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Summary

Steel is widely used in construction. I tried to model the steel price such that valuations
and scenario simulations could be done. To achieve a high level of precision this is
done with a continuous-time continuous-state model. The model is more precise than a
binomial tree, but not more economically interesting. I have treated the nearest futures
price as the steel price. If one considers options expiring at the same time as the futures,
it will be the same as if the spot were traded. If the maturity is short such that details
like this matters, one should treat the futures as a spot providing a convenience yield
equal to the interest rate earned on the delayed payment. This will in the model be
the risk-free rate.

Then I have considered how the drift can be modelled for real world scenario simu-
lation. It involves discretion, as opposed to finding a convenient AR(1) representation,
because the ADF-test could not reject non-stationarity (unit root).

Given that the underlying is traded in a well functioning market such that prices
reflect investors attitude towards risk, will the drift of the underlying disappear in the
one-factor model applied to value a real-option. The most important parameter for the
valuation of options is the volatility. I have estimated relative and absolute volatility.
The benefit of the relative volatility is the non-negativity feature.

Then I have estimated a model where the convenience yield is stochastic. This
has implications for the risk-adjusted model. I have difficulties arriving at reliable
parameter estimates. Here small changes in arguments have large effects on the option
value. Therefore should this modelling be carried through only if one feels comfortable
that it is done properly.

I finish by illustrating how real-option valuation can be performed. The trick is to
translate the real-world setting into a payoff function. Then one can consider Monte
Carlo simulation if the payoff function turns out to be complicated or if there are
decisions to be made during the life of the project. For projects maturing within the
horizon traded at the exchange, the expectation of the spot price under the pricing
measure is observable.

To truly compare models, plots of the value of derivative should be created to
graphically compare the difference in dependence on parameter values. Alternatively,
the derivative of the expressions with respect to the parameters are compared. The
value of the option to do something, as opposed to be committed to do something,
increases with the volatility of future outcomes. Such known results are used instead
in the comparison, because the two reliable models (the one-factor models) are pretty
similar. This known result is not contradicted by the present values computed in the
real option example.
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5 1. Introduction

1 Introduction

Motivation for this thesis Steel is a central input factor in a variety of construction

projects. Such projects typically extend far into the future and has associated exposure

to price changes. Thus, to understand and identify a model for the dynamics of the

steel price is interesting for scenario simulations, computing the value of an insurance

and for valuations of the option to act in a particular way during projects, i.e. real

options in projects.

In which situations is this useful? Consider a construction company involved with

a skyscraper and the nearby metro. They want to get an overview of their exposure

to price fluctuations in one of their input factors, steel, and manage this risk. How do

they achieve risk management?

Consider a shipyard building ships. A major input factor in the construction process

is steel. The supplier of steel adjust the price charged to the shipyard to cover its varying

expenses. The shipyard is therefore exposed to steel price fluctuations. Assume that

the shipyard wants an insurance against high prices. What is the fair price of the

insurance?

Consider a steel supplier with a planned production level two years into the future.

What is the value of the option to increase production in the event of a high price?

How will I answer these questions? I will identify and calibrate models for the

steel price that incorporate time and uncertainty. I will apply what is known as risk-

neutral valuation when the task is to compute present values.
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2 Global Steel Markets

China plays a key role. The Economist (2015, 9Dec) 1 reports that China produced

822 million metric tonnes in 2014, about half the worlds annual output. China is pre-

dicted (late 2015) to produce over 400 million metric tonnes more than it will consume

in 2015.2 China has of November exported over 100 million metric tonnes. To compare

these numbers, Japan produce roughly 110 metric tonnes3, while US produced about

90 million metric tonnes in 2014.4 Financial Times (2015)5 report that as of 2014, the

volume on the Shanghai Futures Exchange is larger than the London Metal Exchange

and Commodity Exchange, Inc (New York) aggregated.

3 Characteristics of Steel

Steel is cheap and has high tensile strength. It can take on a great variety of

forms and is widely used in construction, offshore installations and shipbuilding. The

properties depends on the particular alloy and the particular production process. Steel

can be recycled without loosing its quality — it is the most recycled material in the

world.6 Scrap metal is back in the market after three months.

Steel is cheap to store and transport. Cheap storage leads to stable production

for storage — it is more cost effective to produce and store it than to constantly adjust

produced output. Warehouses also works as a buffer for shocks in demand, dampen-

ing price volatility. Cheap storage costs reduce the difference in prices between steel

delivered far in the future and steel delivered soon.

Steel is durable. Steel in warehouses does not degrade, so situations where con-

sumers are unwilling to delay consumption should be rare. That is, situations in which

futures contracts with short maturity are more expensive than longer contracts with

longer maturity, should be rare.

1The Economist Newspaper Ltd: ”China’s soaring steel exports may presage a trade war”, Dec 9th
2015. ”Nervousness of steel”, Sep 19th 2015, ”It’s a steel”, Jul 13th 2015

2Reuters: ”China apparent steel consumption falls 5.7 pct from Jan-Oct -CISA”, Nov 13th 2015.
3The Japan Iron and Steel Federation, Review 2015, http://www.jisf.or.jp/en/statistics/

sij/documents/P02_03.pdf
4Profile 2015. American Iron and Steel Institute.
5http://www.ft.com/intl/cms/s/0/a2df3018-9feb-11e4-9a74-00144feab7de.html#

axzz3ukMbHj00
6Profile 2015. American Iron and Steel Institute.

http://www.jisf.or.jp/en/statistics/sij/documents/P02_03.pdf
http://www.jisf.or.jp/en/statistics/sij/documents/P02_03.pdf
http://www.ft.com/intl/cms/s/0/a2df3018-9feb-11e4-9a74-00144feab7de.html#axzz3ukMbHj00
http://www.ft.com/intl/cms/s/0/a2df3018-9feb-11e4-9a74-00144feab7de.html#axzz3ukMbHj00
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Steel compared to other commodities Steel is easy and cheap to store as opposed

to gold, oil and in particular electricity. Steel production is not dependent on weather

as coffee and oranges are. It is also easier to regulate steel production than cattle

production on short notice. Steel is consumed, contrary to silver and gold. Steel is

durable as opposed to seasonal commodities. Steel is recycled as opposed to live cattle.
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4 Rebar to Represent Steel in General

The steel price Steel is used all over the world and it is not clear what the steel price

is. There exists several steel price indexes trying to represent a particular type of steel

or a geographical area. There are also steel futures prices on different steel products.

A futures contract is a contract traded on an exchange and standardized with respect

to type, quality, location, and maturity for future delivery of the underlying. The

underlying is in this case steel. Rebar is the most traded metal futures contract in the

world, with 408 million contracts in 2014.7 Futures prices are easy to interpret because

the steel can in fact be delivered to the quoted price. Also, because the prices are on

contracts traded on an exchange as opposed to the indices, the prices can be used as

an instrument in cash flow management.

Based on the large role of China, and the fact that the SHFE steel futures contracts

are relatively new, do I choose to focus on steel in China and use futures contracts traded

on the Shanghai Futures Exchange to represent the steel price. I will in particular focus

on rebar futures contracts.

What is rebar? Rebar is short for reinforcement bar, and is used in concrete con-

structions. Concrete has high compression strength but low tensile strength. Steel is

therefore used as reinforcement.

Why Rebar? Rebar is the most traded futures contract and should be the best

reflection of the steel price in China and Asia. 8 Companies involved with other steel

products like wire rod and hot-rolled coil, find the dynamics of rebar interesting as rebar

contracts can be used to cross-hedge. Cross-hedging is to hedge your direct exposure

to price volatility in X by trading a sufficiently correlated product Y. The correlations

of rebar versus different related products, given that they are cointegrated:9

- Wire Rod SHFE 98% for F2.10

7The Financial Times Limited, Commodities Explained: Metals trading in China, April 2nd 2015
8Volumes: http://www.csidata.com/factsheets.php?type=commodity&format=html&

exchangeid=56. On the arbitrary day 1 December, rebar had 350 times (9,194,734/26,300)
higher volume than hot-rolled coil while steel wire rod were not even traded. On Decemeber 12, rebar
volume were 3,228,720, hot-rolled coil 14,742 and steel wire rod not traded.

9F2 contracts matures between 1 month and 2 months, F4 matures between 3 and 4 months, as
time passes. I have chosen the shortest maturity available. E.g. Nickel F4 because F1, F2, F3 had
shorter time series. The correlation is similar for all maturities for Wire Rod SHFE and Hot Rolled
Coil SHFE.

10Sample period: 05 Jan 2010-21 Sept 2015.

http://www.csidata.com/factsheets.php?type=commodity&format=html&exchangeid=56
http://www.csidata.com/factsheets.php?type=commodity&format=html&exchangeid=56
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- Nickel SHFE 90% for F4.11

- Hot Rolled Coil SHFE 98% for F4.12

- Hot Rolled Coil NYMEX F1 79%, F2 83%, F3 86%, F4 88%.13

- Iron Ore (62% Fe, CFR China) NYMEX 97% for F2.14

Cross-hedging is typically done if the trading volume (i.e. liquidity) is low in the

product you have direct exposure in. Liquidity is important to be able to take the

desired hedging positions at any time.

11Sample period: 27 Mar 2015-21 Sept 2015.
12Sample period: 21 Mar 2014-21 Sept 2015.
13Sample period: 05 Jan 2010-21 Sept 2015. Observe how the correlation rises with maturity, likely

due to the geographical differences between the exchanges.
14Sample period: 05 Jan 2010-21 Sept 2015.
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5 Data Description

Rebar Futures Contracts Traded on Shanghai Futures Exchange

(SHFE)

Contract specifications The contracts are traded in yuan, while the data set is in

dollar. I have daily observations on ten futures contracts, maturing up to ten months.

Rebar contracts are physically settled each month. Delivery must take place within five

days after the last trading day.15 The fee is one yuan per metric ton for physical delivery.

Minimum Delivery Size is 300 metric tonnes, each contract is on 10 metric tonnes.

Certified warehouses are located in Shanghai, Jiangsu (near Shanghai), Guangzhou

(near Hong Kong) and Tianjin (near Beijing). For detailed contract specifications, see

the appendix on page 80.

Futures Prices The yuan price of the nearest rebar futures contract and the one

with the longest maturity, 10 months, are graphed in Figure 2(a). The negative price

trend in many commodities over recent years applies to steel as well. The number of

observations per different contract maturity is 211.

15Last trading day: 15th, or first trading day following 15th
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Figure 1: Rebar Futures Prices on Shanghai Futures Exchange in yuan and dollar in
(a) and (b), the exchange rate used to convert is in (c). January 2010 - September
2015.
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Volatility Define relative volatility per week as σw = std.dev[ln(Ft/Ft−1)] and abso-

lute volatility per week as γw = std.dev[Ft − Ft−1]. To annualize, multiply by
√

52.

