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Abstract

In this paper we establish a link between probabilistic cost efficiency and bounded ra-

tionality in the newsvendor model. This establishes a framework where bounded rationality

can be examined rigorously by statistical methods. The paper offers a relatively deep theo-

retical analysis of underorders/overorders in the newsvendor model. The theory is supported

by empirical findings from our analysis of empirical data from laboratory experiments. In

particular, we observe that underorders are systematically larger than overorders, an issue

that our theoretical model explains. From statistical tests we conclude that all variability in

our data can be explained by probabilistic cost efficiency and risk aversion.

Keywords: Behavioral economics, experimental economics, bounded rationality, probabilistic

cost efficiency.

∗Corresponding author: jan.uboe@nhh.no, phone: 004755959978, fax: 004755959650

1



1 Introduction

Gino and Pisano (2008) argue that greater emphasis should be placed on behavioral aspects

of operations management. At the time of their writing, the majority of the operations man-

agement literature was concerned with fully rational agents, and departures from rationality

assumptions were largely ignored. Today, however, the field has matured; see Croson et al.

(2012) for a review. The present paper aims to contribute to this interesting stream of literature.

Discrete choice models emerged in the 1970’s, with the pioneering work of D. McFadden on

random utility maximization, see McFadden (1974) and Train (2003). The theory has been

applied with success within several different fields in economics, and has obvious relevance to

newsvendor behavior. Retailers often base their decisions on partial and incomplete information

leading to a certain type of randomness in ordering. Managers should seek to understand the

nature of this randomness and use their knowledge to improve performance. It is hence of some

surprise that this approach is largely ignored in the literature on the newsvendor problem. A

notable exception is Su (2008).

Our paper combines the framework of experimental economics with theory of bounded ratio-

nality. In an experimental study, Becker-Peth et. al (2013), the participants were asked to

suggest order quantities in a standard newsvendor model. They were fully informed in the

sense that a unique optimal order could be inferred from their information, but they seldom

if ever suggested this optimal quantity. It is thus interesting to ask why this happened, and

to relate our observations to theory of probabilistic choice. This approach was initiated by Su

(2008), who obtained important new insights into this connection. In our paper we establish a

more streamlined approach where these insights can be reached with a minimum of effort. Our

more efficient framework enables us to extend the analysis of Su (2008) in several new directions.

A perfectly rational newsvendor orders a quantity q that maximizes expected profit. Su (2008)

considers boundedly rational agents and discusses several alternative lines of enquiry. In Su’s

(2008) study, less well-informed agents can choose any order quantity, and the probability for

choosing the size of an order is defined in terms of a multinomial logit (MNL) model.

An MNL model can be derived in many ways, some of which are discussed and referenced in Su

(2008). The most common derivation is probably that based on random utility theory described

by Manski (1977). A basic formulation used by Su (2008) is the following: “all alternatives are

candidates for selection, but more attractive alternatives are chosen with larger probability”.

This statement is a necessary consequence of the multinomial logit model. What appears to be

less well known is that a modified version of this statement is in fact sufficient; that is, if more

attractive states are chosen with larger probability, then the model must be a multinomial logit

model, see Erlander (2010). Here a state is referring to an allocation of choices made by several

agents, and a state is more attractive if it leads to a larger aggregate utility.
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In our paper we will use the following definition of bounded rationality: Agents are boundedly

rational if and only if more attractive states are chosen with larger probability. In the end our

definition of bounded rationality will lead us to a MNL model, and it might hence appear that

our definition makes no difference. There is, however, a very good reason for taking that partic-

ular definition as a starting point; we want to use our definition to formulate a statistical test of

bounded rationality. Su (2008), too, wanted to test for this, but had to settle for a test of the

parameter in his model. Formally there is nothing wrong with his test, but it does not answer

our main question; “are the observations consistent with bounded rationality?”

To our knowledge there is only one relevant test discussed in the literature; Erlander’s graphical

test for probabilistic cost efficiency, see Erlander (2010). Erlander takes the verbal statement

“more attractive states are chosen with larger probability” as his starting point, and formalizes

that statement into a direct statistical test of his definition. The reader should note that a

similar approach fails if we instead start out with a definition based on random utility theory.

From aggregate data we can never confirm that agents maximize random utility. Many other

models lead to the same functional form, and data may be perfectly replicated by a MNL model

even when random utility fails. In many contexts this is not at all a problem, but it effectively

excludes the type of analysis that we are discussing here. That partly explains why it was diffi-

cult for Su (2008) to formulate a suitable test, and that very few such tests have been discussed

in the literature.

In the paper we will correct Erlander’ test and extend the test to a version which is applica-

ble to small samples. The test has a compelling diagnostic part we can use to check if the

agents behave according to our definition. In the theoretical part of the paper we study the

classical pull-to-center effect extending the analysis in Su (2008). In particular we prove that

when agents behave according to probabilistic cast efficiency, we can expect that the amount

of underordering is typically larger than the amount of overordering. The results in the theory

section are supported by an empirical analysis where we use the data from Becker-Peth et. al

(2013). We suggest a simple likelihood ratio test which seems stronger than Erlander’s test.

The combination of the two tests appears to be very well suited for data of this kind.

The IIA property (independence of irrelevant alternatives) is a much debated issue in discrete

choice theory and there exist several ways of testing if the IIA property is a problem in data.

Problems with IIA typically occur when identical alternatives are listed multiple times, e.g.,

if yellow buses are painted red or blue, this should not make bus a more likely alternative for

transport (color is irrelevant). In our paper the agents choose how much to order. As the order

quantity is an ordinal variable with no special attributes, problems with multiple listings cannot

occur and the IIA property is not something we will need to address here.
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The paper is organized as follows. In Section 2, we briefly review some of the most relevant

literature. In Section 3, we review the theory of probabilistic cost efficiency and discuss Er-

lander’s graphical test in detail. We explain that Erlander’s formula for the confidence band is

in fact always wrong, and work out the correct version. We extend the test to a version that

allows for small samples and also propose a new and very simple alternative to Erlander’s test.

In Section 4 we enter into a relatively deep theoretical discussion of underordering/overordering

in the newsvendor model. In particular we prove that under certain conditions we can expect a

systematic skewness in underorders versus overorders. In Section 5, we analyze our experimen-

tal data and conclude that all the variation in our data can be explained by a combination of

probabilistic cost efficiency and risk aversion. A technical summary of the paper is provided in

Section 6. Finally, in Section 7, we offer some concluding remarks. To enhance the readability

of the paper, the major part of the technical proofs has been placed in the appendix.

2 Literature review

In the single-period newsvendor model, a retailer wishes to order a quantity q from a manufac-

turer. Demand D is a random variable, and the retailer selects an order quantity q maximizing

his expected profit. When the distribution of D is known, the problem of determining an opti-

mal quantity is easily solved. The basic problem is very simple, but it appears to have endless

variations. There is now a very large body of literature on such problems; for further reading,

refer to the reviews by Cachón (2003) and Qin et al. (2011) and the numerous references therein.

The analysis conducted in this paper relates to three main streams of literature.

• Discussions of probabilistic cost efficiency

• Discussions of bounded rationality in economics

• Discussions of the use of laboratory experiments to build better operations management

models

In this section we provide a brief review of some of the literature related to the discussion in our

paper.

