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The Multifactor Model of the Agent’s Power in Social Networks 

 
ABSTRACT 

 
The analysis of social reasoning is at the core of understand-
ing how to manage social networks. Since interpersonal rela-
tions are composed of multiple factors with different nature 
(i.e., structural and social factors), we explore their influence 
on the strategizing processes in social networks. We formalize 
interpersonal relations using the methods of structural and 
social analysis. As a part of the research, we develop the soft-
ware application for the numerical visualization of the social 
network functioning based on the proposed mechanism.  
 
Key words: agent’s power, social networks, structural centrali-
ty, trust 
 
1. INTRODUCTION 
 
The framework of the research is based on the problem of 
structural analysis of social networks. In general, social net-
work is considered as a multi-agent (multi-players) system. 
Basically, each agent is characterized by structural metrics 
(i.e., centralities) and by social characteristics, such as measure 
of trust to other players. In fact, the research corresponds to the 
investigation of functional dependencies between the logical 
and mathematical apparatuses of two interconnected concepts 
described next. 

1.1 Structural analysis of social networks 
As was mentioned, structural analysis is a basic component of 
the investigation process. We use three fundamental structural 
measures in the given research: (a) degree-based centrality, (b) 
betweenness centrality and (c) closeness centrality (Cook, 
Emerson, Gillmore, & Yamagishi, 1983). All of these 
measures are the components of social power analysis. One of 
the goals for this research is to encapsulate structural centrali-
ties in a unified structural measure. This encapsulation is the 
first step in the formalization of social power. 

1.2 Analysis of social networks as the networks of trust 
We consider trust as a social property of interpersonal relations 
in networks. In fact, social networks are based on the exchange 

of trust between their members (i.e., agents). Trust is at the 
core of the decision making process of each agent in a social 
network (Edwards, Claire, & Temple, 2006). In trivial case, we 
can consider the social network with three interconnected 
agents: A, B and C. If agent A trusts agent B more than agent 
C, then the probability that agent A will prefer to interact with 
agent B is higher than the probability of its interaction with 
agent C. The given example is trivial. Agent A does not take 
into account the property of the structural centralities of agents 
B and C. However, it shows the importance of trust in the 
exchange of resources (i.e., material and non-material) within a 
social network. The conception of trust can also be used in 
combination with Bayesian networks. The approach is based 
on the method of Bayesian inference (Wang & Vassileva, 
2003). 
 
2. BACKGROUND 
 
The analysis of social networks is basically related to their 
structural analysis. One of the first structural models based on 
the theory of directed graphs was suggested by Harary, Nor-
man, & Cartwrigh (1965). It includes basic mathematical for-
malization and explanation of graph theoretic methodologies 
and their application in formalization of networks. Theory of 
directed graphs is a mathematical formalization of networks 
that can be applied to any types of networks represented by 
graphs (i.e., not only social networks). The theory of directed 
graphs is closely related to power networks (Emerson, 1962). 
According to Emerson (1962), power is an agent’s ability to 
influence other agents and to resist an influence from other 
agents in the network. The computation of structural measures 
is considered as a basic step of the analysis of social networks. 
Harary’s research is concentrated on the investigation of social 
properties of agents, such as “power”, “dominance”, “depend-
ence” and “status”.  Power networks are based not only on the 
structural analysis of networks, but also on the formalization of 
social interrelations among agents. This approach is widely 
used in the analysis of social systems, such as exchange net-
works (Cook et al., 1983). 
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Exchange networks are socio-economic networks that can be 
characterized by five properties (Cook et al., 1983). First, an 
exchange network is a set of agents and interrelations between 
them. Second, network resources are distributed between 
agents. Third, each agent makes a decision regarding the ex-
change process according to its individual interests. Fourth, 
each agent has a personal history of exchange within a net-
work. Fifth and last, all interpersonal relations are encapsulated 
in a unified exchange network. According to Cook et al. 
(1983), the formalization of exchange networks is based on 
two basic aspects: structural analysis and internal power of 
relations. Specifically, Cook et al. (1983) used three basic 
measures for the structural analysis: (a) degree-based centrali-
ty, (b) closeness-based centrality, and (c) betweenness-based 
centrality. The analysis of internal power includes two factors: 
power and dependence. Power is considered as an agent’s 
potential to obtain the desired outcome from other agents in the 
network. Dependence implies the separability of opportunities 
and limitations of power distribution between different agents. 
It means that the relation between agent A and agent B is char-
acterized by the dependence that is different from the depend-
ence between agent A and agent C. According to Cook et al. 
(1983), structural measures and internal power of relations are 
interdependent and influence each other. 

