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Making Bank: Why High Bank Leverage is Optimal – for the Bank’s Shareholders

Abstract

We create a structural credit model to calculate the optimal capital structure for a bank that

provides asset backed loans, such as corporate loans and mortgages. The bank’s assets are loans,

which means that the bank’s exposure to risk is mitigated by the borrower’s equity. We capture the

effect of this mitigation by including the borrower’s leverage, in addition to its asset volatility, as

the sources of risk for the bank. Our results contribute a quantitative explanation for the high levels

of bank leverage observed in practice. When unconstrained by regulation, the bank’s shareholders

find it optimal, for reasonable values of borrower risk parameters, to select a bank leverage close

to 100%.
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1 Introduction

We create a structural credit model to calculate the optimal capital structure for a bank that

provides asset backed loans, such as corporate loans and mortgages. Lending banks differ from

regular companies in that their assets are loans, which are fundamentally distinct from other assets

in the following ways. First, their market value is capped by the risk free value of their promised

payments. Second, their exposure to the risk in the assets they finance is mitigated by the borrowers’

equity. We capture both these properties in our model. We include the borrowers’ leverage as a

source of bank asset risk, in addition to the borrowers’ asset volatility. The model may be applied

to any lender that makes asset backed loans, where the value of the financed asset exceeds the value

of the loan.

Our results show that it is optimal for the bank’s shareholders, applying tradeoff theory (Miller,

1977) and assuming standard capital market frictions, to select a bank leverage close to 100%, which

is equivalent to a situation where equity capital does not represent a restriction on a bank’s total

asset size. This result reconciles with the high bank leverage observed in practice – historically

between 87% and 95% in US banks (Gornall and Strebulaev, 2013). Table 1 shows that, globally,

loans make up more than 70% of banks’ total assets and banks typically have a leverage ratio of

approximately 80%. Introducing funding constraints on the bank, such as debt covenants, causes

the optimal bank leverage to drop relative to the unconstrained optimum. Note that our model does

not include properties of regulatory risk based capital requirements commonly applied to banks.

Table 1. Global banks’ lending and leverage

Variable Mean Q1 Median Q3

Loans and debt instruments scaled by total assets:
- Sample 73% 61% 72% 83%
- Weighted by total assets 69%
Bank deposits and other debt scaled by total assets:

- Sample 79% 72% 82% 89%
- Weighted by total assets 82%

Source: SNL Financial, data for 2,347 banks globally, 31 Dec 2014.

If we let the borrower’s leverage approach 1, our bank capital structure results converge to the

results from Leland (1994), in which the bank’s asset value follows a geometric Brownian motion.
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Thus, using a geometric Brownian motion to model a bank’s asset value is the same as assuming

that the bank only makes loans to borrowers with zero equity. The unlikely existence of a bank

that only lends to such high risk borrowers explains why we cannot expect the standard Leland

(1994) results for regular companies to apply to banks.

In our model the bank has one borrower at a time, which allows for a direct and transparent link

between borrower and bank risk. This assumption also implies that any risk reduction from a bank’s

loan portfolio diversification is not explicitly included. However, even with this unrealistically risky

asset we find a high optimal bank leverage. A lower and more realistic asset risk for a portfolio of

loans would lead to an even higher optimal leverage. We do not include the bank’s role as a liquidity

provider as an explanation of their optimal capital structure (DeAngelo and Stulz, 2015). In the

tradition of structural credit risk models, we further disregard any bank/borrower relationship

lending features driven by information asymmetries like covenants or collateral. We exclude any

investments as well as fee generating off balance sheet business, which clearly could be modeled,

as additional components of the bank’s assets, using geometric Brownian motions. The lending

bank’s asset risk is entirely derived from its borrower’s asset risk and leverage, as is natural for a

financial intermediary.

In finite horizon structural credit risk models, starting with Merton (1974), quantities of interest

(probability of default, debt value, etc.) are functions of a fixed future date, T . The economic

interpretation of T is unclear, it could be a date of some large audit, or a date on which the

firm plans to stop operating. In certain contexts, like when analyzing optimal capital structure,

the standard interpretation of T as debt maturity is economically uninteresting because the debt

contracts of solvent borrowers are typically renewed. In contrast, we apply an infinite time horizon

and model all securities as perpetual instruments, cf. the approach of Black and Cox (1976) and

Leland (1994) among others. In these models, default occurs the first time that the debtor’s (bank

or borrower) asset value drops below a default threshold. We measure the riskiness of borrower and

bank assets by their state price of default, which is a primitive security that pays 1 at default (Arrow

and Debreu, 1954). We show that the classical optimal default threshold (Black and Cox, 1976)

and capital structure (Leland, 1994) models can be applied to banks by replacing the standard

geometric Brownian motion based state price of default with the lending bank’s state price of

default.
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We explicitly model the bank’s assets as loans, which is similar to the approaches of Dermine

and Lajeri (2001), Chen, Ju, Mazumdar, and Verma (2006) and Nagel and Purnanandam (2015).

Unlike in the above articles, we model both the borrowers’ and the bank’s assets and liabilities with

an infinite time horizon. Several articles study the reasons for high bank leverage in an infinite

time horizon setting, but, as opposed to our model, use a geometric Brownian motion to model

the bank’s asset value. Harding, Liang, and Ross (2013) add the effects of deposit insurance to

the Leland (1994) setup. Sundaresan and Wang (2014) add a layer of subordinated debt to the

bank’s funding mix to explain the bank’s endogenous choice of leverage. Nagel and Purnanandam

(2015) tackle the unsuitability of the geometric Brownian motion for modeling a bank’s asset value

by using a pool of loans to calculate bank default risk. Gornall and Strebulaev (2013) model the

bank’s and borrower’s capital structure decision as a joint optimization problem. They argue that

high bank leverage is observed because of the low volatility in bank’s assets. This lower volatility

is explained by the bank’s position as senior creditor among the borrower’s liabilities, and also due

to loan portfolio diversification effects.

