
Discussion paper

FOR 20 2007
ISSN: 1500-4066
AUGUST 2007

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF FINANCE AND MANAGEMENT SCIENCE

Searching for optimal integer
solutions to set partitioning
problems using column generation
BY
DAVID BREDSTRÖM, KURT JÖRNSTEN AND MIKAEL RÖNNQVIST

Searching for optimal integer solutions to set
partitioning problems using column generation

David Bredström, Kurt Jörnsten, Mikael Rönnqvist
Department of Finance and Management Science

Norwegian School of Economics and Business Administration
Bergen, Norway

david.bredstrom@gmail.com, kurt.jornsten@nhh.no, mikael.ronnqvist@nhh.no

We describe a new approach to produce integer feasible columns to a set partitioning problem directly in
solving the linear programming (LP) relaxation using column generation. Traditionally, column generation
is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of
the columns formed. In our approach we aim to generate the columns forming the optimal integer solution
while simultaneously solving the LP relaxation. By this we can remove column generation in the branch
and bound search. The basis is a subgradient technique applied to a Lagrangian dual formulation of the set
partitioning problem extended with an additional surrogate constraint. This extra constraint is not relaxed
and is used to better control the subgradient evaluations. The column generation is then directed, via the
multipliers, to construct columns that form feasible integer solutions. Computational experiments show that
we can generate the optimal integer columns in a large set of well known test problems as compared to both
standard and stabilized column generation and simultaneously keep the number of columns smaller than
standard column generation.

1. Introduction

There are many important industrial applications that can be formulated as a Set Partitioning
Problem (SPP). This is an Integer Programming (IP) problem with binary variables. The standard
SPP model can be formulated as

[SPP] z∗ = min
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = 1, i = 1, . . . ,m

xj ∈ {0,1}, j = 1, . . . , n

The problem [SPP] is to partition m elements into a number of subsets. Each binary variable
or column xj represents a subset of elements defined through the coefficients aij. It is well known
that to find a feasible solution to SPP is an NP-hard problem in the strong sense. In practice the
elements can represent e.g. customers that needs to be visited in a vehicle routing problem. Then
each column is a route that visit a subset of the customers with a given cost cj. Typically, the
number of columns, n, is very large and column generation must be used. A general reference on
column generation is the book edited by Desaulniers et al. (2005).

A widely used method to solve large scale set-partitioning models is to use Branch and Price
(B&P), see e.g. Barnhart et al. (1998), Vanderbeck (1994) or Nemhauser and Wolsey (1988). In
this approach the Linear Programming (LP) relaxation of [SPP] is solved using column generation.
The structure of the column generation subproblem is dependent on the structure of the underlying
application. This subproblem uses the dual information obtained from a master problem where
all generated columns (variables) are used. Once the LP-relaxation is solved, a branching strategy

1

Bredström, Jörnsten and Rönnqvist: IQ column generation
2

is used where additional columns (variables) are added to the master problem in the Branch and
Bound (B&B) tree.

In industrial applications it is important to keep the the computational time to find an optimal
(or near optimal) solution to SPP as low as possible. There are two traditional approaches (often
combined) to improve the performance of the B&P. The first approach is to solve the LP-relaxation
(and corresponding LP problems in the B&B tree) as fast as possible. There are several reports
to describe how this can be done by using stabilized column generation in where the values of the
dual variables are controlled. The idea is to stop the values from oscillating between iterations,
which is considered very bad for convergence. Most stabilized column generation algorithms for
practical problems found in the literature can be seen as applications of the algorithm found in
Amor and Desrosiers (2006), which is a generalization of the methods presented in the earlier
work of du Merle et al. (1999). These are proximal point algorithms, where the dual solution is
increasingly penalized with respect to the distance from a given point.

The second main approach is to develop efficient branching strategies in order to limit the
search tree in the B&B method. There are several reported methods and the more efficient is
based on constraint branching, see for example Ryan and Foster (1981) and Barnhart et al. (1998).
The overall solution time for the linear master problem can be further reduced with constraint
aggregation techniques, such as the algorithm found in Elhallaoui et al. (2005).

There are also other approaches that are used to improve the performance. In order to speed up
the time to find feasible solutions, a natural approach is to apply an integer heuristic in order to
find a feasible integer solution. Pioneering work was done by Appelgren (1969). A second approach
is to apply IP solver only on the columns generated. In this way a full B&P (which can be quite
sophisticated and difficult to develop) does not need to be implemented. However, a general view is
that this approach often does not generate any feasible integer solution given the columns generated
in solving the LP relaxation. The fundamental reason for this is that there is no guarantee that the
columns generated are enough, or even useful, for finding an integer solution. This has been noted
in for example Hoffman and Padberg (1993), Lübbecke and Desrosiers (2005) and Vanderbeck
(1994) and is a well-known phenomenon.

