering

Norway, Sweden, Finland, Denmark and Estonia; APEX that covers France, German, Austria

and Switzerland; OMEL for Spain and Portugal; and APX in the UK. Other countries have

also their own power exchange, like Italy (IPEX) and Belgium (BELPEX). Figure 3.3 shows

in colour (not grey) the different exchanges in Europe.
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Figure 3.2: USA electricity restructuring
Source: Energy Information Administration

Figure 3.3: European Power Exchanges

3.2 Approaches and issues

3.2.1 Marginal Cost Pricing

Consider a market where there are three producers, each with their own capacity constraints

and cost structure as shown in Table 3.1. Let us assume for now that there are no variable

costs and therefore no marginal costs; then, the producer’s total costs will be the same, whether

one unit is produced or the generator runs at full capacity. In the same Table 3.1, the cost of

producing represents the total fixed costs (F) for operating the generator.
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Table 3.1: Cost Structure

Producer (i) Capacity (ki) Cost of Average cost
producing (Fi) at full capacity

A 16 800 50
B 9 630 70
C 5 550 110

If a producer decides not to sell any units, then no costs are incurred. However, if at least

one unit is generated, then there will be costs of producing the unit. The average cost at full

capacity for each producer will be given by the cost incurred divided by its capacity (Fi/ki).

Therefore, producer A will be interested in producing as long as the price is higher than or

equal to 50, while producer B will enter the market if the price reaches 70 or more, and finally

producer C will participate if the price is higher than or equal to 110, as shown in Figure 3.4.

Figure 3.4: Total Cost Function

From Figure 3.4 we can see that the total cost function is not linear, and there will be compet-

itive market clearing prices only if the market demand is 16, 25, or 30. That is, if demand is,

for example, 16, then any price within the open interval (50, 70) represented by r1 will clear

the market. Similarly for a demand value of 25, prices within the range r2 will also clear the

market and for demand of 30, range r3 will contain the equilibrium prices. However, when the

demand is not contained in any of these three values, there will be no intersection of demand

and supply curves and there will be no market equilibrium; a competitive market clearing price
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is non-existent (Van Boening and Wilcox, 1996).

If variable costs are considered, then the price will be set by the marginal producer. This will

not always lead to optimal prices since some units may not cover their total production costs1.

Take the same producers, A, B and C with the added information about their variable costs (V )

as shown in Table 3.2.

Table 3.2: Cost Structure with Variable Costs

Producer (i) Capacity (ki) Fixed Costs Cost per unit Average cost
(Fi) produced (Vi) at full capacity2

A 16 800 60 110
B 9 630 150 220
C 5 550 225 335

If the level of demand is such that the marginal producer is not engaged at its full capacity, then

the marginal producer will not recover its costs, since the price will be set equal to its marginal

costs. This price will not necessarily cover the total costs of producing for all the generators.

For example, given the capacities and marginal costs from Table 3.2, and given a demand level

of 20 units, producer A and B would be engaged in the production. Producer A will be engaged

at full capacity while Producer B will be committed to cover the remaining demand, i.e. 4 units.

Since Producer B is the marginal producer, it will set the price equal to its marginal cost which

is 150. At this price, Producer A will obtain a profit of 640 = (150-60) * 16 - 800, but the

marginal generator in this case will not cover its total costs of 1230 = (630+150∗4) and will

incur losses for 630 = (4 * 150 - 1230), as shown in Table 3.3.

Table 3.3: Example with demand value set to 20

Demand=20
Price = Marginal Producer = B = Marginal Cost = 150
Producer Revenue Costs Profit

A 2400 1760 640
B 600 1230 -630

1The total production costs is calculated as (Fi +Vi ∗qi), where qi is the amount produced and it is less than or
equal to ki.

2The average cost at full capacity is given by the total cost of producing, divided by the total production, that
is Vi +Fi/ki.
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Similarly, if the demand level is 28, Producer C in Table 3.4 will be the marginal producer, and

will set the price to 225. Producers A and B will be committed at full capacity, and Producer C

will cover the remaining demand of three units. The first two producers, A and B, will recover

their total costs (Fi +qi ∗Vi), but Producer C will not. Its total costs are larger than the revenue

it makes, i.e. (Fi +qi ∗Vi)> P∗qi , where qi is the quantity produced and P is the price.

Table 3.4: Example with demand value set to 28

Demand=28
Price = Marginal Producer = B = Marginal Cost = 225
Producer Revenue Costs Profit

A 3600 1760 1840
B 2025 1980 45
C 675 1225 -550

Figure 3.5 provides us with a glimpse of non-convexities in this example. The red dotted line

illustrates the value function of minimising the cost of production for this specific example,

considering that the plants can be call into production at divisible units. In reality however, the

plants are either engaged or not. This mean that the problems needs integrality constraint to

accommodate the fact that the plants have to be added in discrete units. If that is the case, then

the total cost function is shown by the blue continuous line. The non-convexities in the cost

function create difficulties in finding a price.

Figure 3.5: Total Cost of production for Linear and Integer Cases

As more generators come to play with different cost structures along their production plan, the

marginal cost pricing presents spikes. That is the case in an illustration presented in Gribik,

Hogan, and Pope (2007), where the plants have two different variable costs depending on the
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section they are operating. Table 3.5 contains the characteristics of that example, and Figure

3.6 depicts the behaviour of marginal cost pricing if the least cost generating units are engaged

in production.

Table 3.5: Generators with piece-wise variable costs

Plants
A B C

Fixed Costs 0 6000 8000
Variable Costs1 ( >=0 ; <= 100MW) 65 40 25
Variable Costs2 ( >100; <=200MW) 110 90 35

Figure 3.6: Marginal Cost Pricing with generators that have linear piece-wise variable costs

In summary, marginal pricing will not always cover the costs incurred by the generators who

are profit maximizers under the deregulated market. The price will not properly coordinate

the participants to the pool and consequently, marginal pricing is not enough to guarantee

efficient self-committed schedules nor a linear equilibrium market clearing price (Toczylowski

and Zoltowska, 2009).

3.3 Under Power Pool Structure

In 1997, some authors (Jacobs, 1997; Johnson, Oren, and Svoboda, 1997) raised certain issues

regarding the problems of implementing a Pool in the Electricity Market. One of the problems

mentioned is the possibility of multiple solutions, where the impact to the total cost could be

negligible, but the effect on the profitability of some market participants could be large. That
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is, two sets of prices that are equally efficient would likely generate different schedules and

consequently different profit levels to the participants. An additional problem highlighted by

the authors is the risk of distorting the incentives for investment. Other authors have shown

concern about how well the deregulated market under Unit Commitment and Dispatch Prob-

lem (UCDP) will provide feasible solutions, minimise costs and avoid gaming opportunities

at the same time (Yan and Stern, 2002). They show with straightforward examples that the

solution in a deregulated system may not necessarily be the minimum cost solution obtained

from the old regulated structure.

Markets organized with a power pool structure have also evolved in different ways across the

globe. They can operate with different formats, and will diverge from each other in how the

bids are form, what type of networks are considered in the optimisation problem, as well as

how the quantities and prices are determined. In the next pages, I will briefly present the pric-

ing mechanisms studied and proposed recently.

3.3.1 Uplifts and side payments

In cases where the solution to maximising social welfare is not aligned with the solution ob-

tained by each agent’s maximisation problem, the market operator offers an uplift or side pay-

ment to incentive the market participants to follow the schedule obtained by solving the max-

imum social welfare problem. This measure could help the marginal generators from Tables

3.3 and 3.4 to recover their losses.

In other words, when the market operator solves the UCDP and sets both, the market price

and schedules to follow, to the market participants, it can happen that some generators may

incur monetary losses. The market operator then compensates these generators with an uplift

or side payment so they are willing to produce the scheduled amount.

Motto, Galiana, Conejo, and Huneault (2001) model a power exchange and apply a market

rule to make the offer functions from the generators and distributors convex; such a rule avoids

having irrational and chaotic behaviour. However it is not clear how can a profit optimality rule

can be ensured since the examples given assume that the primal and dual problem obtain the

same solution. They highlight the fact that an alternative pricing approach will be needed in
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the presence of duality, but do not suggest one. The prices are updated by a Newtown algorithm.

Galiana, Motto, and Bouffard (2003) propose the implementation of a generalised uplift func-

tion that modifies the market participants’ profit function by adding an uplift function. The

consumers contribute to the payment of the uplift through the increase in the system price,

which is increased by modifying the offered generation costs. Rules are set for the generators

to contribute in any loss of profit of generators that would incur in losses under a UCDP. Uplifts

differ by market participant and can be negative or positive and its sum across all the market

participants is zero.

By augmenting the number of commodities to be priced, O’Neill, Sotkiewicz, Hobbs, Rothkopf,

and Stewart (2005) reach a discriminatory multipart prices. The commodity price is highly

volatile. In their model the auctioneer solves the UCDP by means of a mixed integer program-

ming which contains all bids from the market participants. The bids contain cost (or benefit)

structure and technical limitations. The auctioneer then inserts the optimal solution for the in-

teger constraints as equality and runs the UCDP to find the dual prices for electricity, capacity

and start-up. The generators receive payment for the electricity produced, their capacity and

start-up. The last two are considered as the uplift and it can be positive or negative. That is, it

is possible that the generator has to pay in order to be schedule if the uplift is negative. This

could be problematic. Furthermore, it is not clear where the payment for uplifts will come from

since the total uplift sum can be negative.

The model presented by Motto and Galiana (2002) also suggests augmented pricing, how-

ever that refers to changes in the parameters of the generators’ cost functions, as the work in

Galiana, Motto, and Bouffard (2003). Under this approach, the consumers will pay the uplifts

in a pro-rata basis. The model assumes a quadratic function and it adds a disincentive function

into the generators profit maximisation problem. The sum of the disincentive function across

all agents is equal to zero, which guarantees that no external money is required in the pool.

By applying an iterative optimisation method that is founded on a cutting plane algorithm,

Bouffard and Galiana (2005) expand on the work presented earlier by Galiana, Motto, and

Bouffard (2003); Motto and Galiana (2002), and arrive to single uniform linear prices. The
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uplift is given by changes in bid offering parameters but in addition it takes into account inter-

temporal couplings. Under this scheme, consumers and producers share the profit and losses

of the suboptimal solution.

Discriminatory multi-part prices are also suggested by Hogan and Ring (2003). The authors

suggest a minimum uplift that is paid to the generator conditional on accepting the scheduled

obtained by the market operator. The uplifts are never negative and electricity prices are more

stable. The uplift is the minimum amount that would make the generator indifferent between

accepting the solution from the market operator and responding optimally to the commodity

price given. It has been stated that in a linear case, the commodity prices obtained under this

approach are equal to the linear programming prices, while the minimum uplifts are equal to

the size of the duality gap (Bjørndal and Jörnsten, 2008).

In the models presented by Bouffard and Galiana (2005); Galiana, Motto, and Bouffard (2003);

Motto and Galiana (2002); Motto, Galiana, Conejo, and Huneault (2001) it is not clear, how-

ever, how the market participants will obtain the information needed about the uplifts before

they run their maximisation problems.

Gribik, Hogan, and Pope (2007) present an uplift comparison across three different pricing

models. The first model is a restrictive model where the UCDP is solved after setting the inte-

ger variables to its optimal values, as suggested by O’Neill, Sotkiewicz, Hobbs, Rothkopf, and

Stewart (2005). The second model is a dispatchable model where the total cost function is ap-

proximated to closely related convex function and in addition treats the unit commitment with

continuous variables within the integer bounds, that is a relaxed problem of the UCDP. The last

model is a convex hull model which uses an approximation of the aggregate cost function by

using its convex hull. The Semi-Lagragean approach suggested in this work is also applied to

the example in Gribik, Hogan, and Pope (2007) in section 6.1.3.

Recently Van Vyve (2011) proposed a new approach and used the numeric example in Gribik,

Hogan, and Pope (2007) to illustrate his approach. The author solves the UCDP first, and then,

he solves a linear problem that includes the financing of the uplift by the committed plants. Ac-

cording to the author, the maximum of such contribution is minimised, instead of minimising
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the total uplift. In his approach, a new variable is created for each of bid. This variable repre-

sents the difference between the market price and the actual price at which the bid is taken. If

the actual price is higher than the market price, then there is a compensation or uplift; and if

the opposite happens (i.e. the actual price is lower than the market price), then the generator

contributes to the financing of the uplift. There is a maximum bound for the contribution to the

uplift that the generator has to make.

There are three main problems with applying uplifts. First, uplifts and side payments can

have impact on the signalling to the market. That is, they may send the wrong signal to the

generators about which technology should be expanded; second, it is not clear where the extra

money for the uplifts will come from; and last, they also present a risk for strategic bidding,

that is bidding higher than the real cost from the generators, since they know that they would be

compensated for any monetary loss (Elmaghraby, O’Neil, Rothkopf, and Stewart, 2004; Stoft,

2002). It seems that under side payment mechanisms the market can be inefficient in the long

run.

