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Abstract 

In this thesis, we develop a real options framework to value options to expand a commercial 

property. We consider the investment in a development project under uncertainty in future 

rental rates and in the presence of regulatory uncertainty. We have consulted with industry 

experts to model the framework as realistic as possible without losing analytical tractability. 

Our framework contributes to the accurate valuation of real estate as well as the real options 

literature related to real estate, by adjusting and combining existing frameworks and 

applying them to the real estate industry. First, we consider a simple investment in the 

expansion of a property under uncertainty in future rental rates, but in the absence of 

regulatory uncertainty. We proceed to introduce the presence of a regulatory process in the 

form of a mandatory fixed approval lag, prior to the firm receiving the investment 

opportunity. Finally, we introduce uncertainty in the length of the regulatory process. For 

each model, we are able to obtain optimal investment thresholds and option values, and in 

most cases these results are closed form analytical solutions. We find that an option to 

expand an existing property has significant value under the right conditions, even when the 

immediate expansion is not profitable. We also show that the presence of a regulatory 

process alters the option value, and that a stochastic regulatory process implies a higher cost 

to the firm than a fixed regulatory process.  

Keywords: Real options analysis, commercial real estate, geometric Brownian motion, 

regulatory uncertainty  
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1. Introduction 

Over the last years, commercial real estate transactions in Norway have steadily increased in 

both size and scope, and 2014 became a record year in terms of transaction volume for the 

Norwegian commercial real estate market (Fearnley, 2015). While low interest rates and 

volatile stock markets have dominated the global economy, commercial real estate has 

become an attractive investment, both as a safe haven for large institutional investors, and as 

a source of good returns for opportunistic investors. With increased competition, a thorough 

understanding of the commercial real estate industry and accurate valuations of real estate 

assets become increasingly important for investors. Current valuation techniques used in the 

commercial real estate industry have proved to be insufficient for several investment 

opportunities, particularly for development projects, and recent studies as well as industry 

experts indicate that more sophisticated valuation tools could improve the current situation 

(Leishman et al., 2000). In this thesis we introduce a framework that combines several 

strings of real options literature, and which can be applied for a more accurate and 

sophisticated valuation of commercial real estate. We begin by examining the dynamics of 

the commercial real estate industry, as it pertains to the real estate market in general, as well 

as to the valuation of commercial real estate.  

1.1 Dynamics in the Commercial Real Estate Market 

The commercial real estate market can be divided into the space market, the asset market, 

and the development market (Geltner & Miller, 2007). The space market is where the right 

to use rental space is traded, and it is often referred to as the rental market. On the demand 

side of the space market are businesses and individuals who require space for a specific 

purpose. On the supply side of the space market are property owners, who supply tenants 

with rental space. From a valuation perspective, the space market is where property owners 

lock in cash flow by charging tenants rent for the right to use their space. It is important to 

notice that the rental rates determined in the space market are highly segmented and largely 

dependent on the location of the rental space. For example, the rental rate in the central 

business district (CBD) of a large city is generally much higher than the rental rate in the 

fringe area of a small city. Similarly, the market value of real estate assets determined in the 

asset market also depend on the location of the property. The asset market is where 

ownership of real estate is traded, and is comprised of businesses and investors who buy and 
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sell commercial space for their own use or for investment purposes. From a valuation 

standpoint, the ownership of a property represents a claim to the cash flow that the property 

can generate from leasing out space to tenants. Hence, the space market and the asset market 

are intricately intertwined and the rental rates an owner can charge as well as the value of a 

property are determined by supply and demand for both real estate space and real estate 

assets. Lastly, to guide supply and demand in the space market and the asset market, the real 

estate development market exists to increase supply of rental space when market conditions 

are favorable, thus balancing the rental rates in the market.  

Important to notice is that the commercial real estate market is just one of many platforms in 

which investors may choose to allocate their funds. Hence, the commercial real estate market 

is competing with the securities markets and other direct investment markets for the funds of 

investors. Because such alternative investment opportunities exist for investors, it is 

important to be aware of what differentiates the commercial real estate market from other 

markets. The commercial real estate market’s biggest contender for funds is perhaps the 

public stock market. However, there are some fundamental differences between public stock 

markets and the commercial real estate market. Specifically, by contrast to stock exchanges, 

the commercial real estate market is a private market. Generally, private markets are less 

liquid and less transparent than public markets (Geltner & Miller, 2007), and closing a 

transaction in a private market can take up to several years, whereas closing a transaction on 

a stock exchange can be done in seconds. Furthermore, by contrast to public stock markets, 

where current stock prices are updated continuously, there is little public information 

available in the commercial real estate market, and the market price of a property is thus less 

transparent to investors. Consequently, the market value of a property is uncertain, and 

investors must spend time and resources in order to determine the appropriate value of a real 

estate asset before investing. 

The inefficiency in the commercial real estate market, relative to the stock market, gives 

investors the opportunity to make good returns by taking advantage of asymmetric 

information in the market. However, because of the opportunity for great returns on 

investment, there is heavy competition in today’s real estate market. 
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1.2 The Current Situation  

In recent years, historically low interest rates have dominated global monetary policy and 

investors are looking to other asset classes than traditional stocks and bonds to fill their 

investment portfolio. Consequently, investment in commercial real estate has become an 

attractive harbor for investors looking for relatively safe investments that provide a decent 

current yield (DNB, 2015). For example, the Norwegian Government’s Pension Fund Global 

announced in 2006 that it would allocate up to 3% of the funds capital to real estate 

investments, and in later years that target has increased to 5% (NBIM, 2007). Other large 

funds, such as the US pension funds CalPERS and CalSTRS, have also opted to allocate 

large holdings of their portfolio to real estate (OECD, 2014). Investment by such large 

institutions have increased over the past decade, and are predicted to continue to rise 

globally (Weil, 2015). In fact, the average target allocation in real estate assets for 

institutional investors is estimated at 9.62% globally by the end of 2015. That suggests an 

increase of 24 bps from last year, which implies that most developed real estate markets, 

including the Norwegian market, are likely to feel the impact of increased investment (Weil, 

2015).  

 

Figure 1: Expected allocation to real estate by large funds (Weil, 2015). 