2.1 Probabilistic cost efficiency

The notion of probabilistic cost efficiency was introduced by Smith (1978). The theory has been

expanded and improved in several publications by S. Erlander and T. Smith, and a compre-

hensive discussion is provided in the monograph by Erlander (2010). The basic approach is to

formulate a framework in which agents can choose from a list of alternative actions. Each action

is associated with a cardinal utility, which in our context is interpreted as the cost of the ac-

tion, i.e., a negative utility. If we assume that a pattern with higher total utility is always more

probable than one with lower total utility, the resulting model will be a multinomial logit model.
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The theory is very versatile, and admits generalizations where actions are constrained by K

linear restrictions on the form A P⊥ = B⊥. In this case, an assumption of probabilistic cost

efficiency implies a model formulation of the form

P = exp[(u1, u2, . . . , uK+1)A + βU] (1)

Here, P = (p1, . . . , pM ) are the probabilities of choosing actions 1, . . . ,M . A is an (K + 1)×M
matrix and B = (b1, . . . , bM ) is a vector specifying the constraints on P. Actions have utilities

U = (U1, . . . , UM ) and the numbers (u1, u2, . . . , uK+1) and β ≥ 0 are all constants. In the

special case where K = 0, the constraint p1 + · · ·+pM = 1 leads to the multinomial logit model.

See Jörnsten and Ubøe (2010) for a discussion and applications of the general framework.

2.2 Bounded rationality

Etzioni (1986) argues that natural human behavior is nonrational, largely governed by emotions

and inconsistent values. Rational behavior is artificial in the sense that it results from a def-

inition of cost, and what we define as rational behavior is hence largely a consequence of our

definition of cost. Without a distinct definition of cost, no behavior would be rational.

From the above line of reasoning it comes as no surprise that agents are boundedly rational

in the sense that they do not always choose the optimal, that is, the least costly, alternative.

Only in cases where agents are fully informed and have a definite and indisputable definition

of cost can we expect to observe fully rational behavior. In all other cases, there is a nonzero

probability of mistakes.

The literature on boundedly rational agents is huge. An excellent survey of many streams is

Conlisk (1996). Conlisk (1996) discusses four reasons for incorporating bounded rationality.

• There is empirical evidence for bounded rationality

• Models of bounded rationality are useful

• The logic of unbounded rationality is sometimes flawed

• Suboptimal decisions incur less cost

These reasons are discussed in detail and are supported by a long list of references. A paper

with an interesting relation to the fourth reason is one by Mattsson and Weibull (2002).

Mattsson and Weibull (2002) assume that agents have a set of deterministic preferences over a

set of alternatives. Agents are fully rational, and can solve any relevant maximization problem.

However, a higher probability of choosing an alternative requires more effort, and in their model

the marginal disutility of always choosing the optimal alternative is assumed to be infinite.

There is thus a situation with well-defined costs, but in which the optimal decision for any deci-

sion maker is nevertheless to choose positive mistake probabilities. The option of never making
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mistakes is simply too costly/time-consuming, and the resulting choice between alternatives is

not deterministic. In this kind of setting, there is hence a rational bound on how rational the

agents can be.

Matejka and McKay (2013) take the rational inattention approach (Sims (1998, 2003)) to model

how information frictions influence the behavior of utility-maximizing agents. When agents have

no a priori preferences, choices are distributed in accordance with a standard multinomial logit

model. Choice probabilities are systematically shifted, however, under nonuniform priors. The

basic idea of the rational inattention approach is that information is costly to acquire, a point

of view shared by Mattsson and Weibull (2002).

2.3 Laboratory experiments

In a classical laboratory experiment, Schweitzer and Cachón (2000) observe that agents order

too little in cases where the profit is high and too much when the profit is low, the so-called

“pull-to-center” effect. They offer two alternative explanations for this. The first is that agents

seek to minimize the absolute difference between realized demand and quantity ordered. The

second is that the decision making is biased because of comparisons with previous situations that

may not be relevant to the present situation. They explain this by three heuristics by which the

agents adapt by anchoring to one quantity and adjusting toward another, for example, anchoring

to the previous order and adjusting toward previously observed demand.

Bostian et al. (2008) investigate these heuristics through a laboratory experiment involving a

learning model inspired by Camerer and Ho (1999) in which the agents adaptively learn from

their ordering decision. Like Schweitzer and Cachón (2000), they observe orders that are too

small in high-profit situations and too large when profit is low. Their comparison supports the

learning model in terms of fit to data. In this model, the agents learn adaptively which orders

yield high profits and which yield low profits.

Bolton et al. (2012) compare a group of students with a group of experienced managers and, like

Schweitzer and Cachón (2000), observe that the subjects too often order too little in high-profit

situations and too much in low-profit situations. They conclude that the managers do not use

the information or task training any more efficiently than the students.

Wachtel and Dexter (2010) review studies that largely confirm the findings of Bolton et al.

(2012). Their focus is on staffing of operating theaters at hospitals. The order in this context

is the number of staff needed for a surgeon to perform the tasks required in an operating room

efficiently. Random demand is the number of patients. They conclude that both voluntary

students as well as operating theater managers systematically allocate too many staff members

to surgeons who do not need them and too few to the ones that do. Because the students have

no reason to take organizational aspects into account but still make the same systematic error
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as the managers, the authors argue that this is evidence of an innate psychological bias.

Another possible explanation for the ordering bias proposed by Su (2008) is that newsvendors

simply make random errors in ordering. Bias would then occur because there is more room to

err toward the mean than away from it. Kremer et al. (2010) investigate this idea by allow-

ing one group of subjects to place an order in a standard newsvendor problem and another to

participate in a game that is identical in probabilistic terms but presented as a pure lottery.

They conclude that these results are inconsistent with the random error model, and that the

explanation for this is that the ordering strategies for the newsvendor group are based on biased

order-to-demand mapping.

Rudi and Drake (2013) introduce demand censoring in the context of the “pull-to-center”effect.

Demand censoring, that is, a situation where subjects of the experiment cannot observe demand

when it exceeds the order quantity, is shown to lead to lower order quantities. In the case of a

high-profit situation, this magnifies the distance between optimal and observed order quantities.

Conversely, for cases with low profit it reduces this distance.

These explanations for the “pull-to-center” effect, interesting and sensible as they are, cannot

apply to our results. The reason for this is that our experimental data are obtained from subjects

that place only one order for each given set of parameters. In addition, we observe skewness

in the distribution of ordered quantities that is not predicted by the explanations mentioned

above. We discuss these issues from a theoretical perspective in Section 4.

Becker-Peth et al. (2013) construct a 3-parameter behavior model assuming that people consider

the upside and downside potential of their order decisions separately in line with the mental

accounting arguments (Thaler 1999) resulting in two separate accounts, one for sales and one

for leftovers. The different values associated with income from sales and returns (buyback) are

modeled by multiplying the income from return with a parameter larger than 1 to higher the

values of income from returns. The other parameters represent anchoring and chasing effects.

We use the same experimental data and offer what we think is a simpler explanation, i.e., that

the variation we see in the data can be explained by probabilistic cost efficiency combined with

risk aversion.

