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Abstract

As renewable energy depends on meteorological shocks and is non-controllable, the
overall energy production becomes riskier with the rising renewable share. Although
this has led to a renewed interest in storage technologies, not much consideration has
been given to energy storage due to precautionary motives. In our study, we look at to
what extent a convex marginal utility (prudence) and a convex marginal cost (frugality)
can spur precautionary energy storage. We set up a simple theoretical model of energy
consumption and production with intermittent renewable sources, dispatchable systems,
and energy storage. First, we characterize the optimum and demonstrate how prudence
and frugality can lead to higher levels of energy storage. By applying our findings to
perfectly competitive markets, we further show that prudence and frugality increase the
market energy price through higher demand for energy storage and decrease price
volatility. Our analysis can have implications for inventory decisions in various other
industries where firms face capacity constraints and are exposed to production risks.
Keywords: Precautionary energy storage; Intermittency; Renewable energy; Fossil fuel
energy; Prudence; Frugality; Rational Expectations Equilibrium
JEL codes: D24, D41, D81, D84, Q41,Q42

1 Introduction

In light of the agreement reached at 2015 Paris Climate Conference (COP21), which
requires countries to limit their emissions to keep the global temperature rise well below
2◦C, the renewable share of energy generation is expected rise considerably in the years to
come. As renewable energy (RE) is inherently variable and uncertain, however, the overall
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energy production becomes riskier with the rising renewable share. A number of strategies
exist to deal with the challenges posed by intermittent RE generation.1 The use of
dispatchable generation is one example in this regard. It refers to the production of
electricity using steam and internal combustion turbines (e.g., natural gas power plants) to
avoid mismatches between supply and demand. A demand response is another way to
enhance the electrical grid’s resilience and enable a greater use of RE. It relates to the
presence of end-use consumers in electricity markets who can monitor and change their
electricity consumption in response to changes in the electricity price (DOE, 2006).2

One other way of enhancing the reliability of the grid is energy storage. Energy storage
systems absorb energy during periods of excess capacity and release it when the output from
RE is low and dispatchable generation is expensive to balance the power system. Key benefits
include providing balancing services, such as load following, supplying power during brief
disturbances, and serving as substitutes for network transmission and distribution upgrades
(Wang et al., 2012).3 Currently, the cost of electricity storage is high. However, with the
development of better storage systems with larger storage capacities, they may become game
changing technologies.4

When consumers are responsive, and energy generators –in particular, dispatchable
generators– are responsible to match electricity supply with demand, two precautionary
motives can lead to a higher demand for energy storage. One is prudence with respect to
electricity consumption, which is formally equivalent to a positive third derivative of the
utility function. The other is frugality, which is formally equivalent to a convex marginal
cost of dispatchable generation. We refer to the property of a convex marginal cost function
as frugality, since, in the presence of uncertainty, it endows a cost minimizing producer with
the same motivations as that of a prudent consumer. In Section 2, we will motivate the
properties of prudence and frugality and give a first intuition as to why they encourage
energy storage.

In this study, we show how prudence and frugality drive precautionary energy storage.
We first look at a social planner’s problem and examine how storage decisions are
influenced in the presence of a convex marginal utility (prudence) and a convex marginal
cost (frugality). We then turn to a decentralized setting and discuss how current and future
energy prices, the price volatility, and the use of energy systems are influenced by prudence,
frugality, the degree of intermittency and price elasticities. Our results indicate that

1Intermittency means that RE generation depends on meteorological shocks and is non-controllable (Steffen
and Weber, 2013).

2Smart meters and applications that record and display data on energy consumption allow consumers to
access real-time knowledge about prices, be more responsive and thus control their power usage. When active
engagement is not practical, consumers can also have access to smart appliances that can react to prices based
on criteria set by the consumer (Hamilton et al., 2012). With sustained investments, it is projected that the smart
grid will provide a communications network for the energy industry by 2020; that is, a system of interconnected
energy networks similar to the Internet in terms of its provisions for business and personal communications
(RMI, 2014).

3Load following refers to changes in power generation to meet the energy demand; that is, the load.
4The energy storage industry is experiencing strong growth and it is expected that the industry will have a

global net worth of $10.8 billion in 2018 (RMI, 2014).
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prudence and frugality can cause precautionary energy storage. Even in the absence of
prudence, we demonstrate that frugality can still allow for precautionary storage and vice
versa. Furthermore, a higher degree of intermittency can boost energy storage when
prudence, frugality, or both, is present. Higher demand and supply elasticities diminish the
effect of prudence and frugality, respectively, on precautionary energy storage. For a highly
elastic demand, demand response becomes a good substitute for energy storage and in turn
lower the need for precautionary energy storage. When energy supply is more price elastic,
dispatchable generation becomes a better substitute for storing energy.

To the best of our knowledge, our findings with regard to the impact of the precautionary
motives on electricity storage and prices are novel within the energy economics literature.
This is also the first study to look at the effects of the producers’ risk attitudes, that is,
frugality, on precautionary storage. Frugality can have implications for inventory decisions
in various other industries (petroleum, food, transportation, lumber, primary and fabricated
metals and industrial machinery industries to name a few) where firms face capacity
constraints and are exposed to production risks. Therefore, its scope of application is not
limited to the energy market.5

The remainder of the paper is organized as follows. Section 2 motivates the properties of
prudence and frugality and gives a first intuition as to why they encourage energy storage.
Section 3 reviews the related literature. Section 4 presents the model, states the social
planner’s problem and discusses its solution. Section 5 turns to a decentralized setting and
looks at the role of prices in coordinating the energy market in the presence of the
precautionary motives. Section 6 concludes.

2 Motivations for prudence and frugality

Prudence

Let us explain what it means to be prudent in our framework. Consider a consumer with a
(gross) surplus function, U(e), which is increasing, U ′ > 0, and concave, U ′′ < 0, in
electricity consumption, e.6 Suppose that the consumer is exposed to a zero-mean
consumption risk, x̃. The difference between certain and expected surplus is given by

k(e) ≡ U(e)− E[U(e+ x̃)].

5Our model shares similar features with the standard competitive commodity storage models. This is
mainly related to the fact that in this literature the production, that is, the harvest, also depends on weather
conditions and can be stored. Yet, we are not aware of any study that formally demonstrates the implications of
precautionary motives for commodity storage. In this regard, our study has the potential to fill a gap within this
literature.

6We consider a consumer with a quasi-linear utility function over electricity consumption and a numéraire
commodity. Thus, U(e) is the monetary value of utility derived from consuming e kilowatt-hour of electricity.
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Due to the Jensen’s inequality, k(e) is positive if U(e) is concave. In other words, uncertainty
is costly for the consumer when he/she is risk averse.

A consumer is said to be prudent with respect to electricity consumption if the cost of
uncertainty, k(e), decreases as consumption, e, increases. In differential terms, this is
equivalent to k′(e), given by

k′(e) = U ′(e)− E[U ′(e+ x̃)],

being negative, which is ensured by the convexity of the marginal surplus; that is, U ′′′ > 0.
Again, this results from the Jensen’s inequality. As consuming stored energy is one way to
increase e, and thus, to decrease the cost of uncertainty, U ′′′ > 0 –that is, prudence– gives a
prima facie argument for energy storage.

Now let us explicate how the consumption risk can emerge for an electricity consumer.
Experience shows that intermittent RE increases the volatility in the price of electricity
(Jonsson et al., 2010; IPCC, 2012; Ketterer, 2014). Thus, when a consumer is endowed with
an equipment that can inform her about the market price, she will adjust her consumption in
response to changing prices (e.g., use less electricity at times when electricity prices are
high). Nevertheless, the price-taking behavior will also expose her to consumption risk.

Focusing on income lotteries, the evidence for prudence can be found in the
experimental research literature. In line with the prediction of precautionary saving theory,
Noussair et al. (2014) indicate that the majority of individual decisions is consistent with
prudence.7 Crainich et al. (2013) provide theoretical arguments to show that prudence is
more prevalent than risk aversion, as risk lovers can also demonstrate it. This prediction is
shown to hold in Ebert and Wiesen (2014) and Deck and Schlesinger (2014). Accordingly,
prudence may be a more universal trait, which suggests that narrowing down risk
preferences to the second-order may obscure valuable information. There are also empirical
studies such as Chavas and Holt (1996) and Guiso et al. (1996) that support prudence.
Carroll and Samwick (1998) indicate that wealth holdings are positively and significantly
related to income uncertainty.8

Frugality

In this subsection, we shall expound frugality. Consider a producer with an increasing cost
function C(q), where q is the level of production. Suppose that the firm faces a zero-mean
production risk, x̃. Here, x̃ represents the variation in the residual demand that the firm has to
match with its supply. The difference between the expected and the certain cost of production

7Noussair et al. (2014) also argue that the degree of prudence has implications in a wide range of economic
applications such as bargaining, bidding in auctions, rent seeking, discounting, sustainable development and
climate change, and tax compliance.

