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Abstract 

Elhorst (2010) shows how the recent publication of LeSage and Pace (2009) in his 
expression “raises the bar” for our fitting of spatial econometrics models. By 
extending the family of models that deserve attention, Elhorst reveals the need to 
explore how they might be fitted, and discusses some alternatives. This paper 
attempts to take up this challenge with respect to implementation in the R spdep 
package for the maximum likelihood case, using a smaller data set to see whether 
earlier conclusions would be changed when newer techniques are used, and two 
larger data sets to examine model fitting issues. 

Keywords: Spatial econometrics, maximum likelihood estimation, spatial Durbin 
model, SARAR model, general spatial model.  

JEL classification: C14, C15, C21 

AMS classification: 91B72, 93E14, 65D07, 62M30, 62G08 

Después de “Subir el Listón”: Estimación máximo verosímil aplicada 
de familias de modelos econométricos espaciales 

Resumen 

Elhorst (2010) muestra cómo la reciente publicación de LeSage and Pace (2009), 
en sus propias palabras, “sube el listón” a la hora de ajustar los modelos 
econométricos espaciales. Mediante la ampliación de la familia de modelos que 
merecen atención, Elhorst revela la necesidad de investigar la forma de ajustarlos 
y comenta algunas alternativas. Este artículo acepta el reto planteado por Elhorst 
en lo que respecta a la implementación en el paquete R spdep para el caso de la 
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máxima verosimilitud, utilizando un conjunto de datos más pequeño para ver si las 
conclusiones anteriormente obtenidas cambiarían cuando se empleen nuevas 
técnicas, y dos bases de datos más grandes para examinar las cuestiones relativas 
al ajuste de los modelos. 

Palabras clave: Econometría espacial, estimación máximo verosímil. Modelo 
espacial de Durbin, modelo SARAR, modelo espacial general.  

Clasificación JEL: C14, C15, C21 

Clasificación AMS: 91B72, 93E14, 65D07, 62M30, 62G08 

1. Background 

In an interesting review, Elhorst (2010) “raises the bar” to place the general spatial 
autoregressive model and the Spatial Durbin model in a shared context, such as that of 
the model proposed by Manski (1993). Fitting these models by maximum likelihood 
makes it possible to start trying to investigate which augmented forms of commonly 
used spatial econometric models may be of use in empirical work. 

It is not intended to make reference here to the burgeoning spatial econometrics 
literature on the properties of estimators, including maximum likelihood estimators. We 
also focus exclusively on maximum likelihood estimators, although extensions to 
Bayesian estimators are clearly of interest LeSage and Pace (2009). Similarly, we do not 
consider GM estimators, but acknowledge that the sets of instruments that may be used 
in fitting the general two-parameter spatial autoregressive model are not limited to low-
order spatial lags of the explanatory variables (Kelejian and Prucha, 1999; Drukker 
et al., 2011, and references therein). 

This analysis extends work presented in Bivand (2010a), which includes comparisons of 
model fitting for spatial error, spatial lag between implementations in R, OpenGeoDa 
running under Wine, and these and spatial Durbin models with the Spatial Econometrics 
toolbox running under Octave. 

In Bivand (2010a), two data sets distributed with the R spdep package are used (R 
Development Core Team, 2011); both originated from the Spatial Econometrics 
toolbox, and are provided in spdep with pre-built lists of spatial neighbours. Here, a 
third, smaller data set is used for convenience first, permitting comparison with spatial 

econometrics functions in sppack in StataTM 11.2 for a smaller system running 
Windows XP with 1GB RAM. Its use also permits us to examine whether legacy results 
require revision when confronted with newer estimation techniques. A broad survey of 
the analysis of spatial data in the R is given by Bivand (2006) and Bivand et al. (2008). 
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1.1 Garbage in  garbage out? 

The smaller data set is used to revisit conclusions drawn in Bivand and Szymanski 
(2000), and concerns a study of the impact of introducing compulsory competitive 
tendering in garbage colletion in England at the district level. The larger data sets could 
not be fitted with Stata on the platform available, as Stata uses dense matrix techniques 
for maximum likelihood fitting. 