3 Probabilistic cost efficiency and statistical testing

The basic idea of probabilistic cost efficiency can be described as follows. Assume that N agents

choose between K alternatives with costs c1, . . . , cK . Consider two independent random samples

of the same size N , and let

z
(i)
k = number of times alternative k is chosen in sample i k = 1, . . . ,K, i = 1, 2.
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When a sample of length N is drawn, we assume that the probability of choosing alternative k

is the same for each individual decision, and that all individual decisions are independent. A

probability distribution p = (p1, . . . , pK) is probabilistically cost-efficient if and only if , for any

sample size N and for any pair of samples

K∑
k=1

ckz
(1)
k ≥

K∑
k=1

ckz
(2)
k ⇒

K∏
k=1

p
z
(1)
k
k ≤

K∏
k=1

p
z
(2)
k
k . (2)

That is, if a sample has greater total cost, it is always less probable. The interesting point here

is that if a probability distribution satisfies (2) for any pair of samples of arbitrary length, the

probability p must satisfy

pk =
e−βck∑K
j=1 e

−βcj
, (3)

where β ≥ 0 is a constant; see Erlander (2010) Chapter 4. The constant β measures agents’

sensitivity to utility. If β is very large, alternatives with maximum utility are chosen with

probability 1 at the limit. If β is very small, utility does not matter, and alternatives are equally

probable at the limit.

3.1 Erlander’s graphical test of probabilistic cost efficiency

We now discuss Erlander’s graphical test for probabilistic cost efficiency in detail. Assuming

any multinomial distribution (cost-efficient or not), we define the likelihood function L(z) and

the average cost c by

L(z) =
K∏
k=1

pzkk c =
1

N

N∑
k=1

zkck. (4)

If we replace p by its maximum likelihood estimate p = (z1/N, . . . , zK/N), we obtain

loglikelihood = LL(p) =

K∑
k=1

zk log[zk/N ]. (5)

where terms with zk = 0 are ignored because of the continuity extension limz→0+ z log[z] = 0.

We define bounded rationality by the statement: Agents are boundedly rational if and only if

more attractive states are chosen with larger probability. Assume that we observe M empirical

samples each with N agents, and make a plot of the log likelihood function against the observed

cost in each sample. If agents largely behave according to our definition, we would expect to see

a falling pattern like the one shown in Figure 1.
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LL

Figure 1: Log likelihood values as a function of c

The rather informal diagnostic plot above is easily formalized into a rigorous statistical test,

and Erlander (2010) suggests an explicit formula for the confidence band in that test. There is,

however, a subtle oversight in Erlander’s proof, and this error causes his formula to be wrong for

any N . Erlander’s proof for the confidence band progresses through a sequence of asymptotic

approximations which are all correct until we reach the statement

−Ent(p) ≈ −Ent(p) + βc− βc̄+
1

2N
H. (6)

In this formula, Ent is the entropy and the random variable H is given by the expression

H =
∑K

k=1(zk − Npk)2/Npk. Erlander assumes, correctly, that H is approximately χ2 when

N is large. In the formula for the confidence band, however, we need the distribution of H

conditional on the event
∑K

k=1
zk
N ck = c̄. If c̄ 6= c =

∑K
k=1 ckpk, we are conditioning on an event

with probability zero in the limit. It is then not clear what happens, and more work is needed

to compute the limit.
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Figure 2: Confidence bands for Erlander’s test. The curved lines show the correct band.

In Figure 2, we have drawn samples z of size N = 31 from the distribution in (3), assuming

that β = 0.002 and that the costs are (c1, c2, c3, c4, c5) = (612.5, 312.5, 112.5, 12.5, 12.5). For

each such sample, we have plotted the points (c, 1
NLL(z)). Figure 2 shows the observed pattern

from 1000 such samples. The straight lines are computed using Erlander’s formula for a 95%

confidence band, while the curved lines are using a correct formula. The problem is that far too

many points lie above the upper straight line, and this problem do not vanish if we increase N .
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The key to the correct confidence band is the following proposition:

Proposition 3.1

Let z = (z1, z2, ..., zK) be multinomial (N, p1, p2, ..., pK), and X 2 =
∑K

k=1(zk −Npk)2/(Npk) be

the common χ2 expression. The distribution of X 2 − ρ2
1, conditionally on

∑K
k=1

zk
N ck = c̄, is

approximately (the error goes to zero as N →∞) χ2 with K − 2 degrees of freedom, where

ρ2
1 = N(c− c̄)2/

K∑
k=1

(ck − c)2pk c =

K∑
k=1

ckpk.

Proof

The proof consists of two parts. The first and difficult part is to prove that the conditional

asymptotic distribution of X 2 minus a deterministic term is χ2. The details are technical and

are provided in the appendix. Once we know that the difference is deterministic, it is clear that

the difference must equal the conditional minimum of the expression (the minimum of the χ2 is

zero). The details are straightforward and are omitted.

�

Since (6) in our notation is equivalent to to the statement

K∑
k=1

zk
N

log[
zk
N

] ≈
K∑
k=1

pk log[pk] + βc− βc̄+
1

2N

K∑
k=1

(zk −Npk)2/(Npk). (7)

the following theorem follows directly from Proposition 3.1.

Theorem 3.2

Assume that N samples are drawn from a probabilistically cost-efficient distribution with costs

(c1, c2, . . . , cK) and parameter β. If c =
∑K

k=1
zk
N ck is the observed average cost and c =∑K

k=1 pkck is the expected cost, there is an approximately (the error goes to zero as N → ∞)

1-α percent probability that the observed log likelihood value
∑K

k=1
zk
N log[ zkN ] is between

Upper[c] =
K∑
k=1

pk log[pk] + βc− βc̄+
(c̄− c)2

2
∑K

k=1 pk(ck − c)2
+

1

2N
X 2
α, (8)

and

Lower[c] =
K∑
k=1

pk log[pk] + βc− βc̄+
(c̄− c)2

2
∑K

k=1 pk(ck − c)2
, (9)

where X 2
α denotes the 1− α percentile in the χ2 distribution with K − 2 degrees of freedom.

Using the result in Theorem 3.2, we can easily establish a statistical test for probabilistic cost

efficiency. The idea is to make a few independent observation sets with the same cost structure,

and then, simply count how many of these have an observed log likelihood value exceeding the
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upper limit of the confidence band given by (8). The number of such sets can be relatively small

as the test can be executed via resampling, see Section 3.2.

In Figure 2 we used the valueN = 31. To check for accuracy, we constructed 100 000 independent

samples (each sample with N = 31), and found that a total of 6, 468 samples had a log likelihood

value exceeding the upper limit of the 95% confidence band given by (8). This shows that the

approximation may be reasonably good even when N is moderate in size. In comparison, the

linear bounds suggested by Erlander (2010) imply a total of 11, 778 points above the upper limit.

3.2 Resampling and an alternative test

In many cases we need to carry out the test based on a single observation. This is not necessarily

a problem as the test can be carried out via resampling. If the resampling seed is constructed

from several independent subsamples, the resampling error is small and the test can be executed

via Theorem 3.2. If the number of observations is very small, however, the original data cannot

be split into independent subsamples in a meaningful way. All resamples must then be drawn

from the original seed. In this case the resampling error has the same order of magnitude as

the original variation. As Theorem 3.2 is an asymptotic result, the expressions in (8) and (9)

are subject to error when N is small. We have tested several cases numerically, and resampling

together with the expressions (with Upper and Lower defined via (8) and (9))

Adjusted upper[c] = Upper[c] +
∆

2N
X 2
α (10)

Adjusted lower[c] = Lower[c]− ∆

2N
X 2
α (11)

can be used when N is small. The exact value of ∆ depends on N and the parameters in the

problem, and can be found by numerical simulation. The dependence is very slight, however,

and we found that the approximation ∆ ≈ 1 works well over a wide variety of cases. The

downside with resampling from the original seed is that it makes the confidence band broader,

leading to a rather weak test. To deal with this problem we suggest an alternative test. Our

new test will be based on the equivalence:

Probabilistic cost efficiency ⇔ Choices are drawn from an MNL model

While it would be very artificial to use the MNL logit model as a definition of bounded rationality,

we can stick with our original definition and use the equivalence above to formalize a statistical

test. The reader should note that this idea fails in the random utility framework as

Random utility theory 6⇐ Choices are drawn from an MNL model

Using the equivalence above, our new null hypothesis can be formulated as follows.