In Figure 2 is the annualized relative volatility associated with the different maturities

plotted and both relative and absolute volatilities are tabulated.

Rebar futures prices with short maturity are more volatile to than those with longer

maturities. This is referred to as the Samuelson effect, stating that the arrival of new

information has more impact on short maturity contracts than long maturity contracts.

Figure 2: Annualized relative and absolute volatility associated with the different ma-
turities of the rebar contracts. Contract one has from one month to 0 days maturity as
time passes, contract two has two to one month maturity and so on.
Relative: σann = std.dev [ln(Ft/Ft−1)]×

√
52.

Absolute: γann = std.dev[Ft − Ft−1]×
√
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1 23.83 % 794 Yuan

2 20.29 % 728 Yuan

3 18.88 % 705 Yuan

4 17.86 % 676 Yuan

5 18.25 % 685 Yuan

6 18.54 % 708 Yuan

7 19.08 % 733 Yuan

8 18.12 % 691 Yuan

9 18.52 % 709 Yuan

10 18.31 % 708 Yuan
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Figure 3: Relative volatility through time for F0,1 and F0,10. The horizontal bands
represents one standard deviation on a weekly frequency.
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Figure 4: Absolute volatility through time for F0,1 and F0,10. The horizontal bands
represents one standard deviation on a weekly frequency.
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The kurtosis associated with the distribution of returns for commodities is typi-

cally16 above 3, meaning that it has fatter tails than the normal distribution. The

normal distribution is nevertheless often, and will also here be, the main tool in mod-

elling the stochastic price process. Often, a separate jump process is added in models

for prices that jumps, rather than widening the distribution. The distribution of log

returns in Figure 6(a) appears normal and it is not obvious that the absolute changes

are log-normally distributed in Figure 6(b). The distribution appear to be wider in

Figure 6(b).

Figure 5: The computed kurtosis shows that the distributions has fatter tails than the
normal distribution, but is considerably less than what Geman (2005) reports. See
footnote 16.
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16Geman (2005), page 59 calculates kurtosis, from July 1993 to November 2000, here written compact
with no decimals: Crude oil 6, Brent 6, Natural gas 30, Heating fuel 11, Unleaded gasoline 4, Corn 51,
Soybeans 19, Soymeal 15, Soy oil 5, Wheat 59, Oats 23, Coffee 7, Aluminium 6, Copper 7, Zinc 12,
Nickel 5, Tin 6 Lead 6.
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Term structure of the futures prices Basis is defined as a longer maturity contract

minus a shorter maturity contract (or the spot price), e.g. Ft,10−Ft,1 . Define the relative

basis as the difference in the log-prices. The relative basis is displayed in Figure 6 for

ln(Ft,10/Ft,1) and ln(Ft,5/Ft,1). A positive value is known as “contango” and a negative

value is known as “backwardation”. Define the futures term structure as the curve

observed when the prices observed at date t for futures contracts maturing at different

dates are plotted with the maturity of the contract on the horizontal axis and the

price on the vertical axis. Contango is lingo to describe a situation where the futures

term structure is upwards sloping, and backwardation is a name for when the slope

is neqative. The term structure of the futures prices can possibly add information on

price dynamics.

There are cost-of-carry associated with possessing steel physically, which in the

absence of other effects make the futures curve slope upwards. Backwardation can be

regarded as a situation where agents are unwilling to delay consumption, or a situation

where sellers give up a portion of the price to achieve certainty of the future price

instead. I have included ln(Ft,5/Ft,1) in Figure 6 to shed light on the shape of the

futures curve. The futures curve can be hump shaped and need not be monotonically

increasing or monotonically decreasing as the graph hints towards. The graph hints

towards monotonically increasing term structure because ln(Ft,5/Ft,1) is for the most

part below ln(Ft,10/Ft,1) in the figure. The number of cases in which both the shorter

maturity and longer maturity contracts were more expensive than the middle contract

is as follows, F2: 27, F3: 28 F4: 34, F5: 45, F6: 41, F7: 40, F8: 35, F9: 34. Per

contract series are there 211 observations.

Figure 6: Relative basis. January 2010 - September 2015. Positive: Contango. Neg-
ative: Backwardation. Relative basis can also be regarded as a measure of “cost-of-
carry”.
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Inventories The theory of storage summarized: Low warehouse stock leads to higher

nearby futures prices and higher volatility. The price versus stock at the warehouse is

plotted in Figure 7. A linear regression equation to estimate the fit does not improve

casual inspection in this case. The data do not confirm a relationship as predicted by

the theory of storage. Volatility is somewhat higher for lower inventory levels, seen

in Figure 8(b). The obvious shortcoming in the data is that it is for the warehouses

associated with the SHFE only. Buyers and sellers can easily stock steel at their sites,

in addition to deliver to the exchanges, so producers and consumers easily influence

observable inventory level analysed here. The expectation of a relationship vanish as a

result of the shortcoming. The lack of relation is demonstrated here because inventory

data could easily come to mind as a possible source of information for modelling prices.

Figure 7: Rebar warehouse exchange stock versus price level and volatility.
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6 General Modelling Considerations

Computing a present value.

The present value of a certain future cash flow takes the time value of money into

account by discounting with a risk-free interest rate. When there are associated uncer-

tainty, the present value is affected. To compute the present value, assumptions must

be made, often via an explicit model. A common way is to model the uncertainty going

forward with real probabilities and then add a premium — reflecting the risk associated

with the expected outcome — to the risk-free rate when discounting the future value

back to a present value. An alternative way is to model the uncertainty going forward

with artificial probabilities and then use only the risk-free rate to discount back into a

present value. This is referred to as “risk-neutral valuation”. Both approaches involves

setting up a model reflecting the relevant economy and use parameter values in the

computation. I will use risk-neutral valuation. Risk-neutral valuation is explained in

Appendix: Deriving the Risk-Adjusted Process on page 72.

Model of uncertainty.

The simplest model of uncertainty and time is one in which a variable takes on a value

today and can only take on two different values in the next time period — a binomial

model. This specification is reasonable to model a coin flip, but not to model the steel

price, because the steel price can take on more than two values and uncertainty is

considered over more than one period ahead. To model the steel price, the binomial

model can be extended by adding the binomial structure to it self for each of the two

possible outcomes, resulting in a “tree”. Doing this n times results in a tree with

n+ 1 different possible outcomes if the tree does not keep track the specific path taken

through the tree. In this discrete model, a reasonable fine outcome grid for a fixed

future time period can be constructed by increasing n. To be completely precise in the

modelling, one can construct a mathematical object that moves continuously through

time and can take on a continuous set of values. The exchange has trading hours, so

the price is not traded continuously. The price quotations are not continuous either,

rather they are quoted in fixed intervals, e.g. yuan per ton. The continuous time can

be thought of as what the price would have been, if it were traded in the closing hours.

The continuous outcome space will ‘fit’ every discrete version, and is easier to scale

in time while preserving precision. The benefit of continuous-time, continuous-set of

values lies in the precision of the model and importantly, not in the economic principles



20 6. General Modelling Considerations

and intuition.

Stochastic differential equation (SDE) to model uncertainty and

time

I will consider SDE’s that consists of a drift term and a dispersion term.

dXt = µ(t,Xt)× dt+ σ(t,Xt)× dWT

change in XT = (drift function)× dt+ (dispersion function)× randomness

Drift takes care of the deterministic part of the change, while the dispersion term takes

care of stochastic part. The stochastic ‘motor’ is the Wiener process. Both the drift and

dispersion can be functions of the stochastic variable and time. Hull (2015) is sufficient

to be able to work with SDE’s, Øksendal (1998) is more rigorous. When dealing with

SDE’s normal calculus does not apply, rather Itô calculus must be applied. I have

stated Itô’s formula in Appendix: Itô’s Formula on page 56 because it is used later.

Modelling implications from economic theory

Existing producers have the possibility to regulate production and supply in response

to the steel price, thus the quantity in the market should be a function of the price.

The price should be driven down by producers when the price is high. When the price

is low, supply is expected to decrease and some firms forced out of business if the low

price persists — eventually the price moves up again. Demand is also a source of mean-

reversion, because a high price makes it more attractive to use substitute materials,

decreasing steel demand. Similarly steel is more attractive when it is cheap, increasing

demand. This economic reasoning implies that a property of the drift function should

be that it makes sure that the process mean-reverts.

The fundamental value of the steel price is likely to change with the improvements

in production technology and prices of input factors. The prices of the input factors,

demand and supply are likely a function of the economical environment in a broad sense.

Hence, it is not obvious how to model the level for which the process seeks to return to.

An alternative is to identify the relationship between some key variables, and use that to

orient on whether the current price is above or below what is historically observed as the

(cointegrated) relationship. If the interest rate is a proxy for the state of the economy,

it could be allowed to vary in the model. The interest rate observed at the Peoples

Bank of China has been around 5% from 2010 to 2015. I will use a constant interest
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rate of 5% throughout my work. Trading it self will induce price fluctuations, so the

prices will be an imperfect measure of fundamentals. Using a constant interest rate also

simplify away the interest effect for margin payments on futures contracts (adjustment

of your cash balance in the broker account on a daily basis to avoid inability to meet

your obligations).

I argue that when the purpose of modelling is to characterize dynamics for subse-

quent simulation, the source of the random movements is not critical as long as the

model reflects the characteristics of the price movements. The purpose in this thesis

is not to predict the direction of the future movements of the steel price, although a

prediction on the direction is an implication of a process that mean-reverts.

7 Particular Modelling Considerations

Yuan versus dollar

The contracts are traded in yuan, while the price series are in dollars. I want to

model the steel price process in Shanghai from an independent geographical perspec-

tive. Therefore, to avoid measurement noise by dollar-yuan fluctuations I convert the

observations back into yuan via daily observations of the currency pair accessed at the

webpage of the St.Louis Fed.17 The rebar prices in dollar and the exchange rate used

is seen in Figure 2(b) and 2(c).

Sample period

In the time period considered, the prices declines. One must be careful with the inter-

pretation of the data. In any case the history is just a particular realization of possible

outcomes. If the prices did not have any tendency to increase nor decline, it would be

tempting to assume a constant simple mean as the equilibrium price. It would possibly

be the statistical equilibrium price, i.e. the mean over the period, but the true equilib-

rium is a function of economic activity and the costs of production. Hence, to evaluate

the equilibrium level, I argue that there are two options: (i) Industry knowledge about

production costs and predicted demand, (ii) Statistical approach is to consider vari-

ables that are likely to be co-integrated with rebar. A few candidates are iron ore,

coking coal, steel scrap, electricity, labour, purchasing managers index, interest rates,

and unemployment.