Social networks can be analyzed from the different angles. 
According to Jackson (2003), efficiency is one of the most 
important properties of social networks. Jackson (2003) de-
scribed the efficiency of social and economic networks in three 
basic categories. The first is that the notion of efficiency is the 
Pareto efficiency. Pareto efficiency (i.e., Pareto optimality) is a 
specific state of social network when an improvement of an 
agent’s condition is impossible without worsening the condi-
tions of other agents. Pareto optimality is based on the idea that 
all profits from the operations of exchange within a network 
are exhausted. It means that if at least one agent starts to im-
prove its condition, then it will change the state of another 
agent or agents in a negative way. According to Jackson 
(2003), an agent is a member of the Pareto efficient network if 
there is no other network that can guarantee a better benefit 
than the current network. The second definition of efficiency is 
related to the maximization of an agent’s benefit (Jackson, 
2003). It does not mean that each agent will maximize its pay-
off. The basic idea of such kind of efficiency is that the total 
amount of all payoffs should be maximized. The third concep-
tion of network efficiency is related to the availability of spe-
cific types of transactions for each agent.  It means that social 
network is efficient if the availability to realize the specific set 
of transactions at any time is guaranteed to each agent. This 
type of network efficiency implies that agents should not be 
limited in the realization of the specific set of rights. For ex-
ample, if any democratic society is considered as efficient, 
then it should guarantee the freedom of choice and freedom of 
action for each member. The advantage of the given research is 
that it includes a deep analysis of the specific models of social 
networks. For example, Jackson (2003) considered the Con-

nections Model (Jackson & Wolinsky, 1996) and the Co-
Author Model (Jackson & Wolinsky, 1996). 

Another approach regarding the network power and structural 
measures was done by Bonacich (1987). The research is based 
on the abstract formalization of interdependencies between an 
agent’s power and centrality. Bonacich (1987) did not specify 
which structural measures are better to be used for the structur-
al analysis of social networks. He considered bargaining situa-
tions where agent’s power is its bargaining power. According 
to Bonacich (1987), it is preferable for an agent to keep rela-
tions with agents who have less bargaining power. If agent A 
keeps relations with more powerful agents, then it will have 
less influence in the bargaining process. This implies the de-
crease of the bargaining power for agent A. Bonacich (1987) 
analyzed the problem of interrelations between network prop-
erties conceptually without specific computations. Mathemati-
cal formalization of interrelations between structural measures 
is abstracted away from the use of specific measures. 
 
The basic mathematical formalization of social networks is 
based on principals and methods of graph theory and game 
theory. Specifically, Jackson (2008) characterized the dynamic 
behavior of network agents using different approaches, such as 
Markov chains, multiple equilibrium, local public goods model 
(Bramoulle & Kranton, 2006), games in normal forms, and 
dominant strategies. Jackson (2008) described the fundamental 
analysis of social and economic networks. It includes an ex-
planation of networks representation and measuring with graph 
theoretic methodologies, the analysis of network models in-
cluding static random-graph models and hybrid models. On 
each step of the analysis, Jackson (2008) gave a detailed ex-
planation of different network properties and measures, such as 
socio-economic externalities, network stability, clustering, 
distance-based utility, and network efficiency. The analysis of 
social and economic network processes is combined with 
mathematical and logical formalization of network compo-
nents. In addition to structural analysis, Jackson (2008) charac-
terized social and economic networks in terms of game theory. 
It includes the description of basic game theoretic measures, 
properties, and methods. Defining stability and equilibrium as 
the basic characteristics of a game, Jackson (2008) provides 
the analysis of practical application of these measures in socio-
economic network modeling.  
 
Another analysis of social networks is given by Galeotti et al. 
(2010). They conducted a study of interconnection processes 
between agents in network games taking into consideration the 
fact that agents communicate having incomplete information 
about each other. The given research is based on the idea that 
agents have an adequate knowledge regarding their current and 
future structural characteristics. For example, agents know 
their current values of structural measures (i.e., structural cen-
tralities). Nevertheless, agents are not knowledgeable regard-
ing the structural characteristics of their neighbors. Therefore, 
an agent’s behavior depends on incomplete information about 
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neighbors. According to Galeotti et al. (2010), an agent’s 
strategizing process does not depend only on the structural 
calculus. The computation of structural measures is combined 
with the analysis of social factors. Galeotti et al. (2010) con-
sidered agents’ social properties as primary factors in the pro-
cess of decision making. Agents are characterized by their 
proclivity to interact with other network agents (Galeotti et al., 
2010). In fact, agents do not have complete information re-
garding acting, intentions, and desires of their neighbors. 
Therefore, Galeotti et al. (2010) analyzed social networks in 
terms of information incompleteness, which is considered as a 
combination of incomplete structural and social knowledge of 
agents regarding the behavior of their neighbors.  The ap-
proach of Galeotti et al. (2010) is based on two aspects. First, 
an agent’s decision-making process is based on the complete 
knowledge regarding its own structural degrees and incomplete 
knowledge regarding its neighbors’ degrees. Second, agent’s 
structural degrees are interdependent with its payoff in the 
game. The investigation of these two aspects is at the core of 
the given research. 
 