In fact, some of the largest acquisitions of real estate in Norway the past years, including 

Starwood Capital Group’s acquisition of Statoil’s headquarters (3,4 bn NOK) and Madison 

International Realty’s acquisition of Fortin (4,65 bn NOK), have involved large international 

investors. While such investors continue to increase safe long-term investment in real estate 

assets in Norway, prices for such properties increase, and other real estate investors are 

pushed out of the market due to low returns on investment. As a result, smaller real estate 
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investors such as real estate investment companies, private investors, and family funds look 

to more opportunistic investment opportunities in properties with larger potential for capital 

gains (DNB, 2015). Such investments may include development properties or properties 

with potential for increased occupancy. The recent flow of international investors has thus 

caused increased competition in commercial real estate investment in prime properties as 

well as properties in the fringe areas. Together, all real estate investors have contributed to 

the recent increase in transaction volumes in Norway (Basale, 2015). As illustrated in Figure 

2, transaction volumes the past 10 years in Norway have generally followed the cycles of the 

overall economy, but reached a record high 87 billion NOK in 2014. The trend with 

increased transaction volumes is expected to continue, and is estimated to reach 100 billion 

NOK in 2015 (CBRE, 2015).  

 

Figure 2: Historical transaction volume in Norway (Basale, 2015) 

While the Norwegian asset market is experiencing increased competition from international 

investors and record high transaction volumes, the space market has experienced a similar 

trend. In the past 3-4 years, rental rates in Norway have been steadily increasing, however, 

experts now suggest that rental rates may fall in the near future due to the decline in activity 

in the oil industry (Fearnley, 2015). The same expectation is observed in occupancy rates 

across the country as several companies in the oil-industry are downsizing due to the decline 

in oil prices (Basale, 2015). 
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1.3 Real Estate Valuation 

The demand for holding Norwegian commercial real estate is steadily increasing, and 

transaction volumes are consequently historically high (Fearnley, 2015). As competition for 

acquiring commercial real estate increases, the valuation of real estate assets becomes 

increasingly important. While an overvaluation of a property may have adverse effects on 

the profitability of an investment, an undervaluation may cause the investor to miss out on a 

profitable investment. Hence, knowing the price at which one should be willing to invest in a 

property is crucial for a successful investment in commercial real estate. However, 

determining the correct value of commercial real estate is a challenging task, and there are 

numerous uncertain factors that have to be considered in an accurate valuation.  

The most dominant uncertainty related to investments in real estate is arguably the instability 

in the rental rates at which a property owner can lease out his space for in the future. 

Furthermore, a property, as it stands today, may be worth more if it was used for a different 

purpose, or had a few more stories, and there is uncertainty as to what degree a property may 

increase future cash flows through capital expenditures and investments. Therefore, it is 

common practice to consider the ‘highest and best use’ (HBU) principle when valuing a 

property. This principle states that each property should be valued as “the most probable use 

of land or improved property that is legally possible, physically possible, financially feasible 

and appropriately supportable from the market, and which results in maximum profitability” 

(Propex, 2003). While each of these considerations are driven by market forces, the practical 

use of a property is strictly regulated by local governments, and is thus a predetermined 

factor in the valuation of a property. However, if a property is currently not regulated to 

match the other conditions of the HBU principle, an investor may consider applying for 

changes in the property’s regulation and zoning in hopes to increase the future cash flow 

generated by the property. In such cases, the investor faces uncertainty as to how long the 

approval process will take, and to what extent their application will be approved.  

When evaluating an investment in a development project, investors must consider the strict 

rules regarding a property’s zoning and regulation. In Norway, there are three levels of 

regulations that must be considered. Firstly, the municipal plan of a city outlines the allowed 

use of property. Investors who want to change the allowed use of a property must go through 

a lengthy process with local politicians. Secondly, the area plan is a more detailed plan that 

outlines concerns regarding the usage and infrastructure of a property. Lastly, the investor 
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must prepare a detailed plan for the actual development of a project. The expected length of 

the time a firm has to wait for approval of a real estate development project depends on the 

current status of a property, and at what level the investor must apply for changes in the 

existing plan.  

In the current Norwegian real estate market, experts indicate that there is a significant 

inefficiency in market dynamics, and that different valuations of the same property often 

vary greatly, especially for projects that include the development of a property1. The large 

variations in property valuations are mainly due to the lack of a generally accepted valuation 

process that accurately accounts for the uncertainty related to the potential improvement in a 

property’s future cash flow (Leishman et al., 2000). In Norway, investors in the real estate 

development market are typically private owners of undeveloped land, or real estate 

investment companies with portfolios largely consisting of fully developed real estate assets, 

and only a few development projects. Hence, there is a lack of large institutional investors in 

the Norwegian real estate development market, as life insurance companies and pension 

funds generally look to real estate assets with safe long-term cash flows. From a valuation 

standpoint, the shortage of sophisticated investors willing to exhaust resources in the 

valuation of development projects in the early stages leads to less innovation in valuation 

techniques of real estate development projects, and thus less accurate valuations. 

Today, the traditional discounted cash flow (DCF) method largely dominates all commercial 

real estate valuation. In a traditional DCF valuation, the value of a property is determined by 

estimating the expected future cash flow generated by a property, and discounting that cash 

flow back to present values. The challenge with such an approach is to accurately estimate 

the future cash flows from the property, especially if the investor believes the use of the 

property can be changed to increase future cash flows. In that case, the investor must make 

brave assumptions as to when the development project will be completed and the rental rate 

of the improved property at that time. In recent years, traditional DCF valuations have been 

criticized for failing to accurately consider such options to increase the future cash flow of a 

property. Critics argue that DCF valuations often disregard the flexibility of an investment, 

and concludes that pricing investments using a real options framework would add value to 

most types of investment valuations (Damodaran, 2005). Furthermore, Leishman et al. 

                                                 

1 Experts we have been in contact with include Malling & Co, NewSec, and Entra. 
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(2000) show that a real options framework have provided more accurate valuations than 

traditional DCF valuations of real estate because the DCF method tends to overlook the 

potential value of further development of a property in the future, especially when it is not 

optimal to expand the property in the present. With the current valuation tools, investment in 

real estate development is depicted as a very risky affair due to the large differences in 

estimated value by different analysts. Consequently, banks are reluctant to finance such 

investments before the investor has secured approval of the project and has found tenants for 

the project, regardless of how promising the project looks. Thus, a more sophisticated 

valuation approach that provides more accuracy, less uncertainty, and a deeper insight to the 

value of real estate development projects may help increase the efficiency in the market by 

lowering the uncertainty surrounding the true value of real estate development projects. 
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2. Options Theory 

In this section we will introduce financial options, and their basic characteristics. We will 

also discuss real options, and how real options differ from standardized financial options. 

Lastly, we explain how different mathematical techniques can be used to value real options 

in an uncertain environment.  