The underlying research question in Bivand and Szymanski (2000) is, first, whether the 
change in policy regime had affected the net real costs of garbage collection in local 
government districts, and, second, whether the fit of models including standard 
explanatory variables changed with respect to those variables. The net real cost of 
garbage collection varies with the number of collection points (units), the proportion of 
dwelling house units, the density of units by district surface area, dummies for London 
and other metropolitan areas, and the real wage level in the region to which a district 
belongs. The introduction of compulsory competitive tendering would be expected not 
only to lower net real costs, but also to sharpen the impact of cost-shaping variables, 
such as density and wages. The data for 324 out of 366 districts were split into two sets, 
one with the values of real net cost and real wages for each district in the pre-CCT year, 
and a second in the post-CCT year, with the actual year of adoption dropped. 

After hearing a presentation of some preliminary results of his aspatial study 
(Szymanski, 1996), I asked Stefan Szymanski whether he had tested the residuals for 
spatial autocorrelation as a standard specification check. He asked me to collaborate in 
carrying this out, and we found that the residuals were significantly spatially 
autocorrelated. The results of the robust Lagrange Multiplier tests seemed to indicate 
that a spatial error model is preferable to a spatial lag model in both cases. 

We spent some time discussing why the spatial autocorrelation was observed, and 
reached a working hypothesis that before the introduction of CCT, the district principals 
might “mimic” the costings of their near neighbours because they had few other sources 
of information about the costs of garbage collection, and that this “mimicking” should 
abate following the introduction of CCT. This principal-agent model and a first cut at a 
spatial analysis are reported in Bivand and Szymanski (1997), fitting a spatial error 
model. 

The principal-agent model would have been better described by a spatial lag model, 
with the observed cost levels of proximate neighbours influencing the principals’ 
decisions directly, but the model diagnostics seem to suggest otherwise. Continuing to 
work on this contradiction, we noticed that the kinds of yardstick comparisons that 
might be occurring should probably be politically “coloured” and decided to include 
party political control in districts in the analysis, as described in Bivand and Szymanski 
(2000). The neighbours used here are those from the original paper, defined as a graph 
on all 366 districts, and subsetted to remove missing districts. 
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1.2 US 1980 election turnout data set 

The US county data set with 3,107 observations for the coterminous states includes a 
1980 Presidential election turnout variable with a single county (Hinsdale County, CO) 
with a value over unity — most likely from cross-border voting in this remote rural 
area. We define a formula relating this variable to income ($1000) per inhabitant over 
age 19, the number with college degrees as a proportion of all over age 19, and 
homeownership as a proportion of all over age 19. The right hand side variables are 
taken as logarithms, as in the file data/elect.txt in the Spatial Econometrics toolbox. 

The data set provided in spdep includes a number of nb objects listing the neighbours of 
the counties in the data set using different definitions. Here we use a Queen contiguity 
scheme constructed using a shapefile from the USGS National Atlas site, file: 
co1980p020.tar.gz. This object contains four counties with no neighbours, and because 
of this, an option is set to permit computations under the assumption that the lagged 
value of a variable for a county with no neighbours may be set to zero (Bivand and 
Portnov, 2004). 

1.3 Lucas County, OH, housing data set 

The Lucas County, Ohio, housing data set has 25,357 observations of single family 
homes sold during 1993–1998, and is fully described in the file data/house.txt in the 
Spatial Econometrics toolbox. It is used here to supplement conclusions drawn for the 
1980 US election turnout data set, which is of a size that permits dense matrix methods, 
because only sparse or approximate methods are feasible for larger N. The dependent 
variable is the logarithm of the selling price. The right hand side variables include the 
age, squared age, and cubed age of a house, sale year dummies, the logarirms of lot size 
and total living area, and numbers of rooms and bedrooms. No contextual variables 
about the neighbourhood of the houses are available, so one would expect a strong 
spatial autocorrelation reflecting this misspecification. 

The list of neighbours provided with the data set in spdep is a sphere of influence graph 
constructed from a triangulation of the point coordinates of the houses after projection 
to the Ohio North NAD83 (HARN) Lambert Conformal Conical specification 
(EPSG:2834). It is relatively sparse, with less than three neighbours per observation on 
average. 

2. Candidate models 

The spatial lag model (Cliff and Ord, 1973; Ord, 1975; Bivand, 1984; Anselin, 1988; 
LeSage and Pace, 2009) is the most frequently encountered specification in spatial 
econometrics. 

= ρ + β + εy Wy X ,  
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where y is an (N x 1) vector of observations on a dependent variable taken at each of N 
locations, X is an (N x k) matrix of exogenous variables, β is an (k x 1) vector of 
parameters, ε is an (N x 1) vector of independent and identically distributed disturbances 
and ρ is a scalar spatial lag parameter. 