It is sometimes claimed that basic solutions to the LP relaxation are not suitable for column
generation due to the fact that they are located in extreme points of the optimal face of the LP
polyhedron, See Lübbecke and Desrosiers (2005). To overcome this problem, and instead produce
solutions in the relative interior of the optimal face, methods such as analytic center, see Elhedhli
and Goffin (2004), bundle methods Briant et al. (2007), and interior point stabilization, Rousseau
et al. (2007), have been developed. To date, these methods have not been used extensively for
practical problems.

An alternative to solve the LP-relaxation is to make a Lagrangian relaxation in which all (or a
subset) of the constraints are relaxed. Here the Lagrangian dual problem can be solved using e.g.
a subgradient method, see e.g. Bazaraa et al. (1993). The generation of columns can be done in
a similar way as before with the differences that the Lagrangian multipliers are used instead of
the dual variables. In order to find a IP solution this approach is combined with a B&B strategy
or/and a heuristic approach.

In this paper we describe a new approach that produces integer feasible columns directly in the
column generation phase of solving the LP relaxation. The main aim is to generate the columns
forming the optimal integer solution. We want to use standard subproblem solvers and hence we
need to change the way the values of the dual variables are generated. We base the methodology on a
Lagrangian dual formulation where we have introduced one additional surrogate constraint in [SPP]
(an aggregation of all other constraints). This constraint is not relaxed in the dual formulation. We
also relax the 0/1 restriction on the variables. We use a heuristic multiplier adjustment method
which is based on a subgradient method. A subgradient express how well the current multiplier

Bredström, Jörnsten and Rönnqvist: IQ column generation
3

solution match the set partitioning constraint i.e. amount of under and over coverage. In the
developed approach only one column can be used in the Lagrangian subproblem. This contrasts a
standard dual approach where many columns may be used. It does however provides the possibility
to better control the Lagrangian multipliers in order to find columns that match the under coverage.
With the additional surrogate constraint we also ensure that we have a dual feasible solution in
the current column generation iterate, which is necessary for many pricing problems not to return
an already generated column.

The structure of this paper is as follows. In Section 2 we discuss the underlying models and
their characteristics used in standard B&P and a standard Lagrangian relaxation. In Section 3
we describe the models used in the proposed method and in Section 4 we outline the proposed
algorithm which we call Integer Quality (IQ) column generation. In Section 5 we illustrate and
compare some characteristics between the standard, the stabilized and the proposed IQ column
generation. Computational experiments and comments are given in Section 6. These tests show that
we can generate the optimal integer columns in a large set of well known test problems as compared
to both standard and stabilized column generation. In Section 7 we make some conclusions.

2. Models

2.1. Set partitioning problem and stabilized column generation

We can use the sets J = {1, . . . , n} and I = {1, . . . ,m} to represent all columns and elements
respectively. The LP relaxation of [SPP] then becomes

[LP] zLP = min
∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj = 1, ∀i∈ I

xj ≥ 0, ∀j ∈ J

The dual formulation of [LP] with dual variables ui is given as

[LP-dual] vLP = max
∑
i∈I

ui

s.t.
∑
i∈I

aijui ≤ cj, ∀j ∈ J

We assume that problem [LP] is large scale i.e. it has many columns and is solved using column
generation. The principle of column generation to solve problem [LP] is illustrated in Figure 1.
First an initial set of columns is chosen. Then a Master problem is solved using a limited set of
columns. The dual solution for the Master problem is used to define a Subproblem. The purpose
of the Subproblem is to identify the least reduced cost column not generated. If the Subproblem
finds a new column with reduced cost < 0 it is added to the set of columns. The Master problem
and Subproblem are iteratively resolved until no more columns with reduced cost less than 0 is
generated.

Set partitioning models are often very degenerate and hence there are many dual solutions.
If a standard Simplex method is used to solve [LP] the dual solutions may oscillate between
iterations and this is considered bad for convergence. Typically many columns are needed in order
to guarantee an optimal solution for problem [LP]. Vanderbeck (1994) has also found that using
integer solutions as starting basis solutions for column generation leads to poor performance.