3.3.2 Other

A Bender decomposition approach is used by Bjørndal and Jörnsten (2008) to obtain more

stable prices than in models such as those presented by Hogan and Ring (2003); O’Neill,

Sotkiewicz, Hobbs, Rothkopf, and Stewart (2005) . In fact the prices obtained are supported

by a non-linear function and are non-discriminatory. The authors use the optimal solution from

the UCDP to reformulate the problem with additional supporting inequalities. How the uplifts

are collected and paid remained unclear.

Average cost prices. Under the assumption of perfect information, Muratore (2008) develops

a model where the generators are consolidated in technologies (with the same cost, operational

characteristics and owner) and the price for electricity is in fact the maximum average price of

the technologies engaged to produce electricity.

A similar technique was implemented in the early stages of the UK market and some prob-

lems were found due to the behaviour of the market participants who were able to strategically

choose the parameters submitted in their cost functions, which in turn set the prices much
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higher than they should had been (Madrigal and Quintana, 2001). However, irrespective of the

participants’ behaviour, the prices under this scheme can reach unreasonable high prices due

to the discontinuities of the total supply function. That is, if the demand is located just above a

discontinuity, the prices increase will be very high for an extra unit.

Non-linear and discriminatory prices. A model where the price for consumers is differ-

ent from the price for generators is suggested by Madrigal and Quintana (2001). The authors

highlight how under disequilibrium situations, it is difficult to select a final schedule as well as

setting the price. In this model, the cost that is not recovered by the generators with the dual

prices is shared in equal proportion with the generators and the consumers. In order to do so,

the price is adjusted by decrements or increments using a formula in which the suppliers’ price

increment is amortised in accordance to the positive profits under the dual optimal prices. The

prices are higher than the dual value but much smaller than the average cost model.

Relaxing complementarity constraints in the mixed integer programming formulation is an al-

ternative proposed recently by Conejo and Ruiz (2011), where the complementarity conditions

are relaxed and included into the objective function. The authors proposal include non-negative

profit conditions for the producers, that are linearised using binary expansion. The final prob-

lem is in fact minimisation of the duality gap, subject to primal and dual constraints. This

approach does not require uplift payments, and all the generators engaged have non-negative

profits.

3.4 Under Power Exchange Structures

In a Power Exchange structure, market participants can submit bids for the day-ahead follow-

ing the rules of the specific exchange. The exchange then applies a market clearing process for

each of the time periods. Different exchanges allow different type of bids, for example hourly

bids, flexible hourly bids, block bids and linked block bids (Nordpool),(Ravn, 2010). Some of

the reasons to incorporate the last two types of bids are to represent non-convexities, such as

minimum up and down times. For instance a thermal unit may prefer to run continuously over

a time period and prefer to bid in a block format. Exchanges with different bid formats may

also have different processes to clear the market and settlement rules.
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The problem with block bids is that an equilibrium price may not exist. Figure 3.7 shows a

continuous hourly sell bid represented by the section q1− q2 and a block bid ranging from

q2− q3. A block bid is an all or nothing decision. If the block bid is accepted then the cor-

responding price would be less than what the generator’s bid (p1), as shown in Figure 3.8. If

the block bid is rejected, then the corresponding price is higher than the generator’s bid (p2),

which seems not logical since the generator would be losing some profits, as shown in Figure

3.9. The paradox of rejecting a block bid even though it was a profitable bid is widely discussed

by Meeus, Verhaegen, and Belmans (2009) and Ravn (2010). Meeus, Verhaegen, and Belmans

(2005) offers a pricing mechanism for the electricity markets with block bids.

Figure 3.7: Bids Received

Figure 3.8: Block Bid Accepted

3.5 Pricing with Network models

The electricity industry has four main sectors: generation, transmission, distribution and retail.

The power plants are not always placed where the demand is needed; therefore transmission

and distribution cables are needed to transport the electricity to the end users. The electricity

injected into the grid will take all available paths between the generator and the end user. The
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Figure 3.9: Block Bids Rejected

flow will not follow one specific path, but a path that will depend on the relative resistance

between two lines. This can have nasty consequences, since the actions of one participant in

one node will definitely affect other participants and can also modify the prices in the grid.

Most of the electricity markets have chosen to have either a uniform marginal pricing, a nodal

marginal pricing or a zonal marginal pricing (Ding and Fuller, 2005). The first one ignores the

idea of a network and reduces the problem to the case where there are no transmission con-

straints and no losses. This approach provides a single price for all nodes on the network. In

theory, nodal pricing is the best scheme to reflect the real cost of electricity and its transmis-

sion, since it accounts for the physical laws of electricity flow in the network as well as losses.

The prices across the grid will be the same as long as there is no congestion in the lines. As

soon as one line is congested, then the prices in the nodes will be different (Hsu, 1997). Like

the uniform marginal pricing, the zonal marginal pricing also ignores the physical laws and the

power flow in the grid but within a given area. The prices obtained are the same within any

given zone. Because of the complexity in calculating nodal marginal prices, many models in

the literature simplify their approach by not taking into account network constraints and power

flow (Doorman and Nygreen, 2003).

3.5.1 The physical laws

Assume a three nodes network that is interconnected by three transmission lines as depicted in

Figure 3.10, where Node A has two generators (G1, and G2), and Node B has a third generator

(G3), and demand is situated at Node C.

If there are no restrictions on the line capacities, the prices at Node A, B and C will be the
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same (Schweppe, Caraminis, Tabors, and Bohn, 1988). The power injected at Node A will

flow not only through line AC, but also through line AB and then BC to be withdrawn at Node

C. Similarly the power injected at Node B will follow two routes: BA-AC and BC. Ignoring for

now the effect of losses and assuming as well that all lines have equal impedance and length,

when generators at Node A inject power, it will follow two paths. Path AB-BC has two times

the impedance of the second path, namely AC. The flow divides inversely to impedance, so

when generators at Node A supply to node C, the flow across the path AB-BC is half that of

the path AC. That is, two thirds will flow on path AC and one third will flow on path AB-BC.

Similarly, when the generator at node B produces energy, the impedance in the path BA-AC

has two times the impedance of path BC. So we have that two thirds of the power will flow

through path BC and one third will flow through path BA-AC.

Figure 3.10: Three nodes network

As an example, assume that the load is 75MW and that generators at Node A can produce up to

60 MW for a price of 10, while the generator at Node B can produce up to 30 at a price of 15.

Then, the electricity will flow as shown in Figure 3.11. The power will flow through the lines

according to their reactance. In a DC model, like the one assumed in this work, the reactance

of a line is assumed to be proportional to its resistance. The corresponding flows in Line AB,

BC, and AC are 15, 30 and 45 respectively.

The cheapest generator is engaged first and the price is set by the marginal generator at 15.

Since there is no congestion the prices are the same across the three nodes. However, if line

AB is capacitated at 10, for example, then the line will be congested, and the total flow in
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Figure 3.11: Power Flow

Figure 3.12: Congested Network

line AB will be limited. This will affect the prices in all three nodes, since more espensive

generators may need to be engaged to reduce the power flows. In the congested area, the price

will increase to the marginal cost of the local generator (Green, 2007). Indeed, if the capacity

of Line AB is 10, then generators at A will produce less electricity (52.5MW), while generators

at Node B will produce more (22.5MW), as shown in Figure 3.12. The prices at Node A, B and

C will be different: 10, 15 and 12.5 respectively. A clear presentation of the marginal nodal

pricing is covered in (Hsu, 1997).
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Mathematical problems

The approach to obtain prices for the electricity market suggested in this dissertation is based

on mathematical programming, dual theory, and the Unit Commitment and Dispatch Problem

(UCDP). Therefore, in this section I will cover briefly some fundamentals on linear program-

ming (LP), the primal and dual problems, after highlighting the connexions between economics

and mathematical programming. Then, I will explain how the use of dual prices are only op-

timal when there is no duality gap. Next, I will present the UCDP as a mathematical problem

without transmission constraints and in a network with transmission constraints. A brief pre-

sentation on block bidding, and a discussion on the problems that power exchanges face are also

included. Finally, I will highlight what constraints in the model generates the non-convexities.

4.1 Mathematical Programming and Economics

There is a link between the theory of economic equilibrium and mathematical programming.

Back in 1990, Scarf (1990) reminded us on their common features. In a decentralised econ-

omy, equilibrium prices will equilibrate the demand and supply for the different commodities.

It is assumed that the goal of a supplier is to choose resources and production plans so as to

maximise profit, while the goal of a consumer is to maximise their benefit or consumption sat-

isfaction. The objective in a mathematical programming problem is to optimise, maximise or

minimise, a function of several variables subject to a set of constraints.

If the economy is in equilibrium, and a new activity appears, then by using microeconomic

analysis we can decide if the new activity should be used or not in the economy. Economic the-
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ory states that the new activity should be included in the economy if by doing so, all consumers

can be made better off. This will happen if and only if the new activity makes a positive profit

at the current equilibrium prices.

The most common tool to solve a linear mathematical programming problem (LP) is the sim-

plex method. Scarf describes how each step in the simplex method can have an economic

interpretation aligned to the economic theory, since the latter searches for decentralised prices

that equilibrate the supply and demand for factors of production. He states ”...at each step of

the simplex method a trial solution to the linear program is proposed. To test for optimality of

this solution, we find those prices that yield a profit of zero for the activities in use, and use

them to calculate the profitability of the remaining activities. The trial solution is optimal if

none of the remaining activities make a positive profit; if one of them is profitable, we simple

increase the level of its use from zero, making compensating changes in the previous activity

levels until one of them falls to zero. The algorithm continues until a trial solution is found that

passes the pricing test for optimality”.

Indeed, as we will cover in the next section, the solutions from the primal and dual problems

have useful economic interpretations in terms of obtaining prices for the economy. However,

the linear programming problems, as well as the classic economic theory are based on assump-

tions of convexities and constant returns to scale. Economies of scale, specially increasing

returns to scale, are an important characteristic in modern economics. As mentioned before,

the electricity market has several non-convexities due to the indivisibilities presented in the

production possibility sets, due to increasing returns to scale, amongst others. In that respect,

another type of programming has to be set in place: integer programming (IP).

Scarf (1960) also argues that in an integer program, the test for optimality is not applicable. In

a linear program, given a feasible solution, we can find the prices that will grant a zero profit. If

at these prices all the remaining activities make a loss or break even, then the feasible solution

found is an optimal solution. However, in several IP problems, there is not such a vector of

prices where the activities used in the optimal solution earn zero profits, while the activities

not used earn negative profits. In addition, if a new activity, that can be added only at integer

level, is presented in an IP problem at equilibrium, the profitability of the new activity is not a

necessary nor a sufficient condition to decide to include it into the economy. An improvement
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in the objective function may require a mix of profitable and unprofitable activities. In a later

paper, Scarf (1994) clarifies how the problem may arise. Even though a new activity can make

a positive profit at the old prices, it is not scheduled for use at any discrete level to achieve a

Pareto improvement.

Pricing mechanisms in a linear programming problem are straight forward. However, when

the problem is integer or non-linear, the pricing mechanisms become challenging.

4.2 Primal and Dual problems

Every linear programming (LP) problem is linked to another linear programming problem, a

dual problem. When one of them is solved, we implicitly solve the other one. If we have the

following primal problem

max
x

n

∑
j=1

c jx j

subject to
n

∑
j=1

ai jx j ≤ bi i = 1,2, . . . ,m

x j ≥ 0 j = 1,2, . . . ,n

x j ∈ R

(4.1)

then the dual problem is written as

min
y

m

∑
i=1

biyi

subject to
m

∑
i=1

yiai j ≥ c j j = 1,2, . . . ,n

yi ≥ 0 i = 1,2, . . . ,m

yi ∈ R

(4.2)

The constraints in one problem, correspond to the variables in the other problem. The constraint

vector b, that contains [b1,b2, ...,bm], from the primal problem above, produces the objective

function of the dual problem and vice versa. The inequality constraints are reversed, that is, if
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the primal has ”≤ ” inequalities, the dual will have ”≥ ” inequalities.

In a Linear programming (LP) problem with constraints, the shadow price of the ith constraint

is the amount by which the optimal value of the problem is improved when the right hand side

of that constraint is increased by one. This will hold if the current basis of the problem remains

optimal. The shadow prices are also known as dual variables, or marginal prices. They can

be often interpreted as the price of the resource availability of that constraint. That is, they

provide the marginal value of additional amounts of the ith resource when all resources are

allocated optimally. We could say the the primal is a resource allocation problem, while the

dual represents the resource valuation problem.

Weak Duality

Given any feasible solution to the primal problem, and any feasible solution to the dual, the

value function for the dual problem will be equal or greater than the value function for the

primal problem. That is, if x′ and y′ are feasible solutions to the primal and dual problem re-

spectively, then by weak duality we can write that ∑
n
j=1 c jx′j ≤ ∑

m
i=1 biy′i.

Given that y′i ≥ 0, when we multiply the ith primal constraints in problem 4.1 by y′i and adding,

we obtain the inequality

∑
m
i=1 ∑

n
j=1 y′iai jx′j ≤ ∑

m
i=1 biy′i.