2.1 Financial Options 

An option is a derivative security, which represents a contract between a seller and a buyer, 

where the value of the security is derived from the value of an underlying asset, for example 

equity shares in a company. Trading of standardized options contracts on a national 

exchange started as early as in 1973 (Bodie, 2014). An option gives the buyer a right, but not 

the obligation, to execute the option on or before a specified expiration date. The buyer of 

the option pays a certain premium for this right, while the issuer receives this premium to 

commit to fulfill the option if the buyer wishes to exercise it. When purchasing an option, the 

investor does not necessarily believe the underlying asset will increase in value, and options 

are in fact often used as a way to hedge risk, and can also be used to leverage a position.  

There are two types of options; call options and put options. A call option gives the buyer of 

the option a right to purchase the underlying asset for a specific amount, called the strike 

price, on or before a specified expiration date. This might be interesting if one believes the 

price of the underlying asset will rise above the strike price and thereby provide a payoff 

equal to the difference between the underlying asset value and the strike price. If the 

underlying asset value is not above the strike price at the time of expiration, the option will 

not be exercised because this will give a negative payoff. The payoff from a call option at the 

time of exercise can therefore be expressed as 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0), where 𝑆𝑇 is the value of the 

underlying asset at time of expiration, 𝑇, while 𝐾 is the strike price of the option. The risk of 

this investment is that the price of the underlying asset will not rise above the strike price. 

However, notice that because an option provides the investor with the right, and not the 

obligation to exercise the contract, the investor will never lose more than the premium 

initially paid for the option. Figure 3 and Figure 4 shows the profit and loss for the buyer and 

seller of a call option, respectively.  
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In contrast to the owner of a call option, the owner of a put option has the right to sell the 

underlying asset on or before the specified expiration date, at a specified price. When 

investing in a put option, the buyer believes the price of the underlying asset will fall below 

the strike price. As with the call option, a put option will not be exercised unless it is 

favorable to the investor, i.e. if the underlying asset’s value is not beneath the strike price. 

Therefore, we get the following payoff function for the buyer of a put option at the time of 

exercise, 𝑚𝑎𝑥(𝐾 −  𝑆𝑇, 0). When buying a put option, the risk is that the underlying asset 

will not fall below the strike price. However, as with a call option, the holder of a put option 

cannot lose more than the premium initially paid. The profit and loss for a put option is 

shown in Figure 5 and Figure 6 for the buyer and the seller of a put option, respectively.   

            

Generally, we use different expressions to describe the current state of an option. An option 

is defined as “in the money” if immediate exercise would produce a positive payoff to its 

holder. On the contrary, if immediate exercise would not produce a positive payoff, an 
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option is defined as “out of the money”. When the price of the underlying asset is equal to 

the predetermined strike price, the option is described as “at the money”.  

Whether a put option or a call option, all options can generally be divided into two 

categories; American options and European options. An American option gives its buyer the 

right to exercise the option on, or before, the predetermined expiration date. A European 

option, on the other hand, can only be exercised at the expiration date, and not at any other 

time. The distinction between the two types of options is important as they may differ 

significantly in value. The value of an American option can never be less than that of a 

European option, if all other features are alike. Intuitively, that is because an American 

option has all the same features as a European option, but additionally, it can also be 

exercised before the expiration date. The additional flexibility of the American option will 

never be negative for the holder of the option. 

2.2 Real Options 

Real option theory, as its name implies, uses options theory to evaluate investments in 

physical or real assets, such as a development project, in a dynamic and uncertain business 

environment (Mun, 2006). Real options are different from financial options in that they are 

not traded on exchanges as securities, and that they do not normally involve decisions on an 

underlying asset that is traded as a financial security. Another distinction between real 

options and financial options is that the holder of the real option, which is typically the 

management of a firm, can influence the value of the project, as opposed to the holder of a 

financial option, which generally cannot influence the value of the underlying asset. Real 

options often represent certain types of management decisions. These decisions can typically 

be an option to expand a project, option to postpone an investment, option to abandon a 

project, or option to suspend a project. Hence, real option models provide an alternative 

approach to a traditional DCF to value projects with flexibility. 

While the DCF approach assumes one pathway with fixed amounts, and all decisions are 

made at the start of the project, the real options approach considers several different 

pathways, where decisions are made during the project as a consequence of the uncertain 

environment. In other words, in a real options approach, management makes their strategic 

decisions along the way as new information becomes available. Thus, when applying real 

options theory to value a project, the project tends to get a higher value than when applying a 
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traditional DCF approach, because the real options approach better captures the value of 

management flexibility.  

In real options theory, different managerial decisions can be interpreted as put or call 

options. For example, an option to expand a project at a convenient time in the future has the 

same features as an American call option. The present value of the future cash flows gained 

by the expansion can be thought of as the underlying asset, and the expansion cost can be 

thought of as the strike price of the option. If the present value of the cash flow is above the 

investment cost, the option is “in the money”. If, on the other hand, the present value of the 

cash flow is below the investment cost, the option is “out of the money”. Depending on 

whether the expansion has to be made at a specified time, or if it can be made at any time 

before a specified date, we have a European or an American call option. Figure 7 shows an 

example of the payoff of an option to expand. Notice that the payoff in Figure 7 is the same 

as for the call option illustrated in Figure 3.   

 

Contrary to an option to expand, an option to abandon a project can be seen as a put option. 

Such an option is valuable if the project starts losing money, because the managers does not 

have to continue with the business plan if it becomes unprofitable. If the project becomes 

unprofitable, management can abandon the project and the loss from the investment will not 

be as severe. As with the option to expand, the time at which the abandonment is possible to 

exercise dictates whether the abandonment option can be seen as an American or a European 

put option. Figure 8 outlines the payoff of an abandonment option. Notice that the payoff in 

Figure 8 is similar to the payoff from the put option in Figure 5.  
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2.3 Dynamic Optimization  

The payoff from a firm’s investment made today accumulates over time and are affected by 

uncertainty in the business environment, as well as decisions made by management and the 

firm’s competitors. In real options theory, there are mainly two mathematical techniques to 

solve decision-making problems with these kinds of features. These methods are called 

dynamic programming and contingent claims analysis, and are used to obtain the value of 

real options. The two techniques are closely related, and may lead to the same results in 

many applications. However, the two approaches impose different assumptions about 

financial markets, as well as the appropriate discount rates (Dixit & Pindyck, 1994).  