Structural measures are not the only components of the analy-
sis of social networks. Social factors, such as trust, are also at 
the core of a network’s investigation. The analysis of trust in 
the context of social networks and semantic webs is given by 
Golbeck, Hendler & Parsia (2003). The research is related to 
the investigation of trust networks and semantic webs. The 
main idea is to combine the concepts of trust networks and 
social networks into the unified approach that is called web of 
trust (Golbeck et al., 2003). According to Golbeck et al. 
(2003), trust is a level of an agent’s reliability. It has a social 
nature and mostly related to the confidence that agent will act 
in the expected way. Trust networks are considered as the 
networks where trust is at the core of interpersonal relations. 
Each agent in a trust network is represented by persons or 
communities. In fact, the formalization of trust networks is 
based on the methods of social networks’ analysis. Social 
networks, as the second component of the given research, are 
considered as the networks where trust is at the core of inter-
personal relations. The third component of the given research 
is a semantic web (Golbeck et al., 2003). Semantic web is a 
method of data representation for the appropriate machine 
processing (Daconta, Obrst, & Smith, 2003). Semantic webs 
are related to the advanced mechanisms of web search. For 
example, machines (i.e., computers) cannot analyze the data in 
the same way as human. The main aim of the development of 
semantic webs is to make the processes of data search and data 
classification to be similar to the human’s methods. The com-
bination of the mentioned concepts (i.e., trust, social networks, 
and semantic webs) is encapsulated in the formalization of the 
webs of trust (Golbeck et al., 2003). Each agent in the web of 
trust is characterized by the level of belief toward its neigh-
bors. If this information can be collected from all agents in the 
network, then the interpersonal relations can be formalized and 
processed automatically (Golbeck et al., 2003). Golbeck et al. 
(2003) described nine levels of trust. The first level of trust 

corresponds to the situation when agent does not trust to an-
other agent at all. The ninth level of trust corresponds to the 
situation when agent absolutely trusts to another agent. Ac-
cording to the given research, level of trust can be measured in 
the specific range not only between the directly connected 
agents, but also between indirectly connected agents. Golbeck 
et al. (2003) included the description of software products that 
are based on the proposed methods of trust calculations. Spe-
cifically, they analyzed the application of webs of trust in 
email clients and in the internet relay chats (IRC). In fact, the 
given research represents the formalization of how the infor-
mation about trust can be mined and integrated in the intelli-
gent software applications.  
 
Another investigation of trust, as the core social factor of in-
terpersonal relations, was done by Castelfranchi & Falcone 
(1998).  They analyzed principles of trust considering trust as a 
social property of multi-agent systems (MAS). The paper is 
based on the general analysis of trust and its importance in 
MAS. According to Castelfranchi & Falcone (1998), exchange, 
team work, and collaboration are the basic principles of the 
socially oriented MAS. Trust is considered as the belief that an 
agent will act in the most likely way. It implies the probabilis-
tic nature of trust. Another important social factor of MAS is 
delegation. Delegation is considered the opportunity for agent 
A to use agent B in a goal achievement. This means that agent 
A can use the resources of agent B for its personal needs or it 
can force agent B to act in a desired way. According to 
Castelfranchi & Falcone (1998), there are two types of delega-
tion: weak delegation and strong delegation. Weak delegation 
implies that agent B is not confident in the fact that it is ex-
ploited by agent A, or agent B does not know about the exploi-
tation at all. In contrast, strong delegation means that agent B 
is aware of the exploitation by agent A. Castelfranchi & Fal-
cone (1998) considered trust and delegation as interdependent 
notions. Generally, delegation cannot exist without trust. How-
ever, some exceptional situation can occur. For example, agent 
B may be dependent on agent A. It means that agent B has to 
work under the supervision of agent A even if it does not trust 
in agent A at all. There are two types of trust: non-social trust 
and social trust (Castelfranchi & Falcone, 1998). Non-social 
trust implies the lack of emotional interdependencies between 
agents. Trivially, non-social trust is based on the computation 
of belief that agent B will trust agent A, taking into considera-
tion only practical profitability of the interaction between 
agents. Social trust implies the consideration of personal social 
characteristics of agents such as morality (Castelfranchi & 
Falcone, 1998). For example, agent A delegates responsibili-
ties to agent B based on the morality or social status of agent 
B.  The final step of the research is related to the quantification 
of trust. Castelfranchi & Falcone (1998) gave a mathematical 
and logical formalization of trust measuring. In general, the 
research contributed not only to the theoretical understanding 
of trust, but also to the understanding of its practical use in the 
modeling of social networks.   
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3. METHODOLOGY 
 
A social network is a network that has a specific topology and 
social structure. The basic objects of social networks are agents 
(i.e., individuals, companies, and communities) that are repre-
sented by nodes and related by different kinds of social rela-
tions. In fact, a social network can be represented as a graph as 
shown in Figure 1. Every social network can be analyzed by 
graph theoretic methodologies.  Social networks have different 
structural complexity, but in practice, they are considered as 
large-scale networks. This is due to the fact that they mimic the 
complexity of real-world social interdependencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Prototypical Social Network  
with a Mixed Topology 

 
Quantification of social power is a multifactor analysis of the 
agent’s role in any kind of social and economic network. It is 
strongly related to the level of agent’s influence on each mem-
ber of the network and on the integrity of the network. To put 
it more simply, social power captures a level of an agent’s 
importance and an agent’s opportunities within a social net-
work.  
 
Social power can be characterized by many measures. For 
example, Cook et al. (1983) used structural centrality as a 
primary factor for social power. They used three basic 
measures of (a) degree-based measure, (b) betweenness meas-
ure, and (c) closeness-based measure in order to compute the 
distribution of power in exchange networks. Brandes & Pich 
(2007) used two measures of (a) closeness and (b) betweenness 
for centrality estimation in large networks. Another important 
factor of social power is an agent’s internal power, which 
characterizes an agent’s resources (i.e., energy, knowledge, 
and trust). 