Similarly noting that x′j ≥ 0 and multiplying the jth dual constraint from the dual problem 4.2

by x′j and adding, we get the inequality

∑
n
j=1 ∑

m
i=1 x′jai jy′i ≥ ∑

n
i= j c jx′j.

Taking these two results together, we have that

∑
n
j=1 c jx′j ≤ ∑

m
i=1 x′jai jy′i ≤ ∑

m
i=1 biy′i.

That is the objective function value for the primal problem is≤ the objective function value for

the dual problem, i.e. ∑
n
j=1 c jx′j ≤ ∑

m
i=1 biy′i.

Optimality Property
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The optimality property states that if there is a feasible solution to the primal problem and the

dual problem such as the objective function values are the same, then the solutions are optimal

to each problem. In other words, if the primal problem has a feasible solution given by x∗j for

j = 1,2, ...,n, and the dual problem has also a feasible solution given by y∗i for i = 1,2, ...,m

such as ∑
n
j=1 c jx∗j = ∑

m
i=1 biy∗i , then x∗j is an optimal solution for the primal problem and y∗i is

an optimal solution for the dual problem.

Strong Duality

The concept of strong duality states that if the primal problem has an optimal solution, then

the dual problem also has an optimal solution, and the objective value function is the same. In

other words, if the primal problem has an optimal solution given by x∗ = (x∗1,x
∗
2, ...,x

∗
n), then

the dual problem has also an optimal solution y∗= (y∗1,y
∗
2, ...,y

∗
m) such as ∑

n
j=1 c jx∗j =∑

m
i=1 biy∗i .

4.2.1 Lagrangean relaxation

Duality theory is based on a Lagrangean function. The Lagrangean formulation involves cre-

ating a new problem by relaxing some constraints of the initial problem and adding them to

the objective function with the use of Lagrangean multipliers (λi). These multipliers act as a

penalisation for any infeasibility with respect to the relaxed constraints.

The Lagrangean relaxation has been widely used to solve linear problems, but it can be also

applied for solving non-linear problems as well as non-convex problems. The relaxation is

based on duality theory and is called Lagrangean Duality. From the Lagrangean Function a

dual function and a dual problem can be formulated to obtain a solution to the initial problem.

Let us consider the the following primal problem

min
x

f (x)

subject to

gi(x)≤ 0, i = 1,2, . . . ,m

(4.3)

where x = [x1,x2, ...,xn]
T . The Lagrangean formulation is written as:
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L(x,λ ) = f (x)+
m

∑
i=1

λigi(x) (4.4)

The dual function provides a lower bound for the primal problem 4.3, and it is written as:

h(λ ) = min
x
(x,(λ ))

= min
x

f (x)+
m

∑
i=1

λigi(x)
(4.5)

Given that the solution to the dual function provides a lower bound for f (x), the greatest lower

bound should occur at the maximum value of h(λ ) . The dual problem is then to find the max-

imum lower bound:

max
(λ )

h((λ )) (4.6)

The ideal situation is to have L(x∗,λ ∗) = F(x∗), when there is no duality gap. The difference

between the objective value from solving the dual problem L(x∗,λ ∗), and the objective value

of the original problem F(x∗) is called duality gap. Figure 4.1 shows a geometric interpretation

of the dual problem and the multipliers. We can see that the red line contains the multiplier that

makes the dual problem reach the same optimal value as the primal problem, that is p∗. In this

case there is no duality gap and there is strong duality.

Figure 4.1: Geometric Interpretation of Duality
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4.2.2 Non-Linear Cases

As mentioned before, finding prices in integer and non-linear problems is challenging. In an

integer programming (IP) problem, the dual values do not necessarily have an economical in-

terpretation as in the LP problems. In a IP problem the last constraints from problems 4.1 and

4.2 are modified to x j ∈ Z and yi ∈ Z respectively, where Z is a set of integer values.

If we relax the integrality constraint, the problem is known as a relaxed IP, and the tightest

lower bound for the relaxed IP problem is given by the dual solution. The solution for the IP

problem will not necessarily give the same objective value as the relaxed IP problem, which

creates a duality gap.

Figure 4.2 shows a graphical representation of the duality gap when the set H has non-convexities.

Figure 4.2: Geometric Interpretation of Duality Gap

Duality theory for integer programming problems, mixed integer programming problems, and

non-linear problems has been studied by several authors. The studies could be divided in two,

those that propose algorithms to solve the problem and obtain dual prices (Balinski and Bau-

mol, 1968; Bertsekas, 1995; Geoffrion, 1971, 1974; Gould, 1969; Wolsey, 1981); and those

that try to make an economic interpretation of the dual values (Alcaly and Klevorick, 1966;

Gomory and Baumol, 1960; Sen and Genc, 2008).

33



4. MATHEMATICAL PROBLEMS

Wolsey (1981) studied different methods to solve IP problems and the dual optimal price func-

tion that they generate. He uses the price function as a set of prices is used in a LP problem.

This approach is complex, and there is still the need to find dual prices that can have some

economic interpretation. Williams (1996) examines methods to produce a dual for an IP prob-

lem, for instance Gomoroy and Boumal Prices, Lagrangean Duals and surrogate duals. He

concludes that mixed integer linear problems (MILP) do not have dual prices with the same

characteristics and interpretations as the dual prices from a linear problem (LP).

Recent work related with electricity markets have tried to make a use an interpretation of the

dual values for electricity prices Conejo and Ruiz (2011); Fuller (2008); O’Neill et al. (2005),

but the issue remains under research. Finding appropriate dual prices, or shadow prices for

MILP is still a challenge due to the fact that the objective function can be discontinuous and/or

non-convex.

4.3 The Walrasian Equilibrium and a Pool Market

Prior to deregulation, there was an entity that would solve the UCDP and would stablish the

quantities that each generator should produce. After deregulation each generating company as

well as the consumers (or distribution companies) would act as profit maximizers. The result

of an independent maximimising problem of the market participants is not necessary the same

as the solution that a centralised market would obtain. This section is a summary of the work

presented by Motto, Galiana, Conejo, and Huneault (2002b)

Assume for now strictly convex cost functions and convex feasible sets. Assume further that

λqi is the price at node i and qgi is the amount of electricity generated by producer i. Its pro-

duction is an amount between its minimum capacity q
gi

and its maximum capacity q̄gi. The

cost function of each generators will depend on the quantity produced, and it is expressed as

Ci(qgi). Then, each generating company will maximise their profit by solving the following

problem
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4.3 The Walrasian Equilibrium and a Pool Market

max(λqiqgi−Ci(qgi))

subject to

q
gi
≤ qgi ≤ q̄gi

qgi ∈ R.

(4.7)

From the consumer point (or from the distribution companies), let us assume the following:

strictly concave feasible benefit function Bi(qdi) that depends on the amount of electricity con-

sumed (qdi) by the ith consumer, as well as a compact set. Given that λqi is the price at node i,

the maximising problem that the consumers or distribution companies face is

maxBi(qdi)−λqiqdi (4.8)

A Walrasian equilibrium (λ ∗qi,q
∗
gi,q

∗
di) will exist for all nodes (i) in the network (N) if and only

if there is a vector of prices λ that can balance the electrity production and at the same time

every agent maximises their surpluses. In other words, there is a Walrasian equilibrium if the

following holds:

a) For all i ∈ N, q∗gi solves problem 4.7 given λ ∗qi is maximising the producer’s surpluses;

b) For all i ∈ N, q∗di solves problem 4.8 given λ ∗qi is maximising the consumer’s surpluses; and

c) q∗gi = q∗di

If we look a centralised electricity pool, the system operator faces the following maximisation

social welfare problem:

max ∑
i∈N

Bi(qdi)−∑
i∈N

Ci(qgi)

subject to

q∗gi = q∗di

q
gi
≤ qgi ≤ q̄gi f oralli ∈ N

(4.9)

The corresponding Lagrangean Function is written as
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L=∑
i∈N

[
Bi(qdi)−Ci(qgi)+λ

∗
qi(q

∗
gi−q∗di)

]
(4.10)

and the dual function is

H =∑
i∈N

max(λqiqgi−Ci(qgi)))+ ∑
i∈N

max(Bi(qdi)−λqiqdi) (4.11)

Only when the optimal solution to problem 4.9 maximises the surplus for every independent

market participant, problem 4.7 and problem 4.8 can be the same as problem 4.9. If that is the

case, then we can value the dual function at the optimality point composed by λ ∗qi , q∗gi, q∗di and

obtain

H = ∑
i∈N

(λ ∗qiq
∗
gi−Ci(q∗gi)))+(Bi(q∗di)−λ

∗
qiq
∗
di)

= Bi(q∗di)−Ci(q∗gi +λ
∗
qi(q

∗
gi−q∗di)

(4.12)

Given that qgi = qdi as stated in problem 4.9 , the dual function H is simplified into

H =Bi(q∗di)−Ci(q∗gi) (4.13)

This implies that there is no duality gap, and as a consequence, the dual prices can be use as

optimal prices to the market.

4.4 Unit Commitment and Dispatch Problem UCDP

The Unit Commitment and Dispatch Problem (UCDP) is a well-known problem. Its objective

is not only to find the least cost generators that should be committed to produce electricity but

also to find the quantities they should produce in order to fulfil the demand, subject to a set of

operational and security constraints.

In other words, the goal is to minimise the total production cost of electricity across all the

generators, during a specific time period, where the total electricity produced across all gener-

ators during a specific time must be equal to the demand for that specific time period, and for
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each time periods considered. The production from each generator should be within its feasi-

ble set. The feasible set contains technical and physical constraints, such as allowable power

outputs, ramping limits, minimum up and maximum down time constraints.

Although the dispatch problem is continuous, the unit commitment problem involve discrete

variables, which makes the problem a Mixed Integer Problem (MIP).

4.4.1 A Mixed Integer Programming Problem (MIP)

Assume that there are k different technologies than can produce electricity. Each technology in

turn has p plants that can be committed in the production. The cost function for each technol-

ogy depends on two variables: the number of plants committed (z) and the amount of electricity

produced by each plant(q). Assuming that the plants within a technology have the same costs

values, the cost function for each technology i is given by Ci(qi,zi) = ∑
pi
j FCizi j +∑

pi
j VCiqi j,

where FC represents the fixed costs incurred if plant j within technology i is committed to

production, and VC is the variable cost per unit q produced by plant j within technology i.

Then, the system operator faces the following problem1 for a given time period:

min
q,z

k

∑
i=1

pi

∑
j=1

FCizi j +
k

∑
i=1

pi

∑
j=1

VCiqi j (4.14)

subject to
k

∑
i=1

pi

∑
j=1

qi = D (4.15)

qi j ≥ xi jzi j i = 1, . . . ,k; j = 1, . . . , pi (4.16)

qi j ≤ x̄i jzi j i = 1, . . . ,k; j = 1, . . . , pi (4.17)

zi j ∈ (0,1), (4.18)

Equation 4.15 is the balance constraint where the total amount produced across the different

technologies and plants (∑k
i=1 ∑

pi
j=1 qi) should equal the demand (D). Constraint 4.16 and 4.17

limit the electricity generated to the production possibility set for plant j within technology i.

That is, the amount produced by a given plant within a technology (qi j) should be greater or

1For simplicity, we focus on a stylised model leaving out the time dimension as well as ramp rates, and other
security constraints. In addition, the model focuses on one time period with an inelastic demand.
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equal to its minimum requirement (x), and cannot exceed its capacity or maximum output (x̄).

The last constraint 4.18 specifies that the plants are either engaged or not, making this problem

a Mixed Integer Problem (MIP).

For simplicity we will speak about technologies, knowing that within them there are plants, but

we will refer to them as technology i that belongs to the set of all technologies K (i = 1...k).

4.4.1.1 Demand function

The problem presented in the previous section can include a demand function. Let us define

D(−1)(QDemand) as the inverse demand function for the market, and Price the price associated

to that function. We can write the problem as follows:

max
q,z

∫ QDemand

0
D(−1)(x)d(x)−

k

∑
i=1

pi

∑
j=1

FCizi j−
k

∑
i=1

pi

∑
j=1

VCiqi j (4.19)

subject to
k

∑
i=1

pi

∑
j=1

qi = QDemand (4.20)

Price = D(−1)(QDemand) (4.21)

qi j ≥ xi jzi j i = 1, . . . ,k; j = 1, . . . , pi (4.22)

qi j ≤ x̄i jzi j i = 1, . . . ,k; j = 1, . . . , pi (4.23)

zi j ∈ (0,1), (4.24)

where the objective function now includes the demand side. The objective function now max-

imizes the usual economic welfare function. Constraints 4.20 and 4.21 tell us that at a given

price Price, the total amount demanded will be equal to the total amount supplied.

4.4.2 UCDP in a Network

A network model will include more constraints into the model. Not only the transmission line

capacity constraint is added, but also the node rule equations (or Kirchhoff’s junction rule),

the loop rule equations, and the energy balance constraint (Bjørndal, Jörnsten, and Rud, 2008).