17https://research.stlouisfed.org/fred2/series/DEXCHUS

https://research.stlouisfed.org/fred2/series/DEXCHUS


Frequency of data

Daily observations on trading days are not equidistant with respect to calendar time,

but could be with respect to the flow of relevant information.18 Daily observations

increase the sample size, and there is some evidence that increased frequency for a

given sample size increase the power when testing for unit root, but the time span is

considered to be more important.19

I choose to use a weekly frequency motivated by, (i) no need to distinguish between

calendar time and abstract information flow time. Annually expressed time step will be

1/52. (ii) Unit root test are not adversely affected. (iii) The fact that the construction

sector plan and act with a long time perspective, and are not interested in micro

dynamics. If one wants to investigate micro dynamics, a daily frequency is likely to

be too infrequent anyway. (iv) A weekly frequency is common in the literature, e.g.

Schwartz (1997).

18If observations are equidistant with respect to relevant information, it means that relevant in-
formation is not three times as large over a weekend (three nights) than for example Wednesday to
Thursday (one night). The arrival of relevant information induces price changes, i.e. volatility. Hence,
relevant information flow is tested by comparing volatilities over a night versus over three consecutive
nights where there were no trading.

19E.g. Page 130 in Maddala and Kim (2004)
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8 One Factor Model

Mean-Reverting Model With Absolute Volatility The economics of steel mar-

kets call for mean-reversion in the model, although there is reasonable doubt when

eye-balling figure 2(a). In Figure 3 and 4 it is seen that the volatility is not necessarily

proportional to the price. When price changes are proportional to the price level, the

distrubution of the prices will be log-normal and the percentage return will be normal.

I choose the main model to be one where the volatility is absolute.

Based on this do I suggest the mean-reverting Orhnstein-Uhlenbeck process for the

futures price level:

dFt,T = κ (µ− Ft,T ) dt+ γdWt (1)

Mu µ is the long run mean of Ft,T . If Ft,T > µ, the deterministic drift term is

negative. Because the term is negative when Ft,T > µ, and positive when Ft,T < µ,

the process mean-reverts. The deviation from the mean is scaled by kappa κ. Thus

the speed of reversion is determined by κ. This deterministic part of the process is

disturbed by a random variable Wt, and scaled by a parameter gamma γ. The random

variable Wt is the standard Wiener process.20

Ft,T can become negative, not consistent with the price of a commodity. If the mean

is sufficiently far away from zero and the mean-reversion is strong, this is unlikely.

Discrete version The discrete version of (1) with time step ∆t is

Ft+∆t,T − Ft,T = κ (µ− Ft,T ) ∆t+ γ
√

∆t ηt+∆t , where ηt+∆t ∼ ηt ∼ N(0, 1) (2)

This version could be used to estimate parameters if the analytical solution were difficult

to find. If this form is used, the size of the time increment ∆t is important. Solving (1)

analytically is preferable because the discrete version will be exact for all choices for

the size of ∆t.21 When estimating parameters in a later section, the analytical solution

will be used and the chosen weekly frequency implies ∆t = 1/52.

20Properties of the standard Wiener process: W0 = 0, Wt−Ws ∼ N(0, t−s) where s ≤ t, increments
of Wt −Wt−1,Wt−1 −Wt−2, ... are independent of one another, Wt is the sum of its increments and
Wt is continuous but not differentiable.

21See Appendix: The (Possible) Role of ∆t on page 55 for an illustration of the role of ∆t.
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Analytical solution The analytical solution is22

FT,T = Ft,T e
−κT + µ

(
1− e−κT

)
+ γ

∫ T

t

eκ(s−T )dWs (3)

FT,T is a random variable because of the presence of the stochastic integral. The

expectation and variance at t for date T are:

E{FT,T} = Ft,T e
−κT + µ

(
1− e−κT

)
(4)

V ar (FT,T ) = γ2

∫ T

t

e2κ(s−T )ds (5)

Mean-Reverting Model With Relative Volatility This model cannot become

negative in the continuous case. One has to take care in an Euler scheme here as well,

because the system is not updated over ∆t. If the distance ∆t is large, the system is

not updated frequently enough to sufficiently scale down the dispersion term.

dFt,T = κ (µ− Ft,T ) dt+ σFt,TdWt (6)

22See Appendix: Solving the Mean-Reverting
Ornstein–Uhlenbeck Process on page 57 for a detailed way to the solution.
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9 Estimation, One Factor Model

Estimate an AR(1)

I now turn to Box-Jenkins methodology.

Strategy The discrete version of (3) with a time step ∆t is

Ft+∆t,T = Ft,T e
−κ∆t + µ

(
1− e−κ∆t

)
+ γ

√
1− e−2κ∆t

2κ
ηt+∆t , ηt+∆t ∼ N(0, 1) (7)

AR(1) with non-zero mean:

yt = a0 + a1yt−1 + εt , εt ∼ N
(
0, σ2

)
(8)

The estimation strategy is to equate:

yt =Ft+∆t,T (9)

a0 =µ
(
1− e−κ∆t

)
(10)

a1 =e−κ∆t (11)

yt−1 =Ft,T (12)

sd.err(ε) =γ

√
1− e−2κ∆t

2κ
(13)

and solve for µ, κ and γ using the computed numbers for a0, a1 and sd.err(ε), to

obtain:

κ =
− ln a1

∆t
(14)

µ =
a0

1− a1

(15)

γ =sd.err(ε)

√
−2 ln a1

∆t(1− a2
1)

(16)

Testing the underlying assumptions A condition for estimating the linear model,

is that the process is stationary. To test for stationarity, I employ an Augmented Dickey-

Fuller test23 without drift or trend. The idea is to test the true data generating process,

23See appendix on Augmented Dickey Fuller test on page 51
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and not fit an equation to the observed sample in the testing. I do not want to allow for

a trend or drift in the test, because it is not theoretically compatible with the price of

a commodity. In fact, a positive trend reflecting inflation could be present, but in the

sample the general tendency is a decreasing price. Although the production process is

likely to be cost-improved over time, the price cannot decrease in a deterministic nor

in an average fashion forever. Hence, I do not allow for a trend or drift. Interestingly,

if the prices had an overall tendency to increase, it would be tempting to reason that it

is for example inflation or a stable growth in demand, and include drift in the testing

equation. If prices follow mean-reversal along an upward sloping trend it would be

reasonable to include a trend.

The ADF test statistic for F1 is -1.16, not even significant at the 10% level24. Hence,

the process is not proven to be stationary. This means that the numbers a0, a1, sd.err(ε)

in (10), (11), (13) cannot be reliably computed and plugged into the expressions for

κ, µ, γ in (14), (15), (16).

Hence, either the price reverts slowly towards the mean, or it is a true unit root

process. Over a short time horizon a true unit root and a near unit root are similar,

and they appear more similar the larger the volatility is. ADF test and other unit root

tests are known to have low power, so it is not good in differentiating a near unit root

from a true unit root.

When failing to reject unit root In general, when one wants to identify a pattern

and predict the future, but fail to reject unit root, one must identify whether detrending

or differencing is the proper method to make it stationary, and proceed. Differencing

results in working with ARIMA(p,1,q), rather than ARIMA(p,0,q). ARIMA(p,1,0) is

on the form ∆yt =
∑p

i=1 ∆yt−i. I can report that a1 is insignificant in ARIMA(1,1,0),

so there is no predictive pattern in such a simple model. Using ARIMA(0,1,0) as the

model of the mean, I reject conditional variance by testing the squared forecasting

errors with the Ljung-Box test and McLeod Li test.25 This is true for ARIMA(1,1,0)

as well.

To take the first difference is not compatible with (1) and (3), because (1) and

(3) describe a change from t to T based on the level in t. The aim is not to predict

the future, but to find parameters for (1) and (3), with the restriction to keep it in

levels. Now, there are two options. (i) Do not take the difference, but assume unit

24Critical values, given sample size and test regression specification without drift or trend are -2.58,
-1.95, and -1.62, for significance levels 1%, 5%, and 10% respectively. Test statistics computed are F1:
-1.16, F10

25See subsection in on page 53 for an informal explanation.
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root. (ii) Use discretion on the reversal. This implies setting the speed of reversion κ

and long term mean µ to values such that the process mean reverts and are consistent

with the failure of rejecting unit root. The low power of the unit root test could be

used to argue that a higher value of kappa is also consistent with mean-reversal and

failure to reject unit root.

10 Assume Unit Root

Cannot reject unit root for AR(1), so assume that the coefficient a1 is one. Because

a1 = 1, I impose a0 = 0 or else the process has a deterministic trend.

yt = a0 + yt−1 + εt , εt ∼ N
(
0, σ2

)
(17)

yt = yt−1 + εt (18)

The solution to (18) is26

yt = y0 +
t−1∑
i=0

εt−i (19)

This is known as a random walk. Each new realization of the innovation εt has a

permanent effect on yt+s, so the process is not stationary, but finite because of the given

initial value y0 and terminal time t.

Model implication To equate this with the mean-reverting process described by (1)

and (3) implies a drift of zero, by setting κ = 0. The mean-reversal property vanishes,

as already pointed out by the fact that the series is not stationary. The continuous

model with is thus

dFt,T = γdWt (20)

FT,T = Ft,T + γ

∫ T

t

dWs (21)

The discrete version of (20) is

Ft+∆t,T = Ft,T + γ
√

∆t ηt+∆t , ηt+∆t ∼ ηt ∼ N(0, 1) (22)

26See Appendix: Solve AR(1), a0 = 0 and a1 = 1 on page 54 for the derivation.



29 11. Use Discretion On The Drift

The discrete version of (21) is

FT,T = Ft,T + γ
√

(T − t) ηT , ηT ∼ ηt ∼ N(0, 1) (23)

(22) and (23) are similar because they are now nothing more than an initial condition

plus a scaled draw from the standard normal distribution. They are analoge to (19),

the difference is that εt ∼ N (0, σ2) and ηt ∼ N (0, 1), so γ is needed in (22) and (23)

to take care of the scaling of the volatility.

The absoulte annualized volatility γ is computed in Figure 2 to be 794 yuan. The

last observation in the sample is 1900 yuan, so the lower bound in a two standard

deviation confidence interval equals 1900 − 2 × 794 = 312. It is clear that this model

can take on negative values. Negative values will not be observed in reality, so this a

drawback with this model.

11 Use Discretion On The Drift

Before even discussing the speed of reversal to the long run mean level, the long run

mean level must be determined. It can be constant or time-varying, and the relevant

time horizon must be determined. The mean can also be constant or time-varying based

on industry and production knowledge.