There is a large literature studying other bank features such as deposit insurance, contingent

capital securities, executive compensation, and regulatory requirements. Dermine and Lajeri (2001)

analyze the cost of deposit insurance by modeling a bank’s assets as one loan, which is a zero coupon

bond with a finite horizon, as is the bank’s own debt. Mjøs and Persson (2010) analyze finite horizon

claims on debt contracts with infinite horizons. Similar to their approach, we value claims using

debt contracts as the underlying asset. Glasserman and Nouri (2012) analyze the case of contingent

capital securities with a capital-ratio trigger and both partial and ongoing conversions. They use a

geometric Brownian motion to model the bank’s asset value. Pennacchi (2010) presents a structural

credit risk model of a bank that issues contingent capital bonds. He uses a jump-diffusion process

to model the returns on the bank’s assets. Our model is general enough to be applied to the analysis

of such bank features, but our focus in this paper is on a bank’s optimal capital structure using

standard static tradeoff theory.

While the discussion of a bank’s capital structure is generally interesting, recent events have

much increased the tension in this discussion. The researchers mentioned above have approached

this discussion quantitatively, while other researchers, like Admati, DeMarzo, Hellwig, and Pflei-

derer (2013), have approached it qualitatively. Most of them agree that banks were too highly

5



leveraged going into the crisis of 2007-2009, but there is no agreement on what the appropriate

level of bank leverage over the business cycle is. We contribute to this literature by quantifying, in

an internally consistent structural framework, the risk of a bank’s default and the effects of different

types of bank debt on a bank shareholders’ capital structure decision.

Our focus is on the optimal capital structure of a lending bank, given the tax benefits of debt

financing and bankruptcy costs, and thus we do not explicitly consider the borrower’s optimal

capital structure. This approach also allows for a study of the sensitivities of a bank’s optimal

leverage to alternative combinations of borrower asset volatility and leverage.

Black and Cox (1976) use the state price of default to value a perpetual debt contract. Leland

(1994) combines the state price of default with tradeoff theory to calculate the optimal capital

structure for a firm. Our approach builds on these models and contains their results as special

cases, when borrower leverage approaches 1. This convergence is not obvious because the bank

asset value process, even in this special case, does not converge to a geometric Brownian motion

(see Figure 2). But the bank state price of default still converges to the geometric Brownian motion

state price of default, which explains why the results coincide (see Proposition 5 and Figure 4).

2 The Model

Our model consists of a bank and its borrowers. A probability space (Ω,F , Q) is given. The set Ω

consists of all the possible states of the world. Here F is a σ-algebra of subsets of Ω and Q is the

equivalent martingale measure. We also impose the standard frictionless, continuous time market

assumptions, see, e.g., Duffie (2001). This assumption implies that all interest rates on debt and

deposits exclude any transaction costs, share of bank fixed costs, or any bank profit, expected to

be included in observed market rates.

2.1 A Borrower

A borrower finances itself through some combination of equity and debt. Its debt is in the form of

a bank loan, which is modeled as a Black and Cox (1976) type perpetual debt contract that pays

a continuous coupon. We disregard taxes and bankruptcy costs at the borrower level, since we are

not optimizing the capital structure of the borrower. Let τ(0) be the time of loan origination.
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Let At be the asset value of the borrower, with time τ(0) value Aτ(0), such that

dAt = rAtdt+ σAtdWt, (1)

where σ is a constant and Wt is a standard Brownian motion under the equivalent martingale

measure Q. Here, r is the constant, continuously compounded, risk-free rate of return. The

borrower borrows B̂ from the bank, such that its leverage at loan origination

L =
B̂

Aτ(0)
, (2)

where 0 < L < 1. The borrower pays a constant continuous coupon rate, c, on its loan.

The borrower will default on its loan when its asset value (At) first hits a threshold Ā. The value

of the loan can be expressed as a function of the borrower’s asset value and the default threshold

as (Black and Cox, 1976)

B(At) =
cB̂

r
−

(
cB̂

r
− Ā

)(
At
Ā

)−γ
, (3)

where

γ =
2r

σ2
> 0

and the bank recovers Ā in the event of default. Expression 3 also includes the value of a risk-free

perpetual coupon stream ( cB̂r ), and the state price of the borrower’s default,
(
At
Ā

)−γ
. The state

price of the borrower’s default (Arrow and Debreu, 1954) is the price of a security that pays 1 in

the event of default by the borrower. The time t price of this security is

Gt =

(
At
Ā

)−γ
. (4)

This Gt process takes values in the interval (0, 1]. Borrower default occurs when the process

hits 1. Using Itô’s lemma on Expression 1, one can show that

dGt
Gt

= rdt− σγdWt, (5)

where Gτ(0) =
(
Aτ(0)

Ā

)−γ
.
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The borrower defaults at time τ(1), where

τ(1) = inf{t ≥ τ(0) : At = Ā} = inf{t ≥ τ(0) : Gt = 1}.

The borrower’s default threshold (Ā) is determined endogenously in our model. The borrower

optimally picks Ā to minimize the value of debt (Expression 3) for a given face value of debt (B̂)

and coupon rate (c). Black and Cox (1976) show that

Ā = ΨB̂, (6)

where

Ψ =
c

r

γ

γ + 1
< 1 (7)

is the factor which the face value of the borrower’s debt is reduced by to obtain the borrower’s

optimal default threshold. With this notation we can write the initial value of the state price of

the borrower’s default (Expression 5) as Gτ(0) = (LΨ)γ = G.

The market value of the loan at origination equals its face value, B(Aτ(0)) = B̂, i.e. the loan is

granted at par. This assumption, combined with Expressions 3 and 6, lets us numerically calculate

the coupon rate (c) paid by the borrower from the equation

c

r

(
1− G

γ + 1

)
= 1. (8)

Observe that G depends on c through Ψ.