8Carroll and Kimball (2008) argue that, although there is evidence for prudence, it is measured differently
with different data; that is, the degree of the same motive changes among different data sets.

4



is as follows:

ρ(q) ≡ E[C(q + x̃)]− C(q).

Due to the Jensen’s inequality, the firm is exposed to a penalty of uncertainty when C ′′ >
0 (i.e., the cost function is convex). In other words, increasing marginal cost implies that
uncertainty is costly for the firm: ρ(q) > 0.

A producer is said to be frugal with respect to energy generation if the cost of uncertainty,
ρ(q), increases as production, q, increases. This is equivalent to

ρ′(q) ≡ E[C ′(q + x̃)]− C ′(q)

being positive, for which the convexity of the marginal cost (i.e., C ′′′ > 0) is sufficient. Once
again, this results from the Jensen’s inequality. As using stored energy is one way to decrease
q, and thus, to decrease the cost of uncertainty, C ′′′ > 0 –i.e., frugality– provides a second
prima facie reason for energy storage.

By analyzing production and inventory data, Cecchetti et al. (1997) find evidence
supporting a positive third derivative of the cost function, and note that, from an operational
perspective, a firm is capacity constrained when faced with a convex marginal cost curve.
Indeed, a convex marginal (production) cost curve has a transparent economic
interpretation, which indicates that it becomes increasingly expensive to make large and
positive changes to meet the residual demand.

Now let us explain how the production risk emerges for a fossil fuel power generator.
Variations in energy demand are typically limited and more predictable compared with the
variations in supply (Nyamdash et al., 2010; Hart et al., 2012; Ummels et al., 2007).
However, due to the low operating cost of intermittent RE that leads to its earlier dispatch
(Denholm et al., 2010), the residual load is intermittent. Therefore, after accounting for RE,
a capacity constrained dispatchable generator that has to supply the residual load can incur
high operating costs especially during periods of peak demand and low renewable energy
generation. As a result, a frugal firm will intend to balance its capacity-constrained supply
and the residual load in such a way that it minimizes its expected cost.

3 Related literature

The optimal dispatch of energy and energy storage was addressed earlier in the operations
research literature. In a model of hydroelectric and dispatchable systems, Little (1955) studies
hydroelectric generation under uncertainty. Disregarding fluctuations in energy demand, the
study determines optimal energy dispatch and water storage policies. Borrowing most of his
assumptions from Little (1955), Koopmans (1957) calculates the optimal energy generation
and storage policies in the presence of complete certainty.9 He shows how dispatchable

9Koopmans (1957) argues that the purpose is to develop concepts and tools that will be useful in a systematic
analysis of cases involving uncertainty.
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generation and storage decisions are related to the energy prices and storage rents.

With a few exceptions, however, the economics of pumped-storage hydroelectricity
(PSH) has not attracted many researchers so far. An early work on the economics of PSH is
Jackson (1973) where the motivation to use PSH is due to its ability to meet the varying load
as nuclear power cannot be ramped up and down rapidly. In his analysis, Jackson assumes
that storage is always optimal, and hence, the technology always pumps water to an upper
reservoir. In contrast, Gravelle (1976) shows the conditions under which storage is efficient.
Assuming that demand deterministically varies between off-peak and peak periods, he
shows that storage allows the substitution of less costly off-peak production for highly
valued peak production. In return, peak consumption is substituted for off-peak
consumption. Horsley and Wrobel (2002) build on the framework provided by Koopmans
(1957) and study the optimal operation of existing PSHs and the valuation of energy and
storage rents in the presence of uncertain inflows.

Crampes and Moreaux (2010) build their work on Jackson (1973) and Gravelle (1976).
Unlike Horsley and Wrobel (2002), who assume an exogenously given demand and
perfectly efficient conversion, they investigate the optimal dispatchable generation and PSH
when energy demand varies deterministically between peak and off-peak periods and there
are losses in converting energy. Assuming a merit order in using dispatchable generators,
the study first calculates a frontier that separates storage and no-storage solutions given
technical conditions such as operation cost characteristics and energy losses. The authors
then calculate the socially optimal allocation given consumer preferences. When
dispatchable generation is used to pump water to an upper level reservoir, the welfare losses
corresponding to this off-peak period is compensated by welfare gains in the peak period
when stored water is used. In line with Jackson (1973) and Gravelle (1976), the study then
discusses the implementation of an optimal energy dispatch in competitive markets where
agents are price takers. The calculations show that the peak and off-peak price differential is
reduced when storage is feasible.

The literature on commodity storage has relevant implications for the economics of
energy storage. Wright and Williams (1982, 1984) examine the welfare effects of storage in
a market with stochastic supply and indicate that the welfare effects of storage depend on
the specification of the inverse demand function (that is, the slope and curvature of the
demand curve). The authors introduce a parameter that is analogous to the coefficient of
relative prudence (cf. Kimball, 1990) and argue that agents will pay for a mean-preserving
decrease in the variability of the commodity when relative prudence is bigger than one
(Wright and Williams, 1984; Williams and Wright, 1991). Given the storage and current
production (that is, the amount on hand), the authors derive a storage rule numerically.
Accordingly, when the stored amount is less than a particular threshold, all of the stored
commodity will be consumed, and vice versa. Numerical simulations indicate that storage is
more likely and the marginal propensity to store at the threshold increases when there is a
higher degree of variability in supply (Wright and Williams, 1982).

Regarding the relationship between the degrees of variability in RE and energy storage,
one finds similar results in the operations research and economics literature. Tuohy and
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O’Malley (2011) argue that intermittency increases the benefit driven from the flexibility
offered by PSH and makes energy storage more attractive. Evans et al. (2013) demonstrate
that water storage becomes more welfare-enhancing with higher uncertainty.

It is surely possible to find more studies that associate higher levels of storage to higher
degrees of variation in the RE supply. However, the role that precautionary motives play
is not elaborated upon adequately. Evans et al. (2013) assume a linear demand schedule
(i.e., U ′′ > 0 and U ′′′ = 0) and a convex supply schedule (i.e., C ′′ > 0 and C ′′′ > 0) for
dispatchable generation. As we will show, frugality will lead to precautionary energy storage,
unless capacity constraints are explicitly considered for each dispatchable unit. Evans et al.
(2013) do not address such a relationship. In Bobtcheff (2011), the cost of dispatchable
generation is constant and not subject to any capacity constraints; that is, her model disregards
frugality. She numerically shows that a social planner keeps more water in a reservoir when
faced with higher uncertainty and explains that this action is due to prudence. However, she
does not present a formal analysis.

In our work, we are interested in storage technologies that are more suitable for energy
management applications. These applications have the ability to shift the bulk of energy for
a duration of several hours or more (Denholm et al., 2010), and hence, can insulate the rest
of the power grid from substantial changes in the power supply and demand. One example of
energy management applications is electric energy time shift, which means charging a storage
device when electricity prices are low (e.g., storing excess wind power during periods of low
energy demand) and then discharging the device when electricity prices are high (Lichtner
et al., 2010; Kim et al., 2012). High energy batteries, pumped hydro (the most widely used
form of electrical energy storage), and compressed air energy storage are the technologies for
this type of applications (Denholm et al., 2010).

Although we focus on uncertainty in RE only, we do not neglect variations in demand
and employ a deterministic demand that varies between off-peak (or night) and peak (day)
periods.10 Even though we work with a deterministically varying demand function, it can be
noted that the residual load is intermittent. This is due to the low operating cost of intermittent
RE that leads to its earlier dispatch. After accounting for RE, the net but intermittent load is
met by the peaking power plants or “peakers”.

Our work discusses storage and no-storage solutions and indicates that intermittency can
lead to a higher level of storage when agents are prudent and frugal. The latter is due to the
structure of the energy markets where, after accounting for the RE, the dispatchable
generators supply the residual load. Thus, different than the literature on commodity
storage, the demand for storage not only depends on the curvature of the demand curve but
also on the supply curve.11

10Compared with the variations in supply, the variations in demand tend to be limited and more predictable
(Nyamdash et al., 2010; Hart et al., 2012; Ummels et al., 2007).