The average price of F1 from January 2010 to September 2015 is 3638 yuan. The

average for September 2014 to September 2015 is 2295 yuan. Does it matter what the

price were 5 years ago? These are clearly discretionary considerations. Iron ore (also

integrated of order one) and rebar are cointegrated. They are cointegrated because the

residuals ut, from a linear regression of the type Rebart = a + b × Iron oret + ut are

stationary. If the residuals are not stationary, then there are no a and b to transform

from one variable to the other that will be correct in expectation. The last observation

for iron ore is 347 yuan, and 1900 yuan for rebar. The OLS estimate and these values

gives 1900 − 1052 + 3.3 × 347 = u, u = −297. Because the error is negative, it means

that they are closer than they have been historically, and they should therefore diverge.
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Figure 8: Iron ore and rebar are cointegrated, because the residuals from a regression
is stationary. It implies that OLS is valid, and that this relationship is the average
transformation from one to the other.
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(a) The residual from a linear regression. When it is negative, it means that they are closer than they

have been on average historically, and therefore should diverge in the future.
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(b) The dotted line is the prediction of rebar based on iron ore. At the end of the sample, it predict a

higher value for rebar than the realized value. The relation in the regression could have been specified

the other way around, because there are no explainatory intentions, just a linear relationship. One

must remember that there are no information on which variable that is going to move in a particular

direction. The information here is that they will diverge, but one can only use this information in a

relative sense, not to undertake level predictions.
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12 Convenience Yield

Another possible source of information is the term structure of futures prices. A simple

relation between two futures prices is27

Ft,T = Ft,se
r(T−s) , t < s < T. (24)

This relation states that you move through the term structure of futures prices vià

the constant interest rate r and the time distance T − t. This is violated empirically.

It is seen in Figure 2(a) that the distance between the prices do not obey this relation.

Introducing a varying convenience yield δt (expressed as a rate) is the standard way

to treat the empirical discrepancy between the futures prices (e.g. Schwartz (1997),

Cassusus and Collin-Dufresne (2005)).

Definition of convenience yield, Schwartz (1997) page 927, footnote 9,

The convenience yield can be interpreted as the flow of services accruing to

the holder of the spot commodity but not to the owner of a futures contract.

With deterministic convenience yield, (24) is modified to

Ft,T = Ft,se
(r−δs,T )(T−s) , t < s < T. (25)

The convenience yield is analogue to a dividend yield (rate) on a stock. If the

convenience yield is negative, it is sometimes referred to as cost-of-carry — the cost

of storing the commodity is paid by the party possessing the commodity and not the

holder of the contract. I solve for the convenience yield in (25) to obtain

δt,s,T =r −
(

1

T − s

)
ln

(
Ft,T
Ft,s

)
, t < s < T

and use the particular contracts F1 and F10 to plot the empirical convenience yield as

a residual in Figure 9. The convenience yield is stationary (ADF-test statistic is -3.95).

27See the paragraph preceeding (60) on page 79 for why the relation is as it is.



Figure 9: Convenience yield. Annualized convenience yield as a residual δANN = 4
3
δ1,10

where δ1,10 = 0.05− 4
3
ln
(
F0,10

F0,1

)
, obtained from the commonly assumed relation between

futures prices: Ft,T = Ft,se
(r−δs,T )(T−s) , t < s < T . January 2010 - September 2015.
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13 Summary One Factor Model

Mean-reversal in the drift term is not supported by the employed statistical ADF-

test to check for stationarity. The test is known to be weak in disentangling near

unit root and true unit root processes. The importance of the distinction decreases

with a decreasing horizon. I have shown the implications for the model under Assume

Unit Root on page 28. If one really wants to incorporate a drift that is not zero,

I have suggested discretionary ways. Possibilities are, setting kappa directly, using

cointegration to update the changing mean level and use convenience yield that depends

on the spot price.
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14 Motivation for Stochastic Convenience Yield

As the two futures contracts in (25) are stochastic, it is interesting to allow for it in

the model. Then at least r or δ must be allowed to vary. Schwartz (1997) and Collin-

Duffresne (2005) shows how a mean-reverting convenience yield significantly matters

for pricing of contingent claims.

According to the theory of storage, is the convenience yield related to the economy

wide inventory levels. When the inventory is low, rebar is scarce so the price and

the volatility should rise. The volatility rises because the price sensitivity to changes

in demand when the inventory is low, is larger. Furthermore, the importance of low

inventory is more important for the immediate future than for a longer horizon. The

flow of information should in general be more important for the immediate future.

Hence, the nearby futures prices should have a higher volatility than the longer maturity

futures.

15 Modelling an Unobservable Variable

I now estimate a model for the unobservable spot price, by taking the whole futures

curve into consideration. Because the underlying variable is unobservable, it must first

be estimated. To do this the log futures prices are put in a state-space form so that

the Kalman-filter28 and Maximum Likelihood Estimation29 can be used to estimate the

time series of the spot price and the associated model parameters.

Schwartz (1997) adds noise to his data to reflect bid-ask spreads, and non-simultaneously

observed variables, price limits or errors in the data and then use the Kalman-filter to

filter out this noise. The aim is that the serial correlation and cross-correlation is a

result of variation in the spot price and convenience yield. I do not add noise to my

prices.

28See Appendix: Kalman Filter on page 68 for an informal explanation.
29See Appendix: Maximum Likelihood Estimation on page 69
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16 Theoretical Model

In this part I will impose the two-factor model (26) (27) (28) developed in Schwartz and

Gibson (1990) and extended in Schwartz (1997) on the rebar futures data. The rebar

spot price follows a mean-reverting geometric Brownian motion. The convenience yield

is a variant of the mean-reverting Ornstein-Uhlenbeck process, similar in structure as

(1). There are now two sources of randomness driving the two SDE’s, with correlation

ρ.

Historical measure:

dSt =(µ− δt)St dt+ σSSt dW
S
t (26)

dδt =κ (α− δt) dt+ σδ dW
δ
t (27)

dW δ
t dW

S
t =ρdt (28)

The model under the historical measure is the version used for scenario simula-

tion.30 There is an modified version of this used to compute present values — the

risk-neutral valuation tool.31. I present the modified model used for pricing here for

completeness. It is then clear where the risk-adjustment λδ for the non-traded risk

factor convenience yield seen in the estimations belong. The model under the pricing

measure is represented by (29) (30) (31).

Pricing measure:

dSt =(r − δt)Stdt+ σSSt dW̃ S
t (29)

dδt = [κ (α− δt)− λδσδ] dt+ σδ dW̃ δ
t (30)

W̃ δ
t W̃

S
t =ρ dt (31)

17 Estimation Strategy

To fit the Two-Factor Model to the rebar data I have used the function fit.schwartz2f

in the package Schwartz97 avaiable at the Comprehensive R Archive Network (CRAN).

It employs the Kalman filter technique to estimate the state variable—the unobservable

spot price, which then enables Maximum Likelihood Estimation in order to find optimal

parameters.

30See https://cran.r-project.org/web/packages/schwartz97/vignettes/

TechnicalDocument.pdf for details.
31The risk-neutral valuation tool with the one-factor model is explained in Appendix: Deriving the

Risk-Adjusted Process on page 72.

https://cran.r-project.org/web/packages/schwartz97/vignettes/TechnicalDocument.pdf
https://cran.r-project.org/web/packages/schwartz97/vignettes/TechnicalDocument.pdf
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To the optimization function I provide what I will refer to as “settings”:

• A matrix of weekly observations of one to ten month futures contracts, and specify

the time increment to be 1/52.

• A matrix of days to maturity for each contract

• Which parameters to be optimized and which to be held constant

• Initial values of the parameters

• A constant interest rate of 5%

• All maturities receive the same weight in the estimation of the spot price.

. The estimation procedure is unfortunately not as simple as one function call with the

“settings” above. The output from the optimization function is sensitive to initial val-

ues. Further, there exists local paths where two parameter values can increase pairwise

to values not desirable from a modelling perspective (e.g. σδ = sigmaE = 6 × 10153

is not what I want to plug into my model). Therefore, to test the robustness of the

estimates do I need to vary the settings in a number of ways. In addition to vary the

initial values, it is recommended to vary which parameters to be fixed and which to be

optimized. A more detailed description with illustrations and a comparison of different

parameter-sets are in Appendix: Two-Factor Model Robustness test on page 59.

18 Estimation Results

In Table 1, I present the results of the estimations. The results presented are based on

a corrected mean of the values in the filtrated matrix shown in Figure 12 and 13. The

filtrated matrix consists only of vectors of parameter values where all parameters are

estimated to be within discretionary filter limits.
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Table 1: Estimated parameters for the Two-Factor Model. Filtering: Numbers are
based on a filtered list of vectors. For each vector in a list of returned vectors from a
parameter optimization function, only returned vectors where all parameter values are
inside its respective limits are stored in the filtered list of returned vectors. Correcting:
The mean is computed over the observations where the parameter were in fact free to
vary, i.e. the constant parts seen in figure 12 and 13 are not included in the computation
of the mean. Vectors with some parameters constant are included in the filtered list of
vectors because the other parameters vary, and contribute with observations to compute
their means.

Filter Limits

Parameters Mean Std.dev Low High

mu µ 0.1899 0.1704 0.001 1

sigmaS σS 0.3421 0.134 0.001 5

kappaE κ 12.4609 4.997 5 30

alpha α 0.2995 0.1366 0.001 5

sigmaE σδ 2.1907 1.1217 0.001 5

rhoSE ρSδ 0.9886 0.0124 0.9 1

lambdaE λδ 3.7291 1.7689 0.001 10

Some estimated parameter values are strange. The correlation of 98% is very high.

Also the drift in the real world mu is estimated to be 19%. A relative volatility of

34% is reasonable, but it does not agree with the relative volatility calculated in the

one-factor model. By setting up an Euler scheme it is easy to investigate properties

of the model. The stationary level to which the convenience yield converts to is −0.35

under the pricing measure. This is means that the net convenience yield is negative.

This is not surprising because the term structure of the futures curve is upwards sloping

for the most part. The level of kappa implies that if the convenience yield is either 0 or

-0.7, it takes two months before it is close to -0.35 (-0.39 and -0.31) and three months

to reach -0.36 and -0.34. While the negative sign on the convenience yield long run

level is expected, the level is low.
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Figure 10: Simulated convenience yield over 26 weeks. The convenience yield has a
much higher volatility than observed in the real world data in Figure 9.
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Figure 11: Simulated steel price under the pricing measure. The positive trend in
geometric brownian motion is clear.
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Figure 12: The filtrated matrix of acceptable values of µ, σs, κ. The mean is computed
over the observations where the parameter were in fact free to vary, i.e. the constant
parts are not included in the computation of the mean. N is the sample size for which
the mean and standard deviation are computed.
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(b) σs

0 1000 2000 3000 4000

5

10

15

20

25

30

FUNCTION CALLS

kap
paE

MEA
N   

 =   
      

      
      

      
      

12.4
609

ST.D
EV 

=    
      

      
      

      
    

4.99
7

N   
      

   = 
      

      
      

      
      

 
398

6

(c) κ



40 18. Estimation Results

Figure 13: The filtrated matrix of acceptable values of α, σδ, ρSE, λδ. The mean is
computed over the observations where the parameter were in fact free to vary, i.e. the
constant parts are not included in the computation of the mean. N is the sample size
for which the mean and standaard deviation are computed.
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(c) ρSE
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19 Application

For the risk-neutral valuation framework, see Appendix: Deriving the Risk-Adjusted

Process on page 72.