2.2 The Bank

The bank’s only assets are loans and its time 0 asset value is B. We postpone the introduction

of capital market frictions at the bank level, until we optimize its capital structure in Section 3.

The bank only lends to one borrower, of the type described in Section 2.1, at a time. When this

borrower defaults, the recovered amount is lent to the next borrower. All borrowers have the same

constant volatility (σ) and the same initial leverage (L), when their loan is granted. The first loan

originates at time τ(0) = 0 and the sequence of borrowers is indexed by j ≥ 1. The loan pays a
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continuous coupon stream of cB̂j until borrower j defaults, where B̂j is the face amount of the

loan to borrower j. Upon default by borrower j, the bank reinvests the recovered amount (Āj)

in a new loan to borrower j + 1, which means that the face value of the new loan (B̂j+1) equals

the amount recovered from the old loan. We disregard bankruptcy costs in the recovery/relending

process. Since the bank selects borrowers with the same risk characteristics (σ, L), both B̂j and

Āj are deterministic sequences in j. We can express the loan amount to borrower j + 1 in terms of

the bank’s initial asset value (B) and number of defaults (j) as

B̂j+1 = Āj = BΨj , (9)

where B̂1 = B.

The relation between the bank and borrower at time t is shown in Table 2. This is similar to

the approach of Dermine and Lajeri (2001). Equity is conventionally valued as a residual claim on

assets after debt is serviced.

Table 2. Relation between bank and borrower at time t, in Section 2.2. The borrower’s
asset’s value Ajt evolves according to Expression 1. The value of the borrower’s loan Dj

t is calculated
by Expression 3. This loan is also the bank’s only asset, whose value is denoted Bt. The bank’s
debt is denoted Dt(B) and its value is calculated in Section 2.2.2. Equity is valued as a residual
claim on assets after debt is serviced.

Borrower j balance sheet

Ajt Dj
t = B(Ajt )

Ejt = Ajt −D
j
t

Ajt Ajt

Bank balance sheet

Bt = Dj
t Dt(B)

Et(B) = Bt −Dt(B)

Bt Bt

2.2.1 The bank’s asset value process. Since the bank’s assets, at any point in time, consist

of only one loan, its asset value must be equal to the value of that loan. While the first borrower

is solvent, t < τ(1), the bank’s assets can be valued using Expression 3 as

Bt = B(At)

=
cB̂1

r
−

(
cB̂1

r
− Ā

)(
At
Ā

)−γ
.
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Using Expressions 4 and 6 we get

Bt =
cB̂1

r

(
1− Gt

γ + 1

)
. (10)

To obtain a general expression for the bank’s asset value process, valid for any time and borrower,

we need expressions for the face value of the loan outstanding at time t and the state price of default

of the borrower at time t. For this we consider the arithmetic Brownian motion Yt, whose dynamics

are

dYt = νdt− dWt, (11)

where

Y0 = 0.

Here

ν =
r

σγ
− σγ

2

and

d =
1

σγ
log

(
1

G

)
.

The constant d is the borrower’s normalized distance to default (Merton, 1974), at loan origination.

In particular, log
(

1
G

)
is a measure of the distance to default in terms of the borrower’s state price

of default, and σγ, the volatility of the G process, is the normalization factor. Observe that Gt in

Expression 4 can be written as Gt = GeσγYt , which means that Yt determines the dynamics of Gt.

Define

ηt = sup
0≤s≤t

Ys. (12)

The number of borrower defaults Nt up to time t is calculated from ηt as

Nt = bηt/dc,

where bxc is the integer part of x ∈ R+.
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All the information we need to calculate the value of the bank’s assets (Bt) is contained in Yt

and its functional, ηt, as well as the constant borrower’s asset volatility and leverage (σ, L) and the

constant risk-free rate (r).

Proposition 1. The state price of default of the borrower at time t, Πt can be expressed in terms

of Yt and Nt as

Πt = Geσγ(Yt−Ntd).

Proposition 2. The time t value of the bank’s assets is

Bt =
c

r
BΨNt

(
1− Πt

γ + 1

)
. (13)

Note that Expression 13 has the same structure as Expression 10. The face value of the loan

to the borrower at time t is BΨNt .

Figure 1 shows a simulated path of how the arithmetic Brownian motion Yt and its running

maximum ηt might evolve over time, and how they drive the bank’s asset value process (Bt) through

the borrowers’ state price of default (Πt). Panel 1 shows one realization of Yt (Expression 11) and

ηt, both scaled by the borrower’s normalized distance to default, d. Defaults occur every time ηt

goes up one normalized distance to borrower default. This realization of the process contains two

borrower defaults. Each default results in a new loan being granted by the bank, which causes the

borrower’s state price of default, Πt, to reset to G. This effect can be seen in Panel 2 of Figure 1.

Panel 3 of Figure 1 shows how the bank’s asset value process, Bt (Expression 10), evolves in this

scenario. This panel also shows the evolution of a geometric Brownian motion (St) using the same

input parameters and innovations as Yt. We see that our bank’s asset value process (Bt) doesn’t

achieve the same extremes in value as the geometric Brownian motion (St), even at the high amount

of borrower leverage (75%) that we use in this example.

Figure 2 shows the simulated probability density function of ST , which has a log-normal distri-

bution, and BT for a defined set of parameters, at a fixed future time T=4. One can see that the

value of the bank’s assets (BT ) does not have a log-normal distribution and is capped, unlike the

value of the log-normally distributed asset (ST ). One can also see that the lower the borrower’s

leverage (L) the lower the dispersion of potential outcomes for the bank’s asset value process. For
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the lowest borrower leverage (L = 25%) it is very likely that there will be no defaults within this

4 year window. As borrower leverage increases (L = 50%, 75%) the likelihood of default in the 4

year window increases, which can be seen in the multiple modes of the corresponding distributions.