In real options valuation, contingent claims analysis builds on the idea that a project’s stream 

of costs and benefits can be seen as a specific asset. In today’s economy, there exist markets 

for a vast amount of assets, and if our asset happens to trade in one of these markets, we can 

use contingent claims analysis to solve our problem. More accurately, our asset doesn’t 

explicitly have to be traded in a market, but contingent claims analysis requires that the 

financial markets are sufficiently complete in that it exists some traded assets that can track 

the value of our underlying project. All that is required is some combination of assets that 

will exactly replicate the pattern of returns from our investment project. This requirement is 

often referred to as the spanning assumption (Dixit & Pindyck, 1994). The value of the 

project must be equal to the value of the replicating portfolio. If it is not, we would have an 

arbitrage opportunity. In cases where the spanning assumption does not hold it is more 

suitable to use the dynamic programming approach.  
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Dynamic programming is a general tool for solving dynamic optimization problems. This 

approach breaks the optimization problem into two parts. On the one hand is the immediate 

investment decision, and on the other hand, is a valuation function that takes into 

consideration all future decisions. If the project is finite, the approach finds the value at the 

very last decision point of the project using standard static optimization. Then it integrates 

this solution into the second to last decision point, and in this way works its way back to the 

present. If the problem is infinite, the problem can be solved by finding the project value at 

the point where all subsequent events are recursive, i.e. each new problem looks exactly like 

the one before, and thereafter using the same approach as with a finite project, working from 

this point and back to the present. This approach does not only facilitate numerical results, 

but sometimes also analytical solutions (Dixit & Pindyck, 1994). Dynamic programming is 

especially useful when dealing with uncertainty, and the approach can deal with complex 

decision structures as well as complex relationships between the option value and the 

underlying asset (Rogers, 2013).  
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3. Related Literature 

To this date, several research papers and articles have described valuation models and 

optimal investment decisions under uncertain conditions, and some also consider the case as 

it pertains to development projects in the real estate industry.  

In early real options theory, Titman (1985) considered the case of underutilized urban land, 

such as parking lots, that may be converted to residential or commercial space. He assumed 

that landowners are wealth maximizers, and that a better utilization of property may 

significantly increase the owner’s wealth. He goes on to develop a simple binominal real 

options model to value undeveloped land. The model provides intuition about when it is 

optimal to invest and when it is optimal to postpone investment in the development of land. 

The paper shows that because underutilized land can be developed to become several 

different asset classes, the option to develop the land has significant value. However, since 

development of urban land is an irreversible decision, Titman (1985) reasons that it may be 

rational to leave the underutilized land undeveloped in hopes of realizing greater payoffs in 

the future. A clear limitation to Titman’s paper is that it only considers a simple two stage 

binominal model in which the underlying rental rates are estimated based on projections, 

rather than probability distributions.  

McDonald and Siegel (1986) developed a more complex model in which both the benefit 

and the cost of a project follows a geometric Brownian Motion (GBM). The model also 

provides optimal investment thresholds as it compares the value of the immediate investment 

in a synthetic fuel plant to the value of the same investment at any time in the future. Thus, 

the model is able to isolate the value lost when investing at a suboptimal time, and the 

authors make the argument that it is in fact not optimal to invest until the project provides a 

value twice that of the investment cost. McDonald and Siegel (1986) focus on the value of 

flexibility in timing rather than the value of the isolated option to invest. 

Capozza and Helsley (1989) did the opposite when they developed a real options model to 

value undeveloped urban land. They consider the investment case in which agricultural land 

can be developed into to urban land. The model assumes that future rental rates follow a 

GBM, and points out that while uncertainty in land prices and the rate of growth of a city 

affect the value of urban land, rental rates are yet the most dominant parameter to value land. 

Capozza and Helsley (1989) show that the irreversibility of the decision to develop a tract of 
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land, as well as the uncertainty in future rental rates, favors a delay in the development of 

raw land. Furthermore, they argue that the option value of undeveloped land may explain 

why undeveloped land close to urban areas sells at a premium over the value of the rental 

income from the land. One interesting extension to Capozza and Hesley (1989) would be to 

include risk related to regulatory issues in the development of urban land. Such regulatory 

issues may impose time lags in the investment of a development project. 

Bar-Ilan and Strange (1996) introduced a framework which included such issues in the form 

of a time lag between the investment decision and the collection of cash flow. They used 

dynamic programming to develop a model that considers the effect of investment lags on an 

optimal decision under uncertainty. The framework outlines a simple model that emphasizes 

the effect investment lags have on capital budgeting decisions. The paper shows that 

conventional effects of price uncertainty in a real options problem may be reversed when 

investment lags are introduced. Moreover, they argue that investment lags have an offsetting 

effect on uncertainty, and that investors facing long lags should be less concerned with 

uncertainty. Since Bar-Ilan and Strange (1996) apply their model to fit a generic investment, 

and does not take industry specific details into consideration, their model is not very 

applicable in practice. However, the investment lag introduced in their framework could be 

used in practice as a very simplified model. 

To model risks more specific to particular investment opportunities, Riddiough (1997) 

focused on the value of land where there is a risk of regulatory takings, i.e. the government 

confiscation of properties in exchange for a certain compensation. The underlying property 

value in Riddough’s (1997) model follows a GBM and the probability of a property being 

confiscated is modeled via a Poisson process. By introducing the Poisson process, Riddiough 

(1997) finds that regulatory risk can significantly decrease land value. However, the article 

largely discusses the economic cost of regulations rather than viewing the problem from an 

investor’s point of view. For example, an investor in real estate is more concerned with the 

value of the property itself than the loss of value of a property due to potential confiscation 

by the government. 

Leishman et al. (2000) takes the investors point of view in their research paper when they 

argue that option pricing models have a greater potential for valuing land development than 

traditional valuation models such as residual valuation and DCF. They argue that because 

such traditional models do not consider the ‘hope value’ of a property, a real options 
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approach to the valuation of a development project in real estate provides a more accurate 

estimate of value. The ‘hope value’ of a property is described in the article as the value of 

the possibility that a development that is not profitable today may become very profitable at 

some point in the future if market conditions change. The paper proves empirically that 

option-pricing models in real estate valuation have proved to be more accurate than other 

traditional models. However, Leishman et al. (2000) also points out that option-pricing 

models are ‘time-series in construction’, with predictions depending on key financial 

variables such as interest rates, capitalization rates and volatility, and that traditional 

valuation methods often have the ability to remain more detailed and case specific. 