In the spatial Durbin model, the spatially lagged exogenous variables are added to the 
model: 

= ρ + β + γ + εy Wy X WX ,  

where γ is an ((k − 1) x 1) vector of parameters where W is row-standardised, and a (k x 
1) vector otherwise. It is clear that these two models are estimated in the same way. 

The spatial error model may be written as (Cliff and Ord, 1973; Ord, 1975; Ripley, 
1981; Anselin, 1988; LeSage and Pace, 2009): 

= β + , = λ + εy X u u Wu ,  

where λ is a scalar spatial error parameter, and u is a spatially autocorrelated 
disturbance vector with variance and covariance terms specified by a fixed spatial 
weights matrix and a single coefficient λ: 

2 -1 -1(0, ( - ) ( - ') )   u W I WN   

where  is the N x N identity matrix. 

When the Common Factor condition is met: β = −ργ, the spatial Durbin and spatial error 
models are equivalent. Note that here we use the notation of Anselin (1988) and LeSage 
and Pace (2009), with ρ the spatial autoregressive coefficient of the dependent variable, 
and λ the spatial autoregressive coefficient of the disturbance; the usage is reversed in 
other parts of the spatial econometrics literature. 

The general two-parameter spatial Durbin autoregessive model includes the spatially 
lagged dependent variable, spatially lagged explanatory variables, and a spatially 
autoregressive disturbance. It has been variously termed as the Manski, SARAR Durbin 
or SAC Durbin, with the latter two terms extending the SARAR description used by 
Kelejian and Prucha (1999, and subsequent papers), and the SAC term used as a 
function name by LeSage and Pace (2009). The SARAR and SAC terms refer to the 
general model described by Anselin (1988, pp. 64–65, 182–183), with two spatial 
process parameters, but no spatially lagged explanatory variables. Here we use the term 
SAC Durbin; the model may be written (assuming the use of the same weight matrix W 
in all spatial processes): 

= ρ + β + γ + u, = λ + ε,y Wy X WX u Wu  

This representation forks to the general model (SARAR/SAC) by setting γ = 0, to the 
spatial Durbin by setting λ = 0, and to the error Durbin model by setting ρ = 0 (the error 
Durbin model includes the spatially lagged explanatory variables and a spatial 
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autoregressive error process). In the general model case, when the weights matrices in 
both processes are the same, the identification of ρ and λ depends on  β ≠ 0. 

Elhorst (2010) suggests that it may be appropriate to fit a general, inclusive model first, 
here the SAC Durbin model, and to test restrictions on that model. Some tests are 
available for simpler comparisons between models using ordinary least squares 
residuals, but so far none are defined for the more complex models. Consequently, after 
fitting the pairs of models to be compared by maximum likelihood, it is possible to use 
likelihood ratio tests, and this approach is followed here. If one wishes to accommodate 
situations in which the assumptions required for use of maximum likelihood are not 
met, Bayesian model comparison would be a possible alternative. It is not yet clear 
whether a J-test approach could be used for GMM-fitted models (Kelejian, 2008; 
Kelejian and Piras, 2011). 

3. Maximum likelihood estimation 

The log-likelihood function for the spatial lag model is: 

2 2(β,ρ,σ ) = - ln2π - lnσ + ln | - ρ |
2 2

Ι W N N
 

2

1
- [(( - ρ ) - β) (( -ρ ) - β)]

2σ
Ι W y X Ι W y X  

and by extension the same framework is used for the spatial Durbin model when 

[X(WX)] are grouped together. Because β can be expressed as (X'X)−1X'(  − ρW)y, all 
of the cross-product terms can be pre-computed as cross-products of the residuals of 
two ancilliary regressions: y = Xβ1 and Wy = Xβ2, and the sum of squares term can be 
calculated much faster than the log determinant (Jacobian) term of the N x N sparse 
matrix  − ρW; see LeSage and Pace (2009) for details. 