When we let borrower leverage approach 1 (L = 99.9999%) the distribution of possible outcomes

becomes smoother and more dispersed, relative to the outcomes in the lower borrower leverage

cases. Increased leverage smoothens the left side of the distribution because defaults are more

frequent. However, the distribution of the high leverage outcome is not log-normal and the value

of the loan to the high leverage borrower is still capped.

2.2.2 The bank’s debt. We also model the bank’s debt as Black and Cox (1976) type perpetual

debt that pays a continuous coupon. Like the borrower, the bank defaults on its debt the first time

the value of its assets (Bt) crosses some arbitrary threshold B̄(< B). The bank defaults at time

τB̄ = inf{t ≥ 0 : Bt = B̄}.

We define

mt = inf
0≤s≤t

Bs

as the minimum value of the bank’s assets up to time t.

The distribution of the bank’s default time can then be expressed in terms of the distribution

of the minimum value process as

Q(τB̄ < t) = Q(mt < B̄). (14)

The following proposition shows that the above probability can also be expressed in terms of ηt

in Expression 12, the supremum of an arithmetic Brownian motion, for which the probability

distribution is known (see e.g. Harrison, 1985).

Proposition 3. Q(mt < B̄) = Q(ηt > nB̄ · d).

Here,

nB̄ = MB̄ +

1−
log
[
(γ + 1)

(
1− r

c
B̄

BΨMB̄

)]
logG

 , (15)
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Figure 1.
One realization of the Yt process and its effect, through the borrowers’ state price of
default Πt, on the bank’s asset value process Bt. For contrast, the lowest panel includes
a geometric Brownian motion, St, which is subjected to the same innovations as Yt.
T = 4, σ = 30%, L = 75%, r = 2%, S0 = B0 = 100. The vertical, grey, dotted lines show borrower
defaults.
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Simulated probability density function of ST (log-normal distribution) and BT (for
different levels of borrower leverage, L). T = 4, σ = 30%, r = 2%, S0 = B0 = 100.

where

MB̄ = max{n : BΨn > B̄} =

⌊
log B̄ − logB

log Ψ

⌋
.

Also, MB̄ is the maximum number of borrower defaults that the bank can endure before it defaults.

The bank defaults when its asset value falls below the threshold B̄, and nB̄ can be interpreted as

the bank’s distance to default measured in number of sequential borrower defaults. Note that

nB̄ is an invertible function of B̄, that is for a given number of borrower defaults n, the bank’s

default threshold B̄ can be expressed as a function of n. An example of this calculation can be

seen in Figure 3. The figure shows that the frequency of borrower defaults is increasing in borrower

leverage. It also shows that nB̄, the number of borrower defaults before the bank defaults, is falling

in the bank’s own default threshold, B̄.

The distribution of ηt is known, which implies that τB̄ has an inverse Gaussian (IG) distribution

(Schrödinger, 1915),

τB̄ ∼ IG

(
nB̄ · d
ν

, (nB̄ · d)2

)
,
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where IG(µ, λ) indicates an inverse Gaussian distribution with mean µ and shape parameter λ.

This formulation allows us to calculate the state price of the bank’s default in the following

proposition.

Proposition 4. The time 0 value of the state price of the bank’s default is

ΠB̄ = GnB̄ .

An example can be seen in Figure 4 for various levels of bank leverage. The following proposition

states that, as borrower leverage approaches one, the state price of the bank’s default converges to

the standard state price of default from using a geometric Brownian motion to model the bank’s

asset value.

Proposition 5.

lim
L↗1

ΠB̄ =

(
B

B̄

)−γ
.
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Figure 4.
State price of the bank’s default at various bank and borrower leverage (L) levels, as
well as assuming that the bank’s asset value follows a geometric Brownian motion. r
= 2%. σ = 30%.
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2.2.3 Optimal bank default threshold for a given amount of bank leverage. Assume

that the perpetual debt issued by the bank has a face value of F , on which the bank pays a

continuous interest of i. The bank’s shareholders maximize their time 0 equity value E(B) by

solving the following

E(B) = sup
τ

E
[∫ τ

0
(cBΨNt − iF )e−rtdt

]
. (16)

This problem has been studied extensively when the firm’s operating cash flow follows a geometric

Brownian motion (Duffie and Lando, 2001). The solution to this problem is given in the following

proposition. We first define n∗ = min{j ≥ 1 : cBΨj < iF} with solution

n∗ =

⌈
log(iF )− log(cB)

log Ψ

⌉
, (17)

where dxe is the integer part of x+ 1, where x ∈ R+.

The bank’s cash inflows are stepwise decreasing in time, as the loan to each new borrower

is smaller than the loan to the previous, defaulted, borrower. After n∗ borrower defaults, the

bank’s interest income falls below its fixed interest expense. Denote the optimal stopping time in

Problem 16 as τB̄∗ and the default time of borrower j as τ(j) (See Appendix A).

Proposition 6. The solution to Problem 16 is

τB̄∗ = τ(n∗),

where τ(j) is defined in Expression 35 and n∗ is defined in Expression 17 and

E(B) = B −
{
iF

r
−
(
iF

r
− B̄∗

)
Gn
∗
}

This result implies that the bank optimally defaults at the same time as borrower number n∗.