H0: There exists a constant β ≥ 0 such that pk = e−βck∑K
j=1 e

−βcj .

HA: The distribution is not of this kind.

11



The test is conducted as follows. We first find a value of β̂ such that our model (under H0)

obtains the best possible fit in the sense of maximum likelihood. We define

p̂
(0)
k =

e−β̂ck∑K
j=1 e

−β̂cj
, ln[L0] =

K∑
k=1

yk ln[p̂
(0)
k ], (12)

p̂
(1)
k =

yk∑K
i=1 yi

, ln[L1] =

K∑
k=1

yk ln[p̂
(1)
k ]. (13)

Here, yk refers to the observed values. With these definitions, under H0, the difference

X 2 = 2(ln[L1]− ln[L0]) (14)

is approximately χ2 with K − 2 degrees of freedom according to the standard maximum likeli-

hood theorem.

While we would be the first to admit that this test is very simplistic, the test is rigorously

supported by our original definition. We have never seen a test of this sort executed on data in

our particular context, and as we will demonstrate in Section 5, it provides definitive answers

to several empirical questions. The simplicity appears to be a strength not a weakness. We

hence believe that our new test is an interesting alternative to Erlander’s graphical test, which

as remarked in the introduction, is the only relevant test previously discussed in the literature.

4 Boundedly rational agents in the newsvendor model.

We will now consider a setting where the agents choose how much to order in a newsvendor

setting. The newsvendor model is specified as follows.

W = wholesale price per unit (fixed)

q = order quantity (rate chosen by the retailer)

R = retail price per unit (fixed)

D = demand (random rate)

S = salvage price per unit (fixed)

A retailer is trading a commodity and orders q units from a manufacturer. He hopes to sell

enough of these units to make a profit. We assume that the manufacturer offers a wholesale

price W , and that the retail price R is exogenously given. Unsold items can be salvaged at

the exogenously given salvage value S. A straightforward computation shows that the retailer

12



maximizes expected profit when

P (D ≤ q) =
R−W
R− S

⇒ qopt = F−1
D

[
R−W
R− S

]
, (15)

where FD denotes the cumulative distribution of D. A perfectly rational newsvendor will hence

hence always order the quantity given by (15). Any deviation from the quantity given by (15)

will incur a cost which is the loss in expected profit in comparison with the optimal choice. A

boundedly rational newsvendor can order any quantity, but should have an inclination to make

orders leading to small costs. If Π(q) denotes the expected profit if the agent order q unit,

the cost c(q) is given by c(q) = Π(qopt) − Π(q). If we define bounded rationality in terms of

probabilistic cost efficiency, our definition leads to a MNL model with density

ψQ(q) =
e−βc(q)∫ dmax

dmin
e−βc(u)du

β ≥ 0. (16)

As Π(qopt) does not depend on q, it is easy to see that the particular value cancels in (16) and

that we might just as well work with the expression

ψQ(q) =
eβΠ(q)∫ dmax

dmin
eβΠ(u)du

β ≥ 0. (17)

In this section there are different levels of randomness, and it is important to keep these apart.

On the first level, we have randomness in the demand D. If we assume that D has a distribution

with density φD(x) on the interval [dmin, dmax], the expected profit in the newsvendor model is

a function Π = Π(q), and is given by

Π(q) = (R− S)ED[min[D, q]]− (W − S)q, (18)

Here, the subscript ED is used to emphasize that we have this expectation at the first level. At

the second level, the order quantity Q is a random variable with a multinomial logit density

ψQ(q) given by

ψQ(q) =
eβΠ(q)∫ dmax

dmin
eβΠ(u)du

β ≥ 0. (19)

We use the notation EQ to emphasize that we have this expectation for this density.

When researchers design economic experiments of the kind discussed in this paper, the parame-

ters in the experiment should be carefully selected to avoid bias. By an experimental design ED,

we mean the collection of parameters used in the experiment. To examine overall tendencies in

our experiment, we average our results over all the cases. We use the notation EED to signify

the average value over all the experiment in our experimental design ED, i.e., an expectation

where each particular case has uniform weight.
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4.1 Over/underordering

Su (2008) examined the sign of the error in ordering. In the case where D is uniform, he provided

a rigorous proof that agents overorder if qopt <
dmax+dmin

2 (low profit case) and underorder

if qopt >
dmax+dmin

2 (high profit case). This corresponds to the classical pull-to-center effect

discussed by many authors. He also obtained some partial results for the non-uniform case.

This analysis can, however, be compressed to only a few lines when it is done efficiently. The

key is the following observation: By a linear change of variables using the density specified by

(19), we see that

EQ[Q− qopt] =

∫ dmax

dmin

(q − qopt)ψQ(q)dq =

∫ dmax−qopt
dmin−qopt qe

βΠ(qopt+q)dq∫ dmax−qopt
dmin−qopt e

βΠ(qopt+u)du
. (20)

Proposition 4.1

Assume that D has arbitrary distribution, and let Π(q) be the expected profit when the retailer

orders q units.

• If for all q ∈ [dmin − qopt, dmax − qopt], the function Π satisfies

Π(qopt + q) ≥ Π(qopt − q) “overordering is better than underordering”, (21)

then we expect overorders in low profit cases, i.e., qopt <
dmax+dmin

2 ⇒ EQ[Q− qopt] > 0.

• If for all q ∈ [dmin − qopt, dmax − qopt], the function Π satisfies

Π(qopt + q) ≤ Π(qopt − q) “underordering is better than overordering”, (22)

then we expect underorders in high profit cases, i.e., qopt >
dmax+dmin

2 ⇒ EQ[Q− qopt] < 0.

Proof

In Figure 3 we have plotted q 7→ qeβΠ(qopt+q) between dmin − qopt and dmax − qopt in the two

principal cases. Note that the shaded areas are equally wide.

-

+

-

+

Figure 3: qopt <
dmax+dmin

2 (left) qopt >
dmax+dmin

2 (right)
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If (21) is satisfied, then the shaded area under the axis to the left is smaller than or equal to

the shaded area over the same graph. The positive values are hence at least as big and are

integrated over a strictly longer interval. This implies a net positive value in (20). If (22) is

satisfied, then the shaded area under the graph to the right is bigger than or equal to the shaded

area over the same graph. The negative values are hence at least as big and are integrated over

a strictly longer interval. This implies a net negative value in (20).

�

Proposition 4.1 generalizes Proposition 4 in Su (2008). In the particular case where the distri-

bution of D is uniform, it is evident that there exist constants C1, C2 such that

Π(q) = C1 − C2(q − qopt)
2. (23)

In this case, conditions (21) and (22) are satisfied for an arbitrary qopt, and it follows that we

have overordering if qopt <
dmax+dmin

2 and underordering if qopt >
dmax+dmin

2 . This gives a new

proof of the pull-to-center effect in the uniform case.