There are several reports to describe how the unwanted oscillation in the dual solution can be
avoided by using stabilized column generation. The idea is to stop the dual values from oscillating
between iterations by enforcing some limits that can be dynamically changed. Most stabilization

Bredström, Jörnsten and Rönnqvist: IQ column generation
4

to column set

Choose initial

Solve Subproblem

Solve Master
problem

Add new column

Stop

if rc<0

set of columns

Figure 1 Illustration of column generation.

frameworks have problem dependent parameters that need to be fine tuned for good performance.
For the tests presented in this paper, we use the boxstep method of Marsten et al. (1975). In
this approach there is only one trust region for the dual variables and we have less parameters to
choose, with the potential disadvantage of slower convergence. This model is formulated as

[Stab] zs
LP = min

∑
j∈J

cjxj +
∑
i∈I

(p+
i y+

i + p−i y−i)

s.t.
∑
j∈J

aijxj + y+
i − y−i = 1, ∀i∈ I

xj ≥ 0, ∀j ∈ J
y+

i , y−i ≥ 0, ∀i∈ I

In the dual formulation of [Stab] below, the penalty parameters become lower and upper bounds
on the dual variables.

[Stab-dual] vs
LP = max

∑
i∈I

ui

s.t.
∑
i∈I

aijui ≤ cj, ∀j ∈ J

−p−i ≤ ui ≤ p+
i , ∀i∈ I

We have zs
LP = zLP when y+ = y− = 0 in an optimal solution. The parameters p+

i and p−i are
initially the average cost per column divided by the number of rows. If y+

i or y−i are positive when
there is no column with negative reduced cost, the corresponding trust region bound, i.e. p+

i or p−i ,
is increased by 25%. The convergence criteria for the column generation is when no y-variable is
positive and no negative reduced cost columns exists.

2.2. Lagrangian relaxation

The standard Lagrangian relaxation where all partitioning constraints are relaxed is given by

[LR] θ(λ) = min
∑
j∈J

cjxj +
∑
i∈I

λi

(
1−

∑
j∈J

aijxj

)

s.t. xj ∈ {0,1}, ∀j ∈ J

Bredström, Jörnsten and Rönnqvist: IQ column generation
5

Here, λi are the Lagrangian multipliers. These can be interpreted in a similar way as the dual
variables to [LP]. This Lagrangian subproblem separates into n one-dimensional problems where
the solution is expressed as

xj(λ) =

1 if cj −
∑
i∈I

λiaij < 0

0 otherwise

The Lagrangian dual problem is to find the best possible value of the dual function θ(λ) and it
can be formulated as

[LD] vLD = max θ(λ)

It is well known that we have the property zLP = vLD. To solve [LD] a subgradient method can
be used, see e.g. Bazaraa et al. (1993). The subgradient G = (G1, . . . ,Gm) of θ(λ) is given as

Gi = 1−
∑
j∈J

aijxj(λ)

The value of each component Gi can either be 0, negative or positive indicating how it satisfy, over
or under cover the right hand side of the partitioning constraints. The updating of the Lagrangian
multipliers in iteration k in a subgradient method follows

λ
(k)
i := λ

(k)
i +πkGi

where πk is a step length. Different rules for step length selection can be found in Barahona
and Anbil (2002). It is important to note that many columns may be set to 1 in the Lagrangian
subproblem and used to compute the subgradient. We have no way to control this number of
columns and as a result we may have a large over coverage from a subproblem solution. In the
proposed approach we make sure that only one column can be generated and hence we will not
have any over coverage. With this property we can better control the values of the Lagrangian
multipliers.

3. Models used in the proposed approach

In this section we describe the underlying models that we use in the proposed method. With
mj =

∑
i∈I aij for j ∈ J , the reformulation of SPP with the surrogate constraint is

[P-IQ] zIQ
IP = min

∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj = 1, ∀i∈ I

∑
j∈J

mjxj = m

xj ∈ {0,1}, ∀j ∈ J

The LP-relaxation when the restrictions of the binary variables are relaxed of [P] is given as

[LP-IQ] zIQ
LP = min

∑
j∈J

cjxj

s.t.
∑
j∈J

aijxj = 1, ∀i∈ I (γ)
∑
j∈J

mjxj = m (δ)

xj ≥ 0, ∀j ∈ J

Bredström, Jörnsten and Rönnqvist: IQ column generation
6

The dual formulation of [LP-IQ] is given as

[LP-IQ-dual] vIQ
LP = max

∑
i∈I

(γi + δ)

s.t.
∑
i∈I

aij(γi + δ) ≤ cj, ∀j ∈ J

The Lagrangian relaxation of [LP-IQ] is

[LR-IQ] φ(γ) = min
∑
j∈J

cjxj +
∑
i∈I

γi

(
1−

∑
j∈J

aijxj

)

s.t.
∑
j∈J

mjxj = m (δ)

xj ≥ 0, ∀j ∈ J

We can reformulate [LR-IQ] to

φ(γ) =
∑
i∈I

γi +min
∑
j∈J

(cj −
∑
i∈I

γiaij)xj

s.t.
∑
j∈J

mjxj = m (δ)

xj ≥ 0, ∀j ∈ J

The dual formulation (with dual variable δ) is

[LR-IQ-Dual] φ(γ) = max
∑
i∈I

(γi + δ)

s.t.
∑
i∈I

(γi + δ)aij ≤ cj, ∀j ∈ J

The problem [LR-IQ] has a linear complexity and it is to find the column j̄ ∈ J such that
j̄ = argminj∈J(cj −