The bank’s optimal default threshold is

B̄∗ = BΨn∗ . (18)
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The time 0 value of the bank’s own debt is residually calculated as D(B) = B − E(B), or

D(B) =
iF

r
−
(
iF

r
− B̄∗

)
Gn
∗
. (19)

Expression 19 and Expression 3 (the time 0 value of the borrower’s debt) only differ in that the

bank’s state price of default replaces the borrower’s state price of default. If the debt is issued at

par, that is D(B) = F , then one could numerically solve for the continuous interest rate paid by

the bank on its debt as

i = r

1− (GΨ)n
∗

LB

1−Gn∗

 , (20)

where

LB =
F

B

is the initial leverage at the bank. Note that n∗ is a function of i and LB in Expression 20. It can

be shown that i is bounded below by r and bounded above1 by c. Figure 5 shows an example of

how the bank’s cost of debt varies with its leverage and borrower type, as defined by their leverage.

It illustrates that the cost of debt, i, for a fully levered bank equals the borrower’s interest cost, c.

3 The optimal capital structure of a bank in the presence of capital

market frictions

We now derive the optimal capital structure for a bank whose shareholders are free to maximize

their equity value in the presence of standard capital market frictions. We use the tradeoff theory of

optimal capital structure, which balances the tax benefit of debt against bankruptcy costs. In this

section, we disregard bank regulation, deposit insurance, and any other bank specific institutional

limitations on the bank’s capital structure. Following Modigliani and Miller (1958), the capital

structure of a firm is irrelevant in the absence of frictions like taxes and bankruptcy costs. We use

the framework from Leland (1994) in this section, but let the value of the bank’s assets follow the

process in Expression 13 rather than a geometric Brownian motion. The bank’s optimal capital

1Observe that c = r
c
r

(1−G)

1−G = r 1−GΨ
1−G > r

1− (GΨ)n
∗

LB

1−Gn∗ = i. The second equality follows from the par condition (8),
see e.g. the proof of Proposition 6.
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Figure 5.
Interest paid by the bank for various values of its initial leverage, by different levels of
borrower leverage (L). Borrower σ = 30%. c(L) is the coupon paid by a borrower with leverage
L.

structure from using a geometric Brownian motion is recovered as a special case in our model, when

we let borrower leverage approach 1.

Assume, as in the previous section, that the perpetual debt issued by the bank has a face value

of F , on which the bank pays a continuous interest of i. Unlike the previous sections, we now

include the standard capital market frictions of taxes at a rate of 0 ≤ θ < 1, and a bankruptcy cost

of 0 ≤ α < 1. The bank now gets a tax deduction on interest payments equal to θiF and the lenders

to the bank face a bankruptcy cost αB̄, where B̄ is the bank’s default threshold. We assume no

bankruptcy costs for borrowers and that the bank receives cBΨNt as an after tax interest income

at time t.

For some bank default threshold B̄ with corresponding number of borrower defaults nB̄, where

B̄ = BΨnB̄ , the time 0 value of the tax benefit for the bank from debt financing is

TB(nB̄) =
θiF

r
(1−GnB̄ ) .
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Similarly, we can write the time 0 value of the bankruptcy cost incurred by the bank’s creditors as

BC(nB̄) = αB̄GnB̄ = αB(ΨG)nB̄ .

The total time 0 enterprise value of the bank is the sum of its asset value and the tradeoff value,

which is defined as the difference between the tax benefit and bankruptcy cost,

V (nB̄) = B + TO(nB̄),

where

TO(nB̄) = TB(nB̄)−BC(nB̄) =
θiF

r
(1−GnB̄ )− αB(ΨG)nB̄ . (21)

3.1 Optimal bank default threshold for a given amount of bank leverage

The bank’s shareholders maximize their time 0 equity value Ef (B) by solving

Ef (B) = sup
τ

E
[∫ τ

0
(cBΨNt − (1− θ)iF )e−rtdt

]
. (22)

The subscript f indicates the presence of frictions. The solution to this problem is given in the

following proposition. We first define n∗f = min{j ≥ 1 : cBΨj < (1− θ)iF} with solution

n∗f =

⌈
log[(1− θ)iF ]− log(cB)

log Ψ

⌉
. (23)

Denote the optimal stopping time in Problem 22 as τB̄∗f
.

Proposition 7. The solution to Problem 22 is

τB̄∗f
= τ(n∗f ),

where τ(j) is defined in Expression 35 and n∗f is defined in Expression 23, and

Ef (B) = B −
{

(1− θ)iF
r

−
(

(1− θ)iF
r

− B̄∗f

)
Gn
∗
f

}
,

where B̄∗f = BΨn∗f .
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Note that, by the definition of n∗f , this solution is valid for cBΨn∗f < (1− θ)iF ≤ cBΨn∗f−1.

The time 0 value of the bank’s payments to its creditors, before any tax effects, is

iF

r
−
(
iF

r
− B̄∗f

)
Gn
∗
f . (24)

The time 0 value of the bank’s tax deductions on interest payments is

TB(n∗f ) =
θiF

r

(
1−Gn

∗
f

)
,

which makes the net time 0 value of the bank’s debt liability adjusted for the tax benefit equal to

Df (B) =
(1− θ)iF

r
−
(

(1− θ)iF
r

− B̄∗f

)
Gn
∗
f , (25)

which is also equal to B − Ef (B) (See Proposition 7).

The bank’s creditors receive the payments whose value is given in Expression 24. But they also,

in the event of the bank’s default, pay the bankruptcy cost αB̄∗f , which reduces the value of their

claim. From their perspective the time 0 value of the loan to the bank, before any tax effects for

them, is

Dc
f (B) =

iF

r
−
(
iF

r
− (1− α)B̄∗f

)
Gn
∗
f . (26)

3.2 Optimal capital structure

The equity-maximizing default threshold for an unrestricted bank with a given capital structure is

given in Proposition 7. We now solve for the capital structure that maximizes the enterprise value of

the bank, which also maximizes its equity value. The enterprise value of the bank can be maximized

by maximizing the tradeoff between the tax benefit of debt financing and the bankruptcy cost of

default. As a reminder, this tradeoff is

TO(nB̄) =
θiF

r
(1−GnB̄ )− αB(ΨG)nB̄ .