Social power structure is represented in Figure 2. Next, we 
describe the components in detail.  

 
Figure 2:  Social Power Structure  

 

3.1. Structural Centrality 
Structural centrality is the most important concept in social 
power. It is based on the structural analysis of networks. Every 
social network can be represented as a graph. Formalization of 
structural centrality is closely related to the mathematical ap-
proach in graph theory. It is based on the computation of the 
shortest-path distances in the graphs, frequencies of nodes on 
the shortest paths, and connections of vertices to the low/high 
scoring nodes. Structural centrality is a measure of an agent’s 
importance in terms of the structural analysis of networks. 

3.1.1 Degree-based measure (degree centrality) 
Degree centrality (DC) of a vertex is a number of links directly 
connected to it. According to Freeman (1979), DC of a vertex 
can be characterized as an indicator of its potentiality to inter-
act with other vertices. 
Based on the Freeman (1979) approach, DC computation for a 
vertex v of a graph G(V, E) with n nodes can be realized by 
equation 1. 
 

DC(v) =  
deg (v)

n − 1
 (1) 

 
where deg(v) is a number of nodes directly connected to v. 

3.1.2 Betweenness measure (betweenness centrality) 
Betweenness centrality (BC), as the measure of structural cen-
trality, estimates how often the particular vertex can be visited 
looking through the shortest paths between all possible pairs of 
vertices (Freeman, 1979).  
Equation 2 represents BC computation (Anthonisse, 1971; 
Freeman, 1977): 
 

BC(v) =
∑ σ(s, t|v)s≠v≠t

σ(s, t)
   (2) 

 
where: 
σ(s,t) is the number of the shortest paths among all paths from 
s to t; 
σ(s,t|v) is the number of the shortest paths starting at s, visiting 
v and ending in t. 

3.1.3 Closeness-based measure (closeness centrality) 
Closeness centrality (CC) measures how close the given vertex 
is to all other vertices of the graph on average. An agent with 

Social Power 

Structural 
Centrality 

Degree-based 
measure 

Betweenness 
measure 

Closeness-
based measure 

Eigenvector 
centrality 

Internal Power 
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the highest closeness can be approached from elsewhere in the 
network faster on average than any other agent.  CC has an 
important practical use because it allows for determining the 
best position in the network from which other agents can be 
easily reached. 
CC is inversely related to the sum of the shortest distances 
from vertex v to all other nodes (Beauchamp, 1965; Sabidussi, 
1966). Distance is considered as a number of edges in the 
shortest path between two vertices.  
 

CC(v) =
1

∑ dG(v, t)tϵV\v
 (3) 

 
where dG(v , t)  is the shortest distance between vertices v and t 
in graph G. 
Equation 3 works well only with connected graphs. The modi-
fication of this formula was offered by Dangalchev (2006): 
 

CC(v) = � 2−d(v,t)

t∈V\v

 (4) 

 
Equation 4 is adapted to work with disconnected graphs. 

3.1.4 Eigenvector centrality 
Eigenvector centrality (EC) measures an agent’s significance 
with respect to other agents in the network. It characterizes 
quantitative and qualitative performance capabilities of agents 
(Newman, 2008). In other words, more powerful agents can be 
more beneficial, and it is preferable to keep connections with 
them.  
According to Newman (2008), EC of the agent i is proportion-
al to the average total EC score of its neighbors: 
 

xi =
1
λ
�Aij

n

j=1

xj  (5) 

 
Here: 
Aij is a network’s adjacency matrix. If vertex i is directly con-
nected to vertex j, then Aij = 1; otherwise, Aij = 0; 
λ is a constant. 
Some EC values for nodes are a priori known. Since equation 5 
is recursive, the a priori values seed initial values used to com-
pute values of EC for other agents.  
Alternatively, equation 5 can be represented in matrix form 
(Newman, 2008): 
 

λx = A·x (6) 

 
Here: 
x is an eigenvector of centralities; 
λ is an eigenvalue of matrix A. 

 

 

 

3.2. Internal Power (IP) 
IP is the second approach for social power quantification. It 
characterizes the internal agent’s resources. Compared to struc-
tural centralities, IP is not related to the structural features of 
the network, but it works with the internal characteristics of 
connections between agents. The specification of IP depends 
on the area of its application. For example, in terms of eco-
nomics agent’s IP can be represented by capital, money, in-
vestments, and other tangible quantities.  
Current research focuses on the social foundation of agent’s IP. 
Accordingly, we characterize IP by three internal components: 
energy, knowledge and trust. 

3.2.1 Energy 
Energy is an abstraction of social and economic resources. One 
of the interpretations of energy as a social category is given by 
Marks (1977). In the context of social analysis, energy can be 
represented by an agent’s ambitions, willpower, and social 
activities. In terms of economic analysis, energy can be repre-
sented by money, time, and propensity for financial risk.  
Both kinds of energy are limited. For example, an agent cannot 
work more than 24 hours per day or spend more money than it 
has. An aggregated agent’s energy can be represented by any 
value in the range [0, 1]. 