∑
i∈I aijγi)/mj, with the optimal solution x(γ) such that xj̄(γ) = m/mj̄ and

xj = 0 for j ∈ J \ {j̄}. The solution to LR-IQ-Dual is δ(γ) = (cj̄ −
∑

i∈I aij̄γi)/mj̄. It is clear that
the model [LP-IQ-dual] is equivalent to the Lagrangian dual problem

[LD-IQ] vIQ
LD = max φ(γ)

which is therefore also equivalent to the LP-dual with ui = γi +δ for i∈ I. For the column generation
this indicate that optimized subgradient optimization does not necessarily provide any different
columns than those obtained using the dual variables from the LP relaxation.

4. Solution approach

The aim with the proposed Integer Quality (IQ) column generation is to generate columns that
define the optimal integer solution. This is achieved by controlling the multiplier values by a
heuristic multiplier adjustment method based on sugradient optimization. The column generation
will construct columns that fits with other active columns. By active we mean columns that have
been used in recent subproblem solutions. An important concept here is that the subproblem
solution only have one column active from each iteration. The multiplier update is such that the
active columns should not over cover the relaxed constraints. By keeping the number of update
iterations low before a new subproblem is solved we can target to generate a column that fits with
the part of the constraints which the active columns not cover. A second part of the IQ column
generation is to ensure that we have a convergence criteria. This is achieved by making sure that

Bredström, Jörnsten and Rönnqvist: IQ column generation
7

the heuristic multiplier method in the end converges to the standard subgradient method and hence
guaranteeing that the correct dual LP solution is found.

Assume that we have a subset J̄ ⊂ J of columns. These columns define the current dual feasible
region D̄ = {u = (ui) |

∑
i∈I aijui ≤ cj ∀j ∈ J̄}. One requirement for a column generation algorithm

to converge is that we obtain a negative reduced cost only if the new column is not represented
in the set J̄ . For many pricing problems it is important not to impose new constraints to achieve
convergence, since such constraints typically damage the solvability of the pricing problem. There-
fore we need to limit our search for dual prices to the set D̄, and a column j̄ /∈ J̄ for which its dual
hyperplane intersect with D̄.

To construct columns that fits for integer solutions we update the multipliers in a subgradient
process by only using a very few iterations. We know that problem [LR-IQ] only have one column
active from each iteration. We use the subgradient G(γ) defined by Gi(γ) = 1 −∑

j∈J aijxj(γ),
where x(γ) is the solution to [LR-IQ]. By updating the multipliers few iterations (say up to p = 5)
according to γp

i ← γp−1
i +α/tGi(γp−1), the multipliers will have large values in elements not covered

by recently used columns.
In the pricing problem we use γp + δp ∈ D̄, where δp = δ(γp) is the optimal solution to [LR-IQ-

Dual] for γ = γp. It holds that δp ≥ 0 for γp ∈ D̄ and δp < 0 otherwise. A column with c̄j(γp) =
cj −

∑
i∈I aijγ

p
i < 0 for γp ∈ D̄ has a negative reduced cost also with respect to the solution of

[LR-IQ-Dual], i.e., c̄j(γp + δp) < 0. When γp /∈ D̄ (and thus δp < 0) the sign of the reduced cost is
dependent on how well γp

i points out a column to fit, and even for columns with c̄j(γp) < 0 it may
hold that c̄j(γp + δp)≥ 0. With a large steplength α and few iterations we aim for γp to be close
enough to a perfect match of a wanted column j̄ /∈ J̄ , i.e., close to a multiplier vector η such that
ηi = αaij̄. This column j̄ has c̄j̄(η + δ) < 0, if its dual hyperplane intersects D̄ and if the steplength
α is large enough. This is because δ = minj∈J(cj − α

∑
i∈I aijaij̄)/mj and mj̄ >

∑
i∈I aijaij̄ for all

column j ∈ J̄ .
If we run many iterations the multiplier values will tend to the true optimal dual values. For

these values the aim is only to construct columns that best reduce the objective function value
without any account to previous columns or integer feasibility.