Real Options At the date a futures contract has delivery, it is effectively a spot price.

For an option maturing at this date, it will be the same whether you evaluate an option

on the futures or the spot. If they do not expire on the same date, but lets say by a two

week difference, one can treat the option on the futures contract as a stock paying a

dividend yield and, set the yield to the risk-free rate. This reflects the delayed payment

of the futures. Alternatively, if the option expires sufficiently far in the future, e.g. two

years, there will be other sources of uncertainty more important than this small detail.

E.g. constant interest rate over the two years. The trick with real option valuation is

the translation of the real world problem into a derivative interpretation, i.e. a cash

flow function must be specified. The option to expand production is a call option on

the underlying. If there is a continuous decision considerations in reality, it will be an

American option rather than European, complicating the valuation. Also, one must

remember that risk-neutral valuation relies on the assumption that the prices reflects

risk preferences. For steel, the futures contracts are traded in well functioning markets,

the exchange, so I rely on the risk-correction using this technique. In comparing the

models, examples are really not necessary, because it is known that a greater volatil-

ity increases the option value. Hence, a model which mean-reverts under the pricing

measure will yield lower prices than the model with unbounded variance. When the

volatility is absolute, the volatility gives the option a higher value the lower the spot

price. I will here present an example to illustrate how real option pricing theory can

be used, rather than to highlight key differences between the models.

Scenario Simulation For scenario simulation the ‘real world dynamics’ are used.

Complicated cases can be evaluated based on how the single processes ends up. These

processes yield a distribution for the many paths simulated, thereby giving a measure

on the uncertainty of the future outcomes. Here, caution has to be paid to whether

there are correlations between the variables that should be taken into account in the

simulation.
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Option to expand production

The numbers are inspired by accounting figures from a large Chinese steel maker.

Consider a steel manufacturer who have predicted that optimal production level is

Q1 = 46 million metric tonnes in two years. r = 5%. The current steel price

is 1900 yuan. They have agreed on terms of delivery with its suppliers, fixing the

unit input costs to 0.9 of the current steel price plus. In addition 6,000 million

yuan covers plants, financial capital and administration expenses. This amounts to

1, 900 × 0.9 × 46m + 6, 000m = 84, 660m yuan. The present value of this project if

there is no convenience yield is like a forward contract. In particular, if the project

where inside 10 months, the expected steel price under the pricing measure would be

observable at the exchange. For a two year horizon the present value is

PV (project) = e−r(T−t)(Q1E{ST} − F1) = e−0.1(46m× 1900e0.1 − 84, 660m)

PV (project) = 10, 796m yuan

Now introduce the option to produce additional 10 million metric tonnes in two

years. The suppliers of scrap and iron ore do not demand a premium for ‘giving’ the

steel maker the right to require delivery in two years, so the agreed price is 0.9 of the

current steel price. Because the production plant has a 60m metric tonnes capacity,

the existing plant can absorb this increase in production. 0.90 × 1900 = 1710 yuan

per metric ton will be the lowest price in which it is worth undertaking the production

expansion. This is a call option on the steel price. Use (57) for a call with this particular

model

PV (expand) = e−r(T−t)Q2EQt {max(ST − F, 0)}

= e−r(T−t)Q2

(
EQt
{

1{ST≥K}ST
}
−KEQt

{
1{ST≥K}

})
= e−r(T−t)Q2

(
mN

(
m−K
v

)
+

v√
2π
e−

1
2(K−m

v )
2

−KN
(
m−K
v

))
= 526 yuan×Q2 = 5, 260m yuan

As a reference, Black-Scholes with the same arguments used except for proportional

volatility, calculated for the F1 rebar contracts to be 23.83%, gives a present value of the

expansion option equal to 445 yuan ×Q2 = 4,450m yuan. The Black-Scholes formula

becomes relevant in this case because the risk-adjusted dynamics get the drift of the
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numéraire. The mean-reverting drift in the relative volatility model differentiated it

from geometric brownnian motion. The Black-Scholes formula applies when the process

(6) is assumed and developed under the Q measure.

The Two-Factor model is calculated to have a relative volatility of 34.21%, consid-

erably higher than 23.83%, but there are now additional parameters which could work

in the opposite direction (reduce value). I have set up a Euler scheme and find that

Kappa is a key driver of the option value. Rho is not. Kappa is estimated to be around

12 with a standard deviation of 5. PV when kappa = 2: 832,000. Kappa=12: 224.

Kappa=22: 697. The role of the speed of mean-reversion in the convenience yield has

an extreme effect on the value. I do not find the estimation results of the two-factor

model appealing. The takeaway is that when modelling the drift — and therefore the

expectation — under the pricing measure, it matters what you do, so do it properly.

Schwartz (1997) shows that convenience yield matters, Casassus and Collin-Dufresne

(2005) shows that a varying risk premium also matters. That is, lambda matters. This

is now clear, because it is to directly modify the drift of the risk-adjusted underlying.

So what are the options to do something worth compared to being locked in to doing

something similar? Value the project without options in it, but as a futures contract

PV (LargeProject) = e−r(T−t)(Q3E{ST} − F3) = e−0.1(56m× 1900e0.1 − 101, 760m)

PV (LargeProject) = 14, 324m yuan

The conclusion is that the option to produce 10,000m metric tonnes in additon

to the commitment to produce 46,000m metric tonnes, rather than commit to produce

56,000m metric tonnes right away, has a value of 10, 796m+5, 260m−14, 324m = 1732m

yuan.

20 Discussion

In short, a model can be precise in it self, but after all, discretion has to be shown

somewhere, because the model aims at describing the real world. Proportional volatility

or absolute? Mean-reversion under the pricing measure? Stochastic mean-reversion?

What is gained by complicating the model, making it harder to get an overview of the

implications of various arguments (just test it with an Euler scheme), more difficult

to solve, and more parameters to be estimated. The risk of model misspecification is

present with both a parsimonious and a large model, but with a large model there are

more uncertainty in total because there are more parameters to be estimated. Moreover,
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there can be interactions between the parameters, such that uncertainty does not simply

add up linearly. There are many different specifications on how the volatility relates to

the level of the underlying, how the process mean-reverts and processes that jumps. The

models considered here are simple ones compared to extensions in the literature. When

determining what matters one should be motivated by what is economically important.

Also one must judge what is relevant, concerning both what to include as discussed,

but also when selecting the sampling period.
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21 Conclusion

In identifying and calibrating a model for the steel price I find that there are unit root

in the steel price, making scenario simulation a discretionary exercise if one insists on

mean-reversion in the dynamics. For present value computations, the specification of

the drift is unimportant. The two versions of the one-factor model identified are simple,

but well calibrated. They succeed to describe time and uncertainty. I then try to extend

the model as recommended by Schwartz (1997), without being completely successful

in arriving at a model that can be used to soundly model time and uncertainty. The

results from the two-factor model calibration is that the two sources of randomness are

highly correlated, rising the question whether they really are two different sources of

randomness. The difficulties in parameter estimation are highlighted in the attempt to

calibrate the model. The two-factor model is for the unobservable spot price, whereas I

have used the nearest futures price directly in the one-factor model as the steel price. I

do not reject the two-factor model. I conclude that I would need more time to calibrate

the model to incorporate the desirable pricing implications of the mean-reversion in

the risk-adjusted process. Mean-reversion bounds the variance and thereby reduce the

value of asymmetric derivatives. It also makes the two-factor model more appealing

than the simple one-factor model the longer the horizon of the valuation is.
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Geman, Hélyette. Commodities and Commodity Derivatives: Modelling and Pricing

for Agriculturals, Metals, and Energy. West Sussex: John Wiley & Sons, 2005.

Gibson, Rajna, and Eduardo S. Schwartz. ”Stochastic Convenience Yield and the

Pricing of Oil Contingent Claims.” The Journal of Finance: 959.

Hamilton, James D. ”Chapter 50 State-space Models.” Handbook of Econometrics:

3039-080.

Hull, John. Option, Futures, and Other Derivatives. 9th ed. Boston MA [etc.:

Pearson, 2015.

Maddala, Gangadharrao S., and In Kim. Unit Roots, Cointegration and Structural

Change. 1. Publ. ed. Cambridge: Cambridge Univ. Press, 1998.

Schwartz, Eduardo S. ”The Stochastic Behavior of Commodity Prices: Implications

for Valuation and Hedging.” The Journal of Finance: 923.

Øksendal, B. K. Stochastic Differential Equations: An Introduction with Applica-

tions. 5th ed. Berlin: Springer, 1998.



Part IX:

APPENDICES

50



51 23. Appendix: ADF-test

23 Appendix: ADF-test

The problem Consider the AR(p) model,

yt = α1yt−1 + . . .+ αpyt−p + εt , εt ∼ N
(
0, σ2

)
. (32)

The problem is that if the coefficients in the true data generating process (DGP) sum

to one, the series exhibit unbounded variance.32 Unbounded variance is a violation of

one ordinary least squares (OLS) assumption, so using OLS to model the true DGP

will not yield reliable results.

Unit root. If the sum of the coefficients sum to one, at least one characteristic root

is unity, referred to as unit root.

Consider the simpler case of eq. (32) with p = 1,

yt = α1yt−1 + εt (33)

here, unit root corresponds with α1 = 1 so eq. (33) becomes

yt = yt−1 + εt (34)

In (34) new realizations of εt, called innovations, have a permanent effect on all future

values of the series. This is why the variance is unbounded. In equation (34) the

expected value of the series for an arbitrary future date is the current level of the series.

It implies that the history of the sequence is not useful in predicting the future direction

of the sequence. The contrary case is if α1 6= 1. If |α1| > 1 the process will explode. If

|α1| < 1 the process will revert to a long term mean. When |α1| < 1, the value of yt is

by it self useful in predicting the future direction of the sequence, because the process

will revert to its mean in the absence of shocks. The smaller α1 is, the faster will the

series revert to the mean.

Ordinary critical t-values cannot be used to test whether α1 6= 1. Dickey-Fuller

critical values are needed.