3.2.2 Knowledge 
Knowledge is what is known by an agent regarding its position 
in the network. It includes the information regarding the states 
of other agents, connections, and network characteristics in 
general. In the context of social power, knowledge can be 
characterized as the level of an agent’s information awareness 
about the network. The deep analysis of knowledge as a social 
category is done by Berger & Luckmann (1966). 

3.2.3 Trust 
Trust is a basic characteristic of social networks. We consider 
a trust network as a directed graph, where trust can take on any 
value from a range [0, 1]. Therefore, a mathematical apparatus 
applied for directed graphs can also be used in trust networks. 
One of the interesting interpretations of trust is given by Ed-
wards et al. (2006), where trust is considered as an abstract and 
personal category of interpersonal relations. 
 
It is important to say that social power has already become one 
of the most important parameters in the analysis of social and 
economic networks.  It is not just an abstract and uncertain 
philosophic term, but it is a deeply formalized concept of 
mathematical formalization in social and economic networks. 
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4. APPROACH 
4.1 Formalization of Social Power 
Measures that characterize social networks are often motivated 
independently. For example, centrality and density are hetero-
geneous measures of a social network and cannot be easily 
combined since they quantify measures of interest for different 
uses of social networks. 
 
Structural network analysis attempts to understand the inter-
node connectedness as in graph theory methodologies. The 
analysis of different types of structural measures in terms of 
social networks was done by Everett, Sinclair, & Dankelmann 
(2004). Graph based network methodologies cannot be applied 
for analysis of social factors in social network processing be-
cause social networks possess social content that cannot be 
reduced to measurement by structure. In contrast to structural 
analysis, social analysis has a different foundation and cannot 
be quantified by topological analysis.  

4.2 Structural Centrality and Trust 
Three measures of structural centrality are taken into consider-
ation: (a) degree-based measure, (b) betweenness measure, and 
(c) closeness-based measure. To accomplish interdependency, 
these three measures are unified in one structural parameter 
that is called structural centrality (SC). A problem is that each 
measure takes its values from different numerical intervals. 
The process of unification is based on the idea that SC should 
take its value from a unified interval, say [0, 1].  
The method of unification for structural parameters is based on 
the knowledge about the minimum and maximum values of 
each parameter at the particular moment (i.e., snapshot of the 
network).  
 
Each agent is characterized by values of three structural 
measures mentioned, and each structural measure may have 
any value greater than or equal to zero at a particular moment 
(i.e., at a snapshot) of the network state.  The agent with the 
minimum value of the particular structural measure will set the 
lowest value of this structural measure corresponding to “0” 
value equivalent in the range [0, 1]. Accordingly, the agent 
with the maximum value of the considered structural measure 
will set the highest value “1” in the range [0, 1]. For example, 
let’s consider the betweenness centrality (i.e., measure) in the 
trivial network consisting of three agents shown in Figure 3. 
Numbers inside nodes represent centrality values.  

 
Figure 3: A Trivial Network Example with  

Betweenness Centrality Values 
 

According to Figure 3, agent 1 has a maximum betweenness 
centrality value of 15. This means that value of 15 will be 
mapped to 1 in the range [0, 1]. Agent 3 has a minimum be-
tweenness centrality value of 2. Value of 2 will be mapped to 0 
in the range [0, 1].  
Having upper- and lower- bounds of the betweenness centrali-
ty, all other intermediate values can be computed in the inter-
val [0, 1]. Particularly, agent 2 will have betweenness centrali-
ty value interpolated to 0.69.  
The methodology we described above is applied for all three 
measures taken into consideration. The unified value of social 
centrality (SC) is determined by equation 7. 
 

SC =  DC  + BC + CC 
3

                                (7) 
 
where 𝑆𝐶  𝜖 [0, 1]. 
Equation 7 is founded on the idea that all structural measures 
contribute equally to the general SC. Our formulation specifies 
a linear composition between them. A linear composition is 
stipulated by structurally equal importance of degree-based, 
betweenness and closeness-based measures for an agent’s 
structural centrality. Structural analysis is at the core of each 
centrality measure, but the difference is that each measure is 
based on the consideration of network structure from a specific 
angle. Each of these measures is a quantitative characteristic of 
an agent’s structural centrality. An arithmetic mean computa-
tion (i.e., equation 7) is a method to avoid the prioritizing of 
their contributions to a general agent’s structural centrality. In 
fact, the consideration of non-linear composition implies dif-
ferent levels of structural measures’ importance. In this case, 
each structural measure should have some specific characteris-
tics (excepting structural) to be considered as a more or less 
important measure. A good example is an eigenvector centrali-
ty (equation 5) that is not only quantitative, but also qualitative 
structural measure. Equation 7 cannot have a linear composi-
tion if it includes an eigenvector centrality. Nevertheless, an 
eigenvector centrality is not used in equation 7. 
 
Once we consider a network that represents social nature of 
interactions, we can interpret such a network to be a network 
of trust (Gambetta, 1988; Sato, 2002; Wang & Vassileva, 
2003; Golbeck et al., 2003). Basically, agents can measure 
trust and represent values in the range [0, 1]. An agent lacks 
trust at all (i.e., the fewest trust) or has an abundant trust (i.e., 
the most trust) to another agent if the values of trust are equal 
to 0 and 1 respectively.  