11In our study, we could investigate the conditions under which energy storage would increase investments in
RE and the other way around, and analyze how the results would depend on prudence and frugality. Yet, such
an inquiry would require the use of derivatives with orders higher than three. We plan to pursue such issues in
future work.
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By applying our findings to perfectly competitive markets, we show that precautionary
motives can lead to a higher spot market electricity price through higher a demand for
energy storage, and in turn, decrease future price as well as its variability. Furthermore,
while a higher price elasticity of demand decreases the effect of prudence (that is,
consumption adjustment becomes a stronger substitute for stored energy), a higher supply
elasticity diminishes the precautionary storage motive from frugality. This is because the
intermittent residual load can be more easily met by dispatchable systems. We further
demonstrate that a higher degree of intermittency leads to higher level of energy storage.
Lastly, precautionary storage depends positively on the coefficients of relative prudence and
frugality. Thus, in response to the overall energy production risk, energy storage, and
therefore, the spot market electricity price, will increase with higher levels of relative
prudence and frugality.

4 The model

We consider a two-period model. In the initial period the demand for energy is low. Let us
call this the off-peak period. In the final period, we call it the peak period, the demand is high.
Thus, the marginal gross surplus derived from the same level of electricity consumption is
higher in the peak period. Algebraically, this can be shown as U ′(e − ε) ≥ U ′(e) where e is
energy consumption and ε is a positive constant. Let U0(e) ≡ U(e) and U1(e) ≡ U(e − ε)
denote the gross surplus function in the off-peak and on-peak periods, respectively.

Energy can be supplied from dispatchable generation, renewable sources, and energy
storage systems:

qt = yt + zt + st − αst+1,(1)

where qt is total energy supply (t = 0, 1), yt is dispatchable generation, zt is RE, st is the
level of stored energy. For α > 1, 1/α is the round-trip efficiency parameter. It is the ratio
of energy recovered to the initially stored energy.12 Hence, a certain percentage of stored
energy is lost with time.13 We assume that the power grids are smart, that is, the transmission
and distribution systems of electricity are added with digital sensors and remote controls
(Ambec and Crampes, 2012; van de Ven et al., 2013; Evans et al., 2013). This assumption
instantaneously lets the prices adjust, such that the energy supply meets the demand at all
times: et = qt. Thus, there is no overloading of the power grids.

While z0 is observed prior to making decisions in the initial period, z1 is uncertain and
therefore is denoted by z̃1. In the rest of the analysis, we indicate that a variable is random
by placing a tilde over it. Once the RE system is installed, the unit cost of generating RE

12It is possible to assess different types of storage technologies by using different round-trip efficiency
parameters.

13Given various storage technologies with differing round-trip efficiencies, we could consider a unique merit
order of using storage systems. Although, such an assumption would diminish the level of energy storage and
take our model one step closer to reality, it would not affect our key results.
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becomes so low that we consider it as zero (Ambec and Crampes, 2012; Evans et al., 2013;
Førsund and Hjalmarsson, 2011).14 Thus, the renewable system operates at its capacity, z̄.
Yet, as the weather conditions are uncertain, so is the RE generation. Let z̃1 be independently
and identically distributed (i.i.d.) with a commonly known cumulative distribution function,
F (z) and a compact support [0, z̄], and have mean, µ, and variance, σ2.

The cost function for dispatchable generation is denoted by C(y). It is increasing in
dispatchable generation, C ′(y) > 0, with C ′′(y) > 0 and C ′′′(y) ≥ 0, where C ′, C ′′ and
C ′′′ are the first-, second- and third-order derivatives of the cost function, respectively. When
the marginal cost is increasing, one can think of a unique merit order of using individual
generators: initially the power plants with the lower marginal costs of energy generation will
be brought online (such as a coal-fired power plant), followed by costlier ones (such as a
natural gas power plant with carbon capture and storage). We assume that given the market
price for energy, there is no constraint on the availability of y, that is, there is a large existing
generating capacity portfolio that can meet the demand when RE is not adequate to supply the
total load (Joskow, 2011; Bobtcheff, 2011; Tsitsiklis and Xu, 2015). Yet, when C ′′′(y) > 0,
one can think of an implicitly assigned capacity constraint such that the effect of convexity
dominates for high levels of dispatchable generation.

U(q) is the gross surplus function over kilowatt-hour consumption of energy. It is
assumed that U ′ > 0, U ′′ < 0 and U ′′′ ≥ 0, where U ′, U ′′ and U ′′′ are the first-, second- and
third- order derivatives of the surplus function, respectively. Thus, under perfect
competition, the inverse demand schedule is downward sloping and convex.

We study the model as a social planner’s problem, in which the planner makes energy
generation as well as storage and consumption decisions. The planner’s problem is the
following:

max
{q0,q1,y0,y1,s1}

U0(q0)− C(y0) + E [U1(q̃1)− C(ỹ1)](2a)

subject to q0 ≥ 0, q̃1 − ε ≥ 0, y0 ≥ 0, ỹ1 ≥ 0,(2b)
s̄ ≥ s1, s1 ≥ 0 and s0 ≥ 0 given.(2c)

As the weather in the next period is uncertain, we use E[·] to denote the expected net surplus in
period 1. Energy consumption (net of ε) is positive and dispatchable generation can equal zero
(that is, become idle) when the RE generation is sufficiently high (cf. Eq.(2b)). As we focus
on a relatively short time horizon, such as one day, we take the RE generating and storage
capacities, z̄ and s̄, respectively, as fixed. When there is sufficiently high RE generation such
that the storage capacity is reached, we assume that the remaining energy will be consumed.
Furthermore, stored energy cannot be negative; that is, we cannot borrow energy from the
future to consume today. Throughout the study, we assume s0 = 0. This assumption does not
change the main results of the study, which identify prudence and frugality as the main drivers
of precautionary storage. However, we shall comment on the possible effects of s0 > 0 later

14The only cost of RE generation is the opportunity cost of not generating more than the capacity of the
system.
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in the study. For simplicity, we neglect discounting between the first and final periods.15

Lastly, we assume that the energy demand is independent of the weather conditions.

Solving the model

We solve the problem recursively. Given RE generation in the last period, z1, and the available
amount of stored energy, s1, the problem in period 1 is as follows:

max
{q1,y1}

U1(q1)− C(y1)

subject to q1 − ε ≥ 0, y1 ≥ 0.

The first-order necessary condition for a maximum yields:16

U ′1(y1 + z1 + s1) ≤ C ′(y1), with equality if y1 > 0.(3)

If the level of energy supplied by the renewable systems and energy storage is sufficiently
high such that the marginal surplus will become less than the marginal cost of fossil fuel
energy, then no dispatchable generation will take place: U ′1(z1 + s1) < C ′(0). Otherwise,
U ′1(y1 + z1 + s1) = C ′(y1) and the dispatchable systems will be active. As a result, one can
calculate a threshold level, τ , such that when z1 > τ , the dispatchable systems will become
idle, and vice versa:17

y∗1 ≥ 0 if z1 ≤ τ,(4a)
y∗1 = 0 otherwise (i.e., z1 > τ),(4b)

where we denote the optimal dispatchable generation decision by y∗1 ≡ y(z1 + s1). When
the weather conditions are such that the level of RE is lower than τ , Eq. (4a) demonstrates
that the dispatchable systems will be used to meet the residual demand. In contrast, when RE
generation is sufficiently high, the dispatchable systems will be shutdown.18 Given y∗1 , the
maximum value function for period 1 is

W1(z1, s1) = U1(y∗1 + z1 + s1)− C(y∗1).(5)

15This is a reasonable assumption given our focus on a relatively short time horizon. When considering
the allocation of production between seasons (summer and winter) in a hydropower system with reservoir
constraints, it will be beneficial to introduce discounting.

16The second-order condition for a maximum is satisfied by U ′′1 (q1)− C ′′(y1) < 0.
17Using U ′1(z1 + s1) < C ′(0), one can calculate τ as z1 > τ ≡ U ′−1

1 (C ′(0))− s1.
18When there is an interior solution for dispatchable generation, the comparative statics provide ∂y∗1

∂z1
=

U ′′1
C′′1 −U ′′1

< 0 and ∂y∗1
∂s1

=
U ′′1

C′′1 −U ′′1
< 0 where C ′′1 ≡ C ′′(y1). The analysis indicates that a higher (lower) RE

decreases (increases) dispatchable generation. In a similar way, a higher (lower) level of stored enegy decreases
(increases) y∗1 . In contrast, when z1 > τ , the dispatchable systems are kept idle. Thus, ∂y∗1/∂z1 = ∂y∗1/∂s1 =
0.
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The problem in period 0 is then the following:

max
{q0,y0,s1}

U0(q0)− C(y0) + E [W1(z̃1, s1)]

subject to q0 ≥ 0, y0 ≥ 0,

s̄ ≥ s1, s1 ≥ 0.