The node rule constraint, refers to the rule that all that comes into a node should be equal to
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that of what goes out of it; the loop rule, states that the arithmetical sum of the potential differ-

ences across all components around any loop should be zero; and the energy balance constraint

guarantees that all the energy that is produced is consumed.

For notational and mathematical simplicity we have assumed a lossless model, in one period

of time with an inelastic given demand. Following the notation from 4.4.1, let us assume that

there are k technologies with different variable costs (VC) incurred per unit q produced, differ-

ent fixed costs (FC) incurred per plant z committed to production, different minimum output

(x) and different capacities (x̄). Assume also that each technology has a maximum number of

plants that can engage into production Z; then, the SO will solve the following cost minimisa-

tion UCDP:

min
qi,zi

k

∑
i=1

VCiqS
i +

k

∑
i=1

FCizi (4.25)

subject to

qr = ∑
i∈Gr

qs
i −qd

r , r = 1, . . . ,n (4.26)

qr = ∑
r 6=s

qrs, r = 1, . . . ,n−1 (4.27)

∑
rs∈Ll

qrs = 0, l = 1, . . . ,m−n+1 (4.28)

∑
r

qr = 0, (4.29)

qrs ≤ LineCaprs, r 6= s,r = 1, . . . ,n−1, j = 1, . . . ,n−1 (4.30)

qS
i ≥ xzi, i = 1, . . . ,k (4.31)

qS
i ≤ x̄zi, i = 1, . . . ,k (4.32)

zi ∈ Zi, i = 1, . . . ,k (4.33)

where qr is the net injection at node r , which is in turn given by the total energy produced

by generators at that node (∑i∈Gr qs
i ) minus the quantity demanded at that node qd

r . Equa-

tion 4.27 represents the node rule, while equation 4.28 and 4.29 represent the loop flow and

energy conservation rule respectively. Equation 4.30 establishes that the power flow running

between node r and s should be less than or equal to the capacity of the line joining those nodes

LineCaprs.
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Let us use the three-node network presented in Section 3.5.1, and reproduce the three nodes

network presented before in Figure 4.3.

Figure 4.3: Three nodes network

For this type of network with two generators at Node A, one generator at Node B and all the

demand at Node C, the model can be written as follows:

minimise
qi,zi

∑
3
i=1VCiqS

i +∑
3
i=1 FCizi (4.34)

subject to (4.35)

∑
i∈GA

qs
i −qd

A = qAB +qAC (4.36)

∑
i∈GB

qs
i −qd

B = qBC−qAB (4.37)

∑
i∈GC

qs
i −qd

C = −qBC−qAC (4.38)

qAC = qAB +qBC (4.39)

∑
g∈GA

qs
i −qd

A + ∑
g∈GB

qs
i −qd

B + ∑
g∈GC

qs
i −qd

C = 0 (4.40)

qAB ≤ LineCapAB (4.41)

qBC ≤ LineCapBC (4.42)

qCD ≤ LineCapCD (4.43)

qS
i ≤ x̄zi, i = 1,2,3 (4.44)

qS
i ≥ xzi, i = 1,2,3 (4.45)

zi ∈ Zi, i = 1,2,3 (4.46)

where in turn the flows in each transmission are given by the following equations:
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qAB =
1
3

(
∑

i∈GA

qs
i −qd

A

)
− 1

3

(
∑

i∈GB

qs
i −qd

B

)
(4.47)

qAC =
2
3

(
∑

i∈GA

qs
i −qd

A

)
+

1
3

(
∑

i∈GB

qs
i −qd

B

)
(4.48)

qBC =
1
3

(
∑

i∈GA

qs
i −qd

A

)
+

2
3

(
∑

i∈GB

qs
i −qd

B

)
(4.49)

4.5 Lagrangean Relaxation in UCDP

The technique that has been widely used to solve the Unit Commitment and Dispatch Problem

is the Lagrange Relaxation (Sioshansi, O’Neill, and Oren, 2008), where the balance constraint

is relaxed and inserted into the objective function, as explained previously in section 4.2.1. The

Lagrange multiplier could be interpreted as the price for the commodity if and only if there is

no duality gap. In the cases where a duality gap exists, the Lagrange multiplier does not reflect

an optimal price, but just a dual variable. This is because some generators will not be willing

to produce if the price is set to the dual variable (Madrigal and Quintana, 2000; Motto and

Galiana, 2002; Motto, Galiana, Conejo, and Huneault, 2001).

There is extensive literature on the use of this tool in the electricity market, the interested

reader is referred to Sheble and Fahd (1994) and Baldick (1995) for further information about

its applications.

4.5.1 Dual prices from Lagrangean Relaxation:Criticism

Implementing prices from the Lagrange Relaxation in an auction has several problems and

disadvantages (Dekrajangpetch, Sheble, and Conejo, 1999). Some of them are:

• Difficulties to find an optimal price in the presence of a duality gap.

• Multiple solutions in the presence of degeneracy in the balance constraint.

• Heuristics applied to find the Lagrange multiplier. Some authors argue that the sub-

gradient optimization approach is an unstable technique.
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• Revenue deficiency. If prices are set equal to the dual variable then there is a cost that

will not be recovered by some participants. It has been proofed that the cost that is not

recovered equals the duality gap (Madrigal and Quintana, 2001).

4.6 Power Exchanges and Surrogate relaxation

In Europe the most common format for the electricity market is a Power Exchange. These

exchanges apply different heuristics to clear their market, and the heuristic results are usually

competitive for simple orders but not for block orders Meeus, Verhaegen, and Belmans (2005).

The bids can be simple bids, or block orders. The block orders are a ”all or nothing” condition,

and makes the problem move from a linear problem to a discrete one with integer constraints.

A block order covers more than one time period and it is indivisible. In addition it usually has

an average price limit.

Let consider the problem with supply (S) offers, and demand (D) bids, where they can submit

single bid/offers, or block bid/offers. For the single bids/offers let: PS
ih and QS

ih be the price and

quantity of a single offer i respectively; and PD
jh and QD

jh be the price and quantity of a single

bid j respectively. For the block bids/offers: let PS
k , Qkh and Hk represent the average price

and quantity of block offer k to be delivered in time period h for Hk periods; and similarly for

the demand side let PD
l , Qlh and Hl represent the average price and quantity of block bid l to

be delivered in time period h for Hl periods. Let us also use qih, q jh, qkh, qlh as the quantities

accepted of order i, j, and block orders k, l at a specific time period h respectively. Finally, in

order to write the model addressing the block constraints for the demand side and supply side,

let zk and zl be binary variables that will be set to 1 if the block order k, l has been accepted,

other wise its value is zero.

The problem is then a mixed integer linear problem (MILP) than can be written as follows:
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max
qih,q jh,qkh,qlh,zk,zl

∑
h
(∑

j
q jhPD jh+∑

l
qlhPDlh−∑

i
qihPSih−∑

k
qkhPSkh) (4.50)

subject to

∑
j

q jh +∑
l

qlh = ∑
i

qih +∑
k

qkh ∀h (4.51)

qih ≤ Qih ∀i,h (4.52)

q jh ≤ Q jh ∀ j,h (4.53)

qkh = Qkhzk ∀k,h (4.54)

qlh = Qlhzl ∀l,h (4.55)

The first constraint is the balance constraint where demand equals supply, while the second and

third constraint specify that the amount accepted should be less than or equal to the quantities

bid/offered. The last two constraints are the block constraints that translates the ”all or nothing”

characteristic of the block bids/offers.

Surrogate Relaxation

Lagrangean relaxation and finding the Lagrangean multipliers is a well researched and de-

veloped field. However, there are other types of relaxation that haven not been explored as

much as the Lagrangean relaxation. That is the case of the surrogate relaxation. This type of

relaxation provides a better objective bound than the Lagrangean relaxation Karwan and Rardin

(1984).

The surrogate relaxation consist of adding the constraints to be relaxed in just on constraint.

Each constraint relaxed will have a multiplier assigned. So, if we have an integer programming

problem written as

max
x

cx

subject to

Ax≤ b

Dx≤ f

x ∈ Z

(4.56)
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and we would like to surrogate relaxed constraints in Dx≤ d, then the problem becomes

max
x

cx

subject to

Ax≤ b

λDx≤ λ f

x ∈ Z

(4.57)

In the surrogate relaxation, the multipliers λ work as a weighting of the constraints. If the value

for a multiplier is large, the constraint is satisfied at an expense of another one. If the value

for the multiplier is zero, it means that the constraint is dropped. As with the Lagrangean re-

laxation, we want to find those multipliers that give us the tightest bound and gets us the value

function as close as possible to the value function of the initial problem. In fact, the bounds

from a surrogate relaxation are tighter than those from the Lagrangean relaxation.

For the problem 4.56, the Lagrangean relaxation for the constraint Dx≤ d is written as:

max
x

cx−µ(Dx− f )

subject to

Ax≤ b

x ∈ Z

(4.58)

So, while for the Lagrangean relaxation we have that max{cx : Dx <= f ,x ∈ conv(Ax <= b,x ∈ Z)},

for the surrogate relaxation we have max{cx : x ∈ conv(Ax <= b,λDx <= λ f ,x ∈ Z)}. The

latter is a tighter bound than the former.

For the problem 4.50 we could apply the surrogate relaxation to the balance constraint to obtain

the following problem
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max
qih,q jh,qkh,qlh,zk,zl

∑
h
(∑

j
q jhPD jh+∑

l
qlhPDlh−∑

i
qihPSih−∑

k
qkhPSkh)(4.59)

subject to

∑
h

λh(∑
j

q jh +∑
l

qlh) = ∑
h

λh(∑
i

qih +∑
k

qkh) (4.60)

qih ≤ Qih ∀i,h (4.61)

q jh ≤ Q jh ∀ j,h (4.62)

qkh = Qkhzk ∀k,h (4.63)

qlh = Qlhzl ∀l,h (4.64)

4.7 Sources of non-convexities in the Electricity Market

Non-convexities appear in the Electricity market in each generator’s cost function due to the

start-up costs, or fixed costs. The minimum and maximum output constraints also add non-

convexities to the problem (equations 4.16,4.17,4.31,4.32), as well as ramping rates, minimum

down time and up-time requirements. In addition, the market presents non-convexities due to

the indivisibilities of the units to be engaged (equation 4.18,4.33), and in the european markets

they are represented by block bids (such as equations 4.54 and 4.55).

The consequences of these convexities are that that marginal prices are not always efficient,

the prices obtained will be not linear, and if marginal prices are set in place, they will be send-

ing the wrong signals to the market participants. Moreover with Mixed Integer Programming

(MIP) problems such as the UCDP presented here, the dual variables cannot have a price inter-

pretation anymore, as in a Linear Program (LP) problem.
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5

Semi-Lagrangean Approach

Beltran, Tadonki, and Vial (2006) developed an approach that they called Semi-Lagrangean.

They base their approach on the Lagrangean Relaxation, but it has a twist. Besides adding

the relaxed constraint to the objective function, the approach leaves the relaxed constraint as

an inequality constraint in the sub-problem. To clarify this, assume that A, b, and c in the

following primal problem are non-negative:

z∗ = min
x

cT x

s.t. Ax = b

x ∈ S = X ∩Nn

(5.1)

In addition, assume that X ⊂ Rn. As explained in section 4.2.1, the Lagrangean Relaxation

consists of relaxing the linear constraint and solving the dual problem:

zLR = max
λ

LLR(λ )

= max
λ

{bT
λ +min

x
{(c−AT

λ )T x|x ∈ S}}
(5.2)

The optimal solution of the Lagrangean dual will provide a lower bound for the original prob-

lem, therefore zLR ≤ z∗.

The Semi-Lagrangean relaxation can be written as:

zSLR = max
λ

LSLR(λ )

= max
λ

{bT
λ +min

x
{(c−AT

λ )T x|Ax≤ b;x ∈ S}}
(5.3)
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5. SEMI-LAGRANGEAN APPROACH

The Semi-Lagrangean problem is more constrained than the Lagrangean problem, and there-

fore we have that zLR≤ zSLR ≤ z∗, which clearly makes the integrality gap smaller than in the

LR.

If we consider an extreme positive value for λ , and rewrite LSLR(λ ) as

LSLR(λ ) = minx{cT x+(b−AT x)T
λ |Ax≤ b;x ∈ S} (5.4)

then we can see that a very large penalty on the constraint (b−AT x) will make us choose x

such that Ax ≥ b . However, given that x is constrained by Ax ≥ b, the optimal solution to

the Semi-Lagrangean relaxation problem, with a large value for the multiplier, will meet the

original constraint Ax = b.

The proof to show that the Semi-Lagrangean has no duality gap is straight forward by not-

ing that the constraint set for the relaxation is in fact Conv(Ax≤ b;x ∈ S)∩Conv(Ax≥ b) ; that

is, the solution to the Semi-Lagrangean fulfils all the constraints in the original problem. In

other words, there is no duality gap.