4.3. Formalization of Social Power 
Having unified values of structural measures and trust, it is 
necessary to amalgamate them into a single function:  
 

Y=ƒ (SC, T)                                       (8) 

 
One of the basic analyses of interdependencies between struc-
tural centrality and trust was done by Buskens (1998). Buskens 
(1998) investigated the interdependencies between two com-
ponents of social networks: structural measures and trust. The 
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functional dependencies were formalized for the relations 
between buyers and sellers. The conception of equation 8 is 
another point of view for the interpretation among social net-
work relations. It is not limited by the consideration of specific 
socio-economic interactions, because it is based on the concep-
tual analysis of social relations.  
 
The proposed idea in this research is to consider equation 8 as 
the combined social power of agent A (see Figure 4). Accord-
ing to Figure 4, social power of agent A (i.e., computed using 
equation 8) depends not only on the current structural centrali-
ty of agent A and its trust (T) with respect to other agents 
(namely B and C in Figure 4), but also on the current structural 
centralities of the other agents and their trust on agent A.  

Figure 4: A Trivial Example of Network with Trust and Social 
Centrality Relations 

 
In fact, the combination of T and SC can be termed as an 
agent’s social centrality or social power (SP). Equation 9 elab-
orates equation 8. 
 

SPA =
∑ Ti,AN−1
i=1
N−1

× SCA +
∑ (TA,i×SCi−Ti,A×SCA)N−1
i=1

N−1
          (9)                     

 
Here, 
N is a number of agents; 
Ti,A is a trust from agent i to agent A; 
TA,i is a trust from agent A to agent i; 
SCA is a structural centrality of agent A; 
SCi is a structural centrality of agent i.  
 
Equation 9 consists of two main components. 
 

1. �
∑ Ti,AN−1
i=1
N−1

× SCA�. This encapsulates the basic interdepend-

ency between SC for agent A and T to agent A from all other 
agents. Agent A may have the highest SC in the network. 
However, if no one trusts it, A will not experience any social 

power. �
∑ Ti,AN−1
i=1
N−1

� computes an average T from all agents at the 

network toward agent A.  
 

2. �
∑ (TA,i×SCi−Ti,A×SCA)N−1
i=1

N−1
�. Social power of agent A can be 

consistent with the influences from all other agents. I.e., cur-
rent structural centrality of the other agents and their levels of 
trust to agent A. This influence makes social power more sen-

sitive to feedback from other agents and their current condi-
tions compared with the current individual outcomes from    
agent A to each agent. This component can take on a positive 
or negative value. 

 
Social power is the formalization of functional interdependen-
cies between attributes that have different nature (i.e., structur-
al vs. social). For example, if agent A is in the same structural 
condition (i.e., SP=1) as all other agents and its trust to other 
agents is at maximum level, then agent A possess the biggest 
social power in the network even if all other agents do not trust 
agent A at all (i.e., ∑ Ti,A = 0N−1

i=1 ).  
It is important to notice that the given model of social power 
can be augmented by the extended considerations of social 
factors. If any other social relations can be measured numeri-
cally, unified to the range [0, 1] and represented by functional 
interdependency, defined by Z=(social factor 1,…, social fac-
tor N), then T  in equation 11 can be replaced by Z. It means 
that T in equation 9 can be replaced by a multi-factor model of 
encapsulated social factors like it is done by the implementa-
tion of SC multi-factor model (equation 7) for structural fac-
tors. 
 
The main limitation here is that many social factors cannot be 
easily measured numerically. This replacement possibility 
shows that the proposed SP-function is flexible for multi-factor 
analysis of social networks and can be operated with different 
social and structural parameters without radical change.   
 
5. SOFTWARE APPLICATION FOR THE     
    NUMERICAL VISUALISATION 
5.1 Concept Description  
The computer-numerical visualization corresponds to the mod-
el of a large-scale social network with a dynamic monitoring of 
social power, trust and structural centrality variations for a 
specific agent. We implemented the software application for 
the purpose of the numerical visualization of our approach 
using the integrated modeling environment NetLogo. The 
interface with initial settings and initial agents’ positions is 
represented in Figure 4. 
Before the beginning of the iterations’ run the user has the 
option to manipulate settings using the control panel (see Fig-
ure 5). The control panel consists of a “setup” button, “go” 
button, “number_of_agents” slider and “show_social_power?” 
switch.  
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Figure 4. The Software Application Interface with Initial Settings
 

 
 
 
 

Figure 5: Control Panel 
 
First, the user chooses the desired number of agents using the 
“number-of-agents” slider. The minimum number of agents 
that can be set up is 2 and the maximum number is 25.  
 
Second, there is an option to show or not show the label of the 
current value of social power for each agent using 
“show_social_power?” switch. If the user chooses to show 
social power, then the label corresponding to the current SP 
will be shown for each agent. Social power labels show the 
changing values dynamically after each iteration.  
 
Third, the user should press the “setup” button to initialize the 
numerical visualization process according to set up settings. 
Also, this step includes the selection of the monitored agent i. 
Since all agents are characterized by the same set of parame-
ters, we monitor only one agent i. This helps to avoid the com-
plexity of visual monitoring. It is especially reasonable when 
we have more than ten agents. Since the nature of agents’ 
characteristics and relations are homogeneous, selection of one 
agent for monitoring simplifies a controlling process. The 
monitored agent i is chosen randomly after pressing “setup” 
button. 
 