The log-likelihood function for the spatial error model is: 

2 2(β,λ,σ ) = - ln2π - lnσ + ln | - λ |
2 2

Ι W N N
 

2

1
- [( - β) ( - λ ) ( - λ )( - β)]

2σ
 y X Ι W Ι W y X  

β may be concentrated out of the sum of squared errors term, for example as: 

2 2(λ,σ ) = - ln2π - lnσ + ln | - λ |
2 2

Ι W N N
 

λ λ2

1
- [ '( - λ ) ( - ')( - λ ) ]

2σ
y Ι W Ι Q Q Ι W y  

where Qλ is obtained by decomposing (X − λWX)=QλRλ. 
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The relationship between the log-determinant term and the sum of squares term in the 
log likelihood function in the spatial error model is analogous to that in the spatial lag 
model, but the sum of squares term involves more computation in the case of the spatial 
error model. In all cases, a simple line search may be used to find ρ or λ, and other 
coefficients may be calculated using an ancilliary regression once this has been done. 

The general model is more demanding, and requires that ρ and λ be found by 
constrained numerical optimization in two dimensions by searching for the maximum 
on the surface of the log-likelihood function, which is like that of the spatial error model 
with additional terms in I − ρW: 

2 2(ρ,λ,σ ) = - ln2π - lnσ + ln | - ρ | +ln | - λ |
2 2

Ι W Ι W N N
 

λ λ2

1
- [ '( -ρ ) ( - λ ) ( - ')( - λ )( -ρ ) ]

2σ
 y Ι W Ι W Ι Q Q Ι W Ι W y  

This result suggests that the tuning of the constrained numerical optimization function, 
including the provision of starting values, reasonable stopping criteria, and also the 
choice of algorithm may all affect the results achieved. The Stata implementation uses a 
grid search for initial values of (ρ, λ) (Drukker et al., 2011), the Spatial Econometrics 
toolbox uses the generalized spatial two-stage least squares estimates, with the option of 
a user providing initial values, and the spdep implementation for row-standardised 
spatial weights matrices uses either four candidate pairs of initial values at (−0.8,0.8), 
(0,0), (0.8,0.8) and (0.8,−0.8), a full grid of nine points at the same settings, or user 
provided initial values (which permits the use of weights matrices that are not row 
standardised); optimizers may be chosen by the user. 

Detailed reviews of methods for computing the Jacobian may be found in LeSage and 
Pace (2009), Smirnov and Anselin (2009) and Bivand (2010b), and interested readers 
are refered to these; alternative approximations are described by Griffith and Sone 
(1995), Griffith (2004) and Griffith and Luhanga (2011). The methods used for 
computing the Jacobian in spdep are presented in full in Bivand (2010b); here we use 
the dense matrix eigenvalue method eigen (Ord, 1975, p. 121) for the English garbage 
data set, and the updating Cholesky decomposition method Matrix, using sparse 
matrix functions in the R Matrix package Bates and Maechler (2011), and based on 
Pace and Barry (1997), for the two larger data sets. 

When sparse matrix methods or approximations are used, motivated by the size of N, no 
analytical asymptotic standard errors for the coefficients in spatial lag, Durbin or 
general SARAR models are available, nor is the standard error of λ available in the 
spatial error case. This may be addressed by computing a numerical Hessian for an 
augmented function fitting both ρ and/or λ and β starting with the maximum likelihood 
optimum. The covariance matrix of coefficient estimates is required for the Monte Carlo 
testing of measures of the impacts of explanatory variables, as we see subsequently. 
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With some data sets, models, and variable scaling –fortunately not those used in these 
examples, one meets difficulties in inverting the numerical Hessian returned from finite 
difference computation. This unfortunate problem may be worked around by replacing 
most of the matrix with analytical values, termed the analytical-numerical mixed 
Hessian by LeSage and Pace (2009, pp. 54–60). The awkward trace term for the 

interaction between λ and 2 1– tr( ( ) )W Ι W    – may be approximated by a series of 
traces of the powered weights matrix, either computed using sparse matrix or Monte 
Carlo techniques. The analytical-numerical mixed Hessian is available in spdep for the 
spatial lag, Durbin, and error models, but not yet for the SAC Durbin model. 

4. Fitting models using maximum likelihood for the English data set 

The sacsarlm function has been added to spdep to permit the fitting of the SAC 
model, and it takes a type= argument to add the spatially lagged right hand side 
variables to make a SAC Durbin specification. We fit both of these model forms to the 
augmented pre-CCT and post-CCT models, which take political control into account. 
Table 1 does not report the coefficient values, because we should more properly report 
the impacts (emanating effects) of the right hand variables. 