32Almost one is almost unbounded variance, as the system will be very slow to revert to the mean.



52 23. Appendix: ADF-test

The Augmented Dickey-Fuller test

The cautionary way to test α1 is to assume α1 = 1, and try to reject the assumption.

The general testing equation with γ = α1 − 1, is

∆yt = α0 + γyt−1 + α2t+ Σp
i=2βi∆yt−i+1 + εt. (35)

But (35) is a misspecification if the data generating process do not have a drift or

trend. Drift is incorporated by α0 and trend is t. Based on the discussion in the text,

I employ the testing equation without drift and trend:

∆yt = γyt−1 + Σp
i=2βi∆yt−i+1 + εt. (36)

The null hypothesis is that the coefficient of interest, γ, is zero. The alternative hy-

pothesis is that γ is less than zero. The power of the test is known to be poor. The

important point is that the t-values to test the coefficient of interest are not the ordinary

ones. Suitable critical values are obtained by Dickey and Fuller in a simulation study.

The augmented part of the test is the inclusion of more than one lag in the testing

equation. The reason to include more lags is that the test assumes that the errors are

independent and have a constant variance. Hence, if the series contains auto regressive

components, they must be included. The problem then is to choose the proper lag

length in the testing equation. I use the AIC information criterion as my tool to choose

the proper lag length.

AIC = −2 ln(maximized value of log-likelihood) +
(1 + p)

N
(37)

Where p is the order of the auto regressive process and N is the sample size.

In short, the criterion appreciates a better fit of the model, but punishes the inclusion

of additional parameters to be estimated. You necessarily improve the fit by including

parameters, hence the need of a punishment for including more lags. Start with many

lags and decrease the number of lags when finding the optimal number of lags. The

other way around is found to be biased to selecting to few lags. Enders (2010), page

217.

Alternatives when failing to reject unit root

Univariate analysis To proceed with the analysis in a meaningful way, it is necessary

to make the series stationary in the correct way, either by differencing or detrending. It



53 23. Appendix: ADF-test

is important which way it is made stationary, as a difference stationary series will not be

stationary by de-trending and a trend stationary will not be stationary by differencing.

Differencing means that you loose the information on levels, you are just left with the

information stemming from changes in the series. Detrending by a deterministic trend

preserves level information.

Multivariate analysis

• As in the univariate case — make the series stationary.

• Check for co-integration. If variables are co-integrated they are related to each

other relatively, but the system as a whole still contains a (common) stochastic

trend. For variables that are co-integrated, OLS can be used to estimate an

equilibrium relationship. Hence, it is possible to build a model predicting local

co-movements, but predicting the future level of the system as a whole is not

possible. On way to test for co-integration is to run a linear regression and test

whether the residuals from the regression is a stationary series.

Ljung-Box test and McLeod Li test for conditional volatility

For the exact test specifications, see Enders (2010) page 131-132. Volatility modelling

is a model of the certainty in the prediction, measured by a confidence interval around

the mean model. Therefore is it necessary to build a mean model first, take the resid-

uals from the predictions by the mean model versus actual observations, square it (the

ordinary residuals are for mean modelling) and then see if this sequence is white noise

or not. If it is white noise, there is no pattern in the volatility. If there is conditional

volatility in the series, a volatility shock enters the model, you predict the mean accord-

ing to the mean model, but you are now more uncertain about the predictions because

there are, lets say, auto-regressive volatility. This means that a confidence interval de-

crease gradually. What is a volatility shock? There will be errors each period, so there

will be volatility shocks each period.
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Because a1 = 1, I straight away impose a0 = 0 or else there is a deterministic time

trend.

yt = a0 + a1yt−1 + εt

yt = yt−1 + ε (38)

Solve this by iteration

yt = (yt−2 + εt−1) + εt

yt = ((yt−3 + εt−2) + εt−1) + εt

yt =
∞∑
i=0

εt−i

This is an improper solution because it is not finite. Impose an initial condition y0 = y0.

I set t = 3 to understand how it plays out.

y3 = ((y0 + εt−2) + εt−1) + εt

y3 = y0 +
2∑
i=0

εt−i

Generally:

yt = y0 +
t−1∑
i=0

εt−i (39)

This is finite, but not stationary. This is because each new realization of εt has a

permanent effect on all future values of yt+s.



55 25. Appendix: The (Possible) Role of ∆t

25 Appendix: The (Possible) Role of ∆t

As discussed in Appendix: ADF-test on page 51, in yt = a0 + a1yt−1 + εt, a necessary

and sufficient condition is |a1| < 1 for the process to be stationary. Consider the

approximation

Ft+∆t,T − Ft,T =κ (µ− Ft,T ) ∆t+ γ
√

∆tηt+∆t , where ηt+∆t ∼ ηt ∼ N(0, 1) (40)

Ft+∆t,T =κµ∆t+ (1− κ∆t)Ft,T + γ
√

∆tηt+∆t (41)

|1− κ∆t| < 0 is necessary in (41). κ is restricted to be positive. Restriction on ∆t is:

−1 < 1− κ∆t and 1− κ∆t < 1 ⇔ 0 < ∆t <2/κ (42)

When simulating a differential equation on differential form, or solving a differential

equation numerically, the size of the time step ∆t matters for the accuracy. This is

illustrated in Figure 14. Assume a weekly frequency ∆t = 1/52. Then kappa should be

estimated to be below 1/52 < 2/κ ⇔ κ < 104 for the weekly model to be compatible

with mean reversal, and not ‘overshooting’ / amplified oscillations.

Figure 14: Illustration with κ = 1, µ = 1, initial value of 100 and ∆t = 0.25 & ∆t = 0.5.
Differential form A: Ft+∆t,T = Ft,T + κ (µ− Ft,T ) ∆t
Solved form B: Ft+∆t,T = Ft,T e

−κ∆t + µ
(
1− e−κ∆t

)
Equation B yields the same values regardless of the time step ∆t. The approximation
in A is more accurate the smaller the time step is.
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To derive dynamics for a SDE A general diffusion Dt is given by

dDt = µ(t,Dt) dt+ σ(t,Dt) dWt.

Consider two diffusions Xt and Yt, dependent on the same Wiener process.

Consider a diffusion Zt = f(Xt, Yt), the Itô formula is

dZt =
∂f

∂X
dXt +

1

2

∂2f

∂X2
(dXt)

2 +
1

2

∂2f

∂X∂Y
dXtdYt +

∂f

∂Y
dYt +

1

2

∂2f

∂Y 2
(dYt)

2 (43)

Accompanied by the multiplication rules: dt×dt = dt×dW = 0, and dW×dWt = dt.

Alternative form of Itô’s formula, where Zt = f(t,Xt).

dZt =

[
∂f

∂t
+
∂f

∂X
µ(t,Xt) +

1

2

∂2f

∂X2
σ(t,Xt)

2

]
dt+

∂f

∂X
σ(t,Xt)dWt (44)

Itô isometry to compute variance

E

{(∫ T

0

DtdWt

)2
}

= E
{∫ T

0

D2
t dt

}
(45)
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Ornstein–Uhlenbeck Process

dXt = κ(µ−Xt)dt+ γdWt (46)

Introduce f(Xt, t) = Xte
κt

df(t,Xt) =κXte
κtdt+ eκtdXt

=κXte
κtdt+ eκt [κ(µ−Xt)dt+ γdWt]

=���
��κXte
κtdt −����

�
κXte

κtdt + κµeκtdt+ eκtγdWt

df(t,Xt) =κµeκtdt+ eκtγdWt

dXte
κt =κµeκtdt+ eκtγdWt∫ T

t

dXse
κs =

∫ T

t

[kµeκsds+ eκsγdWs]

Part one:∫
dXse

κs , u = Xse
κs , du

ds
= κXse

κs∫
κXse

κsds = Xse
κs + C∫ T

t
κXse

κsds = [Xse
κs]Tt = XT e

κT −Xte
κt

Two:∫ T
t
κµeκsds = [µeκs]Tt = µ(eκT − eκt)

Three:∫ T
t
eκsγdWs = γ

∫ T
t
eκsdWs
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Ornstein–Uhlenbeck Process

Hence:

XT e
κT −Xte

κt = µ(eκT − eκt) + γ

∫ T

t

eκsdWs

XT = Xte
κte−κT + e−κTµ(eκT − eκt) + γe−κT

∫ T

t

eκsdWs

XT = Xte
−κ(T−t) + µ(1− e−κ(T−t)) + γe−κT

∫ T

t

eκsdWs (47)

Et{Xt} = X0e
−κt + µ

(
1− e−κt

)
(48)

Vart(XT ) = γ2

∫ T

t

e2κ(s−t)ds (49)

e−κt and 1 − e−κt can be interpreted as weights on X0 and µ in the expectation,

where the initial value X0 has less weight the larger κ and t are. It is intuitive that the

initial value has less weight the farther ahead in time we are and also the stronger the

reversion towards the mean is.
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28 Appendix: Two-Factor Model Robustness test

When observing how sensitive the estimated parameter values from one function call

are to initial values and which parameters held constant, it is natural to look more into

it. The motivation behind the choices made are robustness. I want to find out how

robust the estimates are, and this appendix describes how it is done.

Calling once I call the optimization function once with arbitrary initial values for

all parameters, and let all be free to vary. Free to vary means that the optimization

function tries to find the optimal value. The optimization function uses an maximum

likelihood33 motivated algorithm to find the optimal parameter values. I allow the

optimization function to iterate 1000 times. After it converges or hits the maximum

number of iterations, it contains a vector of suggested parameter values. The evolution

as the function iterates as a result of one single function call is seen in Figure 15.

Figure 15: One function call of the optimization function fit.schwartz2f in the pack-
age Schwartz97. The initial value is 0.9 for all parameters.

33See Appendix: Maximum Likelihood Estimation on page 69 for an introduction to maximum
likelihood estimation.
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Calling 100 times Then, I use the returned output-vector of results — from one

function call — as input-vector for initial values in a new call of the optimization

function. Taking the output as input without interaction from me is done 100 times

for each initial set of “settings”. Let me define 100 function calls in this way as “a

round”. In a round I effectively gives the optimization function more time to move

around. Parameter values through three rounds, with the arbitrary initial values 0.1,

0.5 and 0.9 for all parameters, is graphed in Figure 16 and 17.

Kappa, alpha, sigmaE and lambda are clearly dependent on their initial values as

they do not converge to the same level in the three different rounds. Rho shows strong

evidence of convergence to roughly the same high level, 0.95. Mu and sigmaS appears

to converge. The initial high sigmaS is likely a result of the initial low rho.