As we can see, the analysis of the sign in the pull-to-center effect is straightforward. In the next

few sections, however, we will use the expression in (20) to examine the rate of change of this

effect. Even though some partials are discussed in Su (2008), these are alternative expressions

for the expected order, and are not related to the rate of change effect. Proposition 5 in Su

(2008) discusses changes in expected profit, but this result follows directly from the relation

∂EQ[c(Q)]

∂β
= −EQ[c(Q)2] + EQ[c(Q)]2 = −VarQ[c(Q)] < 0. (24)

and is not relevant to us. In our newsvendor problem, it is of interest to examine what happens

to the expected order when we change β. If we differentiate the expression in (20) w.r.t β, see

the appendix for details, we can see that

∂EQ[Q− qopt]

∂β
= EQ[Q ·Π(Q)]− EQ[Q] · EQ[Π(Q)] = CovQ[Q,Π(Q)]. (25)

In general,
∂EQ[Q−qopt]

∂β can be either negative or positive, depending on the relative strength of

the two terms in the middle of (25). The final result can be stated as follows.

Proposition 4.2

Assume that D is uniformly distributed on [dmin, dmax] and that the (sensitivity) parameter β

in (19) increases. Then the expected order decreases in low profit cases and the expected order

increases in high profit cases, i.e., the expected error in ordering decreases.

Proof

The proof is technical, and is shown in the appendix. The basic idea is to use the expectation

format in (25) to rewrite the expression to a form more suitable for analysis.

�
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Proposition 4.2 has an intuitive interpretation. If the retailer is more concerned about costs

(which is reflected in a larger β parameter), he is less inclined to deviate from the optimal order.

4.2 Skewness of underorders/overorders

In the empirical part of the paper we find that the overall size of the underorders is larger than

the overall size of the overorders. This happens even though the critical fractiles are unbiased,

i.e., the mean critical fractile is dmin+dmax
2 . The purpose of this section is to explain that, under

certain conditions, this effect is what we expect when orders are selected via probabilistic cost

efficiency. The main result can be stated as follows:

Theorem 4.3

Assume that D is uniformly distributed on [dmin, dmax], and that ED is an experimental design

where given R,S, the selected values of W are always symmetric about R+S
2 . Then, if orders

are chosen from a cost efficient distribution with parameter β and β = β(R,S,W ) is a strictly

increasing function of W , an overweight of underorders is expected, i.e., the average over all the

experiments in ED satisfies

EED[Q− qopt] < 0 (26)

Proof

The formal proof is technical, and all the details are shown in the appendix.

�

Even though the formal proof is somewhat elaborate, the essence of the proof is quite easy to

understand. If we choose two values W1 < W2 symmetric about R+S
2 , the smaller value will lead

to underorder while the bigger value leads to overorder. When the the agents are boundedly

rational with the same value of β in the two cases, it is possible to show that the size of the

underorder will exactly match the size of the overorder. Under the conditions stated in the

theorem, however, the β value used with W1 is strictly smaller than the one used with W2.

According to Proposition 4.2, the error in ordering is reduced when we increase β. Therefore

the error in ordering using W2 is smaller than the error in ordering using W1, i.e., the agents

make larger errors when they underorder than when they overorder.

5 Analyzing empirical data

In this section we will use the theoretical machinery from Section 3 and 4 to analyse empirical

data. Ulrich Thonemann has kindly given us access to the data used in the paper Becker-Peth

et. al (2013). As Becker-Peth et. al (2013) contains the protocol and all specific information

related to the experiment, we will only provide a minimum of detail. The experiment can be

described (very roughly) as follows:

31 persons participated in the experiment. After a 15 minutes briefing on the newsvendor

problem and a warm-up phase presenting 5 different contracts, the data collection started with
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the following case: Assume that demand D is uniformly distributed on the interval [0, 100], and

that R = 100,W = 80, S = 75. On the basis of this information the participants should suggest

order quantities, and the suggested order quantities were:

75, 82, 30, 50, 80, 100, 85, 45, 50, 100, 95, 70, 60, 80, 50, 50, 20,

90, 45, 70, 87, 50, 80, 50, 80, 20, 50, 55, 100, 80, 65. (27)

Our main research question can be phrased as follows: Is the observed set of orders consistent

with bounded rationality? According to our definition, agents are boundedly rational iff less

costly orders are more probable, i.e, the orders must be drawn from a cost-efficient distribution.

To carry of Erlanders graphical test, we need to sort the observations into K bins. With only 31

observations K = 5 is a more or less canonical choice, so we will start our analysis with that case.

The optimal order is qopt = 80 in this case. With K = 5 we partition the interval into 5 bins:

[0, 20]− [21, 40]− [41, 60]− [61, 80]− [81, 100]

The observed frequencies are

2 1 11 9 8. (28)

The cost associated with each bin can be computed in several different ways, and we will start

with costs defined in terms of the midpoint in each interval. The midpoint orders lead to the

costs

612.5 312.5 112.5 12.5 12.5. (29)

The next step is to draw resamples from the observed frequency distribution in (28). Using

N = 31, we compute the pair (c,LL(p)) from the formulas (4) and (5). The plot in Figure 4

shows a plot of these pairs after 200 resamples. In Figure 5 we have also drawn the upper and

lower limits for the 95% confidence band defined via (8), (9), (10), and (11).

60 80 100 120 140 160
c

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

LL

Figure 4: Likelihood values as a function of costs

Using 10000 resamples we recorded 9838 points within the 95% confidence band, and there is no

reason for reject our null hypothesis: All variation in the data can be explained from probabilistic

cost efficiency.
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In this particular case the finding is confirmed by the likelihood ratio test suggested in Sec-

tion 3.2. The best fit is obtained using β̂ = 0.00323, and using (12), (13), and (14) we report

X 2 = 5.26 which is well within the non-rejection region for a χ2 variable with 3 degrees of

freedom (7.81).

Non-rejection of the null-hypothesis does not in itself provide any strong support for our model.

The interesting feature with Erlander’s test is that the diagnostic plot shown in Figure 4 reveals a

distribution where the likelihood value falls with increasing costs. This suggests that the agents,

broadly speaking, are boundedly rational in the sense of our definition. This is supported by

the relatively low value of χ2 which indicates a fairly good model fit.

5.1 Robustness

The choice of K = 5 bins and costs specified via the mid-point in this bins is somewhat arbitrary.

To check if the conclusion is robust with respect to the number of bins, we carried out the same

analysis using K = 4 and K = 6 bins. The diagnostic plots for Erlanders graphical test are

shown in Figure 5.

120 140 160 180 200 220 240
c
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Figure 5: Likelihood plots using K = 4, 5, 6 bins

We see that all 3 likelihood plots are falling, and with 10000 resamples the recorded values

within the bands: 9588, 9838, 9922 give no reason to reject that all variation can be explained

via probabilistic cost efficiency. The maximum likelihood test, too, offers the same conclusion.

The reported values are: χ2 = 4.25, 5.26, 8.43 and should be compared with the levels for rejec-

tion 5.99, 7.81, 9.49, respectively. All reported values hence lead to non-rejection.