The first-order necessary condition for dispatchable generation at a maximum is:19

(6) U ′0(y∗0 + z0 − αs1) ≤ C ′(y∗0), with an equality if y∗0 > 0.

Using the maximum value function in Eq. (5) and the Envelope Theorem, the first-order
condition with respect to s1 is

U ′0(y∗0 + z0) ≥ 1

α
E [U ′1(ỹ∗1 + z̃1)] if s∗1 = 0,(7a)

U ′0(y∗0 + z0 − αs∗1) =
1

α
E [U ′1(ỹ∗1 + z̃1 + s∗1)] if s̄ > s∗1 > 0,(7b)

U ′0(y∗0 + z0 − αs̄) ≤
1

α
E [U ′1(ỹ∗1 + z̃1 + s̄)] otherwise

(
i.e., if s∗1 = s̄

)
,(7c)

where y∗0 ≡ y(z0 − αs∗1).20 From the social planner’s perspective, the willingness to store
energy is determined by the expected marginal surplus from energy consumption in the next
period. For

q∗0 ≡ y∗0 + z0 − αs∗1 and q̃∗1 ≡ ỹ∗1 + z̃1 + s∗1,

if it is not optimal to store energy, that is, s∗1 = 0, there is an expected loss from energy
storage: U ′0(q∗0) ≥ 1

α
E [U ′1(q̃∗1)]. Otherwise, energy is stored until its current and expected

social values are equalized. If, however, s∗1 = s̄, the marginal expected benefit from storing
energy is at least as high as the marginal cost of energy storage; that is,
U ′0(q∗0) ≤ 1

α
E [U ′1(q̃∗1)].21

In studying the effect of energy storage on welfare, we start from a situation of certainty.
Suppose that the energy system is composed of baseload power plants as well as dispatchable
and energy storage systems. Power plants such as nuclear and coal-fired plants that produce
at low marginal costs and are devoted to the production of baseload supply have slow ramp
rates, and therefore, are not flexible to switch on and off. As they are inflexible in practicing
“load following,” electric power companies try to operate them at full output as much as
possible (Denholm et al., 2010). Let µ > 0, which is a constant, denote this capacity.

19Similar to the problem in the final period, the second-order condition for a maximum is satisfied: U ′′0 (q0)−
C ′′(y0) < 0.

20The second-order condition for a maximum gives α2U ′′0 (q0) + E[U ′′1 (q1)] < 0.
21Notice that when s0 > 0, the marginal cost of energy storage becomes lower. This will make it more likely

that energy will be stored and transferred to the next period. For the limiting case of no RE generation (i.e.,
z̄ = 0), the reader is referred to Appendix A.
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Suppose now that we introduce some noise x̃ around µ in period 1 such that z̃1 = µ + x̃,
E[x̃] = 0 and E[x̃2] = σ2. Accordingly, z̃1 represents the intermittent RE with mean µ and
variance σ2. Our purpose here is to determine whether the optimal level of energy storage
under intermittent and variable generation is greater than the corresponding level without
uncertainty.

Let s+
1 be the optimal level of energy storage when z̃1 = µ in the future with certainty:

s+
1 = arg max U0(y(z0 − αs1) + z0 − αs1)− C(y(z0 − αs1)) +W1(µ+ s1).

Without any uncertainty, the only factor that leads to energy storage is the higher valuation
of energy in the peak period.

Furthermore, suppose that s∗1 is the optimal level of energy storage when there is uncertain
RE generation:

s∗1 = arg max U0(y(z0 − αs1) + z0 − αs1)− C(y(z0 − αs1)) + E[W1(z̃1 + s1)].

Following these definitions, we present our major result by Theorem 1:

Theorem 1. For every µ and x̃ with E[x̃] = 0, s∗1 ≥ s+
1 if and only if:

F (τ)
(
ψUU

′′′
1 (q̌∗1) + ψCC

′′′(y̌∗1)
)

+
(
1− F (τ)

)
U ′′′1 (q̂∗1) ≥ 0.(8)

where ψU ≡ (C ′′31 )/(C ′′1 − U ′′1 )3, ψC ≡ (−U ′′31 )/(C ′′1 − U ′′1 )3, q̌∗1 ≡ q(y∗1 + z1 + s∗1|z1 ≤ τ),
q̂∗1 ≡ q(z1 + s∗1|z1 > τ), y̌∗1 ≡ y(z1 + s∗1|z1 ≤ τ) and F (τ) is the probability of z1 ≤ τ .

Proof. The proof is provided in Appendix B.

When there is intermittent and variable energy generation, Theorem 1 shows that a higher
level of energy storage will be welfare improving if and only if Eq. (8) holds. Conditional
on z1 ≤ τ , that is, there is dispatchable generation, ψU and ψC are weights attached to U ′′′1

and C ′′′1 , respectively. When z1 > τ , there will be no dispatchable generation, and in turn, no
risk that will emerge for the production side of the economy. In this case, all weight will be
attached to U ′′′1 . Notice that there can be precautionary storage even if U ′′′1 < 0 andC ′′′1 > 0 or
C ′′′1 < 0 and U ′′′1 > 0. Therefore, it is the probability weighted sum of ψUU ′′′1 (q̌∗1)+ψCC

′′′(y̌∗1)
and U1

′′′(q̂∗1), which matters for precautionary energy storage.

Let y+
0 and q+

0 represent the fossil fuel energy generation and energy consumption,
respectively, in period 0 without uncertainty in period 1. We then obtain the following result:

Corollary 1. s∗1 ≥ s+
1 implies y∗0 ≥ y+

0 and q∗0 ≤ q+
0 .

Proof. Theorem 1 shows that for every µ and x̃ with E[x̃] = 0, s∗1 ≥ s+
1 if and only if Eq.

(8) is positive. Given y0 ≡ y(z0 − αs1) and q0 ≡ q(y0 + z0 − αs1), ∂y0/∂s1 ≥ 0 and
∂q∗0/∂s1 < 0.
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Corollary 1 indicates that a higher level of energy storage will cause a lower off-peak
energy consumption, and in turn, a lower welfare in the initial period. Nevertheless, by
transferring the social surplus to the peak period using energy storage systems, a higher
welfare in the future is expected to more than compensate for this loss.

When dispatchable generation is the marginal resource in the initial period, that is,
y∗0 > 0, the dispatchable systems will supply the extra amount of energy for storage. On the
other hand, if it is optimal to keep the dispatchable systems idle in the initial period, that is,
y∗0 = 0, the economy can increase energy storage by only consuming less electricity in the
initial period. Yet, if precautionary storage due to uncertain renewable energy generation is
sufficiently high, dispatchable systems will need to be brought online. This is shown in the
following corollary.

Corollary 2. Suppose y+
0 = 0 and Eq. (8) holds. Then, there is a τ s such that

y∗0 > y+
0 if s∗1 > τ s,

y∗1 = y+
0 otherwise (i.e., τ s ≥ s∗1).

Proof. From Eq. (6), U ′0(z0 − αs+) ≤ C ′(0) if y+
0 = 0. Thus, there is a threshold level of

storage τ s(≥ s+) that satisfies

(10) U ′0(y+
0 + z0 − ατ s) = C ′(y+

0 ),

If Eq. (8) holds and s∗ > τ s, then Eq. (10) will be violated as U ′′ < 0. Accordingly,
y∗ > y+ = 0. On the other hand, if τ s ≥ s∗, U ′0(z0 − αs∗) ≤ C ′(0) and y∗0 = y+

0 = 0.

In our study, our main focus is on prudence and frugality. Theorem 1 has a stronger
corollary in this regard (the proof is trivial and omitted):

Corollary 3. U ′′′1 ≥ 0 and C ′′′1 ≥ 0 are sufficient for s∗1 ≥ s+
1 .

Hence, if U ′′′1 ≥ 0 and C ′′′1 ≥ 0, Eq. (8) holds and it is optimal to store a higher level of
energy under uncertainty. When there is no prudence, U ′′′1 = 0, frugality alone will lead to
precautionary energy storage. The same is true when C ′′′1 = 0 and U ′′′1 ≥ 0.

Although it was Kimball (1990) who coined the term prudence, the analysis of
precautionary demand for savings was done earlier by Leland (1968) and Sandmo (1970).
Within an expected utility framework, they indicate that a risky future income increases
savings if and only if the third-order derivative of the utility function is positive (that is, the
agents are prudent).