5.1 Approach applied to UCDP

If we take problem in section 4.4.1, and apply the Semi-Lagrangean relaxation to the balance

constraint (equation 4.15), then we modify the objective function (4.14) and the balance con-

straint (equation 4.15) to { minq,zVCiqi +FCizi +λ (∑i qi−D)|∑i qi ≤ D } with λ ≤ 0. Given

that λ ≤ 0, the problem can be rewritten as:

min
q,z

k

∑
i=1

pi

∑
j=1

FCizi j +
k

∑
i=1

pi

∑
j=1

VCiqi j +λ

(
D−

k

∑
i=1

pi

∑
j=1

qi

)
(5.5)

subject to
k

∑
i=1

pi

∑
j=1

qi ≤ D (5.6)

qi j ≥ xi jzi j i = 1, . . . ,k; j = 1, . . . , pi (5.7)

qi j ≤ x̄i jzi j i = 1, . . . ,k; j = 1, . . . , pi (5.8)

zi j ∈ (0,1), (5.9)
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5.2 A second-price auction

The value for λ will provide us with a new set of prices that can be used as a price value. The

prices will be high enough to cover the generator’s costs and will send the right signal to the

market participants. This technique is applied to an example from the literature in section 6.1.1

5.1.1 Approach applied to UCDP with a price sensitive demand function

Expanding the formulation in problem 4.19, we write the semilagrangean formulation as:

minq,z

k

∑
i=1

pi

∑
j=1

FCizi j +
k

∑
i=1

pi

∑
j=1

VCiqi j−
∫ qd

0
D(−1)(x)d(x) (5.10)

+Price∗ (QDemand−
pi

∑
j=1

VCiqi j)

subject to (5.11)

∑
k
i=1 ∑

pi
j=1 qi <= QDemand (5.12)

Price = D(−1)(qd) (5.13)

qi j ≥ xi jzi j i = 1, . . . ,k; j = 1, . . . , pi (5.14)

qi j ≤ x̄i jzi j i = 1, . . . ,k; j = 1, . . . , pi (5.15)

zi j ∈ (0,1), (5.16)

This time, Price will provide the price at which supply will equal demand.

5.2 A second-price auction

Auctions have played a key role in the development of electricity markets. It is believed that

auction formats are efficient for allocating scarce resources (Leautier, 2001). There are differ-

ent types of auctions and as different countries create their own market design they also decide

what type of auction mechanism is implemented in the market, if any. The two most known

auctions in electricity markets are pay-as-bid and market clearing price. Each auction method

has its advantages and disadvantages (Yan and Stern, 2002). California has experienced the

1This approach was recently published in EJOR (Araoz and Jörnsten, 2011).
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5. SEMI-LAGRANGEAN APPROACH

faults of the pay-as-bid auction and there are several articles on that topic as well. Research

on auction theory for the electricity market is a wide area and there are several reviews in the

literature (Yamamoto and Tezuka, 2007).

In order to generate a pricing mechanism based on the Semi-Lagrangean market price that

permits only the optimal mix of plants obtained from the UCDP to produce, we propose that

the system operator might use a secondary auction in which all plant combinations that can

produce the required amount D can submit their bid to the ISO taking into account the cur-

rent market price. This price is calculated by the Semi-Lagreangean approach. That is, the

system operator could announce the Semi-Lagrangean price and could set rules for a second

price auction. These rules include that only generators that are willing to produce (i.e. they

generate a profit) at the Semi-Lagrangean price can produce if they can entirely fulfill the de-

mand, otherwise they have to join a coalition with other generators in order to produce the

total amount required. Consequently, the second price auction would contain a set of single

generators and/or coalitions that are able to produce the total required amount.

The bidder with the lowest costs will win the auction and will be committed to produce the

agreed amount. However, even though the winner coalition has the minimum cost amongst the

bidders, the cost that will be considered for calculating its profit or payment is that of the sec-

ond best bidder. That is, the minimum cost coalition will win with a total cost slightly smaller

than that of the second best coalition.

Let πWC and π2ndBest represent the profit calculated under Semi-Lagrangean Prices for the

winning coalition and the second best coalition respectively. Let also TCWC and TC2ndBest

represent the Total Cost (or bid) from the winning coalition and second best coalition respec-

tively. Then we have that the price for the commodity to announce in the market is given by:
πWC−π2ndBest+TCWC

D = TC2ndBest
D =CommodityPrice = P∗.

The winner coalition will be paid at the commodity price obtained from the second auction.

This can be expressed simply as πWC = D(P ∗−TCWC). The rents for the coalition will be

shared using a game theory algorithm. However that is out of the scope of this work and may

be a further topic of research. The Commodity Price P∗ will cause only the generators that can
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fulfil the demand at minimum cost to be committed.1

5.3 Extended models

5.3.1 Extended prices for capacity

In this section we expand the Semi-Lagrangean model presented in section 5.1 so as to obtain

a price for the capacity engaged. The model developed by Pirnia and Fuller (2010) and Fuller

(2008) is combined with the Semi-Lagrangean approach. Those models set the sum of the

capacities of all plants engaged in production equal to the sum of the capacities of the optimal

plants (Z∗) obtained from the UCDP. The UCDP is solved first by using a MIP. The capacity

price is obtained by relaxing the sum of capacities constraint. In other words, constraint 5.8

in the previous problem will be relaxed with the Semi-Lagrangean approach. In addition, we

include two more constraints to the problem. The problem is the following:

minq,z

k

∑
i=1

VCiqi +
k

∑
i=1

FCizi (5.17)

+EP(D−
k

∑
i=1

qi)+CP(
K

∑
i

x̄iZ∗i −
k

∑
i

x̄izi)

subject to

∑
k
i=1 qi ≤ D (5.18)

qi ≥ xizi i = 1, . . . ,k; (5.19)

qi ≤ x̄izi i = 1, . . . ,k; (5.20)

∑
k
i x̄izi ≤

k

∑
i

x̄iZ∗i (5.21)

zi ≤ Z∗i i = 1, . . . ,k; (5.22)

zi ≤ qi i = 1, . . . ,k; (5.23)

where EP is the electricity price and CP is the capacity price. Each technology will receive EP

for every unit of electricity produced and also CP for the the capacity of the plants engaged to

1This approach was presented at EEM10 (Araoz and Jörnsten, 2010).
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5. SEMI-LAGRANGEAN APPROACH

produce electricity. Constraint 5.22 will ensure that the plants engaged are those from the MIP

optimal solution, while constraint 5.23 guarantees that the plants engaged will be producing.

The capacity payment is effectively an extra payment to the energy produced, which is paid at

the Semi-Lagrangean price.

Assume that the dual variables for constraints 5.18 to 5.23 are α ,β ,γ ,δ ,ϕ ,θ respectively. Then,

by setting the first derivative with respect to qi and zi of the Lagrangean function to zero, we

obtain the price for the commodity (electricity) and the price for capacity, EP and CP respec-

tively.

EP = min(VCi−α + γi +θi)

CP = min(FCi−ϕ−θ

x̄i
−δ − γ)

The final prices will be the minimum EP price and CP price across the different technologies.

Section 6.3 presents some results of this problem.

5.3.2 Extended prices for transmission

The Nodal model presented in section 4.4.2 gives us the optimal dispatch in order to minimise

the cost of electricity production by respecting not only the usual constraints, but also the phys-

ical constraints of the power flow in the transmission network and line capacity. The outputs

from the nodal model are the optimal quantities to be produced and the optimal number of

plants to be engaged (q∗i ,z
∗
i ). We benefit from this information, so we modify constraint 4.46

in the model to zi ≤ z∗i , i = 1,2,3. We also relax constraints 4.36, 4.37, and 4.38 using the

Semi-Lagrangean approach to find the prices for each of the nodes. Mathematically the model

is written as follows:
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minimise
qg,zg

3

∑
i=1

VCiqS
i +

3

∑
i=1

FCizi (5.24)

+PNodeA(qd
A− ∑

i∈GA

qs
i +qAB +qAC)

+PNodeB(qd
B− ∑

i∈GB

qs
i +qBC−qAB)

+PNodeC(qd
C− ∑

i∈GC

qs
i −qBC−qAC)

subject to

∑i∈GA
qs

i −qAB−qAC ≤ qd
A (5.25)

∑i∈GB qs
i −qBC +qAB ≤ qd

B (5.26)

∑i∈GC
qs

i +qBC +qAC ≤ qd
C (5.27)

qAC = qAB +qBC (5.28)

∑i∈GA
qs

i +∑i∈GB qs
i +∑i∈GC

qs
i = qd

A +qd
B +qd

C (5.29)

qAB ≤ LineCapAB (5.30)

qBC ≤ LineCapBC (5.31)

qCD ≤ LineCapCD (5.32)

qS
i ≤ x̄zg, i = 1,2,3 (5.33)

qS
i ≥ xzi, i = 1,2,3 (5.34)

zi ≤ Z∗MIP
i , i = 1,2,3 (5.35)

We will obtain the prices for each node while the total production mix will be the same as for

the MIP q∗SLP
g = q∗MIP

g .

In order to obtain the transmission price, we first verify that the prices are stable by setting

the transmission capacity constraint to equality constraint and making sure that the prices are

the same. Given that the power flow in that line is binding, if congested, setting it to an equal-

ity constraint should not, in theory, change the value of the quantities produced, the plants

engaged or the prices obtained. After confirming that the prices are stable, we add to the ob-

jective function the following term +PLineAB(LineCapAB−qAB) in order to obtain a price for
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5. SEMI-LAGRANGEAN APPROACH

the transmission in Line AB.

Results are discussed in section 6.4.

5.4 In a power exchange

Pricing in a power exchange with block bids is not an easy task. Most of the exchanges solve

a linear problem and then apply heuristics to obtain prices to announce in the market. The

block bids add complexity to the problem due to its discrete constraints. The Semi-Lagrangean

approach can be applied in order to obtain prices for each of the time periods analysed. Let

us use the problem 4.50 presented in section 4.6 but with an inelastic given demand. Then, by

applying the Semi-Lagrangean relaxation to the balance constraint we obtain that the price for

time period h will be given by Priceh from the following problem:

min
qih,qkh,zk

∑
h
(∑

i
qihPSih+∑

k
qkhPSkh+

Priceh(Demand−∑
i

qih−∑
k

qkh)) (5.36)

subject to

∑
i

qih +∑
k

qkh <= Demand ∀h (5.37)

qih ≤ Qih ∀i,h (5.38)

q jh ≤ Q jh ∀ j,h (5.39)

qkh = Qkhzk ∀k,h (5.40)

qlh = Qlhzl ∀l,h (5.41)

The different relaxation can also be used in combination. That is, not only to apply the La-

grangean relaxation to the problem, but also to implement a surrogate relaxation in the same

problem. A even more interesting idea would be to combine the Semi-Lagrangean approach

with the surrogate relaxation such as to solve the problem in an exchange power market. Let

us use the two period example shown by Meeus et al. (2005) where at Period 1, a single bid is

presented producing up to 60MWh at a price of 10. While, at Period 2 a single bid of 60MWh

but at a price of 40 is put in the market. In addition, there is a block bid consisting of 100MWh

at each period at an average price of 30. The demand will be considered inelastic at 100MWh
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5.4 In a power exchange

for the first period and 150MWh for the second period. There can be several approaches to

implement a combination of the relaxation techniques.

Option A)

• Write the balance constraints for each time period as two inequalities

• Semi-Lagrange one of the inequalities and include it into the objective function

• The remaining inequality in the subproblem can then be surrogate relax

min
q,z

10q1 +40q2 +30q3 +30q4 +PriceT 1(100−q1−q3)+

PriceT 2(150−q2−q4) (5.42)

subject to

λ1(q1 +q3)+λ2(q2 +q4) <= 100λ1 +150Lambdaλ2 (5.43)

q1 ≤ 60 (5.44)

q2 ≤ 60 (5.45)

q3 = 100z3 (5.46)

q4 = 100z4 (5.47)

q3 = q4 (5.48)

Option B)

• Write the problem as a surrogate problem by relaxing the balance constraint

• Semi-Lagrange the surrogate problem
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min
q,z

10q1 +40q2 +30q3 +30q4 +Price(100λ1 +

150λ2−λ1(q1 +q3)−λ2(q2+q4)) (5.49)

subject to

λ1(q1 +q3)+λ2(q2 +q4) <= 100λ1 +150λ2 (5.50)

q1 ≤ 60 (5.51)

q2 ≤ 60 (5.52)

q3 = 100z3 (5.53)

q4 = 100z4 (5.54)

q3 = q4 (5.55)

Option C)

• Write the problem as a surrogate problem by relaxing the balance constraint

• Keep the demand constraints for each period in the model and Semi-Lagrange them

min
qz

10q1 +40q2 +30q3 +30q4 +

Price1(100−q1−q3)+Price2(150−q2−q4) (5.56)

subject to

λ1(q1 +q3)+λ2(q2 +q4) <= 100λ1 +150λ2 (5.57)

q1 +q3 ≤ 100 (5.58)

q2 +q4 ≤ 150 (5.59)

q1 ≤ 60 (5.60)

q2 ≤ 60 (5.61)

q3 = 100z3 (5.62)

q4 = 100z4 (5.63)

q3 = q4 (5.64)

There is however not clear or easy search algorithms to find the optimal surrogate multiplier.