We know from the optimization problem in Section 3.1 that the optimal nB̄ is an integer. That is,

the bank defaults exactly when its last borrower defaults. We also know that the possible range of
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iF is given by cBΨn∗f < (1− θ)iF ≤ cBΨn∗f−1 at the optimum. For a given n∗f the tradeoff benefit

(TO) is increasing in iF . In order to maximize TO we set iF to its maximum possible value

(iF )∗ =
cBΨn∗f−1

1− θ
. (27)

The optimal number of borrower defaults belongs to the set of natural numbers (n∗ ∈ N), which

makes the optimization a discrete problem. We address this problem by treating the number of

borrower defaults as if it is continuous (nB̄ ∈ R+), and then testing the objective function at the

integers above and below the solution from the continuous optimization. To represent the tradeoff

as a function of the number of borrower defaults we say

TO(nB̄) =
θ

r

[
cBΨ(nB̄−1)

(1− θ)

]
(1−GnB̄ )− αB(ΨG)nB̄ .

Proposition 8. Maximizing this tradeoff with respect to nB̄ gives the integer optimal number of

borrower defaults

1 ≤ n∗ =


bn∗B̄c if TO(bn∗B̄c) > TO(dn∗B̄e)

dn∗B̄e otherwise

where

n∗B̄ =

log

[
log Ψ(

r(1−θ)αΨ
θc

+1
)

(log Ψ+logG)

]
logG

. (28)

The optimal cash flow for the bank to dedicate to debt service is

(iF )∗ =
cBΨn∗−1

(1− θ)
, (29)

which makes the optimum value of the bank’s debt

D(B)∗ =
(iF )∗

r
−
(

(iF )∗

r
− (1− α)BΨn∗

)
Gn
∗
, (30)

and the optimum enterprise value of the bank

V (B)∗ = B +
θ(iF )∗

r
(1−Gn∗)− αB(ΨG)n

∗
. (31)

22



3.3 Results

Panel 1 of Figure 6 shows the bank’s optimal leverage, which is almost 1 for most reasonable

borrower risk attributes. It remains high (75%) even for very risky borrowers. Panel 2 of Figure 6

shows the maximum tradeoff benefit, as a percentage of unlevered bank asset value, which can be

extracted by a bank that makes loans to sequential borrowers with constant risk attributes (σ, L).

It is shown that the benefit is decreasing in both dimensions of risk, since both the probability

of default and the expected bankruptcy cost are increasing in risk. Panel 3 of Figure 6 shows

the optimal number of borrower defaults after which the bank will default. One can see that for

a borrower leverage below approximately 70% the bank defaults at exactly the same time as its

first borrower. Figure 7 shows a slice from Panel 1 of Figure 6 for very high borrower leverage

(L = 99.9999%), and compares the optimal bank leverage from our framework with the optimal

leverage for unprotected debt from the Leland (1994) model. This shows that the Leland (1994)

result is contained in our framework when the borrower leverage approaches 1.

4 The optimal capital structure of a bank that issues protected

debt

As in Leland (1994), we introduce an assumption that the bank’s debt is protected by a covenant

that sets the default threshold equal to the face value of the bank’s debt. The bank’s debt would be

protected e.g. if the bank’s supervisors instruct the bank to raise additional equity capital before

the market value of the bank’s funding falls below its face value. We maintain the capital market

frictions from Section 3. If this protected debt is issued at par then its value is

F =
iF

r
−
(
iF

r
− (1− α)F

)
GnF ,

where nF is the distance to the bank’s default threshold (F ) measured in number of borrower

defaults. The right hand side of the above expression equals Expression 26 if B̄∗f = F and n∗f = nF .
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Figure 6.
Optimal bank leverage, tradeoff benefit and number of borrower defaults assuming un-
protected bank debt for different borrower sequences defined by volatility and leverage.
α = 5%. θ = 35%. r = 2%.
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We can calculate the interest rate2 that the bank pays on this debt as

i =
r

1−GnF
[1− (1− α)GnF ] . (32)

From Expression 32, we see that the bank’s protected debt is risk free if there is no bankruptcy

cost (α = 0). The bankruptcy cost α is the only source of default loss for the bank’s creditors.

4.1 Optimal default threshold

Unlike the case of unprotected bank debt, there is no possibility for the bank’s shareholders to

maximize the value of their claim by picking the optimum default threshold, for a given capital

structure. The default threshold is exogenously determined by the protective covenant and the

existing capital structure. The existing capital structure, however, can be optimized to produce

the maximum enterprise value for the bank, which indirectly maximizes the value of the bank’s

equity.

2Note that r ≤ i ≤ r
1−GnF when α = 0.
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4.2 Optimal capital structure

From Expression 32 and Proposition 3, both the interest rate paid by the bank i and the bank’s

default threshold F can be expressed as functions of some number of borrower defaults n. Using

these functional forms of i and F in the tradeoff value, Expression 21, we get

TO(n) =
θ

r
i(n)F (n)(1−Gn)− αF (n)Gn

= F (n)[Gn(αθ − α− θ) + θ] (33)

Observe that n is not necessarily an integer in this case since the bank’s default event may be

triggered before a borrower default event, depending on the market value of the bank’s assets.