The proposed IQ column generation is outlined in Algorithm 1, where we use the following
parameters

J0 : Initial set of columns in [LR-IQ]
Tinit : Initial number of subgradient iterations
Tmax : Maximum number of subgradient iterations
Tadd : Incremental number of subgradient iterations
α : Initial step length in subgradient optimization

Bredström, Jörnsten and Rönnqvist: IQ column generation
8

Algorithm 1 Integer Quality (IQ) column generation
Require: J0, Tinit, Tmax, Tadd and α

γ← 0 //Initial multipliers
p← 0 //Iteration counter
RC =−∞ //Best reduced cost
T = Tinit

while T < Tmax or RC < 0 do
Solve [LR-IQ]p(γ) (gives δp)

//Column generation.
Solve c̄j0 = minj∈J{cj −

∑
i(γi + δp)aij}

if c̄j0 < 0 then
Add column (cj0 , aij0) and update Jp ← Jp ∪{j0}

end if

//Iteration adjustment
RC ← c̄j0

if RC ≥ 0 then
T ← T +Tadd //No new column, increase tolerance

else
T ← Tinit //Initial number of iterations

end if

//Subgradient optimization
for t = 1, . . . , T do

Solve [LR-IQ]p+1(γ)
for i = 1, . . . , I do

Gi ← 1−∑
j∈Jp+1

aijxj(γ)
γi ← γi +α/tGi

end for
end for

p← p+1 //New iteration
end while

Bredström, Jörnsten and Rönnqvist: IQ column generation
9

5. An illustrative example

We have constructed a simple example with eight constraints and 92 columns. The columns rep-
resent all combinations which cover 1-3 constraints. The cost coefficients are randomly generated
with values in the interval [0.0,1.0] for each constraint covered. The cost coefficients for the columns
is hence in the interval [0.0,3.0].

In tables 1-3 we give the results after using standard column generation, stabilized column
generation and IQ column generation. Each column give the columns as they are generated. Row
”col-id” gives the column index j, ”cost” gives cj and ”frac” the optimal fractional solution. The
row ”integer” is included if any feasible integer solution can be found with the columns generated.

col-id 35 9 21 25 46 53 27 50 49 75 82 73 66 57 60 62
cost 0,51 0,53 0,60 1,05 0,91 1,45 1,28 2,14 2,32 0,39 0,81 0,46 0,64 0,47 0,48 0,67
frac 0,67 0,33 0,33 0,00 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,67 0,00 0,33 0,00 0,00

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0
0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

Table 1 Result when standard column generation is used. The number of iterations needed is 16 and no feasible
solution is generated.

col-id 58 35 75 73 21 65 9 57
cost 0,22 0,51 0,39 0,46 0,60 0,45 0,53 0,47
frac 0,00 0,67 1,00 0,67 0,33 0,00 0,33 0,33

1 0 0 0 1 0 1 1
0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0
0 1 0 0 1 0 0 0

Table 2 Result when stabilized column generation is used. The number of iterations needed is 8 and no feasible
solution is generated.

Stabilized column generation results, as expected, in less columns than standard column gener-
ation. No feasible solution can be found with these two approaches. The IQ column generation do
generate the columns needed to construct the optimal integer solution.

Another test was made where we removed a set of columns in order to make sure that only one
integer solution exists. The remaining set of 38 columns has the integer solution defined by the
columns 2, 3, 38, and 10. We also changed the cost of one column (column 38) in the optimal
integer solution so that the duality gap could be made arbitrarily large. The optimal LP objective
function value for the first test is 1.57. The optimal integer objective function value for the modified
example with c38 = 0.5 is 3.00 and with c38 = 10.0 it is 12.50.

The stabilized column generation quickly solve the LP relaxation but column 38 is not generated.
This column is extremely bad from a LP relaxed point of view. In fact, when the first column is
generated in the stabilized column generation the dual variables are boxed in in such a way that

Bredström, Jörnsten and Rönnqvist: IQ column generation
10

col-id 35 58 75 21 73 65 9 60 24 57
cost 0,51 0,22 0,39 0,60 0,46 0,45 0,53 0,48 0,59 0,47
frac 0,67 0,00 1,00 0,33 0,67 0,00 0,33 0,00 0,00 0,33

integer 0 0 1 1 0 0 0 0 1 0
0 1 0 1 0 0 1 1 0 1
1 0 0 0 0 1 0 0 1 1
0 1 0 0 1 0 1 0 1 0
0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 1 0
0 0 0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0

Table 3 Result when IQ column generation is used. The number of iterations needed is 10 and the optimal integer
solution is generated.

col-id 1 6 4 30 27 14 2 8 5 3
cost 0,51 0,53 0,60 1,20 1,31 0,99 0,39 1,78 0,47 0,46
frac 0,67 0,33 0,33 0,00 0,00 0,00 1,00 0,00 0,33 0,67

0 1 1 0 0 1 0 1 1 0
1 0 0 0 1 0 0 1 1 0
0 1 0 1 0 1 0 0 0 1
0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 1 1 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0