Therefore the last three problems are left to future research. The interested reader is referred to

(Duan and Sun, 2006) and (Karwan and Rardin, 1984).
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Computational Examples

In this section the results of applying the Semi-Lagrangean approach to the different mod-

els presented in the previous section are illustrated with an example taken from the literature

(Bjørndal and Jörnsten, 2008; Scarf, 1994). The information for the technologies and plants

within the technologies is summarised in Table 6.1.

Table 6.1: Example from the literature

Technologies(i)
Smokestack High Tech Medium Tech

(SK) (HT) (MT)
Variable Costs(VCi) 3 2 7

Fixed Costs(FCi) 53 30 0
Capacity(x̄i) 16 7 6

Minimum Output(xi) 0 0 0
Avg. Cost at full capacity 6.3125 6.2857 7

Plants available 6 5 5

AMPL software was used to develop the algorithms to solve the problems presented in this

section. The solvers used were CPLEX or MINLP when needed.

6.1 Semi-Lagrangean Relaxation

The Semi-Lagrangean approach builds upon the well-known Lagrangean relaxation, but with

the difference that when there is an equality constraint, the constraint is divided in two inequal-

ities, namely a ”greater than or equal to” inequality and a ”less than or equal to” inequality. The
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former is relaxed and added to the objective function, while the latter is left as an inequality

constraint in the sub-problem.

Let us assume that the demand level is set to 44 units. The solution to the UCDP using mixed

integer programming would show that the minimum cost is achieved by engaging 1 SK tech-

nology at full capacity, and 4 HT technologies at full capacity. The total cost is 277 and the

corresponding dual price, or Lagrangean multiplier for the balance constraint, is 3. However,

at this price we would have that SK Technology would incur a loss of 53 while HT would ex-

perience a loss of 92. This is indeed not desirable for the producers, who would not be willing

to produce any units. By relaxing the MIP and solving it, we obtain a price of 6.3125, leaving

only HT with a small profit. However the problem with this solution is that the number of

plants engaged is not feasible, since it would require 0.5625 SK plants, which in the real world

is not possible.

As mentioned, we believe that the prices to be announced to the market should be at least

greater than or equal to the relaxed mixed integer problem. Therefore we use the dual variable

for the balance constraint (6.3125) from the relaxed problem as a guide for the search of the

commodity price. By applying the Semi-Lagrangean approach along side with a subgradient

algorithm, we obtain a price for the commodity equal to 6.3333, which is clearly high enough

to cover the costs of the two relevant producers and has the same minimum cost as the MIP

solution. It is important to remember that the number of plants engaged comes in non-divisible

numbers, therefore a price below will engaged a non-discrete number of the plants, which, as

mentioned before, is not possible.

By solving the Semi-Lagrangean problem we obtain a single price for electricity, which is

not linear, and it is more stable than the prices obtained from the UCDP. It is important to

highlight that the prices from the Semi-Lagrangean approach are greater than or equal to those

from the LP relaxation of the UCDP, as shown in Figure 6.1. The LP relaxation provides dual

prices that are equal to the average cost at full capacity from the most expensive technologies

engaged. Given that the LP relaxation does not have any integer constraints, the extra plant

committed can be added partially, and the dual price for the balance constraint is equal to the

average cost at full capacity of the marginal technology. This is true until the capacity for that

technology is fully utilised. Therefore we can see from Figure 6.1 that the LP relaxation price
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is equal to 6.2857 in the demand range 1-351, then it is equal to 6.3125 for demand range

36-1312 and finally it is set to 7 when the demand is higher than 1313.

Figure 6.1: MIP, SLP and LP prices

However, the real world requires integrality constraints, and even though the dual prices from

the MIP cannot be considered as a price, we will use that name so as to compare them with the

LP relax and the SLP Price. The dual value from the balance constraint in the MIP problem is

equal to the marginal cost of the last technology engaged in the production, i.e. the marginal

producer. Although MT Technologies have the highest average cost at full capacity, they also

have the lowest average cost per unit produced below full capacity. Therefore, whenever MT

has the lowest average cost per unit produced across the different demand ranges, it will be

selected in the optimal solution and the dual value will be set to its marginal cost which is 7.

For some demand levels the optimal solution does not include MT Technologies; the optimal

solution will try to engage the cheapest options at its full capacity. That is, first HT and then

SK Technologies. In the cases where HT is the only Technology involved in the production,

then the dual price will be equal to 2. This is the case for demand levels multiples of 7, and up

to 35, given that the capacity of each plant is 7 and there are only 5 plants. Finally, when SK

is engaged in combination with HT only to satisfy the demand, the dual value for the balance

1HT Technology is the cheapest option; therefore it will be committed until all its plants are producing at full
capacity. That is, until all the 5 HT plants are producing at its full capacity of 7.

2The next cheapest technology after HT Technology is SK Technology, which can generate a total of 96 units
when all its 6 plants are producing at its full capacity of 16.

3 The most expensive technology is MT, which is chosen at last when all the other technologies are producing
at full capacity. MT will continue producing until all its 5 plants are committed at their full capacity of 6
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constraint will be set to 3, which is the marginal cost for SK.

If we consider the dual variables from the MIP problem as prices, we can observe that the

profits can be negative, whereas with the Semi-Lagrangean prices the profits are never negative

as shown in Figures 6.2 - 6.4.

Figure 6.2: Global profit with MIP and SLP prices

Figure 6.3: Profit for SK Technology with SLP and MIP prices

After demand level 131, the price from the LP relaxed problem, the MIP problem, and the SLP

problem is the same. It is set by the MT Technology at 7 which makes the MT Technology earn

zero profits. However, for SK and HT Technologies the profits obtained will vary depending on

which technology sets the price. This can be seen clearer on Figure 6.3 and Figure 6.4. We can

observe also that with SLP prices the technologies get nonnegative profits, whereas with the

MIP prices the technologies can incur losses. It is in these cases where some market designs
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Figure 6.4: Profit for HT Technology with SLP and MIP prices

provide side payments, also known as uplifts, to those technologies that should be producing

but if they follow the schedule they incur in losses.

6.1.1 Effect of minimum output

In the example presented, the non-convexities are introduced in the problem by the fixed costs

and the integrality constraints. A common feature in electricity generation is that some gener-

ators may have a minimum output to start producing. A minimum output requirement gener-

ates an additional non-convexity to the problem, which will yield to different levels of Semi-

Lagrangean prices. In fact, this requirement has a greater impact in the prices than the fixed

costs, since it creates spikes in the Semi-Lagrangean (SL) Prices obtained.

The minimum output requirement makes a technology unavailable for certain levels of pro-

duction. Let us modify the initial example for the Med Tech plants (MT) to have a minimum

output (xMT = 2). Figure 6.5 graphs the values for a demand range from 2-90, and from it we

can observe how the SL Prices show a more non-steady trend compared to the case without

minimum output requirement.

This example was also used as a test for the approach suggested by Ruiz et al. (2012). Their

approach uses a primal-dual formulation, where the duality gap is minimised by relaxing com-

plementarity constraints, and adding a constraint to ensure that the generators engaged into
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Figure 6.5: SL Prices with and without minimum output requirement

production are profitable. The results from their approach and the SL Prices are shown in

Figure 6.6.

Figure 6.6: Comparison of SL Prices with minimum output requirement and Conejo and Ruiz
results

We can also imagine that the Medium Tech could have closer average costs to the other two

technologies (SK and HT), and still with a minimum output requirement. Let us modify the

variable costs for MT as shown in Table 6.2.

Then, we obtained the Semi-Lagrangean prices shown in Figure 6.7. The prices are steadier

when the average price at full capacity is closer to each other, as in Case B. It is important

to notice that despite the fact that the average cost is similar, the total average cost is indeed

different and therefore the MIP finds a quick solution. When the average cost at full capacity
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Table 6.2: Different Average Costs for MT

Case A Case B Case C
MT MT MT

Variable Costs(VCi) 7 6.3 6.4
Fixed Costs(FCi) 0 0 0

Capacity(x̄i) 6 6 6
Minimum Output(xi) 2 2 2

Avg. Cost at full capacity 7 6.3 6.4
Plants available 5 5 5

starts to vary, the SL price starts to jump more (Case A and Case C).

Figure 6.7: SL Prices without minimum output requirement and different average costs

6.1.2 Price demand function

A linear demand function is introduced into the problem Price = Intercept−M ∗QDemand,

where Price in turn will be also given by the Semi-Lagrangean formulation.

Four slightly different linear demand functions are used, and the results obtained are sum-

marised in Table 6.3.

The optimal dispatch and commitment from this solution are aligned to the results from the

MIP solution. Moreover, the new Semi-Lagrangean prices obtained here are very close to

those obtained in section 6.1. The last column in Table 6.4 shows the values for the approach
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Table 6.3: Semi-Lagrangean prices with a demand function

Case Intercept M q∗i z∗i New SLPrice QDemand = ∑qi

A 26 0.3 [48 , 14, 1.18] [3,2,1] 7.044 63.1861
B 26.5 0.3 [31.6667, 35, 0.00] [2,5,0] 6.5 66.6667
C 27 0.3 [64 , 0, 2.20] [4,0,1] 7.138 66.2044
D 28.5 0.29 [48, 28, 0.00] [3,4,0] 6.46 76

with an inelastic demand. The new prices are very close to those obtained previously.

Table 6.4: Semi-Lagrangean prices comparison

Case New SLPrice QDemand = ∑qi Old SLP
A 7.044 63.1861 7.0000 at demand=63
B 6.5 66.6667 7.0000 at demand=66 and

6.3125 at demand=67
C 7.138 66.2044 7.0000 at demand=66
D 6.46 76 6.3334 at demand=76

6.1.3 Piece-wise variable costs

Let us use the information presented in Table 3.5 in section 3.2.1, where three generators (A,

B, and C) are available and they have piece-wise variable cost functions as depicted in Figure

6.8. The average costs at full capacity for the first section of the cost functions, are 65, 100 and

105 for Generator A, B and C respectively; while for the second section of the cost function,

the average costs are 87.5, 95 and 70 respectively.

In a linear problem, Generator A will be increasingly committed to production up to demand

level 100. After that, Generator A will be fixed in 100 units while Generator C will be engaged

increasingly in the production from demand level 101 to 300. At that point, capacity for Gen-

erator C is reached, while Generator A continue to produce 100 units. The two Generators A

and C are on, C is at its full capacity and cannot add more into production. But Generator A

has 100 available. The extra cost of adding 1 unit from Generator A is 110, but from Generator
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Figure 6.8: Total cost function per generator from Gribik (2007) example

B is only 90. Therefore for demand level 300 up to 500, Generator B is committed to produce

its 200 units. Generator B is finally engaged and will produce increasingly from demand level

301 to 500, where it reaches also its capacity. The last 100 units will be covered by Generator

A, until it too, reaches its capacity.

The corresponding dual values for the LP problem then are 65 (for demand range: 0-100);

70 (for demand range: 101-300); 95 (for demand range: 301-500); and 110 (for demand range:

501-600)). At these prices all the generators make non-negative profits. The prices are related

to the marginal cost for generating unit A, and the average cost at full capacity of units C and B.

In an MIP set up, with binary variables for engaging the generators (0,1), we have that Gener-

ator A will be engaged first producing from demand 0-153. Then, it will be disengaged when

the demand level reaches 154, since it is cheaper to produce only with C. This we could see

from the total cost function graph Figure 6.8, where the total cost function of C intersects the

cost function of A at 153.33. Generator C will increasingly produce until its capacity is reached

at demand level 200, and it will keep producing all its capacity from demand level 200 to 600.

At demand level 201, Generator A is called into production again, since it is cheaper than B in

the range of 201 to 377. When the demand reaches 378, it is cheaper to to involve Generator

B producing 100 units, and setting A to produce 78. Generator B will have a fix output of 100

from demand level 378 to 400. While Generator A continues to increase production up to 100

units B will be fixed. In the region of demand level 400 to 500, Generator A produces only up

to 100, and Generator B an increasing amount until it reaches its capacity at demand level 500.
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From demand 501, Generator A starts adding one unit at a time.

The dual variables for this MIP problem are the marginal cost of the marginal generator at

that specific demand level. That is, the prices are either 65 or 110 if the first generator is the

marginal one; 90 if Generator B is the marginal one; or 35, if Generator C is the marginal

producer. The dual variables for the MIP problem are not linear, and in some areas the price

obtained is below the LP dual price. Whenever the dual price in the MIP is less than the dual

price in the LP, the marginal generator will be making a loss. From demand 154-299, and 378-

500, the dual MIP price will be below to the average cost of producing at full capacity for some

of the plants. For instance, the average cost for Generator C of producing at full capacity 200

units is 100. The dual price from demand level 154 to 200 is 35, and from 201 to 299 is 65. At

those prices, Generator C cannot cover its fixed costs. Table 6.5 shows the marginal producer

and the corresponding dual MIP for reference.