Table1 

Summary of SAC and SAC Durbin model output (asymptotic  
standard errors in parentheses) 

 pre-CCT pre-CCT post-CCT post-CCT 

Model SAC SAC Durbin SAC SAC Durbin

 0.1006 0.4866 0.05381 0.3634
 (0.05271) (0.1314) (0.05521) (0.2075)

 0.1672 -0.4418 0.1524 -0.2728

 (0.0931) (0.187) (0.09458) (0.2639)

Log likelihood 22.78 41.06 37.62 52.45

2 0.05044 0.04116 0.04615 0.04043

AIC -21.57 -42.12 -51.24 -64.9

As we can see, the SAC Durbin model outperforms the SAC model in both cases, 
suggesting that the inclusion of the spatially lagged right hand side variables is justified. 
Before testing against other alternatives, let us examine the log-likelihood function 
surfaces shown in Figure 1. The values of the spatial coefficients and the optimal log-
likelihood function values fitted using sacsarlm in spdep and using spreg ml in Stata 
are identical: pre-CCT SAC ρ = 0.1006, λ = 0.1672, pre-CCT SAC Durbin ρ = 0.4866, 
λ = −0.4418, post-CCT SAC ρ = 0.0538, λ = 0.1524, post-CCT SAC Durbin ρ = 0.3634, 
λ = −0.2728. Because both use eigenvalues to compute the Jacobian, this is as expected; 
there are small differences in coefficient standard errors. 
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Figure 1 

Log-likelihood function surfaces for the pre-CCT and post-CCT models, for SAC 
and SAC Durbin specifications 

Thus the surfaces shown in Figure 1 represent the optimization as computed using R and 
Stata. We see that while the SAC surfaces, shown in grey, are quite amenable to numerical 
optimization, the SAC Durbin surfaces, shown with contours, both show a “banana” ridge 
running from low ρ, high λ, through moderate/high ρ, moderate/high λ, to high ρ, low λ. 
This appears to be the visual expression of the difficulty of identifiction between the two 
coefficients noted by Elhorst (2010) among others. Moving on to test fitted model 
specifications, we also fit the spatial Durbin, spatial lag, spatial error Durbin, and spatial 
error models. 

Table 2 

Likelihood ratio test results 
Model 1 Model 2 Likelihood ratio p-value 

Pre-CCT SAC Durbin Pre-CCT SAC 36.56 1.387e-05
Pre-CCT SAC Durbin Pre-CCT Durbin 4.067 0.04374

Pre-CCT SAC Durbin Pre-CCT error Durbin 6.302 0.01206

Pre-CCT Durbin Pre-CCT lag 34.88 2.816e-05

Pre-CCT Durbin Pre-CCT error 35.64 2.045e-05

Post-CCT SAC Durbin Post-CCT SAC 29.66 0.0002424

Post-CCT SAC Durbin Post-CCT Durbin 1.057 0.3039

Post-CCT SAC Durbin Post-CCT error Durbin 2.147 0.1428

Post-CCT Durbin Post-CCT lag 30.82 0.0001511

Post-CCT Durbin Post-CCT error 29.53 0.0002559

Table 2 shows that the results of the likelihood ratio tests between the SAC Durbin 
models against the SAC models for both the pre-CCT and post-CCT clearly favour the 
model including the spatially lagged right hand side variables. We also find that the LR 
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tests between the SAC Durbin and spatial Durbin, and the SAC Durbin and error Durbin 
variants are marginally significant for the pre-CCT data, but not significant for the post-
CCT data. Consequently, we choose to proceed with the pre-CCT SAC Durbin model 
and the post-CCT Durbin model. Testing the spatial Durbin against the spatial lag 
model, we see that the inclusion of the spatially lagged right hand side variables appears 
justified in both pre-CCT and post-CCT cases; the likelihood ratio test against the 
spatial error model rejects the Common Factor hypothesis again in both cases. 

Table 3 

Summary of spatial Durbin and lag model output (asymptotic standard  
errors in parentheses) 

 pre-CCT Durbin pre-CCT lag post-CCT Durbin post-CCT lag 

 0.1701 0.1495 0.1477 0.09712

 (0.07608) (0.04233) (0.07733) (0.04432)

Log likelihood 39.03 21.59 51.92 36.51

2 0.04572 0.05099 0.04229 0.04664

AIC -40.06 -21.18 -65.84 -51.02

LM p-value 0.007471 0.1704 0.1283 0.1572

Table 3 reports on the values of ρ for the pre-CCT and post-CCT spatial Durbin and lag 
models, together with their log-likelihood values and σ2. It also reports the Lagrange 
Multiplier test for residual spatial autocorrelation p-values; the pre-CCT spatial Durbin 
appears to induce residual spatial autocorrelation through the included spatially lagged 
right hand side variables, but this is alleviated post-CCT. The residual spatial 
autocorrelation detected in the pre-CCT spatial Durbin estimates corresponds to the 
significant λ coefficient estimate for the pre-CCT SAC Durbin model reported in Table 1. 