Frugality, however, is not fully investigated in the literature. Yet, by analyzing
production and inventory data, Cecchetti et al. (1997) find evidence that supports a positive
third derivative of the cost function and note that, from an operational perspective, a firm is
capacity constrained when faced with a convex marginal cost curve. Considering the fact
that the capacity constrained dispatchable systems follow the load when RE and energy
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storage are not adequate to cover the optimal level of energy demand, it can become
increasingly costly to make large and positive changes to meet the residual demand. In this
regard, frugality can lead to precautionary energy storage.

5 Competitive market equilibrium with energy storage

In this section, we look at the role of prices in coordinating the energy market by taking into
consideration the precautionary motives that we have been discussing thus far. This task
stipulates a well-defined market equilibrium concept. In Appendix C, by assuming
price-taking behavior in the electricity markets, we characterize the optimal behavior of
consumers, producers and energy storage firms, depict the formation of expectations, and
define the competitive rational expectations equilibrium.

As there are no externalities or other distortions in the model, the competitive rational
expectations equilibrium quantities correspond to the allocation dictated by the social planner.
This allows us to carry forward the results from our analysis of the social planner’s problem.
We assume that the consumers have identical preferences and model their behavior by a
representative consumer.22 In this regard, the marginal surplus function can be denoted by
P ∗0 ≡ P (q∗0) = U ′0(q∗0) and P̃ ∗1 ≡ P (q∗1) = U ′1(q̃∗1), where q∗0 ≡ q(P ∗0 ) and q̃∗1 ≡ q(P̃ ∗1 )
are the aggregate demand functions given the retail prices P ∗0 and P̃ ∗1 . From Theorem 1 and
Corollary 1, we shall establish the following proposition:

Proposition 1. Precautionary energy storage leads to an increase in P ∗0 , which is followed
by a reduction in P̃1

∗ and its variance.

Proof. From Theorem 1, s∗1 ≥ s+
1 if and only if Eq. (8) holds. Precautionary energy storage

(i.e., s∗1 ≥ s+
1 ) implies q∗0 ≤ q+

0 (Corollary 1). As U ′0(q∗0) = P ∗0 and U ′′ < 0, q∗0 ≤ q+
0 leads to

P ∗0 ≥ P+
0 , where P+

0 is the retail price in the absence of precautionary storage. On the other
hand, ∂q∗1/∂s1 > 0. As U ′1(q̃∗1) = P̃ ∗1 and U ′′1 < 0, q∗1 ≥ q+

1 implies that P̃ ∗1 will decrease.
Lastly, Var(P̃ ∗1 ) = E

[
P̃ ∗1

2] − E
[
P̃ ∗1
]2. Taking the partial derivative of Var(P̃ ∗1 ) with respect

to q1 gives

∂

∂q̃1

Var(P (q̃∗1)) = 2
[
E
[
P (q̃∗1)P ′(q̃∗1)

]
− E

[
P ′(q̃∗1)

]
E
[
P ′(q̃∗1)

]]
.

For P (q1) decreasing and P ′(q1) increasing, E[P (q̃∗1)P ′(q̃∗1)] ≤ E[P (q̃∗1)]E[P ′(q̃∗1)] (see
Lemma 1 in Gurland (1967)). Accordingly, ∂Var(P (q̃∗1))/∂q̃1 ≤ 0.

22We consider a quasi-linear utility function over electricity consumption and a numéraire commodity.
Accordingly, U(q), which is the (gross) surplus function, is the monetary value of utility derived from
consuming q kilowatt-hour of electricity. In economic theory, using such preferences is a standard assumption
when discussing issues related to a single market in a general equilibrium framework. This approach can be
justified in the absence of income effects (see Mas-Colell et al., 1995, chap. 10), which we do not consider in
our study.
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Proposition 1 indicates that the precautionary demand for energy storage will increase
the retail price of electricity and cause a lower level of off-peak energy consumption. The
higher amount of energy that is carried to the next period will lead to a decline in the future
electricity price, P̃1, for every realization of z̃1, that is, the meteorological shock and in
turn RE. Furthermore, precautionary energy storage will also allow for a decrease in price
uncertainty; that is, ∂Var(P (q̃∗1))/∂q̃1 ≤ 0.

As the existing energy systems worldwide can generally be characterized by small shares
of RE (Lund et al., 2012), let us focus on the case where the dispatchable generators always
supply the residual load. In our model, this translates into F (τ) = 1. Thus, even with
favorable weather conditions, the RE generation cannot meet the energy demand. In this
case, the necessary and sufficient condition for precautionary storage is ψUU ′′′1 + ψCC

′′′
1 ≥ 0

(see Theorem 1). We can call this the “prudence-frugality index” (PF-index), which is a
weighted sum of the degree of convexity (that is, the curvature) in the demand curve and the
dispatchable energy supply curve. In this regard, it is an indicator of the degree of precaution
in the market.

Assuming that the dispatchable systems always meet the residual load, the second-order
Taylor approximation of the expected retail price of electricity (cf. the right-hand side of Eq.
(7b)) around µ, which is the mean-level RE generation, will give

(11) P ∗0 '
1

α

[
P1 +

1

2
σ2 (ψ

U
U ′′′1 + ψ

C
C ′′′1 )

]
,

where P1 = U ′1(q̄∗1) is the electricity price that corresponds to q̄1 ≡ q
(
y(µ+s∗1)+µ+s∗1

)
, the

peak period level of electricity consumption evaluated at the mean RE generation.23 Thus,
the spot market price (approximately) equals the product of 1

α
multiplied by the sum of the

market price evaluated at µ and the product of the PF-index and the degree of intermittency,
σ2.

One can rearrange Eq. (11) to obtain

(12) P ∗0 '
1

α

[
1 +

1

2

(
ψ

U

( σ
q̄1

)2 ξpr
ηd

+ ψ
C

( σ
ȳ1

)2 ξfr
ηs

)]
P1.

where ξpr ≡ −q̄1
P ′′
1

P ′
1

and ξfr ≡ ȳ1
C′′′

1

C′′
1

are the coefficients of relative prudence and frugality,

respectively; ηd ≡
∣∣∣ dq̄1/q̄1dP1/P1

∣∣∣ and ηs ≡ dȳ1/ȳ1
dP1/P1

are price elasticities of demand and dispatchable

energy supply, respectively.24 This leads us to the following remark:

Remark For an electricity market where the dispatchable generation always supplies the
residual load, P ∗0 (P̃ ∗1 and Var(P̃ ∗1 )) is augmented (reduced) by a lower α, ηd and ηs, and a
higher σ , ξpr , ξfr , ψ

U
and ψ

C
.

23Refer to Appendix D for the calculations. Note that F (τ) = 1.
24Equivalently, the demand and dispatchable energy supply elasticities can be written as ηd ≡ − P1

P ′1q̄1
and

ηs ≡ C′1
C′′1 ȳ1

, respectively.
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This remark indicates that a more efficient storage technology, that is, a lower α, will
create arbitrage opportunities and lead to a higher demand for energy storage. A higher level
of stored energy will in turn lead to a higher current price of energy, and a lower future
price and price volatility. An increase in price elasticity of demand makes demand response
a better substitute for energy storage and diminishes the impact that prudence can have on
precautionary energy storage.25 A higher elasticity of supply, that is, a more responsive
dispatchable energy generation, also causes a lower level of energy storage. Hence, both the
supply- and demand-side elasticities have similar effects. If, however, the supply elasticity
is low (e.g., think of a baseload power plant, which has low supply elasticity due to its poor
flexibility in adjusting its output), there will be a higher level energy storage on precautionary
grounds.

An increase in the variations of RE generation, and thus, an increase in σ, implies a higher
level of precautionary storage and price of electricity in the initial period. Yet, if the degree
of deviations in RE with respect to the level of consumption, σ/q̄1, is small, intermittency
is less of a problem for the market. Thus, an increase in σ may have a limited impact on
precautionary storage. If, however, σ/q̄1 is big, electricity consumption can be exposed to
significant deviations. Therefore, a higher amount of energy will be stored. Additionally,
when σ/ȳ1 is big, there can be costly attempts in the dispatchable generation industry to
supply the residual demand when the level of RE gets low. This will lead to a rise in the level
of precautionary storage and hence the spot market electricity price in equilibrium. Lastly,
precautionary storage depends positively on the coefficients of prudence and frugality. Thus,
in response to the overall energy production risk, energy storage, and therefore, the spot
market electricity price, will increase with relative prudence and frugality. The peak period
electricity price and its variance will decrease.