Table 6.5: Marginal Unit and Dual Price for the MIP

Demand Marginal Unit Dual MIP
1-99 A 65

100-153 A 110
154-200 C 35
201-299 A 65
300-377 A 110
378-399 A 65
400-500 B 90
501-600 A 110

In contrast to the LP solution, if we set the prices at the dual value, we will have generators

making losses. The losses are due to the fixed costs that are not covered completely. Com-

paring the costs from the MIP solution and the LP solution we have integrality duality gaps at

certain levels of demand. This is due to the integrality constraints in the problem which give

us a different generation mix at a higher portfolio cost.

The Semi-Lagrangean approach was applied to this example and the prices obtained are shown
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in Figure 6.9. These price will support the minimum cost optimal solution from the MIP and at

the same time will make all the generators committed to production earn non-negative profits,

as shown in Figure 6.10.

Figure 6.9: SL Prices to Gribik (2007) example

Figure 6.10: Profit per technology with SL Prices

This example is also used by Van Vyve (2011), who presented the graph in Figure 6.11 with

the prices obtained using his approach.

The values obtained from the Semi-Lagrangean approach (SLP prices) are not far from the

prices obtained by Van Vyve (2011). However, at demand ranges (154-300) and (378-500) the

former approach (SLP prices) go down to the LP dual prices much smoother than the latter

approach.
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Figure 6.11: Prices from Van Vyve (2001)

6.2 Second-Price Auction

The Semi-Lagrangean approach was applied to a single period market where there are only

two technologies available, Smokestack and High Tech from Table 6.1. The UCDP can raise

problems in terms of inequality, since there could be a solution where two generators yield the

same solution. In order to avoid this problem and test the Semi-Lagrangean (SL) Prices, we

consider two further cases. In one case we differentiate the technologies by changing the vari-

able cost, and in another case by changing the fixed costs across the same technology. Tables

6.6 and 6.7 show the variable cost α and and fixed costs β used in each case.

Table 6.6: Case A - Variable Cost across same technologies varies by .01

Generator αi Generator αi

SK1 2.01 HT1 3.00
SK2 2.02 HT2 3.01
SK3 2.03 HT3 3.02
SK4 2.04 HT4 3.03
SK5 2.05 HT5 3.04
SK6 2.06

The results for the Semi-Lagrangean approach as well as the final commodity price obtained

through the secondary auction are shown in Table 6.8 for a demand range from 22- 67.
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Table 6.7: Case B - Fixed Cost across same technologies varies by .5

Generator βi Generator βi

SK1 53.00 HT1 30.00
SK2 53.00 HT2 30.50
SK3 54.00 HT3 31.00
SK4 54.50 HT4 31.50
SK5 55.00 HT5 32.00
SK6 55.50

The Semi-Lagrangean prices as well as the final commodity price for the cases where the fixed

cost or variable cost were modified, as per Table 6.6 and Table 6.7, did not vary significantly

from the prices shown in Table 6.8.

If we consider demand level 33, D = 33, the Semi-Lagrangean price is P = 14, and the op-

timal combination of technologies and output so as to minimise costs, indicate that only 5 High

Tech plants should be involved. The total profit that the Technology would achieve is 246.

The second auction is started with the announced Semi-Lagrangean Price, P = 14, and the

participants will be only those generators that can fulfil the whole demand requirement, or if

that is not possible the generators will have to find other generators with whom to create coali-

tions that can entirely fulfil the production needed. For the second price auction there will be

different alternative viable producer combinations, such as:

• 3 Smokestack plants with a total generation cost = 258

• 2 Smokestack plants and 1 High tech plant with a total generation cost = 228

• 1 Smokestack plant and 3 High tech plants with a total generation cost = 221

• 5 High tech plants with a total generation cost = 216

In this example the winner coalition is that of 5 High Tech plants, as stated above. The second

best coalition has a total cost of 221, with a profit of 241. Then, the commodity price is 6.6970

69



6. COMPUTATIONAL EXAMPLES

Table 6.8: Semi-Lagrangean prices and commodity prices from a second price auction

Demand SLR Price Commodity Price Demand SLR Price Commodity Price
22 10.0000 6.5000 45 10.0000 6.4000
23 6.5000 6.3043 46 6.5000 6.4565
24 23.0000 7.1250 47 10.0000 6.5745
25 12.5000 6.9600 48 6.5000 6.5000
26 9.0000 6.8077 49 12.0000 6.4490
27 7.2500 6.6667 50 7.5000 6.3800
28 6.2847 6.2857 51 6.3125 6.2941
29 10.0000 6.4483 52 10.0000 6.3846
30 6.5000 6.3000 53 6.5000 6.4340
31 10.0000 6.8387 54 10.0000 6.3889
32 6.5000 6.3125 55 6.5000 6.3091
33 14.0000 6.6970 56 19.0000 6.5536
34 8.0000 6.5882 57 11.0000 6.4912
35 6.2857 6.2857 58 8.3333 6.4310
36 10.0000 6.4167 59 7.0000 6.3729
37 6.5000 6.4865 60 6.3333 6.3000
38 10.0000 6.4211 61 10.0000 6.3770
39 6.5000 6.3077 62 6.5000 6.4194
40 19.0000 6.6500 63 10.0000 6.5079
41 11.0000 6.5610 64 6.5000 6.4531
42 8.3333 6.4762 65 12.0000 6.4154
43 7.0000 6.3953 66 7.5000 6.3636
44 6.3333 6.2955 67 6.3125 6.2985

= πWC−π2ndBest+TCWC
D = TC2ndBest

D =CommodityPrice = P∗.

At this price, the second best coalition would be making zero profits and would not be in-

terested in producing. Therefore the best production coalition with minimum cost will be

engaged. Its final profit, or excess profit, would be 5. It is important to highlight that for the

second price auction, only coalitions fulfilling the whole demand requirement will participate

in the auction.

Figure 6.12 compares the commodity prices and uplift under the proposed approach, the ap-
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proach proposed by Hogan and Ring (2003) and the approach proposed by O’Neill et al. (2005).

For the Commodity Price obtained from the Semi-Lagrangean techniques through the sec-

ondary auction there is no uplift. Figure 6.13 shows in addition prices for a wider range of

demand level, comparing only the results obtained by Hogan and Ring (2003) and obtained

through the Semi-Lagrangean relaxation second auction approach.

Figure 6.12: Commodity price and uplift

Figure 6.13: Commodity price and uplift with SLR and Hogan and Ring Approach

The results for the case with three technologies involved are shown in the Appendix.

This scheme, however, may present some problems, since in some cases the price obtained

is below the marginal LP price. For example, at demand level 23. This issue can be further

analysed and leave to future research. It is possible that the approach to obtain the second best

coalition is not the best one, since it uses a very similar mix of generators and units as the

optimal solution. An approach to delete from the problem the units that have been used in the

optimal solution has to be further research so as to apply this approach.
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6.3 Commodity and Capacity Prices

The new Semi-Lagrangean problem with sum of capacity constraint is not any easier to solve.

We apply a sub-gradient algorithm to find the results. This approach is sensitive to the starting

point of the multipliers, so we chose three different options to see the effect in prices. Case A

sets the starting point for the multiplier for electricity (EP price) to zero; while case B sets it

equal to the dual value from the balance constraint from the traditional UCDP solved using a

MIP; and case C fixes the starting point to the dual value for the balance constraint from the

relaxed MIP unit commitment and dispatch problem, i.e. a linear programming (LP) problem.

In all the cases, each technology recovers their fixed costs; the marginal generator earns zero

or infra marginal profits and the other two technologies have non-zero profit, as can be seen

in Figure 6.14. Although it is not easy to see from the graph, the graph shows that non of the

technologies make any loss.

Figure 6.14: Profits from SL Approach

Overall the technologies receive almost the same profit if the multiplier starting point is either

set to the LP or MIP dual value. The excess revenue obtained with this approach can be used

as a guide to future investment and in this way, this procedure can help to find the ”missing

money”. The plants called for production recover their operational costs and the efficient port-

folio is chosen.

Prices for the commodity are the most volatile (and the lowest) when the starting point for
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the EP multiplier is set to zero; if the starting point for the EP is set to the LP dual value, the

commodity price is less volatile and they are close to the LP prices. However, while the latter

gives very small prices for the capacity, the former gives the highest price for capacity. If we

decide to use the prices obtained when the starting point for the multiplier is set to the MIP

value instead of the LP value, then we have that the electricity prices are smaller, but the prices

for capacity increases. Figure 6.15 and Figure 6.16 show these trends.

Figure 6.15: SL Price for commodity

Figure 6.16: SL Price for capacity

Figure 6.17 depicts the behaviour of the prices for case B, where the starting point for the EP

multiplier is set to the MIP dual value; while Figure 6.18 shows the behaviour for case C, where

the starting point is the LP dual value of the balance constraint. The prices for commodity and

capacity are inversely interrelated, as expected. By comparing Figure 6.17 and Figure 6.18, we

can see that if electricity prices are ”lower”, then the capacity prices are ”higher” as in Figure
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6.17; but if prices for electricity are ”higher”, then the capacity prices will be ”lower”, as in

Figure 6.18.

Figure 6.17: SL Price for commodity and capacity Initial Point=MIP

Figure 6.18: SL Price for commodity and capacity Initial Point=LP

The commodity and capacity prices present jumps (or downs for capacity) every time the MT

technology has to be engaged to produce more than one unit. In the case of non-storable goods,

such as electricity, having capacity limits on the production can generate extreme fluctuations

in prices. Moreover, as discussed somewhere else, one of the main conflicts with marginal

cost pricing (MCP) is the need for revenues. The approach presented here can help to lessen

these two problems by providing more stable prices than in the MCP and providing with the

technologies engaged zero or non-negative profits.

Take the case of demand level 123. If marginal pricing was to be followed, and we order
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the generator according to their marginal cost, then High Tech would provide all its capacity

(35 units) and Smokestack would cover the remaining units (88), as summarised in Table 6.9.

If the marginal generator sets the commodity price equal to its marginal costs, then the com-

modity price would be 3. This price is clearly not high enough to cover the generators costs.

Smokestack would incurred a loss of 291.5, while High Tech would experienced a loss of 115.

The total cost of that portfolio generation would be 775.5.

The dual price of the balance constraint for a LP problem is 6.3125, which could be a candidate

for a commodity price, since the marginal generator earns zero profit and the other generator

gains non-zero profits. However due to the integrality constraint in the plants engaged, the

LP solution is infeasible. With the integrality condition, this portfolio in fact would cost 802.

Therefore, if we want to achieve an efficient least cost generation portfolio we need to commit

only 4 plants of High Tech at full capacity producing a total of 28 units, and 6 Smokestack

plants producing a total of 95 units. The total cost of production would be 779. The dual for

the balance constraint for the MIP is 3, which again is not enough to cover the cost. We need

higher prices that can send the right signal to the market.

By applying the expanded Semi-Lagrangean approach, and setting the EP multiplier starting

point to the LP dual value of the balance constraint (Case C), we obtain that the price for the

commodity would be 6.3125 and for capacity 3.3125. These prices are clearly higher than the

MIP, as shown in Table 6.10.

Table 6.9: Results for Demand Level 123

q∗ z∗ Costs

Problem SK HT MT SK HT MT SK HT MT

LP 88 35 0 5.5 5 0 555.5 222 0

MIP 95 28 0 6 4 0 603 176 0

SL 95 28 0 6 4 0 603 176 0

From Figure 6.16 , we can see how the capacity price jumps when the SK technology is used

below its full capacity, at demand level 123 and 130. At these prices the generators will receive

6.3125 for each unit of electricity produced and 3.3125 for the total capacity of the plants en-
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gaged in production. Smokestack total revenue would be 917.7 (95*6.3125 + 16*6*3.3125),

while High Tech would have total revenue of 269.5 (28*6.3125 +4*7*3.3125). This will cre-

ate a total profit for Smokestack and High Tech of 314 and 93 respectively. These prices will

provide generators with profits to expand their capacity. Table 6.10 shows this, as well as the

prices for Case B, where the starting point is the MIP dual value of the balance constraint. In

any case the optimal minimum cost efficient portfolio mix from the MIP is achieved with the

Semi-Lagrangean (SL) approach. If Case B is chosen, then the prices for electricity are much

closer to those from a MIP solution, and the technologies will receive a higher extra payment

for the capacity of the plants engaged than the payment they would receive if Case A was cho-

sen. Case A has smaller volatility than case B for the electricity price, and a very small extra

payment for the capacity of the technologies engaged.