Fourth, the user presses the “go” button to start process. The 
numerical visualization is represented by the set of iterations. 
The number of iterations is unlimited.  
 

 
The process can be stopped by the user at any moment by 
pressing the “go” button again. 

5.2 Process Description 
Initially, each agent randomly chooses the level of its personal 
trust to all other agents in the beginning of the iteration. Since  
trust selection is an agent’s strategy, the application run proce-
dure is based on the interchange of trust between agents. The 
next step is SP computation that is based on the values of cho-
sen T (i.e. trust) and current SC for each agent. SP is a result of 
interdependency computations (i.e., equation 9) between T and 
SC of agent i and all agents connected to the current agent i 
(i.e., SP=ƒ(T,SC)).  
 
After T selection and SP computation for each agent the sys-
tem updates SP labels for each agent (see Figure 6). Also, the 
system updates the shapes of edges between the monitored 
agent i that is depicted by a circular shape and all other agents 
that have a person-shape. 
 
The visualization of interrelations between the monitored agent 
i and all other agents is represented by four types of edges:  
 
⋅ Solid straight line shows the potential relations between 

agents. 
 

⋅ Solid curved line shows that the SP of agent i in the current 
iteration is greater-than the SP of another agent.  

 
⋅ Dashed curved line shows that the SP of agent i in the cur-

rent iteration is less-than the SP of another agent.  
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⋅ Dashed straight triple-line shows that the SP of agent i in 
the current iteration is equal to the SP of another agent.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: The Screenshot of the n-th Iteration 
 
The process of SP and edges updating is iterative. The next 
iteration starts from the same procedure for T selection and SP 
computation. 

5.3 The Monitoring of the Results 
The monitoring of the results consists of two parts.  
First, the application shows social power, structural centrality, 
and trust monitoring of agent i during the current iteration (see 
Figure 7). The user can supervise the number of the current 
iteration and the detailed information regarding the current 
iteration. There are three types of foreground data represented 
by three histograms: “Social Power”, “Structural Centrality” 
and “Trust”. Each histogram corresponds to the time history of 
SP, SC and T parameters computations. The results of compu-
tations for the current iteration are represented in the “Current” 
fields in the upper-right corners of each histogram. Each histo-
gram bar corresponds to the computed value of SP, SC or T in 
the separate iteration. The rightmost histogram bars show the 
current parameters values of the current iteration.  
“Trust” histogram is a visualization of agent’s strategies. It 
shows the average values of T from agent i to all other agents 
in each iteration. In fact, it shows the history of T computa-
tions. “Structural centrality” histogram corresponds to the 
computation of SC of agent i. As was mentioned, social power 
computation is based on trust and structural centrality interde-
pendencies. The history of SP computations is represented in 
“Social Power” diagram. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: The State of Agent i  
during the Current Iteration 

 
The second part of the monitoring process includes statistics 
about the average values of SP, SC and T of agent i after n 
iterations. 
The monitoring process is represented in Figure 8. The time 
histories of the average values of SP, SC and T after all fin-
ished iterations are represented in “Social power: average”, 
“Structural centrality: average” and “Trust: average” diagrams 
respectively.  
For example, if three iteration are finished then “Social power: 
average” diagram will show the average time history of SP 
after three iterations. The right-most point of SP average value 
after three iterations will be computed according to equation 
10. 
 

SPaverage = SP1+SP2+SP3
3

                      (10) 
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 Figure 8: The Average Statistics 
of Agent i After n-iterations 

 
As it is shown in Figure 8, each diagram shows the current 
average value of the corresponding parameter in the “Average” 
field.  
 
6. CONCLUSION 
 
The analysis of social systems is based on the interdisciplinary 
approach. It includes not only the social analysis of interper-
sonal relations, but also graph theoretic methods and concepts.  
The basic idea of the research was to combine structural and 
social properties of agents in a single parameter (i.e., social 
power). It was approached by the unification of trust as the 
basic measure of interpersonal exchange and three basic struc-
tural measures of social networks, such as degree-based meas-
ure, betweenness measure, and closeness-based measure.   
The proposed formalization of the social power is a multifactor 
model that is based on the combination of the social network 
characteristics that have the different natures. The given multi-
disciplinary approach is an attempt to formalize a social power 
as a numerical measure that can be used in the analysis of 
social networks in terms of mathematical and graph theoretical 
apparatuses. 

Furthermore, we developed the software application for the 
numerical visualization of our approach applied in social net-
works.  
 
The future work is related to the improvement of the equation 
of social power. Since social power is a multi-factor model of 
an agent’s capabilities within a network, its current compo-
nents can be modified and new components can be added. 
Specifically, we considered trust as a basic social factor of 
interpersonal relations. However, the other factors can be add-
ed to the model if they are measured. 

REFERENCES 
Anthonisse, J. M. (1971). The Rush in a Directed Graph. Tech. 
Rep. BN 9/71, Stichting Mathematisch Centrum, 2e Bo-
erhaavestraat 49 Amsterdam. 

Beauchamp, M. A. (1965). An Improved Index of Centrality. 
Behavioral Science, 10, 161–163. 