Table 4 Result when standard column generation is used for the modified example. The number of iterations
needed is 10 and no feasible solution is generated.

col-id 1 6 4 2 3 5
cost 0,51 0,53 0,60 0,39 0,46 0,47
frac 0,67 0,33 0,33 1,00 0,67 0,33

0 1 1 0 0 1
1 0 0 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 1 0 1 0
1 0 1 0 0 0

Table 5 Result when stabilized column generation is used for the modified example. The number of iterations
needed is 6 and no feasible solution is generated.

it is impossible to generate column 38. Standard column generation also does not generate this
column. With IQ column generation we generate column 38 with both selection of column cost. In
the second case we needed to increase the parameter value α to 10 from 0.8 in the first case with
the result that more columns were generated.

Bredström, Jörnsten and Rönnqvist: IQ column generation
11

col-id 1 14 17 30 2 3 4 6 27 5 31 19 38 10
cost 0,51 0,99 1,13 1,20 0,39 0,46 0,60 0,53 1,31 0,47 1,01 1,56 0,50 1,65
frac 0,67 0,00 0,00 0,00 1,00 0,67 0,33 0,33 0,00 0,33 0,00 0,00 0,00 0,00

integer 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 1 1 0 0 0 1 1 0 1 0 1 0 1
1 0 0 0 0 0 0 0 1 1 0 0 0 1
0 1 0 1 0 1 0 1 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 1 1 0 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 1 0 1 0

Table 6 Result when IQ column generation is used for the modified example and where c38 = 0.50. The number
of iterations needed is 14 and the optimal integer solution is generated.

col-id 1 14 17 30 2 3 20 6 12 4 25 29 27 23 5 38 10 32 26 34 37 31 19 15
cost 0,51 0,99 1,13 1,20 0,39 0,46 1,55 0,53 1,38 0,60 1,58 2,16 1,31 2,45 0,47 10,00 1,65 1,55 1,68 1,26 0,61 1,01 1,56 1,18
frac 0,67 0,00 0,00 0,00 1,00 0,67 0,00 0,33 0,00 0,33 0,00 0,00 0,00 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

integer 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1

Table 7 Result when IQ column generation is used for the modified example and where c38 = 10.0. The number
of iterations needed is 25, and the optimal integer solution is generated.

6. Results

For the experiments we use a standard 2.66 GHz Pentium IV with 2 GB of internal memory. The
40 test problems consists of real-world SPP instances from OR-Library. They originate from the
airline crew scheduling problem found in Hoffman and Padberg (1993) and have also been used in
e.g. Cavalcante et al. (2006) and Joseph (2002). There are four different types of instances with the
labels aa, kl, nw and us. Among the available instances, we considered only those problems having
an integrality gap. The instances have different properties when it comes to number of columns
needed for an integer solution, average costs of the the columns etc. The settings used for the
results presented are given in Table 8.

Label α Tmax Tinit Tadd

aa 2 200 5 5
kl 0.2 100 5 5

nw 200 100 5 5
us 10 100 5 5

Table 8 Parameter settings in IQ column generation.

In Table 9 we give the results from the experiments. Column ”Label” indicate the reference name
of the test problem in the OR-Library, ”m” the number of constraints, ”n” the number of columns,
”LP” is the LP relaxation value, ”Opt” the optimal integer objective function value, ”Value” the
best integer objective function value among the generated columns for each of the three tested
methods (IQ column generation, Standard column generation and Stabilized column generation)

Bredström, Jörnsten and Rönnqvist: IQ column generation
12

and ”Columns” the number of columns generated in each of the methods. The last line gives the
total number of columns generated for all problems. Values indicated in boldface reflect that the
optimal function value is generated and ”-” indicate that no feasible integer solution is found.

Label Dimensions LP Opt Value Columns
m n IQ Std Stab IQ Std Stab

aa01 823 8904 55535.4 56138 56213 56888 - 1877 1937 1774
aa03 825 8627 49616.4 49649 49663 49664 49649 1434 2003 1246
aa04 426 7195 25877.6 26374 26374 - - 1006 1026 779
aa05 801 8304 53735.9 53839 53839 54087 53839 1420 1850 1265
aa06 646 7292 26977.2 27040 27063 27091 - 1556 1499 937
kl01 55 7479 1084 1086 1086 1101 1096 140 152 134
kl02 71 36699 215.3 219 219 221 - 295 225 152