One framework that attempts to include a realistic feature related to uncertainty in timing is 

developed by Miltersen and Schwarts (2007). They outline a model that considers a real 

option problem with uncertain maturity. The framework is modeled to match investment 

opportunities such as an exploration project that requires on-going investment costs, 

however, it can quite easily be applied to other similar scenarios. In this model, the time to 

completion of a real investment is uncertain, but the model is still able to obtain analytical 

solutions as to when to abandon the project or to switch the level of investment activity. The 

article extends the problem from a monopoly market to a duopoly, and argues that the model 

also can be used for markets with several market participants. Similarly to Riddough (1997), 

Miltersen and Schwartz (2007) includes a Poisson process to model the uncertainty in the 

time processes, and the framework proves to be quite flexible in terms of obtaining 

analytical solutions to other variables than option value. However, the framework does not 

specifically consider the opportunity cost of investing in a project.   

Heydari and Siddiqui (2009), on the other hand, consider the opportunity cost of exercising 

an option, in a sequential decision making problem with fixed investment lags, to suggest 

that the optimal time of interrupting an interruptible load contract in the electricity industry 

is far out of the money. The model assumes that the underlying electricity price follows a 

GBM and the investment lags are of a fixed length. The model takes into consideration the 

cash flow gained from the interruption in excess of the opportunity cost of forgone income. 

Thus this framework considers the opportunity cost of investing when determining optimal 

investment thresholds. Heydari and Siddiqui (2009) show that, in this case, greater 

uncertainty results in greater option values, and on the other hand that greater interruption 

lags results in a lower threshold price of interruption. Their model assumes a fixed 
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opportunity cost, and can thus not be applied if the opportunity cost of the project is not 

constant.  

Choi (2011) investigated the usefulness of real options analysis with his case study of real 

options applications in the real estate industry. His study involves the usefulness of real 

options when it comes to presale contracts of condominiums, valuation of raw urban land in 

the perspective of land developers, and valuation of an opportunity to install solar panels on 

properties. In the case of valuing raw urban land with opportunity to develop it into 

developed lots, Choi introduces a permit approval lag based on a gamma distribution and he 

also includes a sequential decision making problem in which the investor can make two 

different decisions at two different points in time. The article outlines a quite realistic 

framework for valuation of raw urban land, however, it does not provide analytical solutions 

for option values or optimal investment thresholds. Therefore, Choi (2011) relies on 

numerical analysis to obtain his results. 

The model developed in this paper is a combination of several strings of the mentioned 

economic literature. Our analysis is particularly inspired by the works of Heydari and 

Siddiqui (2009), and Bar-Ilan and Strange (1996) as it considers irreversible investments in 

the presence of one or multiple lags. Furthermore, this paper is similar to those of Riddough 

(1997) and Capozza (2011) as it pertains to the real estate industry, and we have included 

several industry specific features in our model to reflect realistic assumptions. This paper 

thus covers a gap in the literature related to investment in real estate under uncertainty in 

both future rental rates and regulatory approval of development projects. Our most basic 

model first builds on the existing framework of Heydari and Siddiqui (2009) for a model in 

the absence of an approval lag. Thereafter, we use the extended framework of Heydari and 

Siddiqui (2009) which draws on the optimal investment threshold of an investment in the 

presence of a lag of fixed length. Lastly, we combine this framework to that of Miltersen and 

Schwarts (2007) to add uncertainty to the previously fixed lag. Although our paper outlines a 

framework that combines several strings of literature, we are able to provide closed form 

analytical solutions in most cases, and to shed light on some interesting implications about 

investment in development projects in the real estate industry. 
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4. Assumptions and Notation 

In the following framework, we take the perspective of a price-taking firm with an 

opportunity to invest in the expansion of a building that is subject to regulatory approval. 

Thus, the firm has a potential option to incur a fixed investment cost to increase the rental 

space of a building, and thereby increase the cash flow of the property. We denote the total 

amount of rental space before and after the expansion by 𝐷1 and 𝐷2 respectively, where  

𝐷1 < 𝐷2. The average annual rental rate for newly constructed buildings is denoted by 𝑃𝑡, 

and is modeled via a geometric Brownian motion (GBM), 

 

 

where μ is the annual growth rate of rental rates, σ is the annual volatility in rental rates, and 

𝑑𝑍 is the increment of a standard Brownian motion. For simplicity, we assume that operating 

costs remain a constant ratio of rental rates, and hence that 𝑃𝑡  represents rental rates net of 

operating costs. Because only a negligible portion of operating expenses cannot be covered 

directly by tenants, this is a reasonable assumption. Furthermore, we assume that the 

investment is irreversible and that the project remains active forever once undertaken. The 

time at which the firm exercises its option to expand is denoted by 𝜏, and the corresponding 

optimal investment threshold is given by 𝑃𝜏. We assume that when the firm exercises the 

option to expand at 𝑡 = 𝜏, the length of the construction period is known, and will end at   

𝑡 = 𝑇. The expected value of the project is denoted by 𝑉(. ), and becomes active when the 

firm exercises the option at 𝑡 = 𝜏. The value of the option to invest in the expansion is 

denoted by 𝐹(. ). Finally, ℎ is the duration of the application period, 𝜌 is the exogenous 

discount rate, and 𝑇 is the time at which construction is completed.  

Generally, property owners typically accept some capital expenditures in order to maintain 

high rental rates over time. However, Crosby (2012) shows that rental rates still tend to 

depreciate over time as buildings get older. Therefore, we include the parameter, 𝑟, to 

account for the relative difference between rental rates for newly constructed buildings and 

those of older buildings. Thus, 𝑟 is a decay factor that decreases rental rates over time. The 

rate at which rental income decays over time depends on building-specific features, and thus 

differs between buildings. Crosby (2012) outlines one way to accurately obtain the long run 
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average annual rate of depreciation in rental rates by observing the current rental rate of an 

existing building and comparing it to the market rental rate for a new building in the same 

area2. We apply the same approach to obtain the average long term decay factor in rental 

rates. In (2), 𝑟 is as function of the rental rate of a current building, 𝐶0, the age of the current 

building, 𝑀, and the rental rate for a new building, 𝑃. 

 

Throughout this paper, 𝑟 will remain a variable of 𝑃 to reflect that the decay factor in rental 

rates is a case specific measure that can vary for different locations, and different rental 

rates. In Appendix A we show the isolated effect of the decay factor on rental rates of a 

building for different values of a buildings age, 𝑀. All notations used in this paper are 

summarized in Table 1. 