Table 6.10: Commodity and Capacity Price for Case B and C

Case B Profit Total

EP initial val.=MIP shadow val. SK HT MT Profit

Commodity Price 4.66

Capacity Price 4.66 155.5 46.66 0 222.2

Case C Profit Total

EP initial val.=LP shadow val. SK HT MT Profit

Commodity Price 6.3125

Capacity Price 3.3125 269.5 917.7 0 1187.2

It is important to mention that whenever Medium Tech is engaged in production with more

than one unit, then the price for commodity will be set high enough to cover the production

cost of this technology. At this price the other two technologies will receive positive revenue

for investing in extra capacity.
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6.4 SL Prices in a Network

The example presented at the beginning of this section was implemented into a nodal model.

The information for each node, generation plants within them, their characteristics and demand,

as well as line capacities are given in Table 6.11.

Table 6.11: Example from the literature

Nodes(i)
Node A Node B Node C

Generator1 Generator2 Generator3 Demand
Demand(i) 0 0 0 qd

c 4
Variable Costs(VCg) 3 2 7

Fixed Costs(FCg) 53 30 0
Capacity(x̄g) 16 7 6

Minimum Output(xg) 0 0 2
Average Cost at full capacity 6.3125 6.2857 7

Plants available (Zg) 6 5 5

LineAB Capacity 15

In a linear world without capacity constraints, and without losses, we would have the cheapest

generators produce until the demand is covered. For demand levels within 50 and 75, it means

that all plants of Generator 2 will be involved and plants of Generator 1 will be engaged as

needed. The optimisation problem is a linear program and it is convex, so the dual values can

be used. The price at all the nodes will be given by Generator 1, setting it to 6.3125. However,

given that there is a constraint in Line AB, the prices would be set to 6.65625 at node C, 6.3125

at node A, while for Node B it would be 7. The dual for the congested line is 1.03125.

The linear solution is not feasible since the problem requires indivisibilities in the number

of plants engaged, converting the problem into a Mixed Integer Problem (MIP). As mentioned

earlier, whenever there is no congestion the price in the grid across all nodes would be the

same. In the MIP solution this means that all nodes will have a price of 7. However, whenever

the line is congested, that is when line AB is fully utilised, then the prices at node A will be

3, node B will be 7 and at the demand node it would be set to 5. At these prices the genera-

tors at Node A cannot recover their costs. The dual values in the MIP are no longer operational.
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By implementing the Semi-Lagrangean approach in the problem, we obtain prices of 6.3125

for Node A, 7 for Node B and at Node C the electricity is priced at 6.6563, for cases where

the line is congested, as shown in Table 6.12. For cases where the line is not congested, the

Semi-Lagrangean prices are the same as for the MIP prices, as Table 6.13 presents. At these

prices the generators will cover their production costs and the minimum cost optimal mix will

also be achieved, while at the same time the physical laws in the transmission flows and line

capacity are respected.

Table 6.12: Semi-Lagrangean prices for demand level with congested line and line capacity in-
equalities

Prices at Node
Demand A B C Flow in Line AB

51 6.3127 7 6.6563 15
56 6.3125 7 6.6563 15
57 6.3126 7 6.6566 15
61 6.3127 7 6.6563 15
65 6.3130 7 6.6565 15
74 6.3125 7 6.6564 15
75 6.3127 7 6.6563 15

The prices remain stable after running the semi-Lagrangean problem with equality constraint

for the line capacity AB as shown in Table 6.14. That is, constraint 4.41 from section 4.4.2

is modified to an equality constraint. Given that the line capacity constraint is an equality

constraint, we can then also apply the semi-Lagrangean approach in order to obtain the con-

gestion charge. Then, as mentioned before, we add to the objective function the following term

+PLineAB(LineCapAB−qAB) , leaving the line capacity constraint as a ”less than or equal to”

inequality constraint as in the initial problem.

The prices obtained are presented in Table 6.15. They are stable for each of the nodes, in the

sense that prices from Table 6.14 and 6.14 are very similar, and very close to the LP solution.

The prices for the congested line, or congestion charge, range from 1.6909 to 1.1820, which

are close to the LP dual value of 1.03125. If the network is solved as a linear problem the dual
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Table 6.13: Semi-Lagrangean prices for demand level with non-congested line and line capacity
inequalities

Prices at Node
Demand A B C Flow in Line AB

50 7 7 7 14.00
52 7 7 7 14.67
53 7 7 7 14.33
54 7 7 7 14.00
55 7 7 7 13.67
58 7 7 7 14.67
59 7 7 7 14.33
60 7 7 7 14.00
62 7 7 7 14.67
63 7 7 7 14.33
64 7 7 7 14.00
66 7 7 7 14.67
67 7 7 7 14.33
68 7 7 7 14.00
69 7 7 7 13.67
70 7 7 7 13.33
71 7 7 7 13.00
72 7 7 7 12.67
73 7 7 7 12.33

at Node 3 is 6.65625, and the dual for the capacity constraint in line AB is 1.03125. Running

the model as a MIP then the dual for capacity constraint is 6, while the price at node 3 is 5. We

can see how the SL prices are very close to those from the LP solution.

Eventhough the line is not congested, we could calculate what the capacity charges would

be if the line were to be congested at its optimal used. From Tables 6.12 and 6.13, we have

the flow running in the link joining Node A and Node B for the optimal MIP solution. By

setting the capacity constraint in Line AB to an equality to these values, we can then apply the

Semi-Lagrangean relaxation to the constraint in order to obtain congestion prices for the whole

demand range from 50-75. The results are shown in Table 6.16, and we can see that prices

from Node 1 are always around 6.3125, prices at Node 2 are 7, and prices at the demand node
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6. COMPUTATIONAL EXAMPLES

Table 6.14: Semi-Lagrangean prices for demand level with congested line and line capacity equal-
ity constraint

Prices at Node
Demand A B C Flow in Line AB

51 6.3143 7 6.6571 15
56 6.3125 7 6.6563 15
57 6.3135 7 6.6566 15
61 6.3129 7 6.6564 15
65 6.3130 7 6.6564 15
74 6.3125 7 6.6568 15
75 6.3129 7 6.6564 15

Table 6.15: Semi-Lagrangean prices for demand level and and congested LineAB and line capacity
equality constraint

Prices at Node
Demand A B C Price for Congested Line AB

51 6.3128 7 6.6564 1.6909
56 6.3125 7 6.6580 1.5498
57 6.3131 7 6.6566 1.5248
61 6.3131 7 6.6565 1.4338
65 6.3132 7 6.6566 1.3525
74 6.3125 7 6.6569 1.1968
75 6.3126 7 6.6563 1.1819

are around 6.656. For the capacity charges there will be a range of values that vary depending

on the flow in the line. These prices are very close to those of an LP solution.

6.5 SL Prices in a Power Exchange

The Semi-Lagrangean approach is applied also to a power exchange format with block bids.

The example used is not the same as the previous sections, but it is taken also from the literature

(Meeus, Verhaegen, and Belmans, 2005) and summarised in Table 6.17. The Semi-Lagrangean

will provide prices for each of the time periods.
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6.5 SL Prices in a Power Exchange

Table 6.16: Semi-Lagrangean prices and capacity charge

Prices at Node
Demand Flow in Line AB A B C Capacity Charge Line AB

50 14.00 6.31387 7 6.65694 1.61618
51 15.00 6.31279 7 6.65639 1.69094
52 14.67 6.31397 7 6.65699 1.62748
53 14.33 6.31464 7 6.65732 1.56618
54 14.00 6.31443 7 6.65721 1.50659
55 13.67 6.31253 7 6.65627 1.44878
56 15.00 6.3125 7 6.65795 1.54985
57 15.00 6.31312 7 6.65656 1.5248
58 14.67 6.31262 7 6.65631 1.46947
59 14.33 6.31252 7 6.65626 1.41582
60 14.00 6.31287 7 6.65643 1.36339
61 15.00 6.31307 7 6.65654 1.4338
62 14.67 6.31272 7 6.65636 1.38325
63 14.33 6.31253 7 6.65627 1.33399
64 14.00 6.31322 7 6.65661 1.28576
65 15.00 6.31321 7 6.65661 1.35259
66 14.67 6.31329 7 6.65665 1.30574
67 14.33 6.31269 7 6.65635 1.26042
68 14.00 6.31322 7 6.65661 1.21585
69 13.67 6.31316 7 6.65658 1.17255
70 13.33 6.31311 7 6.65655 1.13026
71 13.00 6.31307 7 6.65653 1.08899
72 12.67 6.31294 7 6.65647 1.04873
73 12.33 6.31269 7 6.65635 1.00945
74 15.00 6.3125 7 6.65689 1.19683

The prices obtained are sensitive to the starting point of the multipliers, therefore several start-

ing points were chosen. They key ones were the prices obtained from a simple LP problem and

a MIP. The results are presented in Figure 6.19.

At these prices the generators engaged will not have losses, as in the previous examples, and
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6. COMPUTATIONAL EXAMPLES

Table 6.17: Example from Meeus, 2005

Time Period
T1 T2

Simple Bid Q 60 Mwh 60 Mwh
Simple Bid Price 10 40

Block Bid Q 100 MWh
Block Bid Avg. Price 30

Demand 100 150

Figure 6.19: Results from different starting points

will be committed to the schedule.

However, there is more research to do in this subject. For example how to decide which price

should be implemented in the market. This approach is sensitive to the starting point; therefore

combining another type of relaxation in the problem such as surrogate relaxation could add

some stability to the Semi-Lagrangean approach. This could be topic for further research.
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7

Conclusions and further research

Finding prices in a non-linear environment is a challenge. By matching the economic interpre-

tation of supply and demand intersection with a mathematical problem of maximising welfare,

we will obtain marginal pricing. In an electricity industry this means that the marginal generat-

ing unit will set the optimal price in the market equal to its marginal cost. These prices in turn

are a supporting function of the optimal solution reached by the economic dispatch problem, in

a linear convex world. However, in a non-linear environment, marginal prices are not longer an

optimal set of prices. If the marginal prices are applied, not all the generators will cover their

costs and they would not be willing to produce.

Pricing in the electricity market has been a challenge due to its several non-convexities. The

non-convexities presented in the electricity market such as start up costs, minimum output

requirements, minimum up and minimum down time requirements, create difficulties to find

linear prices that can support the solution obtained from solving the unit commitment and dis-

patch problem. This issue has been studied in the last years with a numerous pricing approaches

proposed. This work reviews different approaches to find optimal prices in the non-convex

electricity market. But in addition, it suggests an alternative pricing approach by applying the

Semi-Lagrangean Relaxation technique to several models.

The Semi-Lagrangean Relaxation technique consists of relaxing an equality constraint and

adding it into the objective function with a penalty term, i.e. a multiplier. The relaxed constraint

is also incorporated in the main problem as a weak constraint, as an inequality. This technique

is applied to different models presented in this work. The first model consists of a model with
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7. CONCLUSIONS AND FURTHER RESEARCH

inelastic demand, then a second model incorporates a sensitive demand. A secondary auction

is also coupled with the model, but this procedure may have some issues regarding the final

prices, since in some cases the price goes below the prices obtained in a linear programming

formulation. This is in fact an issue for further research. The model incorporates also a mini-

mum output requirement, and it has been highlighted the impact that such constraint has on the

commodity prices. The minimum output requirement is a stronger or harsher constraint in the

non-convex problem that makes the prices spike.

In addition, a model to obtain prices for capacity and transmission is developed. Many pre-

vious models ignore transmission constraints and the physical laws that govern power flow.

This work contributes to the growing literature on pricing mechanism in the electricity sector

by expanding the model to incorporate transmission constraints and power flow. The technique

was applied to a three-node network and the prices obtained are in fact the dual values of the

linear programming version of the problem. This model also provides prices for the congested

lines.

The Semi-Lagrangean prices obtained for each model are high enough to cover the genera-

tors’ costs. The prices obtained are high enough to make the market participants willing to

generate the amounts of electricity scheduled by the system operator, since they will recover

their costs. There is no need to implement any up-lift or side payments. We believe that these

prices send the right signals to the market participants and at the same time fulfil the demand

at the minimum cost.

Further research

Future research can be done in the second price auction, since the scheme presented some

problems. In some cases the price obtained was below the marginal LP price. This issue can be

further analysed. It is possible that the approach to obtain the second best coalition is not the

best one, since it uses a very similar mix of generators and units as the optimal solution. An

approach to delete from the problem the units that have been used in the optimal solution has

to be further research so as to apply this approach.

The model can be further improved by including additional non-convexities into the model,

as well as a multi-period time horizon model. In the network model, a bigger network could
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be developed and try the Semi-Lagrangean approach on it. For example, a five node with more

alternative producers, or to try to reproduce the Norwegian market, or a zonal pricing approach.

Finding the best surrogate multiplier is topic of further research also, as well as the combi-

nation of the Semi-Lagrangean relaxation and surrogate Relaxation to find prices for exchange

power markets that have block orders.
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Figure 8.1: Semi-Lagrangean Prices
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Figure 8.2: LP Results
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Figure 8.3: LP Results
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Figure 8.4: MIP Results
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Figure 8.5: MIP Results
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Figure 8.6: Semi-Lagrangean Prices with and without minimimum output requirement
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Figure 8.7: Results from Second Price Auction with Three Technologies
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