Using the spatial Durbin specification, the significances of the pre-CCT and post-CCT 
estimates of ρ are: pre-CCT: 0.0254, post-CCT: 0.05617. Compared to the tabulations 
in Bivand and Szymanski (2000, p. 215), using only the spatial lag specification 
(computed using SpaceStat, and which agree with the output for the lag models 
calculated here), we see that the significance of the lag pre-CCT ρ is 0.0004138, and of 
the post-CCT ρ is 0.02844. The change in ρ remains that hypothesised in the earlier 
paper, but is much smaller in size. However, as we can see from Table 1, the aggregate 
spatial “signal” is strongly reduced from the pre-CCT SAC Durbin to the post-CCT 
spatial Durbin estimates; the two spatial coefficients in th pre-CCT SAC Durbin model 
are both significant. 

It is now necessary to revisit the interpretation of the coefficients for the cost-
sharpening variables of log-density of units and log-real wages, as this should be done 
through impact measures. In fitting spatial lag and spatial Durbin models, it has 
emerged over time that, unlike the spatial error model, the spatial dependence in the 
parameter ρ feeds back, obliging analysts to base interpretation not on the fitted 
parameters β, and γ where appropriate, but rather on correctly formulated impact 
measures (LeSage and Pace, 2009). 
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This feedback comes from the elements of the variance-covariance matrix of the 
coefficients for the maximum likelihood spatial error model linking λ and β being zero, 

∂
2
ℓ/(∂β∂λ) = 0, while in the spatial lag model (and by extension, in the spatial Durbin 

model), ∂
2
ℓ/ (∂β∂ρ) ≠ 0. In the spatial error model, for right hand side variable r, ∂yi/∂xir = 

βr and ∂yi/∂xjr = 0 for i ≠ j; in the spatial lag model, ∂yi/ ∂xjr = ((Ι − ρW)
−1
βr)ij, where (Ι 

− ρW)
−1

 is known to be dense (LeSage and Pace, 2009, p. 33–42). 

The variance-covariance matrix of the coefficients and the series of traces of the 
powered weights matrix are the key ingredients needed to compute impact measures for 
spatial lag and spatial Durbin models; both of these are based on the representation of 
weights matrices as sparse matrices. We can also compute the measures analytically for 
smaller data sets; here we contrast the 1980 US election and Lucas (OH) data sets, 
where the former is small enough to permit all of the output values to be compared. 

An estimate of the coefficient variance-covariance matrix is needed for Monte Carlo 
simulation of the impact measures, although the measures themselves may be computed 
without an estimate of this matrix. LeSage and Pace (2009, pp. 33–42, 114–115) and 
LeSage and Fischer (2008) provide the background and implementation details for 
impact measures. 

The awkward Sr(W)=((Ι − ρW)
−1
Ιβr) matrix term needed to calculate impact measures 

for the lag model, and Sr(W) = ((Ι − ρW)
−1

(Ιβr − Wγr)) for the spatial Durbin model, 

may be approximated using traces of powers of the spatial weights matrix as well as 
analytically. The average direct impacts are represented by the sum of the diagonal 
elements of the matrix divided by N for each exogenous variable; the average total 
impacts are the sum of all matrix elements divided by N for each exogenous variable, 
while the average indirect impacts are the differences between these two impact vectors. 

In spdep, impacts methods are available for ML spatial lag, spatial Durbin, SAC and 
SAC Durbin fitted model objects. The methods use truncated series of traces using 
different ways of computing the traces, here powering a sparse matrix, which goes 
dense, to get exact traces. 
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Figure 2 

Direct and total impacts for log-real wages, pre-CCT SAC Durbin and post-CCT 
Durbin estimates, Monte Carlo tests with 2,000 simulations each 

 

Figure 3 

Direct and total impacts for log-density of units, pre-CCT SAC Durbin and post-
CCT Durbin estimates, Monte Carlo tests with 2,000 simulations each 
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Figure 2 shows that the conclusions in Bivand and Szymanski (2000) with respect to the 
sharpening of the impact of the cost shaping log-real wage variable are sustained when 
the interpretation is recast in the form of direct and total impact measures. The 
distributions of the Monte Carlo simulations move away from zero, with a direct post-
CCT spatial Durbin p-value of 0.0351 and a total post-CCT spatial Durbin p-value of 
0.0318. 