Notation Description 

𝑃𝑡 Net rental rate at time, 𝑡 

μ Drift parameter 

σ Volatility 

𝜌 Discount rate 

τ Time of optimal investment 

T Time of finished construction 

𝑃𝜏 Net rental rate at 𝑡 = 𝜏 

𝑉(. ) Expected value of active project 

𝐹(. ) Expected value of option 

𝐼 Investment cost 

ℎ Length of approval time 

M Age of existing building 

𝐶𝑡 Net rental rate from existing building 

𝑟 Decay factor of rental rates 

1

𝜆
 Expected approval time 

Table 1: Summary of notations 

One assumption that is important to emphasize is that once construction has started, the firm 

will complete the construction at 𝑡 = 𝑇, regardless of the movement of rental rates during 

                                                 

2 Crosby (2012) also adjusts the average long term depreciation in rental rates for a specific area by including a benchmark 

average. Creating such a benchmark requires a great deal of data. Therefore, we have excluded the benchmark adjustment 

in (2). 



 24 

the construction period. Since the investment cost, 𝐼, is paid at the beginning of construction, 

and because rental rates cannot be negative, a delay or abandonment of the project during 

construction will only cause the firm to miss out on rental income it otherwise could have 

collected upon completion of the construction. In other words, a building will always have a 

higher value when rented out to tenants than when empty, regardless of the rental rate, 

because the tenants themselves pay the operating expenses associated with their use of the 

building3. Thus, since 𝑃𝑡 ≥ 0, abandoning a project before construction is finished, or opting 

not to lease out space after construction is complete, will never be optimal. In other words, 

even if management had the flexibility to abandon the project during the construction period, 

they would never do so, because the decision to abandon would never be optimal in our 

model. This assumption holds for each of the three models we develop. 

In Model 1, a firm holds an option to expand the rental space of a building, and does not 

have to get approval from regulatory authorities prior to construction. Therefore, the firm 

can begin construction at any time, without having to wait for approval of the expansion. 

However, the firm will not invest unless market conditions are favorable. As mentioned 

above, this model includes a construction period of fixed length. During this period, the firm 

receives no cash flow, but rental rates continue to follow a GBM. Furthermore, since the 

construction period is fixed and known prior to investment, the new building will be 

completed at 𝑡 = 𝑇, regardless of the change in rental rates during the construction period. 

Hence, this model begins with an uncertain waiting period in which the firm waits for market 

conditions to become favorable, and is followed by a fixed construction period in which the 

firm receives no cash flow. Once construction is completed, the firm starts receiving cash 

flow from the expanded building. 

In Model 2, we assume that the firm holds a potential option to expand the rental space of a 

building, but that prior to receiving the rights to begin construction, they have to wait a 

period of fixed length for regulatory authorities to approve the project. The length of the 

approval period is determined by the parameter ℎ. Once approval is granted, the firm 

receives the option to expand. However, even if market conditions are favorable at the time 

the firm submits the application for approval to expand the building, the firm has to wait out 

the full length of the approval period before they receive the option to begin construction. 

                                                 

3 Leases where tenants pays operating expenses are commonly referred to as triple net leases, or NNN leases. 
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During this period, rental rates continue to move stochastically. Thus, while market 

conditions may be favorable when the firm first applies for the expansion, they may become 

unfavorable during the approval period. If so, the firm will have to wait for an uncertain 

period of time before it becomes optimal to begin construction. As in Model 1, the 

construction period is fixed, and once construction has started, the time at which the 

expansion is completed is known. Hence, this model starts with a fixed approval lag, which 

is followed by an uncertain waiting period, which again is followed by a fixed construction 

lag before the firm starts receiving cash flow. 

In Model 3, we assume that the firm holds a potential option to expand the rental space of a 

building, but that prior to receiving the rights to begin construction they have to wait an 

uncertain amount of time for regulatory authorities to approve the project. The length of the 

approval period is determined by a Poisson process, where the parameter λ denotes the mean 

arrival rate of approval. Once approval is granted, the firm receives the option to expand. 

However, as in the previous models, the firm in Model 3 will wait for market conditions to 

become optimal before they begin construction. When construction starts, the firm will wait 

out the fixed construction period before they start receiving cash flow. Thus, this model 

begins with a stochastic approval lag, which is followed by an uncertain waiting period, 

which again is followed by a fixed construction lag.  
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5. Analytical Formulation 

In this section, we will lay out a simple analytical framework for valuing an option to expand 

a building’s rental space under uncertain conditions. While we consider an option to expand 

a property with a current cash flow from an existing building, we will focus on the isolated 

option value, rather than the value of the existing building in addition to the option to 

expand. We begin with the simplest model without an approval lag, and go on to extend the 

model to include both a fixed and a stochastic approval lag.  

5.1 Model 1: Investment in the absence of an approval lag 

A firm has the option to invest in an expansion of the rental space of a building either 

immediately or at a random time in the future, τ, by incurring a fixed investment cost, 𝐼. By 

owning a property with an option to expand, the firm will hold the value of the cash flow 

from the existing property, and they will also hold the value of the option to expand, 𝐹(𝑃). 

At 𝑡 = 𝜏 the firm exercises the option to invest in the expansion, and receives the value of 

the active project, 𝑉(𝑃). In this model, the value of the active project, 𝑉(𝑃), includes the 

opportunity cost of not investing in the expansion, and rather keeping the cash flow from the 

existing building. Hence, the value of the active project, 𝑉(𝑃), is the value that the firm will 

receive from investing in the expansion in excess of the value it would receive if it kept the 

existing building “as-is”. In this simple model, no regulatory authorities exist, and the firm 

does not have to apply for approval of the project prior to expanding. Consequently, the firm 

can invest immediately if market conditions are favorable. When the firm invests, they will 

demolish the existing building and construct a new building with an increased rental space. 

Since the length of the construction period is fixed and known prior to investment, the 

expansion will be completed at 𝑡 = 𝑇, regardless of the movement in rental rates during the 

construction period. As shown in Figure 9, the project becomes active once construction 

begins, rather than when construction is finished, and the value of the active project, 𝑉(𝑃), 

thus includes the foregone cash flow from the existing building during the construction 

period. The firm has no flexibility during the construction period, and is therefore only 

concerned with when it is optimal to invest in the expansion, and the value of the option to 

expand.  
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In the waiting region in Figure 9 the firm has the option to incur a fixed cost, 𝐼, to receive the 

uncertain payoff, 𝑉(𝑃). The value of that option is denoted 𝐹(𝑃). The construction period in 

Figure 9 represents the time at which the expansion is under construction, and is known 

before investment. For simplicity, we assume that the construction cost, 𝐼, occurs at 𝑡 = 𝜏, 

and that while construction is on-going, the firm will receive no cash flow from the property. 