The benefit of taking a round rather than a single function call is clear from the

first round — the parameters need time to settle. Seeing a rapid convergence, followed

by a stable evolution increases my confidence in the estimates.
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Figure 16: Evolution of µ, σs, κ through three rounds, with initial values: [(function call
number, initial value) (0, 0.1) (100, 0.5) (200, 0.9)]. Early in the robustness testing.
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Figure 17: Evolution of α, σδ, ρSE, λδ through three rounds, with initial values: [(func-
tion call number, initial value) (0, 0.1) (100, 0.5) (200, 0.9)]. Early in the robustness
testing.
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(c) ρSE

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

FUNCTION CALL NUMBER

lam
bda

E

MEA
N   

 =   
      

      
      

      
      

0.45
3

ST.D
EV 

=    
      

      
      

      
     

0.43
57

(d) λδ



63 28. Appendix: Two-Factor Model Robustness test

Fixing some parameters and optimize others I continue doing rounds with dif-

ferent initial values and different parameters being fixed. The choices made here are

clearly discretionary. As an example, I show in Figure 18 four rounds where I first fix

sigmaS at 0.4 and then in the second round change the level rho is fixed at from 0.95 to

0.9. kappaE, sigmaE and lambdaE responds to this change by increasing. In the last

two rounds I fix rho at 0.95, and let sigmaS be free to vary and set the initial of sigmasS

both below and above the value it appears to converge to. The initial value was 1 for

200 to 300 and 0.001 for 300 to 400. Observe how sigmaS fail to reach the frequently

observed level around 0.4 in round four. A sigmaS value of 0.001 is not reasonable to

have in the model anyway. Another problem when trying different initial conditions

is the interaction between the parameter values. That kappaE and sigmaE interact is

clear from round 2 (horizontal axis at 100-200) in Figure 18. For example in another

instance (not graphed) kappa and sigmaE rose together, reaching kappa = 2.2× 10112

and sigmaE = 1.02× 1048.

Figure 18: Robustness testing. Here I fix sigmaS (σS) and vary rhoSE (ρSE). (Same
information in the plot as in Figure 16 and 17, but a compact version.)
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Let them vary with informed initial values After rounds with different parame-

ters being fixed, I again let all vary, and set each parameter with an initial value both

below and above the level it appears to converge to. In some rounds are high values

of one parameter associated with high values of another parameter, resulting in asym-

metric behaviour and extreme values when they take off upwards away from the level

they should converge to. Some of the history of such later rounds are shown in Figure

19 and 20. At this point, instead of throwing out the vectors with values outside the

limit, I set the values on the axes to reasonable values. Then it is also seen for which

sets the estimates are out of bounds.

Curiously, to see how robust the convergence is, I set the initial value of rhoSE to

0.001 and 0.999. I get a kappaE of 8× 1034, which is not desirable to put in the model.

A value of rhoSE equal to 0.001 is not reasonable, so whether the model converges or

not from such values is not important. I argue that it suffices if the model is locally

convergent, if all parameters take on reasonable values in the local optimum. I therefore

now set initial values equal to the boarder of reasonable values and see whether they

converge from there. These later rounds are inclueded in Figure 19 and 20.
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Figure 19: Evolution of µ, σs, κ later in the robustness testing.
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Figure 20: Evolution of α, σδ, ρSE, λδ later in the robustness testing.
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Filtering the sample To increase the sample of output vectors from the optimization

function, do I initiate many rounds with a variety of settings. I then filter all these

stored output vectors according to my discretionary limits. I want to keep track off the

output vector, vector by vector, because the parameters are estimated together as a set

in the optimization function. Hence, I throw out the whole vector even if only one of

the parameters ends up outside its limits. After this, I am left with a filtered list of

vectors, where some vectors contain parameters which were not optimized (allowed to

vary). These vectors are not thrown out of the filtered matrix because they contribute

to variation for the other parameters.

Correcting What I do is to compute the mean and variance of the parameters on a

‘corrected subset’ of the parameters. The corrected subset consist only of observations

where two observations in a row are not equal, to take out the values where they were

fixed. I do this to avoid a bias in the computation of the mean and variance. E.g., if

I have set σS to be 0.4, I do not want 100 observations of 0.4 to be included in the

computation of the mean of the optimized value of sigma.

Conclusion regarding robustness The results (numbers found) are semi-robust in

the sense that they showed some evidence of convergence.
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29 Appendix: Kalman Filter

Hamilton (1994) explains the Kalman filter. The spot price is unobservable, that is the

problem. If the futures prices reflect the spot price, but not in a clear mapping from

one of the prices into the spot price, the idea is to use several prices to reason on what

the current spot price is. The futures prices are therefore noisy reflections of the spot

price. To have a system in state space form is a way of describing a dynamic system.

You need the current state and description on how you move into the next state. When

this is defined the Kalman filter is a technique when there are noise in the data. It

updates the prediction on the next state by punishing measurements with high variance

and high uncertainty. The Kalman filter assumes that the futures prices are normally

distributed, and it works best on linear systems, so the log-prices are preferred in the

representation to do the optimization.
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30 Appendix: Maximum Likelihood Estimation

Define:

• Sample = A particular sequence of observations:
∑N

i=1 ui.

• Argument = A specific parameter value

MLE in short

Find the arguments that maximize the likelihood of actually observing the sample.

How:

(i) For each ui, assume a probability density function pdf(ui) to represent the prob-

ability of observing that particular observation.

(ii) The probability of observing the sample is L ≡
∏m

i=1 pdf(ui) if the observations

are independent.

(iii) Take the natural logarithm of the function L to work with sums rather than

products.

(iv) Find the arguments of L that maximize L :

(a) Analytically, take the derivative of lnL with respect to the parameters of

interest.

(b) Iteratively, try different arguments in the lnL function and see which argu-

ment that yields the highest value of the function.

MLE in more detail

• To associate a probability with an observation, assume a probability density func-

tion pdf(ui) for the observation. For example the White-Noise pdf:

pdf(u;µ = 0, v) ≡ 1√
(2πv)

exp

[
u2
i

2v

]
= a exp[bi]

a ≡ 1√
2πv

, bi ≡
−u2

i

2v

• The likelihood of observing ui is defined as the output of a probability density

function.
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ui

Prob(u)

pdf(u)

u

The probability of observing ui.

• The likelihood of observing the sequence u1, u2, . . . , um is the product of the prob-

abilities if they are independent, so the likelihood is represented by the product

of the pdfs. Define this product as the likelihood L. If the pdfs are equal, the

likelihood of observing the particular sequence observed in the data set can be

written compactly as

L =
m∏
i=1

a exp[bi]

• The idea behind MLE is to identify the arguments for the function L such that

we maximize the likelihood of observing the sample. So it translates into finding

the values of the parameters that maximize L.

• A convenient trick is to take the natural logarithm before computing the derivative

as it greatly simplifies the computation of the derivative. This transformation is

monotonic, so the argument maximizing L will maximize lnL.

• Deriving the log-likelihood in detail for this particular White-Noise pdf:

L =
m∏
i=1

aebi =am
m∏
i=1

ebi ,

ln

(
am

m∏
i=1

ebi

)
=m ln a+ Σm

i=1bi ln e

=m ln a+ Σm
i=1bi

=m ln

(
1√
2πv

)
+ Σm

i=1

−u2
i

2v

=m ln

(
1√
2πv

)
− 1

2v
Σm
i=1u

2
i

=−m ln
(
(2πv)0.5)

)
− 1

2v
Σm
i=1u

2
i

=− m

2
ln (2πv)− 1

2v
Σm
i=1u

2
i

• Maximizing the log-likelihood:
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– Iteratively, a computer program records the output value of the log-likelihood

function given different arguments. In this case, v will be varied until the

algorithm finds the argument for v that maximizes the output value of the

log-likelihood function. This is an iterative procedure, and it is an alternative

to the analytical solution.

– Analytically, take the derivative with respect to the parameter of interest

and set it equal to zero. Solve for the parameter to get an expression for the

optimal argument. To find the analytical solution for v in this case,

∂ lnL

∂v
= −m

2v
+

1

2v2
Σm
i=1u

2
i

Set the derivative equal to zero and solve for v

−m
2v

+
1

2v2
Σm
i=1u

2
i = 0

v∗ =
Σm
i=1u

2
i

m

This is the optimal argument for the variance, v, in order to describe the

sample, given the assumed White-Noise pdf.

– For a simple regression, ui is the residuals from the regression ui = yi− βxi.
– For GARCH, v is a non-constant function of ui. For example, Enders (2010)

page 154, the model AR(1) ut = yt − βyt−1 with ARCH(1) vt = a0 + a1u
2
t−1

has associated log-likelihood

lnL = −(m− 1)

2
ln(2π)− 1

2

m∑
t=2

ln
(
a0 + a1u

2
t−1

)
− 1

2

m∑
t=2

(yt − βyt−1)2

a0 + a1u2
t−1

where you can substitute in (yt−1 − βxt−1)2 for u2
t−1

lnL = −(m− 1)

2
ln(2π)−1

2

m∑
t=2

ln
(
a0 + a1(yt−1 − βxt−1)2

)
−1

2

m∑
t=2

(yt − βyt−1)2

a0 + a1(yt−1 − βxt−1)2

and then maximize with respect to a0, a1, β.



72 31. Appendix: Deriving the Risk-Adjusted Process

31 Appendix: Deriving the Risk-Adjusted Process

Compute the present value of a uncertain cash flow.

To compute the present value ct of a claim cT in the future that depends the stochastic

price Ft and time, a model is constructed. I assume that the market is complete such

that all states of the uncertain cash fclow can be replicated. In this model Results are

exploited to make the model internally consistent, i.e. free from arbitrage opportunities.

A discussion on martingales and measures can be found in Chapter 28, Hull (2015).

Setting up the model:

Define the economy:

St = Futures price.

Dt =
∫ t

0
Ssδsds Accumulated convenience yield. δs = δ(s) a function of time only.

It is the money ‘saved’ because the futures cash flow is in the future.

At = ert A risk-free asset earning the constant risk-free rate r continuously.

ct = f(t, cT (ST )) Value of a claim as a function of time and its value at T .

cT = g(T, ST ) A cash flow at time T depending on ST .

Define gains in the economy:

G
(1)
t = St +Dt

G
(2)
t = At

G
(3)
t = ct

Discount by a numéraire security. Before presenting result i), discounting by a

numéraire security must be introduced. It means to denominate a security in terms of

another security, e.g. St/At. Here At is the numéraire security. Requirements for the

numéraire security are,

(i) that it must always have a strictly positive price to avoid division by zero.

(ii) The numéraire must not pay dividends if this is not accounted for.