This does not, however, hold for the sharpening on another cost shaping variable, the 
log density of units, which is expected to be significant and negative after the 
introduction of CCT, as we see in Figure 3. While the direct post-CCT spatial Durbin p-
value is highly significant and the sign correct (5.55e-06), the indirect impact has a 
different sign, and so the total impact has a p-value of 0.869. If we only fit a spatial lag 
model, the impacts mirror the interpretation in the original paper, and the total impacts 
of both cost-shaping variables have the expected signs and are both significant. 

The conclusions drawn in Bivand and Szymanski (2000) need to be revised in the light 
of developments in spatial econometrics. “Raising the bar” changes those results in two 
respects. First, in enriching the spatial lag models used for both pre-CCT and post-CCT 
data sets to pre-CCT SAC Durbin, and to post-CCT spatial Durbin specifications. The 
inclusion of the spatially lagged explanatory variables induces spatial error 
autocorrelation in the pre-CCT spatial Durbin model, indicating that the spatial process 
is not being fully captured by the spatial lag of the dependent variable when the 
spatially lagged explanatory variables are included. The pre-CCT spatial Durbin model 
fits the data better than the pre-CCT spatial lag model, but marginally worse than the 
pre-CCT SAC Durbin model, which has two significant spatial coefficients. If we 
consider the strength of the spatial processes between the pre-CCT SAC Durbin model 
and the post-CCT spatial Durbin model, we can comfortably sustain our former 
conclusion that the introduction of compulsory competitive tendering reduces spatial 
relationships between local authorities in garbage collection costs. 

The second change is that when we move from attempting to interpret the regression 
coefficients of the explanatory variables to a proper analysis of variable impacts 
(emanating effects), using the pre-CCT SAC Durbin and post-CCT spatial Durbin 
models, we find that the total impact of the collection unit density variable is not 
significant. The impacts shift in the correct direction (higher density should lead to 
lower costs), and the direct impacts are significant, but the total impacts are not. Perhaps 
this is to be expected, given the geography of the local autorities, where authorities with 
higher and lower densities are adjacent in some parts of the country. The conclusion 
with respect to the other cost-shaping variable, real wages, is unchanged, and shows that 
its significance increases markedly following the introduction of compulsory 
competitive tendering. 

5. Larger data sets 

Returning to the two larger data sets used in Bivand (2010a), we are more concerned 
with the implications of fitting spatial autoregressive models where a model is very 
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possibly misspecified with respect to omitted explanatory variables. Neither of these 
data sets has clearly motivated or complete modelling contexts. Presidential election 
turnout is influenced by other omitted explanatory variables, some of which may be 
related to cultural background for broader regions than the observed counties. House 
selling prices are typically closely related to neighbourhood qualities, which here are 
unobserved. These omissions may lead to a bundle of spatial signals that are 
approximated by the included autoregressive term or terms. 

We fit the SAC and SAC Durbin models for the two data sets, followed by the spatial 
Durbin and error Durbin variants, and test those specifications using the likelihood 
ratio. Because of the large number of observations, the fast updating sparse Cholesky 
method is used for computing the Jacobian in optimising the log-likelihood function, 
and in the gridded profiling calculations reported in Figure 4. 

Table 4 

Summary of large data set model output (numerical Hessian  
standard errors in parentheses) 

 Election Election Lucas County Lucas County

Model SAC SAC Durbin SAC SAC Durbin 

ρ
 

-0.3933 -0.5113 0.6898 0.805

 (0.03626) (0.04729) (0.005414) (0.003315)

 0.8703 0.8901 -0.3871 -0.581

 (0.01231) (0.01323) (0.01274) (0.008077)

Log likelihood 4099 4115 -7336 -6184

2 0.003312 0.003171 0.07731 0.05701

AIC -8184 -8210 14704 12425

Table 4 shows summary results for the two data sets for SAC and SAC Durbin fitted 
models. In both cases, the values of ρ and λ take more extreme values in the SAC 
Durbin case, with negative ρ and positive λ in the Election data case, and with signs 
reversed in the Lucas County housing data case. In this table, and in Table 5, we see that 
the SAC model is rejected in favour of the SAC Durbin model in both cases. In 
addition, as Table 5 shows, likelihood ratio tests comparing the SAC Durbin model with 
the spatial Durbin and error Durbin models for both data sets all point to the better fit of 
the SAC Durbin specification. 