When consumers are prudent and the supply schedule is linear, that is, P ′′1 > 0 and C ′′′1 =
ξfr = 0, the risk attitudes on the consumers’ side will drive the demand for precautionary
storage. On the other hand, when the price schedule is linear, that is, P ′′1 = ξpr = 0, and
the fossil fuel power industry is characterized by a convex supply schedule, C ′′′1 > 0, it
will be the producers’ side that will derive the demand for precautionary storage. Moreover,
considering constant retail pricing for electricity, e.g., fixed prices in peak and off-peak hours,
consumers will not be subject to consumption risk and will have no incentives to change their
demand with respect to variations in RE, and thus, wholesale prices. Nevertheless, due to the
intermittent RE generation, the dispatchable energy suppliers will be subject to the changes
in the residual load. Therefore, it will still be the producers’ side that will derive the demand
for precautionary energy storage.

An interesting feature of our results is the weights assigned to prudence and frugality.
25A similar result can be found in the commodity storage literature, where Wright and Williams (1982,

1984) show that higher demand elasticity decreases the scope for commodity storage. The electricity data,
nevertheless, indicates that the relative price response is rather low. Accordingly, the short-run (1–5 years)
residential own-price elasticity of electricity demand in absolute value is estimated at 0.3 (EPRI, 2008). The
same number averaged for potential system peak hours for the summer months is estimated to be 0.15 (Taylor
et al., 2005). Surveying the evidence from the recent experiments with dynamic pricing of electricity, Faruqui
and Sergici (2010) report that the own price elasticities in peak usage range from 0.02 to 0.10. A low price
elasticity of demand will emphasize the role of prudence in precautionary energy storage.
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Miranda and Helmberger (1988) show that price variability is more sensitive to the demand
elasticity than the supply elasticity. When translated to our case, this can imply a greater
weight on the effect of demand elasticity on the current energy price, and thus, ψU being
greater than ψC . For energy markets, measuring this effect can be an interesting problem,
and an empirical investigation may supply crucial information for electricity pricing.

Let us now consider an electricity market with 100% RE, that is, F (τ) = 0. Norway,
where nearly the whole electricity is generated by the hydropower systems (Førsund, 2007,
p. 95) is one example in this regard.26 In this case, the arbitrage equation is given by

(13) P ∗0 ' φ

[
1 +

1

2

( σ
q̄1

)2 ξpr
ηd

]
P1.

This leads us to the following remark:

Remark For an electricity market with 100% RE, P0 (P̃ ∗1 and Var(P̃ ∗1 )) is augmented
(reduced) by a lower ηd and α, and a higher σ and ξpr .

The interpretation as to how the equilibrium level of energy storage and current and future
electricity prices are affected by the degree of intermittency, price elasticity of demand and
coefficient of relative prudence remains the same. Note, however, that instead of purchasing
energy from the dispatchable energy industry, the energy storage firms will obtain the desired
level of energy from the RE generators.

For the general case in which dispatchable systems are occasionally shut down, we have

(14) P ∗0 ' F (τ)P̌0 + (1− F (τ))P̂0,

where P̌0 and P̂0 are given by Eqs. (12) and (13), respectively. Note that while P̌0 corresponds
to the cases where dispatchable systems are active, P̂0 corresponds to the cases when they are
kept idle. Eq.(14) shows that the more often the dispatchable systems are online, that is, the
higher F (τ) is, frugality will have a higher impact on precautionary energy storage and in
turn the price of electricity, and the other way around.

26Iceland’s electricity sector with minor contributions from dispatchable systems is another example. With
hydropower accounting for 74% and geothermal for 26%, electricity generation was produced solely from
renewables in 2010 (IEA, 2013). Although our focus is on variable and intermittent RE, in the absence of
dispatchable systems our model can easily be converted to a model with a reservoir hydroelectric system. For
example, suppose z0 is the current flow of water to a reservoir and z̃1 is the uncertain flow in the next period.
Let s1 be the water that is stored in the reservoir for use in the peak period. Disregarding losses due to surface
evaporation and leakages (i.e., α = 1), q0 = z0−s1 is the consumption of energy that is generated by letting the
water flow through water turbines. Considering such a system and the allocation of production between seasons
(summer and winter) in this regard, it will be convenient to relax the “no discounting” assumption.
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6 Conclusion

Energy storage is addressed in many studies in the literature. Yet, the extent to which
precautionary motives can spur energy storage, and in turn, electricity pricing, is not well
known. The model we develop provides a simple setup to assess the impact of a convex
marginal utility (prudence) and a convex marginal cost (frugality) on energy storage. We
characterize the optimum and show how prudence and frugality can lead to a higher level of
energy storage, that is, precautionary energy storage. Even in the absence of prudence,
frugality can still contribute toward precautionary storage, and the other way around.
Decentralizing the optimal allocation allows us to see the role that prices can play in
coordinating the energy market in the presence of the precautionary motives. Our analysis
indicates that prudence and frugality increase spot market energy prices through higher
demand for energy storage. Moreover, they lead to a decline in the future electricity price
and its volatility. Further results present important lessons about the direct and indirect
impacts precautionary motives can have on electricity prices and energy generation
decisions.

In our study, we took an idealized approach to effectively highlight the impact of
precautionary motives on energy storage and electricity pricing. This naturally enables one
to consider deviations from this idealized setting. Market power problem is hard to overlook
in the electricity industries. Accordingly, it will be interesting to investigate the role that
energy storage firms can play in decreasing the ability of power generators to exercise
market power. Furthermore, one can study design distortions such as price-cap regulation. It
will also be worthwhile to investigate the price dynamics in a fully dynamic model.

One other way to extend our study is to incorporate capacity decisions into the model.
While the capacity decisions would be associated with long-term commitments in the
economy, the latter, which corresponds to the present study, would be related to short-term
decisions. When consumers respond to price fluctuations and thus can shift their peak
demand, the potential to invest in peaking power plants can decrease in the long run (Jessoe
and Rapson, 2014; Tsitsiklis and Xu, 2015). Whether precautionary motives and therefore
precautionary energy storage can contribute to this potential and lead to further investments
in RE capacity will be interesting to look at.
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Appendices
A Energy storage in the absence of RE generation

As a limiting case, suppose that energy can only be produced using dispatchable systems and
there is energy storage. Therefore, z̄ = 0. For an interior solution for dispatchable generation
in both periods; that is, U ′0(q∗0) = C ′(y∗0) and U ′1(q∗1) = C ′(y∗1), one gets

C ′
(
y∗0
)

C ′
(
y∗1
) =

1

α
.(15)

Eq. (15) satisfies intertemporal efficiency. There is an equality between the marginal rate
of transformation of off-peak energy into peak energy and cost of energy transformation. A
similar result can be seen in Crampes and Moreaux (2010), where α is the level of energy
required to add one unit to the stock of energy in a water reservoir for use in period 1 when
the demand is high. If the absolute value of the slope of the isocost curve, C ′(y∗0)/C ′(y∗1),
is greater than 1

α
, no energy is stored in period 0. This is because the cost of storage on the

margin is bigger than its value in the peak period. In contrast, if C ′(y∗0)/C ′(y∗1) < 1
α

, the
available storage capacity is completely utilized.

B Proof of Theorem 1

To prove our main result, we will need the following lemma:

Lemma 1. If ψUU ′′′1 + ψCC
′′′
1 ≥ 0, then an increase in risk (or, degree of intermittency) in

the sense of Rothschild and Stiglitz (1970) (RS) increases s1.

Proof. LetE and F represent the cumulative distribution functions of ñ1 and z̃1, respectively.
Assume that F is a mean-preserving spread of E in the sense of RS. Thus, although both
systems have the same average level of RE generation, the density function f(z̃1) has more
weight in the tails, and is more risky. Then, for every non-decreasing concave function, υ,
we have the following: ∫ b

a

υ(m)dE(m) ≥
∫ b

a

υ(m)dF (m).

Taking υ ≡ −U ′1 yields ∫ b

a

U ′1(m)dE(m) ≤
∫ b

a

U ′1(m)dF (m).

Then, for b = z̄, a = 0, and U ′1 = U ′1(y(j̃ + s1) + j̃ + s1) for j̃ = ñ1, z̃1, Theorem 2(A) in RS
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states that an increase in risk leads to a higher s1 if U ′ is convex in j̃; that is,

∂2U ′1
∂j̃2

= U ′′′1

(∂y1

∂j̃
+ 1
)2

+ U ′′1
∂2y1

∂j̃2
≥ 0.(16)

As

(17)
∂y1

∂j
=

U ′′1
C ′′1 − U ′′1

< 0,

we get

(18)
∂2y1

∂j̃2
=
C ′′1

2U1
′′′ − U1

′′2C ′′′1

(C ′′1 − U1
′′)3

.