Proposition 9. Maximizing the tradeoff with respect to n gives the optimum

0 ≤ n∗ =


n∗1 if TO(n∗1) > TO(n∗2)

n∗2 otherwise,

where

n∗1 = bxc+ {x}/2

n∗2 = (bxc − 1) + ({x}+ 1)/2,

and

x =
log
[

−θ
(γ+1)(αθ−α−θ)

]
logG

+ 1. (34)

4.3 Results

Panel 1 of Figure 8 shows the optimal bank leverage in this scenario, which is lower than its

unprotected debt counterpart. Panel 2 of Figure 8 shows the maximum tradeoff benefit that the

bank can extract when its debt is protected by covenant. This benefit is a lot lower than in the case

of unprotected debt because bank default is more likely to occur now, which reduces the expected

tax benefit and increases the expected bankruptcy cost. Panel 3 of Figure 8 shows the optimal

number of borrower defaults after which the bank will default. Figure 9 shows the slice from
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Panel 1 of Figure 8 for borrower leverage very close to 1, and compares our result with that from

Leland (1994). The results are the same when there is no bankruptcy cost (α = 0). We use this

setting because Leland (1994) only includes a closed-form solution for protected debt when there

is no bankruptcy cost. We also include the result from our framework for high borrower leverage

and a bankruptcy cost of 5%, to show the large effect of this cost in the case of protected debt.

Comparing these results to the results from the unprotected debt case (Section 3), the optimal bank

leverage is much lower for any combination of borrower asset volatility and leverage. In addition,

the sensitivity of the optimal leverage to borrower asset volatility is much higher for protected debt

in the presence of bankruptcy costs.

5 Conclusion

Banks are highly leveraged relative to other types of firms. Gornall and Strebulaev (2013) estimate

the average leverage of U.S. banks in the range of 87%-95% over the last 80 years. This empirical fact

has drawn many financial researchers to offer potential explanations. Many of these explanations

focus on how the government’s regulation of the banking sector introduces distortions, like the

moral hazard from having an implicit government guarantee. Such a distortion would induce the

bank’s shareholders to choose a higher leverage for the bank, as the bank would pay a lower cost

for its debt relative to the risk in its assets. We model the risk in a bank’s assets anew, by treating

the bank as a pure lender, offering asset backed loans, and valuing its assets as such. In the

unconstrained scenario, our results show that it is optimal for the bank’s shareholders to leverage

the bank close to 100% even in the absence of regulatory distortions. The result is driven by the

lower risk, as measured by the state price of default, in the bank’s asset value process relative to a

geometric Brownian motion based asset value process. Even though the bank’s shareholders pay a

fair cost for their debt, they find it optimal to select a bank leverage close to 100%.

Although our model doesn’t explicitly capture the benefits of diversification in a bank’s loan

portfolio, simulation results show that this benefit could be represented by using a lower borrower

asset volatility. Our result for the bank’s optimal leverage is discontinuous at certain points on the

borrower volatility/leverage plane, but this is due to the discontinuous changes in the bank’s interest

income, due to borrower defaults. In the absence of regulatory intervention, the bank continues to
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Figure 8.
Optimal bank leverage, tradeoff benefit and number of borrower defaults for different
borrower sequences defined by volatility and leverage. α = 5%. θ = 35%. r = 2%.

28



Borrower asset volatility
0 0.2 0.4 0.6 0.8 1

O
pt

im
al

 b
an

k 
le

ve
ra

ge

0

0.2

0.4

0.6

0.8
Protected Debt

AMP(,=0)
Leland(,=0)
AMP(,=5%)

Figure 9.
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service its debt as long as it has the cash flow to do so. Multiple researchers (Dermine and Lajeri,

2001; Chen et al., 2006; Nagel and Purnanandam, 2015) share the idea that a bank’s assets should

not be modeled as a standard geometric Brownian motion. Our model is different in the following

ways. First, we build the bank’s asset value process on standard (Black and Cox, 1976) blocks.

Second, we explicitly add borrower leverage as a dimension of risk for the bank. Third, our results

converge to those from Black and Cox (1976) and Leland (1994) as we allow borrower leverage

to approach 1, which connects us with the established literature on structural credit models and

optimal capital structure for regular firms. Last, we model all assets and liabilities as perpetual

instruments, and thus avoid having to interpret the meaning of an arbitrary event horizon. After

all, most firms don’t cease to be at time T .
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Appendix

A Proof of Proposition 3

We generalize the single borrower default time τ(1) described in Section 2.1 to the default time of

any borrower j as

τ(j) = inf{t > τ(j − 1) : Ajt = Āj}, j ≥ 1. (35)

Here,

dAjt = rAjtdt+ σAjtdWt,

and, extending Expression 2, Ajτ(j−1) = BΨj−1

L .

The value of the bank’s assets, Bt, is time continuous. If τ(Nt) is the time of default number

Nt, then

lim
t↗τ(Nt)

Bt = lim
Πt→1

c

r
BΨNt

(
1− Πt

γ + 1

)
= BΨNt+1

and, from the par condition (8),

lim
t↘τ(Nt)

Bt = lim
Πt→G

c

r
BΨNt+1

(
1− Πt

γ + 1

)
= BΨNt+1.

The bank’s asset value is at its lowest level, to that point, when one of its borrowers defaults. So,

Bs = ms ∀ s ∈ {τ(j)},

where τ(j) is the default time of borrower number j.

From Propositions 1 and 2 we know that

Bt =
c

r
BΨNt

(
1− Geσγ(Yt−Nt·d)

γ + 1

)
. (36)

The bank’s defaults the first time that its asset value (Bt) touches the default threshold (B̄ < B).

The bank’s default time is defined as

τB̄ = inf{t ≥ 0 : Bt = B̄}. (37)
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Since MB̄ is the maximum number of defaults that the bank can endure without its asset value

falling below the default threshold B̄,

mτ(MB̄) = BΨMB̄ >B̄ ≥ BΨMB̄+1 = mτ(MB̄+1)

=⇒ τ(MB̄) <τB̄ ≤ τ(MB̄ + 1),

where τ(MB̄) is the time at which borrower number MB̄ defaults. We rearrange Expression 36 for

t ∈ [τ(MB̄), τ(MB̄ + 1)) to get

Bt =
c

r
BΨMB̄

(
1− Geσγ(Yt−MB̄ ·d)

γ + 1

)
. (38)

Combining Expressions 37 and 38 yields

τB̄ = inf{t ≥ 0 : Bt = B̄} = inf{t ≥ 0 : Yt = d · nB̄}, (39)

where nB̄ is given in Expression 15. Here, nB̄ can be considered the bank’s distance to default

measured in number of borrower defaults. Observe that

bnB̄c = MB̄ (40)

is the integer part of nB̄, and

{nB̄} = 1−
log
[
(γ + 1)

(
1− r

c
B̄

BΨbnB̄c

)]
logG

(41)

is the fractional part of nB̄. So, trivially,

nB̄ = bnB̄c+ {nB̄}.