nw03 59 43749 24447 24492 24492 32823 24492 315 228 147
nw04 36 87482 16310.67 16862 16956 - - 460 154 300
nw06 50 6774 7640 7810 7810 7810 - 189 135 91
nw11 39 8820 116254.5 116256 116265 116265 116265 106 115 96
nw13 51 16043 50132 50146 50146 50298 50158 258 170 129
nw17 61 118607 10875.7 11115 11115 13998 11115 630 254 89
nw18 124 10757 338864.3 340160 340160 365090 341282 552 294 555
nw20 22 685 16626 16812 16812 - 17634 49 53 38
nw21 25 577 7380 7408 7408 7442 - 41 53 23
nw22 23 619 6942 6984 6984 7158 7158 49 58 21
nw23 19 711 12317 12534 12534 18760 - 51 39 42
nw24 19 1366 5843 6314 6314 6396 - 34 58 17
nw25 20 1217 5852 5960 5960 7448 - 49 54 32
nw26 23 771 6743 6796 6796 6842 6942 41 58 27
nw27 22 1355 9877.5 9933 9933 9972 - 30 70 19
nw28 18 1210 8169 8298 8298 8298 - 17 43 27
nw29 18 2540 4185.9 4274 4274 4432 4274 94 52 50
nw30 26 2653 3726.8 3942 3942 5468 4342 46 64 35
nw31 26 2662 7980 8038 8038 8144 8038 56 67 52
nw32 19 294 14570 14877 14877 - - 34 34 29
nw33 23 3068 6484 6678 6724 6678 6682 35 74 34
nw34 20 899 10453.5 10488 10488 10488 10488 28 58 26
nw35 23 1709 7206 7216 7216 10796 - 53 66 19
nw36 20 1783 7260 7314 7314 7506 7328 94 67 71
nw37 19 770 9961.5 10068 10524 11244 10068 27 45 26
nw38 23 1220 5553 5558 5558 5592 5558 72 60 36
nw39 25 677 9868.5 10080 10080 10512 - 27 56 20
nw40 19 404 10658.3 10809 10809 - 11049 24 40 19
nw41 17 197 10972.5 11307 11307 12102 - 17 33 15
nw42 23 1079 7485 7656 7666 7666 7666 46 64 31
nw43 18 1072 8897 8904 8904 8904 8904 48 57 33
us01 145 1053137 9963.07 10036 10036 10417 - 353 393 292
us04 163 28016 17731.7 17854 17854 19128 17854 179 359 247

Total 11832 12117 8975
Table 9 Results on the SPP instances in OR-Library having a positive integrality GAP.

IQ column generation generates feasible solutions in all cases and optimal solutions in 32 out
of 40 test problems. Using stabilized column generation feasible solutions were found in 23 cases
and optimal in 12. The corresponding numbers for standard column generation is 35 feasible and 6

Bredström, Jörnsten and Rönnqvist: IQ column generation
13

optimal. Both standard and stabilized column generation fails in several cases to generate columns
that form integer feasible solutions, 5 for standard and 17 for stabilized column generation. The
number of columns generated in IQ column generation is in between the number of columns gen-
erated in stabilized and standard column generation. Table 10 summarizes the number of feasible
and optimal integer solutions generated by each of the tested methods.

Characteristic Standard CG stabilized CG IQ CG
of problems with feasible solutions 35 23 40
Proportion of problems with feasible solutions 87.5% 57.5% 100.0%
of problems with optimal solutions 5 11 32
Proportion of problems with optimal solutions 12.5% 27.5% 80.0%

Table 10 Summary of the results in table 9.

The proposed IQ column generation uses parameters which works differently for instances. This
is no difference than e.g. using stabilized column generation see e.g. du Merle et al. (1999). We
can find parameter settings for IQ column generation that works for all test problems. With the
same setting it does work in generating the columns needed to define the optimal (or near optimal)
integer solution. The drawback is an increase of the number of columns generated. A large value of
the parameter α can be viewed as an over generation of columns (as compared to a more adjusted
and smaller value for each instance). In experiments not presented we have been able to establish
the optimal integer solution for all test problems by changing the value of α for each problem.

Each column defines a plane in the dual space. In the dual optimal solution we can identify
which columns that makes up the optimal relaxed LP solution. The columns making up the integer
optimal solution may require columns generated by quite different dual solutions. In stabilized
column generation the aim is to limit the range of the dual values and reduce the number of columns
generated as much as possible. Moreover, as more columns are included the dual space that can
be searched is limited by each iteration. If we assume that the columns making up feasible integer
solutions require different dual values to be generated it is likely that less feasible integer solutions
are generated by stabilized column generation as compared to standard column generation. This
is supported in the experiments.

We have not compared the CPU times between the approaches. Stabilized column generation
generate fewer columns as compared to standard column generation. However, in some iterations
when the y-variables are not 0, new subproblems need to be solved. In IQ column generation, new
subproblems need to be solved if no column could be generated because of too few subgradient
iterations. The subgradient optimization is easy to implement and not computationally expensive,
especially since we aim to use as few subgradient iterations as possible.