The mid-point specification of cost is also somewhat arbitrary, but other specifications do not

seem to change the overall picture. Using the observed average cost within bins instead of

the midpoint specification, the reported values for the maximum likelihood test changes to:

χ2 = 3.66, 4.51, 7.06. The numerical values change, but the overall conclusion, non-rejection,

does not change.
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5.2 Analysis of the experimental data

In Becker-Peth et. al (2013) the experiment above was repeated 28 times with different combi-

nations of W,S. The value R = 100 was fixed throughout the experiments. We examined the

data in search of learning effects, but we could not find any noticeable development over time.

This is what we would expect as one would probably need a very large number of repetitions to

notice a learning effect. We hence assume that the 28 different cases can be handled as separate

experiments.

Even though we noted a few exceptions, the specification of costs is relatively unimportant. As a

clear majority leads to the same overall conclusion, we only report the findings with a mid-point

specification of costs.

In summary, the likelihood ratio test appears to be stronger than Erlander’s graphical test, and

we first take a look at the χ2 values for the likelihood ratio test. These values are reported in

Figure 6.
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Figure 6: χ2 values as a function of qopt, 4 (left), 5 (middle), and 6 (right) bins. The solid lines
show the rejection level.

As we can see from Figure 6, cases with small or big critical fractiles typically lead to non-

rejection, while the results in the middle range typically lead to rejection. Before we enter into a

general discussion, we consider similar plots for the β parameter. In this theory the β parameter

measures how sensitive the agents are with respect to costs. For each case a value of β was fitted

in the sense of maximum likelihood, and the reported values are shown in Figure 7.

19



●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

qopt

β

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

qopt

β

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2
0.

01
4

qopt

β

Figure 7: Sensitivity to cost β̂ as a function of qopt, 4 (left), 5 (middle), and 6 (right) bins.

The 3 versions K = 4, 5, 6 are consistent and we conclude that the sensitivity to costs falls

with decreasing wholesale cost (significant by any standard). This makes good sense as it seems

logical that agents are more concerned about costs when goods are expensive. Note that the β

values are roughly equal in the 3 plots; the apparent difference is due to different scales on the

axes.

5.3 Small or big critical fractiles

When the critical fractile is smaller than 0.2 or bigger than 0.8, all findings are consistent. With

a small number of mild exceptions (which is expected at the 5% level), the likelihood ratio test

leads to non-rejection. The likelihood plots from Erlander’s graphical test are all falling, and

all cases lead to non-rejection. When the likelihood plots are falling, we are able to conclude

that agents, at least in a broad sense, behave according to our definition of bounded rationality.

This impression is strengthened by the relatively small χ2 values, which can be interpreted as

good model fits.

Skewness of overorders/underorders

According to the theory in Section 4.1, the agents can be expected to underorder when qopt ≥ 80

and to overorder when qopt ≤ 20. In our data set there are 7 cases of each kind. The differences

between the optimal and the average observed order is shown below.

−16 −19 −21 −17 −16 −11 −16

6 8 11 −2 5 9 7

The first row shows the 7 cases where qopt ≥ 80, while the second row shows the 7 cases with

qopt ≤ 20. We note that with one exception, the value −2 in the second row, the findings are

consistent with our theory. Moreover we see that the underorders are (by any standard) larger

than the overorders. This is just what we expect from Theorem 4.3. The plots in Figure 7

suggests that agents are more concerned about costs in low profit cases. When we increase
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W , the profitability goes down, leading to a larger value of β. The observed skewness is hence

consistent with probabilistic cost efficiency.

5.4 The middle range

When the critical fractile is in the interval (0.2, 0.8) the situation is less supportive. As we can

see from Figure 6, our null hypothesis is usually rejected in such cases. This means that our

model is unable to explain all the variation in the data. Note that rejection of the null hypothesis

does not render the model useless. It is still possible that the model explains a major part of the

variation and a good model fit is not excluded. The diagnostic plots from Erlander’s graphical

test provide some interesting insights. Figure 8 shows the likelihood plots for the four cases with

the highest values of χ2 in the likelihood ratio test.
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Figure 8: likelihood plots for the four worst cases (highest values of χ2)

While the third plot indicates a falling pattern, the other plots are questionable. If we compare

with the two other cases with critical fractile 0.5, the difference is striking, see Figure 9.
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Figure 9: likelihood plots for two cases with critical fractile 0.5

Inspection of the parameters used in these experiments offer a simple explanation to the prob-

lem. In Figure 8 the salvage parameter S has low values, while the values are high in Figure 9.

This principle appears to apply to most cases in the middle range. If the salvage value is high,

the likelihood plots are clearly falling combined with a fair model fit. If the salvage value is low,

the likelihood plots are questionable and the overall model performance is poor.
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5.5 Modelling risk aversion

While parameters sets with the same critical fractile lead to the same optimal order and expected

profit, cases where S is small are subject to more risk. We have

VarΠ(q) = Var[“random profit when ordering q units”] = (R− S)2Var[min[D, q]] (30)

It is then natural to ask if risk aversion could be an issue. When the agents are risk averse, the

perceived cost may be different from the loss in expected profit. A model taking this issue into

account could be

c(q) = Π(qopt)−Π(q) + λ ·VarΠ(q) (31)

where λ is a constant parameter reflecting the level of risk aversion, i.e., the shadow cost of a

variance constraint. Our new MNL model is hence equipped with two parameters, β measuring

the agents sensitivity to costs and λ measuring the amount of risk aversion. To each set of

observations we can fit parameter values in the sense of maximum likelihood. With D uniformly

distributed on [0, 100], we get

VarΠ(q) =
(R− S)2q3(400− 3q)

120 000
(32)

With our new specifications of costs, performance is greatly improved. All the likelihood plots

in Erlander’s graphical test are falling, and no cases are rejected. The same thing happens in

the likelihood ratio test, i.e., the cases leading to rejection in Figure 6 are now much better, see

Figure 10. In 28 experiments we should of course tolerate a small number of mild rejections,

so the overall conclusion is that our new model works surprisingly well. Moreover, the small

χ2 values imply that a good model fit is obtained in all cases. We are hence able to conclude

that the variation in all experiments can be explained by a combination of probabilistic cost

efficiency with risk aversion.
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Figure 10: χ2 values as a function of qopt, 4 (left), 5 (middle), and 6 (right) bins. The solid lines
show the rejection level.
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5.6 Model fit in terms of AIC

In our new model we have included a new parameter λ in comparison with the original model.

It is hence of interest to see how much an extra parameter improves performance in terms of the

Akaike information criterion AIC. In Table 1 we have computed AIC values for our original 1-

parameter model (AIC1par), for the new 2-parameter model including risk aversion (AIC2par),

and for a saturated model with 4 parameters (AIC4par), for the case K = 5 bins. In general we

should prefer a model with low AIC.

qopt AIC4par AIC2par AIC1par

5 17.86 13.87 11.87
6 25.06 24.26 22.26
7 25.93 22.76 20.76
9 27.05 25.78 23.78

13 32.50 28.94 27.17
20 45.58 41.91 41.05
20 28.72 25.03 27.22
24 30.74 26.78 30.94
29 37.26 33.40 34.80
35 29.47 25.47 41.59
36 38.17 34.34 40.65
41 37.72 33.86 45.07
50 39.41 36.60 47.27
50 53.97 49.97 48.61
50 39.84 36.52 49.93
50 51.70 48.89 46.89
59 44.54 41.06 49.52
64 51.38 48.36 49.75
65 44.07 41.29 49.88
71 44.02 41.20 50.89
76 46.01 45.25 47.57
80 50.28 48.64 46.91
80 52.91 50.22 50.38
88 49.24 46.05 44.48
91 49.14 46.11 44.42
93 42.14 38.49 37.12
94 44.62 41.11 39.11
95 35.63 35.53 33.53

Table 1: AIC values for 3 different model specifications (K = 5 bins)

The findings are very consistent. When the critical fractile is small or big, we should prefer the

simple 1-parameter model. In the middle range risk aversion is usually needed to explain the

observed behavior, and the 2-parameter model is our preferred choice.
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6 Technical summary

In this paper, we have established a link between probabilistic cost efficiency and bounded ra-

tionality in the newsvendor model. In our opinion, probabilistic cost efficiency is a superior

approach to bounded rationality, and we believe that this paper is the first to focus on this

connection in the context of newsvendor models.