If dividends are not incorporated, the identification of the drift correction would be

wrong, because it would fail to make the gains process a martingale. At is suitable to

be the numéraire security.
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Define the discounted economy with At as the numéraire:

SAt ≡ St/At
DA
t ≡

∫ t
0

(δsSs)/Asds

AAt ≡ At/At
cAt ≡ ct/At
cAT ≡ cT/AT

Define discounted gains:

G
A(1)
t = SAt +DA

t

G
A(2)
t = AAt

G
A(3)
t = cAt

Specify the processes:

dSt = µ(t,Dt, St) dt+ γdWt , the drift µ(t,Dt, St) is specified generally.

dDt = δtSt dt

dAt = rAt dt

dct = df(t, cT (ST ))

dG
A(1)
t = d(SAt +DA

t )

dG
A(2)
t = dAAt

dG
A(3)
t = dcAt

Definition [1] The probability measure Q is equivalent relative to probability mea-

sure P, if all events E assigned zero probability with measure P, also are assigned zero

probability with measure Q. I.e.

Q(E) = 0 iff P (E) = 0

.

Definition [2] A random variable is a martingale if the expected value at time t, of

its future state in time T, for all T ≥ t, is equal to the state at time t. I.e.

Et{Xs} = Xt, ∀ s ≥ t

. The drift of a process must be zero for the process to be a martingale.
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Definition [3] Using Definition [2] and [3] to define thatQ is an equivalent martingale

measure relative to P if (D1) and (D2) holds,

Q(E) = 0 iff P (E) = 0 (D1),

G
∗(n)
t = EQt {G∗(n)

s } , ∀ s ≥ t (D2).

Result [1] There are no arbitrage opportunities in the defined economy if and only if

there exists an equivalent martingale measure such that all discounted gains processes

are martingales.

Result [2] When we change from P to Q the standard Wiener process Wt relative to

P , will typically not be a standard Wiener process under Q. Girsanov’s theorem shows

that for arbitrary, but given λt the process dW λ
t = dWt + λdt is a standard Wiener

process under some probability measure M . When M = Q, M is the EMM. The

expected return changes, but the volatility remains the same when we move between

F and Q.

Exploiting Result [1] All discounted gains must be martingales to avoid arbitrage:

G
A(1)
t = SAt +DA

t = EQt {SAT +DA
T }

G
A(2)
t = AAt = EQt {AAT } = EQt {1}

G
A(3)
t = cAt = EQt {cAT }

Under the probability measure Q, G
A(2)
t is a martingale by construction. G

A(1)
t is the

restriction,, it is where Q is identified. Then, this Q is imposed on G
A(3)
t such that G

A(3)
t

is a martingale by construction as well. Solve for ct (under Q) to obtain the price of

the security ct. The price ct is the price in both P and Q worlds, or else it would not be

useful. Because of the discounting with a particular numéraire security, the probability

measure found is also a particular one — it corresponds to the particular numéraire.
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Make all discounted gains process martingales:

dG
A(3)
t = will be by construction

dG
A(2)
t = d(AAt ) = 0

dG
A(1)
t = d(SAt +DA

t )

=

(
1

At
dSt + 0

1

2
dS2

t −
St
A2
t

dAt +
St
A3
t

1

2�
��>

0
dA2

t − 1

At

1

2
���

��:0
dAtdSt

)
+

(
δ(t)St
At

dt

)
=

1

At
dSt −

St
A2
t

dAt +
δ(t)St
At

dt

=
1

At
[µ(t,Dt, St) dt+ γdWt]−

St
A2
t

[rAtdt] +
δ(t)St
At

dt

=
1

At
[µ(t,Dt, St)− St (r − δ(t))] dt+ γdWt

dG
A(1)
t is not a martingale because the drift 1

At
[µ(t,Dt, St)− St (r − δ(t))] dt is not zero.

Now use Girsanov’s theorem to make it a martingale under another probability measure.

Insert dW λ
t − λtdt, for dWt.

dG
A(1)
t =

1

At
[µ(t,Dt, St)− St (r − δ(t))] dt+ γ

[
dW λ

t − λtdt
]

=
1

At
[µ(t,Dt, St)− St (r − δ(t))− γλt] dt+ γdW λ

t

Can set λt as you want, so choose it so the drift is zero.

λt =
µ(t,Dt, St)− St (r − δ(t))

γ
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For this choice of lambda, is dG
A(1)
t a martingale. Apply the measure found to risk

adjust dSt. Denote St with λ to emphasise that it is under the risk-neutral measure.

dSt = µ(t,Dt, St) dt+ γdWt

dSλt = µ(t,Dt, St) dt+ γ
[
dW λ

t − λtdt
]

= (µ(t,Dt, St)− γλt) dt+ γdW λ
t

dSλt =

(
µ(t,Dt, St)− γ

[
µ(t,Dt, St)− Sλt (r − δ(t))

γ

])
dt+ γdW λ

t

dSλt = Sλt (r − δ(t)) dt+ γdW λ
t (50)

The particular drift µ(t,Dt, St) disappears. The volatility is the same in both worlds.

Here the convenience yield δ(t) is allowed to vary through time deterministically. This

is useful if one wants to incorporate (possibly through an Euler scheme) an opinion on

the convenience yield in the pricing model.

Specify the function CT = g(T, ST ) as desired. The present value of the derivative

in this model is

ct = AtEQt
{
CT
AT

}
= e−r(T−t)EQt {CT} . (51)

AT is deterministic, so it goes out of the expectation.

ct is found by using the Q measure in the expectation to find ct — that is, to use the

dynamics, (50), developed under the Q measure in the computation of the expectation.

If it is difficult to obtain an analytical solution is it possible to take the expectation by

simulation of the discrete version of the differential equation developed under Q. The

time step could have a role, as discussed in Appendix: The (Possible) Role of ∆t.
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Constant convenience yield For a constant δt = δ the solution to (50) is

SλT = Sλt e
(r−δ)(T−t) + γeT (r−δ)

∫ T

t

e−s(r−δ)dW λ
s (52)

EQt {SλT} = Sλt e
(r−δ)(T−t) (53)

Var(SλT ) = γ2e2T (r−δ)
∫ T

t

e−2s(r−δ)ds =
γ2

2(r − δ)
(
e2(r−δ)(T−t) − 1

)
(54)

Convenient to have the following expressions for a call option computation

EQt {SλT} ≡ m

Var(SλT ) ≡ v2

SλT
dist.
= m+ v η , η ∼ N(0, 1)

1{ST≥K} = 1 if ST ≥ K

1{ST≥K} = 0 if ST < K

E{1{ST≥K}ST} =

∫ ∞
−∞

1{m+v η≥K}(m+ v η)
1√
2π
e−

1
2
η2dη

= m

∫ ∞
K−m

v

1√
2π
e−

1
2
η2dη +

∫ ∞
K−m

v

v η
1√
2π
e−

1
2
η2dη

= mN

(
−
(
K −m
v

))
+

v√
2π

∫ ∞
K−m

v

ηe−
1
2
η2dη

= mN

(
m−K
v

)
+

v√
2π

[
−e−

1
2
η2
]∞

K−m
v

= mN

(
m−K
v

)
+

v√
2π
e−

1
2(K−m

v )
2

(55)

E{1{ST≥K}} =

∫ ∞
−∞

1{m+v η≥K}
1√
2π
e−

1
2
η2dη

= N

(
m−K
v

)
(56)
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A call option:

ct = e−r(T−t)EQt {max(ST −K, 0)}

ct = e−r(T−t)EQt
{

1{ST≥K}(ST −K)
}

ct = e−r(T−t)
(
EQt
{

1{ST≥K}ST
}
−KEQt

{
1{ST≥K}

})
ct = e−r(T−t)

(
mN

(
m−K
v

)
+

v√
2π
e−

1
2(K−m

v )
2

−KN
(
m−K
v

))
ct = e−r(T−t)

(
v√
2π
e−

1
2(K−m

v )
2

+
[
Sλt e

(r−δ)(T−t) −K
]
N

(
m−K
v

))
(57)
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Futures contract: The present value of a futures contract maturing in T , entered

into in the past, to buy steel for K will have the present value ct,T

ct,T = e−r(T−t)EQt {SλT −K} = e−r(T−t)(EQt {SλT} −K) (58)

ct,T = e−r(T−t)([Sλt e
(r−δ)(T−t)]−K) = Sλt e

−δ(T−t) −Ke−r(T−t) (59)

If δ = r, then the difference between the price of the contract maturing at T and

the agreed price K, is discounted back at r. Sλt is the price of steel delivered in T , but

the price Sλt is discounted by the rate δ because the cash flow is postponed. K is the

price agreed at t for delivery at T . So for contracts traded and not yet entered into the

present value is (59). In t, ct,T = 0 because the payoff in T is symmetric as opposed to

an option where there is a price to pay at date t. This observation gives

Ft,T = Ste
(r−δ)(T−t) (60)

Ft,T will not change after date t for the parties entering into the contract but take the

constant value Ft,T = K. The contracts at the exchange are quotes on Ft,T .

Here it is also clear where the futures relationship in (25) comes from, and the

motivation to solve for δ and treat it as a residual, as it is the only parameter not

(easily) observable. In this model the interest rate is constant. Interest rates in the

market are stochastic, another source of movements in the futures term structure.
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Steel Rebar Contract Specifications

• Product

Steel Rebar

• Contract Size

10 tons/lot

• Price Quotation

(RMB) Yuan/ton

• Minimum Price Fluctuation

1 Yuan/ton

• Daily Price Limit

Within 3% above or below the settlement price of the previous trading day

• Contract Series

Monthly contract of the recent 12 months

• Trading Hours

9:00 a.m. to 11:30 a.m., 1:30 p.m. to 3:00 p.m. (the Beijing Time)

• Last Trading Day

The 15th day of the delivery month (If it is a public holiday, the Last Trading Day shall be the 1st business day

after the holiday)

• Delivery Period

The 5 consecutive business days after the last trading day

• Grade and Quality Specifications

Standard Products: As specified in Steel for Reinforcement of Concrete–Part 2: Hot-rolled Ribbed Bar,

GB1499.2-2007, with designation of HRB400 or HRBF400 with a diameter of 16mm, 18mm, 20mm, 22mm,

25mm.

Substitute Products: As specified in Steel for Reinforcement of Concrete– Part 2: Hot-rolled Ribbed Bar,

GB1499.2-2007, with designation of HRB335 or HRBF335 with a diameter of 16mm, 18mm, 20mm, 22mm,

25mm.

• Delivery Venue

SHFE Certified Delivery Warehouse

• Minimum Trade Margin

5% of contract value

• Minimum Warranted Delivery Size

300 tons

• Settlement Type

Physical Delivery

• Contract Symbol

RB

• Exchange

SHFE

Steel Rebar Warehousing Fees

• Warehouse Rental, yuan per ton

0.15 per day

• Warehouse entry and exit fee, yuan per ton

Special line: 18

Dock: 15

Self-pick up: 15
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