7. Conclusions

The proposed IQ column generation is novel and can generate columns that define the optimal (or
near optimal) integer solution. The results show that we in all test problems can generate optimal
or near optimal solutions. In the tests we could generate columns that define the optimal integer
solutions in 32 out of 40 test problems. Feasible solution were found in 40 out of 40 problems. This
result contrast the generally accepted property that optimal and near optimal solutions often not
can be found in solving the IP problem defined by the columns generated by the LP-relaxation.
This has a very positive impact for industrial cases where quick solution times are important. IQ
column generation also solves the LP relaxation which is used as a convergence criteria.

The IQ column generation is based on extending a standard SPP model with a surrogate con-
straint that is not relaxed in a Lagrangian relaxation framework. With this surrogate constraint

Bredström, Jörnsten and Rönnqvist: IQ column generation
14

we obtain the property that only one column is used in the subproblem solution. This has the
effect that we better can control how the multiplier values are updated. The proposed multiplier
adjustment method is based on a subgradient method where the accuracy of the steplength can be
used to balance what type of column we generate. We can choose to aim for columns that strive to
find feasible integer solutions or the optimal (LP optimal) solution by choosing different parameter
settings.

We have identified three areas interesting for further research. The first is to establish a linkage
between generating the optimal integer solutions and the parameter setting of α. The second is to
study other structured models where it is hard to find high quality integer solutions. Examples are
the generalized assignment problem and the facility location problem. These can also be formulated
as SPP but there are other characteristics of the problems that can be explored in order to find
good multiplier values. The third is to study how the proposed multiplier updating can be used in
other applications using Lagrangian relaxation to search for feasible integer solutions.

References
Amor, H. B., J. Desrosiers. 2006. A proximal trust-region algorithm for column generation stabilization.

Computers and Operations Research 33 910–927.

Appelgren, L. H. 1969. A column generation approach for a ship scheduling problem. Transportation Science
3 53–68.

Barahona, F., R. Anbil. 2002. On some difficult linear programs coming from set partitioning. Discrete
Applied Mathematics 118 3–11.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M. W. P. Savelsbergh, H. Vance. 1998. Branch-and-price:
Column generation for solving huge integer programs. Operations Research 46(3) 316–332.

Bazaraa, M. S., H. D. Sherali, C. M. Shetty. 1993. Nonlinear Programming: Theory and Algorithms. John
Wiley & Sons.

Briant, O., C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, F. Vanderbeck. 2007. Comparison of bundle
and classical column generation. Mathematical Programming doi: 10.1007/s10107-006-0079-z.

Cavalcante, V. F., C. C. de Souza, A. Lucena. 2006. A relax-and-cut algorithm for the set partitioning
problem. Computers and Operations Research doi: 10.1016/j.cor2006.10.009.

Desaulniers, G., J. Desrosiers, M. M. Solomon. 2005. Column generation. Kluwer Academic Publishers.

du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen. 1999. Stabilized column generation. Discrete Mathe-
matics 194 229–237.

Elhallaoui, I., D. Villeneuve, F. Soumis, G. Desaulniers. 2005. Dynamic aggregation of set-partitioning
constraints in column generation. Operations Research 53(4) 632–645.

Elhedhli, S., J.-L. Goffin. 2004. The integration of an interior-point cutting plane method within a branch-
and-price algorithm. Mathematical Programming 100 267–294.

Hoffman, K. L., M. Padberg. 1993. Solving airline crew scheduling problems by branch-and-cut. Management
Science 39(6) 657–682.

Joseph, A. 2002. A concurrent processing framework for the set partitioning problem. Computers and
Operations Research 29 1375–1391.

Lübbecke, M. E., J. Desrosiers. 2005. Selected topics in column generation. Operations Research 53(6)
1007–1023.

Marsten, R. E., W. W. Hogan, J. W. Blankenship. 1975. The boxstep method for large-scale optimization.
Operations Research 23(3) 389–405.

Nemhauser, G. L., L. A. Wolsey. 1988. Integer and combinatorial optimization. John Wiley & Sons.

Bredström, Jörnsten and Rönnqvist: IQ column generation
15

Rousseau, L.-M., M. Gendreau, D. Feillet. 2007. Interior point stabilization for column generation. Operations
Research Letters doi:10.1016/j.orl.2006.11.004.

Ryan, D. M., B. A. Foster. 1981. Computer scheduling of public transport urban passanger vehicle and crew
scheduling , chap. An integer programming approach to scheduling.

Vanderbeck, F. 1994. Decomposition and column generation for integer programs. Ph.D. thesis, Universite’
Catholique do Lovain.