Expression 39 implies that

Q(mt < B̄) = Q(τB̄ < t) = Q(ηt > nB̄ · d).
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B Proof of Proposition 4

Since Yt is an arithmetic Brownian motion with drift ν, τB̄ has an inverse gaussian distribution

that can be parameterized as

τB̄ ∼ IG (µ, λ) .

where

µ =
nB̄ · d
ν

, and

λ = (nB̄ · d)2.

The bank’s state price of default (ΠB̄) is the expected discount factor at the time of default τB̄.

ΠB̄ = E[e−rτB̄ ] =

∫ ∞
0

e−rtdFτB̄ (t),

which is the Laplace transform of the probability density function of τB̄, where s = r. Applying

the Laplace transform (Seshadri, 1993) gives us

ΠB̄ = exp

[
λ

µ

{
1−

√
1 +

2µ2r

λ

}]

= exp

[
nB̄ · d · ν

{
1−

√
1 +

2r

ν2

}]
(42)

We calculate the state price of default for a borrower (2.1) by a similar method. The borrower’s

asset value process (Expression 1) can be represented as

At = A0eσZt ,

where Zt is the arithmetic Brownian motion (Z0 = 0)

dZt = ξdt+ dWt,
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where

ξ =
r

σ
− σ

2
=
σγ

2
− r

σγ
= −ν.

The borrower defaults the first time the process Zt passes through the point

1

σ
log

(
Ā

A0

)
=

1

σ
log (LΨ) = − 1

σγ
log

(
1

G

)
= −d.

This implies that the borrower’s default time

τ(1) ∼ IG

(
d

ν
, d2

)
,

which makes the borrower’s state price of default, as the expected discount factor at the time of

default,

G = exp

[
d · ν

{
1−

√
1 +

2r

ν2

}]
. (43)

Combining Expressions 42 and 43 gives us the result

ΠB̄ = GnB̄ .

Black and Cox (1976) derived the result G = (LΨ)γ using the calculus of variations, while we

use the properties of an arithmetic Brownian motion to derive Expression 43. Both results are

equivalent.

C Proof of Proposition 6

Recall that n∗ = min{j ≥ 1 : cBΨj < iF}. We want to solve

sup
τ

E
[∫ τ

0
(cBΨNt − iF )e−rtdt

]

= sup
τ

E


∫ τ(n∗)

0
(cBΨNt − iF )e−rtdt+

∫ τ

τ(n∗)
(cBΨNt − iF )e−rtdt︸ ︷︷ ︸

< 0 by definition of n∗


=⇒ τ∗ = τB̄∗ = τ(n∗)
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The initial value of the bank’s equity is the maximum value of the objective function in the above

optimization.

E(B) = E

[∫ τ(n∗)

0
(cBΨNt − iF )e−rtdt

]

= E

 n∗∑
j=1

{
(cBΨj−1 − iF )

∫ τ(j)

τ(j−1)
e−rtdt

}
=

n∗∑
j=1

(cBΨj−1 − iF ) Gj−1 1−G
r︸ ︷︷ ︸

Since E[e−rτ(j)]=Gj

= B[1− (ΨG)n
∗
]− iF

r
(1−Gn∗)

= B − B̄∗Gn∗ − iF

r
(1−Gn∗)

= B −
{
iF

r
−
(
iF

r
− B̄∗

)
Gn
∗
}

D Proof of Proposition 8

We derive Expression 28 in this section. We begin with the tradeoff value

TO(nB̄) =
θ

r

[
cBΨ(nB̄−1)

(1− θ)

]
(1−GnB̄ )− αB(ΨG)nB̄ .

Differentiating this value with respect to nB̄ and setting the result equal to zero gives us

dTO

dnB̄
=
θ

r

[
cBΨ(nB̄−1)

(1− θ)

]
[log Ψ−GnB̄ (log Ψ + logG)]− αB(ΨG)nB̄ (log Ψ + logG) = 0

=⇒ log Ψ

Gn
∗
B̄

=

(
r(1− θ)αΨ

θc
+ 1

)
(log Ψ + logG)

=⇒ n∗B̄ =

log

[
log Ψ(

r(1−θ)αΨ
θc

+1
)

(log Ψ+logG)

]
logG

.

E Proof of Proposition 9

TO(n) = F (n)[Gn(αθ − α− θ) + θ]
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Differentiating this value with respect to n and setting the result equal to zero gives us

dTO

dn
= F (n) [(αθ − α− θ)Gn logG] + [Gn(αθ − α− θ) + θ]

d

dn
F (n) = 0,

which implies that

c

r
BΨbnc

(
1− G1−{n}

γ + 1

)
[(αθ − α− θ)Gn logG] = − [Gn(αθ − α− θ) + θ] logG

c

r

BΨbnc

γ + 1
G1−{n}

Gn(αθ − α− θ) = −G
1−{n}

γ + 1
θ

Gn+{n}−1 = − θ

(γ + 1)(αθ − α− θ)

n+ {n} = bnc+ 2{n} =
log
[
− θ

(γ+1)(αθ−α−θ)

]
logG

= x,

which has two possible solutions

n∗1 = bxc+ {x}/2, or

n∗2 = (bxc − 1) + ({x}+ 1)/2.
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