Substituting Eqs. (17) and (18) in Eq. (16) then gives

ψUU
′′′
1 + ψCC

′′′
1 ≥ 0.(19)

The expected marginal surplus can be written as

(20) E
[
U ′1(q̃∗1)

]
= F (τ)E[U ′1(q̃∗1)|z̃1 ≤ τ ] + (1− F (τ))E[U ′1(q̃∗1)|z̃1 > τ ].

While E[U ′1(q̃∗1)|z̃1 ≤ τ ] represents the conditional expected marginal surplus from
consuming energy supplied by both the dispatchable and renewable systems,
E[U ′1(q̃∗1)|z̃1 > τ ] is the conditional expected marginal surplus when consuming energy only
from the renewable systems. Thus, the latter corresponds to cases in which dispatchable
systems are kept idle. Moreover, F (τ) is the probability of z̃1 < τ and vice versa.

Lemma 2. If F (τ) = 1, then for every µ and x̃ with E[x̃] = 0, s∗1 ≥ s+
1 if and only if:

ψUU
′′′
1 + ψCC

′′′
1 ≥ 0.(21)

Let us prove sufficiency using Lemma 1. Given s+
1 , let V (s+

1 , µ) be the maximum value
function for the intertemporal optimization problem under certainty. Further, let E[V (s∗1, z̃1)]
be the expected value of the maximum value function for the intertemporal optimization
problem when RE is uncertain. Given z̃1 = µ + x̃ and E[x̃] = 0, the first order conditions
with respect to s1 for V (s1, µ) and E[V (s1, z̃1)], that is, Vs(s1, µ) = 0 and E[Vs(s1, z̃1)] = 0,
respectively, yield:

−U ′0(y(z0 − αs+
1 ) + z0 − αs+

1 ) +
1

α
[U ′1(y(µ+ s+

1 ) + µ+ s+
1 )] = 0,

−U ′0(y(z0 − αs∗1) + z0 − αs∗1) +
1

α
E[U ′1(y(z̃1 + s∗1) + z̃1 + s∗1)] = 0.

If V (s+
1 , z̃1) is convex in z̃1, then E[Vs(s

+
1 , z̃1)] ≥ Vs(s

+
1 , µ) = 0, or equivalently, E[U ′1(y(z̃1+
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s+
1 ) + z̃1 + s+

1 ] ≥ U ′1(y(µ+ s+
1 ) +µ+ s+

1 ). If we take µ and 0 as the mean and the variance of
ñ1, respectively, then, by Lemma 1, E[U ′1(y(z̃1 + s+

1 ) + z̃1 + s+
1 ] ≥ U ′1(y(µ+ s+

1 ) + µ+ s+
1 ).

Hence, the expected marginal benefit of increasing energy storage is positive when s1 = s+
1 ,

and thus, s∗1 ≥ s+
1 . This ends the proof for sufficiency.

If s∗1 ≥ s+
1 for every µ and x̃ with E[x̃] = 0, then this must also be true for small zero-

mean risks. The small risk allows us to focus on 2nd Taylor approximation around µ:

Vs(s
+
1 , µ+ x̃) ' Vs(s

+
1 , µ) + x̃Vsz(s

+
1 , µ) +

1

2
x̃2Vszz(s

+
1 , µ) + O

(
x̃3
)

(22)

where Vsz = 1
α
∂U ′

∂z̃1
, Vszz = 1

α
∂2U ′

∂z̃21
(see Eqs. (16) and (18)), and O (x̃3) is the remainder.

By assuming that the risk is small, we can ignore the remainder term. From the first order
condition, Vs(s+

1 , µ) = 0. Taking the expectation of both sides yields:

E[Vs(s
+
1 , µ+ x̃)] ' 1

2
σ2Vszz(s

+
1 , µ)(23)

For a small risk, if s∗1 > s+
1 , then E[Vs(s

+
1 , µ + x̃)] ≥ 0. For E[Vs(s

+
1 , µ + x̃)] ≥ 0 to be

positive, Vszz ≥ 0 must be positive. One can calculate that Vszz ≥ 0 is equivalent to Eq. (19).
This completes the proof for necessity.

Lemma 3. If F (τ) = 0, then for every µ and x̃ with E[x̃] = 0, s∗1 ≥ s+
1 if and only if

(24) U ′′′1 ≥ 0.

Proof. The proof is similar to that of Lemma 2, except that for t = 0, 1, y∗t = 0.

Proof of Theorem 1. Following the proof of Lemma 2, if V (s+
1 , z̃1) is convex in z̃1,

E[Vs(s
+
1 , z̃1)] ≥ Vs(s

+
1 , µ) = 0 or equivalently

E[U ′1(y(z̃1 + s+
1 ) + z̃1 + s+

1 ] ≥ U ′1(y(µ + s+
1 ) + µ + s+

1 ). When s1 = s+
1 and there is

uncertainty, by Lemma 2 and Lemma 3, the marginal benefit of increasing energy storage is
positive if

F (τ)
(
ψUU

′′′
1 (q̌∗1) + ψCC

′′′(y̌∗1)
)

+
(
1− F (τ)

)
U1
′′′(q̂∗1) ≥ 0.(25)

If s∗1 ≥ s+
1 for every µ and x̃with E[x̃] = 0, then this must also be true for small zero-mean

risks. Given that there is a small zero-mean risk allows us to focus only on the second-order
Taylor approximation. This yields the following:

E[Vs(s
+
1 , µ+ x̃)] ' F (τ)

1

2
σ̌2Vszz(s

+
1 , µ̌) + (1− F (τ))

1

2
σ̂2Vszz(s

+
1 , µ̂).(26)

For a small risk, if s∗1 > s+
1 , then E[Vs(s

+
1 , µ + x̃)] ≥ 0. For E[Vs(s

+
1 , µ + x̃)] ≥ 0 to

be positive, F (τ)1
2
σ̌2Vszz(s

+
1 , µ̌) + (1 − F (τ))1

2
σ̂2Vszz(s

+
1 , µ̂) must be positive. By Lemma

2 and Lemma 3, this probability weighted sum is positive. This completes the proof for
necessity.
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C Competitive rational expectations equilibrium

On the demand side, we assume that all consumers have identical preferences. This allows
us to model their behavior by a representative consumer. The first-order necessary conditions
for the consumer problem yield

(27)
U ′0(q∗0) = P ∗0 ,

U ′1(q̃∗1) = P̃ ∗1 ,

where q∗0 ≡ q(P ∗0 ) and q̃∗1 ≡ q(P̃ ∗1 ) are the aggregate demand functions given the market
prices P ∗0 and P̃ ∗1 .

Regarding the production side of the economy, fossil-fuel and RE generators and energy
storage firms are price-taking competitors. There is a continuum of RE generators with
measure normalized to one. Given that the unit cost of generating energy is so low –which
we consider as zero– the RE generation is price inelastic. Thus, each RE generator operates
at its capacity. However, as the weather conditions are uncertain, so is the energy produced
by each generator. Therefore, given Pt > 0, the profit of each RE generator in both periods
is πit = P ∗t zit , where z̄i ≥ zit ≥ 0 and z̄i is the installed capacity of RE generator i. The
total RE generation then satisfies

z∗t ≡ z(P ∗t ) = zt ≡
∫ 1

0

zitdi,(28)

where z̄ ≥ zt ≥ 0 and z̄ ≡
∫ 1

0
z̄idi.

There is a unique merit order of fossil fuel power plants with measure normalized to
one. Given Pt, dispatchable generation in the industry extends up to the dispatchable unit
for which the marginal cost of dispatchable generation equals the market price.27 The profit
maximization problem of each dispatchable generator is as follows:

max
yjt

πjt = P ∗t yjt − cjyjt, subject to ȳjt ≥ yjt ≥ 0,

where yjt is the energy generation from dispatchable unit j at time t and cj > 0 is a constant.
The first order necessary condition of profit maximization for a generator is

(29)

P ∗t ≤ cj if y∗jt = 0,

P ∗t = cj if ȳj > y∗jt > 0,

P ∗t ≥ cj if y∗jt = ȳj.