In the paper we have made Erlander’s graphical test fully operational, and we have extended

the test such that it can be applied to small samples. The main advantage with Erlander’s test

is that it provides a diagnostic tool we can use to see if the agents largely behave according to

our definition. We also propose a likelihood ratio test that can be used for additional information.

The empirical analysis in Section 5 reveals several interesting insights that we believe are new.

• All the variation in our data can be explained by a combination of probabilistic cost

efficiency with risk aversion. When the critical fractile is small (< 0.2) or big (> 0.8), a

simple model without risk aversion is sufficient. In the middle range, a model with risk

aversion is needed to explain the data.

• The value of the β parameter (which measures sensitivity to costs) appears to decrease

when the critical fractile increases. Costs thus appear to be more important when goods

are expensive, which seems intuitive. It would be of interest to check whether this is true

for data sets other than ours.

• In our data set, we find that the underorders are consistently larger than overorders,

leading to an overall majority of underorders. We have proved that this is just what we

would expect from theory, see Theorem 4.3.

7 Concluding remarks

We believe that the theory in Section 4 is built on so much common sense that we would be

surprised if these effects are not present in almost any experiment on newsvendor behavior.

Moreover, we think that a corresponding bias must be present in real life cases. Managers

should understand the nature of this type of randomness, and use this knowledge to improve

performance. In the introduction we discussed several papers focusing the “pull-to-center” ef-

fect. While we are in no position to refute any of these theories, we suggest that there might

be a much simpler explanation, i.e., that the effect is driven by a systematic bias caused by

random choices. In a system driven by discrete choice, e.g., via random utility maximization,

the resulting distribution will be probabilistically cost efficient. Such choices are consistent with

our theory and no additional effect is needed to explain the pull-to-center effect.

The successful application of discrete choice models in several fields in economics demonstrates

that the effects that arise from pure randomness of this type are very real. Many applications
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report quite remarkable model fits, which in turn support a general belief that these models

reflect major trends in real world systems. We see no reason why a similar approach should be

less successful in the newsvendor context. In this paper we have demonstrated that these models

are able to explain non-trivial economic effects that are consistent with empirical observations.

Almost any problem in the newsvendor theory can be rephrased within this extended context,

and in general one could ask how strategies, profits and equilibria change if the newsvendor

choose orders from a cost efficient distribution. In that respect we feel this theory has a lot to

offer in terms of problems for future research, and hope that other researchers will pursue this

line of research.

8 Appendix

8.1 Proof of Proposition 4.1

To prove this, we use a result by Satterthwaite (1942) that the distribution of a sum of n

squared standard normal variables with m inhomogeneous linear restrictions on the variables is

distributed as a shifted χ2 variable with n−m degrees of freedom. For the asymptotics of the χ2

statistic X 2 in the common K category multinomial case, we essentially start with n = K − 1,

and the theorem states that we lose a further degree of freedom by imposing a linear restriction.

Consequently, we must demonstrate that this restriction can be maintained in the proof of the

asymptotic result.

We can write zk =
∑N

i=1 xik so that (xi1, xi2, ..., xiK) for i = 1, 2, .., N are independent multi-

nomial (1, p1, p2, ..., pK). Then, the expectations, variances, and covariances are E[xik] = pk,

σkk = pk(1 − pk), and σjk = −pjpk, respectively. Because xiK = 1 −
∑K−1

k=1 xik, to avoid sin-

gularity we omit the last component and consider the column vector xi = (xi1, xi2, ..., xiK−1)
′

with nonsingular (K−1)× (K−1) covariance matrix Σ = (σjk) and inverse Σ−1 = (σ−jk) where

σ−jj = 1/pj + 1/pK and σ−jk = 1/pK for j 6= k.

Let p = (p1, p2, ..., pK−1). In terms of the defined quantities, our X 2 may be expressed as X 2 =

N(x̄−p)
′
Σ−1(x̄−p). By the central limit theorem the distribution limit of u =

√
NΣ−1/2(x̄−p)

is N(0, I) as N →∞. This means that X 2 behaves as a sum of squares of K − 1 asymptotically

independent standard normal variables, and therefore behaves asymptotically as a χ2 variable

with K − 1 degrees of freedom. Henceforth, we assume we have a large N leading to a good

normal approximation. We can now write x̄ = p + 1√
N

B ·u where B = Σ1/2 so that in terms of

components we have zk = Npk +
√
N
∑K−1

j=1 Bkjuj for k = 1, 2, ...,K − 1. The omitted compo-

nent is then zK = N −
∑K−1

k=1 zk = NpK−
√
N
∑K−1

k=1

∑K−1
j=1 Bkjuj . By inserting the expressions

for all zk’s into the restriction Nc̄ = cKzK +
∑K−1

k=1 ckzk, we see that the restriction simplifies

to
∑K−1

j=1 bjuj = (c̄ − c)
√
N where bj =

∑K−1
k=1 (ck − cK)Bkj and c =

∑K
k=1 ckpk. Consequently,

we have shown that the restriction is carried over to a linear restriction for the uk variables.
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To apply Satterthwaite’s formula, we must normalize the coefficients so that their sum of squares

equals one. This is done by taking b2 =
∑K−1

j=1 b2j and aj = bj/b. Then, ρ1 =
∑K−1

j=1 ajuj =

(c̄−c)
√
N/b. The limiting distribution of X 2 is therefore a χ2 distribution with (K−1)−1 = K−2

degrees of freedom with its minimum shifted from zero to ρ2
1. Tedious calculations show that

b2 =
∑K

k=1(ck − c)2pk so that ρ2
1 = N(c− c̄)2/

∑K
k=1(ck − c)2pk. Alternatively, we can find the

expression for ρ2
1 solving for the minimum of the expression X 2 with respect to the zk’s under

the linear constraint.

�

8.2 How (25) is derived from (20)

Note that

EQ[Q− qopt] =

∫ dmax

dmin
qeβΠ(q)dq∫ dmax

dmin
eβΠ(u)du

− qopt

Elementary calculus (noting that qopt does not depend on β) gives

∂EQ[Q− qopt]

∂β
=

∫ dmax

dmin
qΠ(q)eβΠ(q)dq ·

∫ dmax

dmin
eβΠ(u)du−

∫ dmax

dmin
qeβΠ(q)dq ·

∫ dmax

dmin
Π(q)eβΠ(u)du(∫ dmax

dmin
eβΠ(u)du

)2

= EQ[QΠ(Q)]− EQ[Q]EQ[Π(Q)]

8.3 Proof of Proposition 4.2

To prove Proposition 4.2, we first need to prove the following non-trivial lemma.