Berger, P., & Luckmann, T. (1966). The Social Construction of 
Reality: A Treatise in the Sociology of Knowledge. New York: 
Doubleday.  

Bonacich, P. (1987). Power and Centrality: a Family of 
Measures. The American Journal of Sociology, 92 (5), 1170–
82.  

Bramoullé, Y., & Kranton, R. (2007). Public Goods in Net-
works. Journal of Economic Theory, 135, 478–494. 

Brandes, U., & Pich, C. (2007). Centrality Estimation in Large 
Networks. Intl. Journal of Bifurcation and Chaos, Special 
Issue on Complex Networks’ Structure and Dynamics, 17 (7), 
2303–2318. 

Buskens, V. (1998).The Social Structure of Trust. Social Net-
works, 20, 265–289. 

Castelfranchi, C., & Falcone, R. (1998). Principles of Trust for 
MAS: Cognitive Anatomy, Social Importance, and Quantifica-
tion. Multi Agent Systems, Proceedings. International Confer-
ence on MAS – ICMAS-98, Paris. AAAI/MIT Press, Cam-
bridge, MA. 

Cook, K. S., Emerson, R. M., Gillmore, M. R., &Yamagishi, 
T. (1983). The Distribution of Power in Exchange Networks: 
Theory and Experimental Results. The American Journal of 
Sociology, 89 (2), 275–305. 

Daconta, M. C., Obrst, L. J., & Smith, K. T. (2003). The Se-
mantic Web: A Guide to the Future of XML, Web Services, and 
Knowledge Management. Wiley Publishing. 

Dangalchev, C. (2006). Residual Closeness in Networks. Phis-
ica A: Statistical Mechanics and its Applications, 365 (2), 
556–564. 

Edwards, R., Claire, A., & Temple, B. (2006). Interpreting 
Trust: Abstract and Personal Trust for People who Need Inter-
preters to Access Services. Sociological Research Online, 11 
(1). Retrieved May 2, 2013, from 
http://www.socresonline.org.uk/11/1/edwards.html 



11 
 

Emerson, R. M. (1962). Power-Dependence Relations. Ameri-
can Sociological Review, 27 (1), 31–41. 

Everett, M. G., Sinclair, P. & Dankelmann, P. (2004). Some 
Centrality Results New and Old. The Journal of Mathematical 
Sociology, 28 (4), 215–227. 

Freeman, L. C. (1979). Centrality in Social Networks: Concep-
tual Clarification. Social Networks, 1, 241–256 

Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., & 
Yariv, L. (2010). Network Games. Review of Economic Stud-
ies, Blackwell Publishing, 77 (1), 218–244. 

Gambetta, D. (1988). Can We Trust Trust? in D. Gambetta 
(ed.) Trust: Making and Breaking Co-operative Relations, 
Oxford: Blackwell, 213–237. 

Golbeck, J., Parsia, B., & Hendler, J. (2003). Trust networks 
on the semantic web (pp. 238-249). Springer Berlin Heidel-
berg. 

Harary, F., Norman, R. Z., & Cartwrigh, D. (1965). Structural 
Models: An Introduction to the Theory of Directed Graphs. 
New York: Wiley. 

Jackson, M. O., & Wolinsky, A. (1996). A Strategic Model of 
Social and Economic Networks. Journal of Economic Theo-
ry, 71, 44–74. 

Jackson, M. O. (2003). The Stability and Efficiency of Eco-
nomic and Social Networks, in: M. Sertel, S. Koray ( Eds.), 
Advances in Economic Design, Springer-Verlag, Heidelberg. 

Jackson, M. O. (2008). Social and Economic Networks. Prince-
ton University Press: Princeton, NJ. 

Marks, S. R. (1977). Multiple Roles and Role Strain: Some 
Notes on Human Energy, Time and   Commitment. American 
Sociological Review, 42 (6), 921–936. 

Newman, M. E. J. (2008). Mathematics of Networks, in The 
New Palgrave Encyclopedia of Economics, 2nd edition, L. E. 
Blume and S. N. Durlauf (eds.), Palgrave Macmillan, Basing-
stoke. Retrieved May 2, 2013, from http://www-
personal.umich.edu/~mejn/papers/palgrave.pdf 

Sabidussi, G. (1966). The Centrality Index of a Graph. Psy-
chometrika, 31, 581–603. 

Sato, Y. (2002). Trust, Assurance and Inequality: A Rational 
Choice Model of Mutual Trust. Journal of Mathematical Soci-
ology, 26 (1), 1–16. 

Wang, Y., & Vassileva, J. (2003). Bayesian Network-Based 
Trust Model. Proceedings form IEEE/WIC International Con-
ference Web Intelligence. 

 

 

 


	Dangalchev, C. (2006). Residual Closeness in Networks. Phisica A: Statistical Mechanics and its Applications, 365 (2), 556–564.
	Edwards, R., Claire, A., & Temple, B. (2006). Interpreting Trust: Abstract and Personal Trust for People who Need Interpreters to Access Services. Sociological Research Online, 11 (1). Retrieved May 2, 2013, from http://www.socresonline.org.uk/11/1/ed...
	Gambetta, D. (1988). Can We Trust Trust? in D. Gambetta (ed.) Trust: Making and Breaking Co-operative Relations, Oxford: Blackwell, 213–237.