Given that y∗jt ≡ yj(P
∗
t ) is the profit maximizing level of energy that dispatchable generator

j is willing to supply at price P ∗t , the dispatchable energy (aggregate) supply function in both

27For the units that are brought online earlier, the individual marginal costs equal the market price minus the
shadow prices of the individual capacity constraints.
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periods is

y∗t ≡ y(P ∗t ) =

∫ 1

0

y∗jtdj.

We characterize the energy storage sector by a continuum of energy storage firms with
identical technologies. When a storage firm decides to store more energy, it rationally
anticipates the future energy price based on the available information (that is, the supply
schedule of the dispatchable energy industry, the aggregate demand schedule, the processes
that affect the weather, and –in turn– the RE generation). With the ultimate motivation to
maximize profits, energy storage firms apply the principle of rational behavior to the
acquisition and processing of information and the formation of anticipations. In this sense,
they are rational profit maximizers. When storage firms are fully aware of the economic
implications of intermittency, they will, for example, change their energy storage levels in
anticipation of the effects from intermittent RE rather than wait for these effects to occur in
the electricity market. By anticipating the future RE generation, and thus, the future price,
the net anticipated profit of energy storage firm ` from storing s`1 is

πa`1 =
1

α
P a

1 s`1 − P ∗0 s`1 ,(30)

where P a
1 and P ∗0 are the anticipated and current equilibrium spot prices, respectively. Each

storage firm maximizes its anticipated profits subject to a non-negativity constraint, s`1 ≥ 0,
and a capacity constraint, s̄` ≥ s`1 . As each storage firm shares the same rational
expectations with every other firms, the anticipated price is not indexed by a particular
storage firm. The first-order condition for the maximization problem yields

(31)

∂πa`1
∂s`1

=
1

α
P a

1 − P ∗0 ≤ 0, with equality if s∗`1 > 0,

=
1

α
P a

1 − P ∗0 ≥ 0, otherwise s∗`1 = s̄`.

The fact that these firms share the same rational expectations, and therefore, anticipate the
same market clearing future price indicates that, in equilibrium, the anticipated profit from a
marginal unit of energy storage cannot be positive. Otherwise, profit-seeking entrepreneurs
would eliminate any type of disequlibria by adjusting the individual levels of energy
storage.28 This allows us to describe Eq. (31) as the condition for market equilibrium rather
than the first-order condition for an energy storage firm’s optimization problem. The
relationship between the industry level of energy storage and the anticipated profit can then

28This will hold for interior solutions. If the industry storage capacity binds, the storage firms will make
positive profits.
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be summarized by

(32)

P ∗0 ≥
1

α
P a

1 , s∗1 = 0,

P ∗0 =
1

α
P a

1 , s̄ > s∗1 > 0,

P ∗0 ≤
1

α
P a

1 , s∗1 = s̄,

where s∗1 =
∫ 1

0
s∗`1d`, s

∗
1 ≡ s1(P ∗0 , P

a
1 ) and s̄ =

∫ 1

0
s̄`d`.

In the sense that the energy storage firms’ expectations are rational and they make
informed predictions of future prices, the subsequent market prices that arise from the
decisions based on these expectations will confirm their anticipations. Hence, the expected
price will be consistent with the level of energy storage that is governed by the anticipated
price. Then, in a competitive rational expectations equilibrium

P a
1 = E[P̃ ∗1 ],(33)

that is, the anticipated price will be confirmed in equilibrium.

Having depicted the formation of expectations and the response of competitive energy
storage firms to current and anticipated prices and the qualitative relationship between price
and profit maximization for each storage firm, we make the following definition:

Definition 1. Competitive rational expectations equilibrium is a price vector,
P = {P ∗0 , P̃ ∗1 , P a

1 }, and an allocation vector, Q = {q∗0, q̃∗1, z∗0 , z̃∗1 , y∗0, ỹ∗1, s∗1}, that solve Eqs.
(27), (28), (29), (31), and (33), such that markets clear: q∗0 = y(P ∗0 ) + z(P ∗0 )− αs1(P ∗0 , P

a
1 )

and q̃∗1 = y(P̃ ∗1 ) + z(P̃ ∗1 ) + s1(P ∗0 , P
a
1 ).

In equilibrium, the prices, P ∗0 and P̃ ∗1 , are implicitly defined by

P ∗0 ≡ P
(
y∗(P ∗0 ) + z0 − αs∗1(P ∗0 )

)
,

P̃ ∗1 ≡ P
(
y∗(P̃ ∗1 ) + z̃1 + s∗1

)
,

respectively. In the presence of uncertainty, the storage firms will increase the amount of
stored energy until the net expected price, 1

α
E[P̃ ∗1 ], equals the current spot price of energy.29

29Note also that for P ∗0 > 1
αE[P̃ ∗1 ], s∗1 = 0, that is, when the net expected price is below the current price,

then the energy storage is zero. If the capacity constraint in the energy storage industry is met, then the net
expected future price is above the current price at storage capacity: P ∗0 ≤ 1

αE[P̃ ∗1 ], s∗1 = s̄.
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D The second-order Taylor approximation of the
intertemporal efficiency condition

Let g(z̃1)
def
= C ′(ỹ∗1) and h(z̃1)

def
= U ′1(q̃∗1), where and ỹ∗1 = y(z̃1 + s∗1) and q̃∗1 = ỹ∗1 + z̃1 + s∗1.

Given s1, taking a second-order Taylor series expansion around the conditional means µ̌ ≡
E [z1|z1 < τ ] for g(z̃1) and µ̂ ≡ E [z1|z1 > τ ] for h(z̃1) yield:

g(z̃1) ' g(µ̌) + (z̃1 − µ̌)g′(µ̌) + (1/2)(z̃1 − µ̌)2g′′(µ̌),(34a)
h(z̃1) ' h(µ̂) + (z̃1 − µ̂)h′(µ̂) + (1/2)(z̃1 − µ̂)2h′′(µ̂).(34b)

Here, g′(µ̌) ≡ Č ′′1∂y
∗
1/∂µ̌, h′(µ̂) ≡ Û ′′1 , g′′(µ̌) ≡ Č ′′′1 (∂y∗1/∂µ̌)2 + Č ′′1∂

2y∗1/∂
2µ̌ and h′′(µ̂) ≡

Û ′′′, where Č ′′1 ≡ C ′′(y̌∗1), Û ′′1 ≡ U ′′1 (q̂∗1), Č ′′′1 ≡ C ′′′(y̌∗1) and Û ′′′1 ≡ U ′′′1 (q̂∗1).

For an interior solution for dispatchable generation, U ′1 = C ′1, one can calculate the
second order derivative for the optimal dispatchable generation decision using Eq. (17):

(35)
∂2y∗1
∂2µ̌

=
Č ′′1

2
Ǔ ′′′1 − Ǔ ′′1

2
Č ′′′1

(Č ′′1 − Ǔ ′′1 )3
.

Hence,

g′′(µ̌) =
Č ′′31

(Č ′′1 − Ǔ ′′1 )3
Ǔ ′′′1 +

−Ǔ ′′31

(Č ′′1 − Ǔ ′′1 )3
Č ′′′1 .(36)

Calculating the conditional expectations, that is, E[g(z̃1)|z̃1 ≤ τ ] and E[h(z̃1)|z1 > τ ], gives
the following:

E[g(z̃1)|z̃1 ≤ τ ] ' g(µ̌) +
1

2
σ̌2g′′(µ̌),(37a)

E[h(z̃1)|z̃1 > τ ] ' h(µ̂) +
1

2
σ̂2h′′(µ̂),(37b)

where σ̌2 = E [(z̃1 − µ̌)2|z̃1 ≤ τ ] and σ̂2 = E [(z̃1 − µ̂)2|z̃1 > τ ] are conditional variances.

From

E
[
U ′1(q̃∗1)

]
= F (τ)E[U ′1(q̃∗1)|z̃1 ≤ τ ] + (1− F (τ))E[U ′1(q̃∗1)|z̃1 > τ ],

Eqs, (36), (37a) and (37b), and the fact that h′′(µ̂) ≡ Û ′′′, one can rewrite Eq. (7b) using a
second-order Taylor approximation as in the following:

(38)
U ′0(q∗0) =

1

α
[F (τ)E[C ′(ỹ∗1)|z̃1 ≤ τ ] + (1− F (τ))E[U ′1(q̃∗1)|z̃1 > τ ]]

=
1

α

[
F (τ)

(
Č ′1 +

1

2
σ̌2
(
ψU Ǔ

′′′
1 + ψCČ

′′′
1

))
+ (1− F (τ))

(
Û ′1 +

1

2
σ̂2Û ′′′1

)]
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