Lemma A 1

Let a, b be any strictly positive real numbers, and consider the expression

Φ(a, b) =

∫ b

−a
u3e−u

2
du ·

∫ b

−a
e−u

2
du−

∫ b

−a
ue−u

2
du ·

∫ b

−a
u2e−u

2
du. (33)

• If a > b, then Φ(a, b) < 0.

• If a = b, then Φ(a, b) = 0.

• If a < b, then Φ(a, b) > 0.

Proof

For fixed b > 0, define φb : [0,∞)→ R by

φb(x) =

∫ x

−b
u3e−u

2
du ·

∫ x

−b
e−u

2
du−

∫ x

−b
ue−u

2
du ·

∫ x

−b
u2e−u

2
du. (34)
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If we differentiate this expression, we obtain

φ′b(x) =

∫ x

−b
(x3 + u3 − xu2 − x2u)e−u

2−x2du. (35)

The key observation is the following

φ′b(x) =

∫ x

−b
(x− u)2(x+ u)e−u

2−x2du. (36)

Now if x ≥ b, the integrand in (36) is strictly positive on (−b, x), and it follows that φb is strictly

increasing on (b,∞). Because φb(b) = 0, we obtain φb(x) > 0 on the open interval (b,∞), and

we define a new function ψb : [0,∞)→ R by

ψb(x) =

∫ b

−x
u3e−u

2
du ·

∫ b

−x
e−u

2
du−

∫ b

−x
ue−u

2
du ·

∫ b

−x
u2e−u

2
du. (37)

Change variables by v = −u, to see that

ψb(x) = −
∫ x

−b
v3e−v

2
dv ·

∫ x

−b
e−v

2
dv +

∫ x

−b
ve−v

2
du ·

∫ x

−b
v2e−v

2
dv. (38)

Hence, ψb(x) = −φb(x) for any b > 0 and any x ∈ [0,∞). Since by definition φb(x) = ψx(b),

it follows that φb(x) = −φx(b) which is strictly negative when 0 ≤ x < b since φx(b) is strictly

positive when b ∈ (x,∞) (from the first part of this proof).

�

We are now ready to prove Proposition 4.2. In general we have

∂EQ[Q− qopt]

∂β
= EQ[Q ·Π(Q)]− EQ[Q] · EQ[Π(Q)]. (39)

A key step in the proof is to add and subtract terms to see that

∂EQ[Q− qopt]

∂β
= EQ[(Q− qopt) ·Π(Q)]− EQ[Q− qopt] · EQ[Π(Q)]. (40)

When D is uniformly distributed, there exist constants C1, C2 where C2 > 0 such that

Π(q) = C1 − C2(q − qopt)
2. (41)

If we insert that expression into (40), change variables as in (20), and simplify the expression,

we obtain

∂EQ[Q− qopt]

∂β
= −

C2

∫ d
−c q

3e−β·C2q2dq∫ d
−c e

−β·C2q2dq
+

∫ d
−c qe

−β·C2q2dq∫ d
−c e

−β·C2q2dq
·
C2

∫ d
−c q

2e−β·C2q2dq∫ d
−c e

−β·C2q2dq
. (42)

Here, c = qopt − dmin, d = dmax − qopt. Because C2 > 0, we see that the sign is determined by
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the expression

−
∫ d

−c
q3e−β·C2q2dq ·

∫ d

−c
e−β·C2q2dq +

∫ d

−c
qe−β·q

2
dq ·

∫ d

−c
q2e−β·C2q2dq. (43)

If we make a second linear change of variables v =
√
β · C2 · q, the previous expression equals

− 1

β2C2
2

(∫ b

−a
v3e−v

2
dv ·

∫ b

−a
e−v

2
dv −

∫ b

−a
ve−v

2
dv ·

∫ b

−a
v2e−v

2
dv

)
, (44)

where a =
√
β · C2(qopt − dmin) and b =

√
β · C2(dmax − qopt). The conclusions in Proposition

4.2 then follow directly from Lemma A 1.

�

8.4 Details for the proof of Theorem 4.3

The key step in the proof of Theorem 4.3 is the following proposition:

Proposition A.2

Assume that D is uniformly distributed on [dmin, dmax], and that ED is an experimental design

where W , conditional on R,S, has a distribution that is symmetric about R+S
2 . Then if β is a

constant with respect to W

EED[EQ[Q− qopt]] = 0. (45)

Proof

If D is uniformly distributed, it is easy to verify that in (23), C2 = R−S
2(dmax−dmin) . Note that C2

does not depend on W . It follows from (20) that

EQ[Q− qopt] =

∫ dmax−qopt
dmin−qopt qe

−C2β q2dq∫ dmax−qopt
dmin−qopt e

−C2β q2dq
. (46)

If we define a function h by

h(x) =

∫ dmax−x
dmin−x qe−C2β q2dq∫ dmax−x
dmin−x e−C2β q2dq

, (47)

then h(qopt) = EQ[Q− qopt]. The key to the proof is to realize that h is antisymmetric around

x = dmax+dmin
2 , i.e., that

h

(
dmax + dmin

2
− x
)

= −h
(
dmax + dmin

2
+ x

)
. (48)

The details are tedious but straightforward and are omitted. Note that the function h in (47)
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does not depend on W . In the newsvendor model with uniform demand D, we have

qopt = dmin + (dmax − dmin)
R−W
R− S

. (49)

We first assume that R,S are constants and that W has a continuous distribution with density

fW (w) on the interval [S, T ]. Then, by (47) and (49)

EW [EQ[Q− qopt]] =

∫ R

S
h

(
dmax + (dmax − dmin)

R− w
R− S

)
fW (w)dw. (50)

Now, change variables by w = R+S
2 + u to see that

EW [EQ[Q− qopt]] =

∫ R−S
2

−R−S
2

h

(
dmax + dmin

2
− u

(
dmax − dmin

R− S

))
fW

(
R+ S

2
+ u

)
du. (51)

Because the integrand is antisymmetric by (48) and our assumptions on fW , it follows that

EW [EQ[Q − qopt]] = 0. If R,S are not constants, extra levels of expectation do not change the

result and hence

EED[EQ[Q− qopt]] = 0. (52)

If W has a discrete distribution, exactly the same argument applies (just replace integrals with

sums). The result in (52) holds when W has any discrete or continuous distribution, which

proves the result in Proposition A.1 for any conceivable experimental design.

�

8.4.1 Proof of Theorem 4.3

It follows from Proposition A.2 that the net balance would have been zero if β = β
(
R+S

2

)
for all W . If W < (R + S)/2, then qopt >

dmax+dmin
2 . Because β(W ) < β

(
R+S

2

)
, if follows

from Proposition 4.2 that the order is decreased (leading to larger underorder) in comparison

with the case β = β
(
R+S

2

)
. Conversely, if W > (R + S)/2, then qopt <

dmax+dmin
2 . Because

β(W ) > β
(
R+S

2

)
, it follows from Proposition 4.2 that the order quantity is decreased (leading to

a smaller overorder) in comparison with the case where β = β
(
R+S

2

)
. In essence, the overorders

are reduced in size while the underorders are increased in size (in comparison with the neutral

case in Proposition A.2), which proves the theorem. �
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