Furthermore, we assume that the construction period is of a fixed length, 𝑇 − 𝜏, which is 

known to the firm prior to investment. This is a reasonable assumption, as developers 

generally have a good estimate of the length of the construction period prior to the start of 

the project. Thus, at 𝑡 = 𝜏, the firm invests in the project, and the project becomes active. At 

𝑡 = 𝑇, the expansion is completed, and the firm starts receiving cash flow from the expanded 

building.  

We use standard dynamic programming and work backwards by first determining the value 

of the active project, 𝑉(𝑃). As illustrated in Figure 9, if market conditions are favorable at 

𝑡 = 0, the waiting region is effectively eliminated, and the value of the option is equal to the 

value of immediate exercise. Therefore, we start by finding the value of exercising the option 

immediately, i.e. 𝑡 = 𝜏 = 0,  as indicated in (3), 

  

where 𝑬𝑃 is the expectation, which is conditional on 𝑃. The first integral on the right hand 

side of (3) represents the present value of the cash flow from the new building after the 

expansion is completed. Since the building will not be ready to lease out until construction is 

completed, this cash flow begins at 𝑡 = 𝑇, and because we assume an infinite horizon the 

cash flow continues forever. Moreover, since the rental rate from the new building decreases 
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as the building gets older, 𝑃𝑡 is adjusted to reflect that the decrease starts when the 

construction is completed at 𝑡 = 𝑇, rather than at the beginning of construction, when 𝑡 = 𝜏. 

Hence the cash flow from the new building, 𝐷2𝑃𝑡, is adjusted with 𝑒−𝑟(𝑡−𝑇) to reflect the 

decay in rental rates over time. For example, one year after the construction is finished,     

𝑡 − 𝑇 will equal 1 and the rental rate will have decayed by the factor, 𝑟, for 1 year. The last 

term in the first integral, 𝑒−𝜌𝑡, is included to discount every cash flow from the building 

back to 𝑡 = 0.  

The second integral on the right hand side of (3) represents the opportunity cost of the 

expansion, which includes the loss of rental income from the existing building during both 

the construction period, and in the time after construction. Since the firm receives no cash 

flow during the construction period, and because (3) denotes the value of immediate 

exercise, this opportunity cost begins at 𝑡 = 0. The cash flow from the existing building will 

effectively seize once construction starts, and will never reoccur thereafter. Therefore, the 

second integral goes to infinity. The opportunity cost, i.e. the cash flow that the firm would 

have received from the existing building, 𝐷1𝐶𝑡 ,  is discounted by 𝑒−𝜌𝑡 to obtain the present 

value of the cash flow at 𝑡 = 0. The last term on the right hand side of (3), 𝐼, represents the 

investment cost of the project. 

We can simplify (3), as denoted in (4). 

 

In the top equality in (4) we insert the function for 𝐶𝑡, as denoted in (2), where we have that  

𝐶𝑡 = 𝑃𝑡𝑒−𝑟(𝑀+𝑡). Hence, 𝐶𝑡, is a function of the rental rate at time t, 𝑃𝑡, and it has decayed 

for 𝑀 + 𝑡 years. In the middle equation, we implement the expectation to 𝑃𝑡, which is given 

by 𝑃𝑒𝜇𝑡, for each term. Lastly, we simplify the expression and get the bottom equation in 

(4). By integrating (4) we obtain the expression indicated in (5). 
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By simplifying (5) we obtain the expression for the value of immediate exercise, 𝑉(𝑃), 

indicated in (6). 

 

In equation (6), the first term in the numerator can be interpreted as the present value of the 

annual rental income from the newly constructed building. The expected rental rate at       

𝑡 = 𝑇 is given by 𝑃𝑒𝜇𝑇. To obtain the present value of this rental rate, we discount it back by 

T years with the discount rate, 𝜌, and obtain the term that represents the present value of the 

rental rate per square meter of the new building, 𝑃𝑒(𝜇−𝜌)𝑇. By simply multiplying this rental 

rate by the size of the new building, 𝐷2, we obtain the expected present value of the rental 

income from the new building after construction. The second term in the numerator in (6) 

represents the current income from the existing building. The rental rate of the existing 

building has decayed for 𝑀 years with the factor 𝑟. Hence, the rental income per square 

meter of the existing building at 𝑡 = 0 is given by 𝑃𝑒−𝑟𝑀, and is the same as the rental rate 

in equation (2) when 𝑡 = 0. By simply multiplying the rental rate per square meter of the 

existing building, 𝑃𝑒−𝑟𝑀, with the size of the existing building, 𝐷1, gives us the current 

annual rental income from the existing building. We combine the first and second term in the 

numerator to get the expected annual present value of the cash flow from the expanded 

building, in excess of the current cash flow from the existing building. This cash flow is a 

perpetuity which is discounted by the discount factor, 𝜌, and adjusted by the decay factor, 𝑟, 

and the drift parameter, µ. Quite intuitively, the formula in (6) is similar in structure to a 

perpetual Gordon growth model, and provides the value of the perpetual excess cash flow 

from the new building with a growth rate,  𝜇 − 𝑟, and the discount rate, 𝜌.  

By simplifying equation (6), we obtain the much simpler expression denoted in (7), which 

we use to denote the value of immediate exercise in further calculations.  

 

Thus, 𝑎𝑃 represents the expected present value of the cash flow from the expanded building, 

in excess of the cash flow from the existing building. The parameter, 𝐼, is the investment cost 

of the expansion, which subtracted from 𝑎𝑃 provides the value of immediate exercise, 𝑉(𝑃). 
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Next, we move further back in time and include the value of the option to invest if market 

conditions are not favorable to obtain the expression denoted in (8). From (8), we see that the 

value of the option to invest, 𝐹(𝑃), depends on whether or not the rental rate, 𝑃, has reached 

the optimal investment threshold, 𝑃𝜏. If 𝑃 < 𝑃𝜏, then the value of the option to invest is given 

by the top branch of the right hand side of (8). According to Dixit and Pindyck (1994), the 

solution to the value of the option when 𝑃 < 𝑃𝜏 must take the form 𝐴1𝑃𝛽1, where 𝐴1 is a 

constant yet to be determined, and 𝛽1 > 1 is the positive root of the quadratic equation 

1

2
𝜎2𝛽(𝛽 − 1) + 𝜇𝛽 − 𝜌 = 0. See Appendix B for details. If, on the other hand, 𝑃 ≥ 𝑃𝜏, it is 

optimal to invest in the expansion immediately, and the value of the option to expand is 

equal to the value of immediate investment, 𝑉(𝑃), as shown by the bottom branch on the 

right hand side of (8).  