It is very possible that both large data set models are wrongly specified. The election 
data set includes only three variables, and in addition may be strongly affected by 
inhomogeneous observational units, because the counties used differ very greatly in 
population size. The Lucas County house price data set is certainly affected by the 
omission of contextual variables reflecting neighbourhood qualities, and this must 
engender a range of spatial processes, which are not fully captured by the spatially 
lagged dependent variable. It may also be the case that the very sparse spatial weights 
used are insufficiently dense to mop up the autocorrelation that is present. 
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Table 5 

Likelihood ratio test results for large data sets 
Model 1 Model 2 Likelihood ratio p-value 

Election SAC Durbin Election SAC 32.23 4.686e-07
Election SAC Durbin Election Durbin 141.9 < 2.2e-16
Election SAC Durbin Election error Durbin 54.67 1.424e-13
Lucas County SAC Durbin Lucas County SAC 2303 < 2.2e-16
Lucas County SAC Durbin Lucas County Durbin 2246 < 2.2e-16
Lucas County SAC Durbin Lucas County error Durbin 2944 < 2.2e-16

Figure 4, like the results for the English garbage data reported in Figure 1, again shows 
the hallmark “banana” ridge shape of the surface of the log-likelihood function for SAC, 
and especially SAC Durbin models. It is a matter of concern that in the Lucas County 
case, the SAC Durbin surface has (at least) one local optimum at the low ρ, high λ end 
of the banana, and the global optimum at the low λ, high ρ end. Use of a finer grid may 
show whether there are more than two optima, but demonstrating more than one is 
already worrying. 

Figure 4 

Log-likelihood function surfaces for the US election turnout and lucas (OH) county 
house price models, for SAC and SAC Durbin specifications. 

6. Conclusions 

In examining some of the practical consequences of “raising the bar,” it has been shown 
that the conclusions of work published earlier have required modification. Had the 
earlier study used a spatial Durbin model, rather than a spatial lag model, it is possible 
that the need for revision would have been seen, but in practice the interpretation of the 



86 Roger Bivand  After "Raising the Bar": applied maximum... 

 

V
o

l. 
54

. N
ú

m
 1

77
 / 

20
12

 

impacts (emanating effects) of explanatory variables has only been undertaken since 2008. 
It is the introduction of the interpretation of impact measures that changes the inference in 
this case, rather than the insertion of an additional spatially autocorrelated error. 

In the English garbage case, the model is adequately specified, with a model of the 
suggested causes of the pre-CCT spatial dependence, and a hypothesis that the 
dependence attenuates following the introduction of compulsory competitive tendering. 
This hypothesis is also sustained using newer methods. 

In the two larger data sets, we have no behavioural model for observed spatial 
autocorrelation, and in addition we have reason to believe that the models suffer from 
omitted variables. Finally, the election turnout data set is observed for counties, which 
are very heterogeneous aggregations of voter turnout, and additionally the dependent 
variable arguably should be bounded between 0 and 1 (with the exceptional observation 
exceeding a 100% turnout). 

Consequently, we are in a potentially difficult situation, a situation that perhaps leads to 
the observed significant spatial autoregressive coefficients with opposed signs. They 
appear to be “picking up” spatial signals that are coming from the omitted explanatory 
variables, rather than to be expressing behavioural dependencies in space. The fitted 
models with two spatial parameters do, however, fit better than single parameter 
models, especially when the spatially lagged explanatory variables are included, but this 
arguably does not suggest that they are in any sense capturing “real” spatial 
relationships. 

Because the debate about “raising the bar” is only now beginning, it seems sensible to 
conclude with questions rather than assertions. The following seem to address some of 
the salient open issues. Given the numerical issues involved in fitting the SAC Durbin 
model, how should one interpret the output?  Is it reasonable to feel that the underlying 
problem is that ρ and λ are insufficiently identified, and how might one test this 
possibility? Is this a situation in which other sources of misspecifiaction, for example 
heteroskedasticity are feeding through into an apparent second, negative spatial 
autoregressive process? Is this related to the insights given in Griffith (2006) with repect 
to hidden negative spatial autocorrelation? Clearly, there is substantial need for further 
research in order to be able to provide practitioners with adequate guidelines for model 
fitting. 
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