 

The optimal investment threshold, 𝑃𝜏, and the endogenous constant, 𝐴1, denoted in (8) are 

obtained by applying the value matching and smooth pasting conditions between the two 

branches in (8), as shown in (9).  

 

The value matching and smooth-pasting conditions come from the consideration of the value 

function, 𝐹(𝑃), at the time of optimal to investment, 𝜏. The value-matching condition 

indicates that at the optimal investment threshold, the value of waiting, and the value of 

immediate investment are equal. The smooth-pasting condition says that at the optimal 

investment threshold, the slopes of the value functions for immediate exercise, and waiting 

to expand, are equal and continuous. This condition can be expressed by differentiating the 

value matching condition, as shown in the bottom branch of (9). The two conditions must 

both hold because if 𝐹(𝑃) were not value matching and smooth at the investment threshold, 

the firm could do better by investing in the expansion at a different point in time (Dixit & 

Pindyck, 1994). Intuitively, if the firm invests in the expansion at a rental rate other than the 

optimal investment threshold, they will receive a lower return on investment. 
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Interestingly, notice that the optimal investment threshold, and thereby the option value, can 

also be found by denoting the option value as indicated in (10),  

 

where the expected stochastic discount factor as explained by Dixit and Pindyck (1994) is 

denoted in (11). We will use this expected discount factor when we extend our model to 

include a fixed approval lag in section 5.2.  

 

By applying the first order necessary condition to (10), we can obtain the same optimal 

investment threshold, 𝑃𝜏, as in (9). This derivation is shown in Appendix C where we also 

show that the second order necessary condition is satisfied. Since 𝛽1 > 1, we see in (12) that 

it is optimal to invest in the expansion when the expected present value of the new rental 

income, in excess of the foregone rental income from the current property, is greater than the 

present value of the investment cost. 

 

In Appendix D we show that the optimal investment threshold, as well as the value of the 

option, both increase with volatility. Thus, as with options in general, uncertainty supports a 

delay in decision-making, because the value of the option, i.e. the value of waiting, increases 

with volatility.  

5.2 Model 2: Investment under a fixed approval lag 

Now, we extend the framework of section 5.1 to allow for a fixed approval lag. Before the 

firm can invest in the expansion, they have to wait for approval of the project by the local 

government for a fixed amount of time, ℎ. As indicated in Figure 10, upon approval the firm 

will either invest in the expansion immediately if 𝑃ℎ ≥ 𝑃𝜏, or they will delay the expansion, 

if 𝑃ℎ < 𝑃𝜏. If it is optimal to exercise the option immediately, the firm will receive the value 

of the active project, 𝑉(𝑃ℎ), and if it is optimal to wait, they will receive the value of the 
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option to invest, 𝐹(𝑃ℎ). Notice that the fixed approval lag introduced in this model occurs at 

a time before the uncertain waiting region, while the construction lag occurs at a time after 

the uncertain region. From a modeling point of view, the timing of these lags relative to the 

uncertain waiting region requires that we treat the approval lag and the construction lag 

differently. Standard dynamic programming dictates that we begin our analysis at the end 

period, and work our way backwards. Therefore, from a modeling standpoint, the first lag we 

encounter when solving the investment problem is the construction lag, which is included in 

the value function of the active project, 𝑉(𝑃ℎ). The approval lag, on the other hand, must be 

considered in the last step because the fluctuation in rental rates causes an uncertain length 

of the waiting region. Therefore the expected value of the project depends on whether or not 

the market rental rate has reached the optimal investment threshold at the time of approval, 

𝑡 = ℎ. 

 

 

Notice that if 𝑃ℎ ≥ 𝑃𝜏, it is optimal to invest in the expansion immediately after the time of 

approval, and the waiting region is effectively eliminated. On the other hand, if 𝑃ℎ < 𝑃𝜏, the 

value of holding the option to expand and receive the cash flow from the existing property is 

greater than the value of expanding. Thus the firm will wait until 𝑃 ≥ 𝑃𝜏 at the optimal 

investment threshold, 𝑡 = 𝜏, before they expand. The top branch on the right hand side of 

(13) denotes the value of the option to expand the rental space of the property at 𝑡 = ℎ when 

𝑃ℎ < 𝑃𝜏, while the bottom branch denotes the value of exercising the option immediately at 

𝑡 = ℎ, and thus represents the expected NPV of the project if 𝑃ℎ ≥ 𝑃𝜏.  
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In equation (14) we show that the expected value of the option to expand at 𝑡 = ℎ, 

conditional on the market rental rate, 𝑃, is determined by the probability that at 𝑡 = ℎ the 

rental rate, 𝑃ℎ, will have reached the optimal investment threshold, 𝑃𝜏. Thus equation (14) 

represents a combination of the two branches in (13) where the weights of the two branches 

are determined by the probability that the rental rate will reach the optimal investment 

threshold at the time of approval. 

  

The first term on the right hand side of (14) is the probability that the rental rate will not 

have reached the optimal investment threshold by the time of approval, times the top branch 

of the right hand side of (13). The second term in (14) is the probability that the rental rate 

will have reached the investment threshold by the time of approval, times the bottom branch 

of the right hand side of (13). By the characteristics of a GBM and the definition of 

conditional probability and optimal thresholds, the probability that 𝑃ℎ ≥ 𝑃𝜏 at 𝑡 = ℎ is 

described in (15), where Φ(. ) is the cumulative distribution function (cdf) of the standard 

normal distribution, and 𝑅(ℎ, 𝑃, 𝑃𝜏) is indicated in (16) (Etheridge, 2002). 

 

 

Returning to equation (14), we can now calculate the conditional expectation of the value of 

the project at 𝑡 = ℎ as indicated in (17),  

 

where 𝛾 = 𝛽1𝜇 +
1

2
𝛽1(𝛽1 − 1)𝜎2, as explained by Siddiqui and Heydari (2010). Ultimately, 

in order to determine the optimal investment rule for the firm, we must optimize equation 

(17) with respect to 𝑃𝜏, as indicated in (18). 
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By the first order necessary condition of (18), we get the non-linear equation shown in (19), 

 

where 𝜙(𝑅(ℎ, 𝑃, 𝑃𝜏)) is the probability distribution function (pdf) given the time to approval, 

ℎ, the rental rate, 𝑃, and the optimal investment threshold, 𝑃𝜏. Since (19) cannot be solved 

analytically, we must solve it numerically to obtain the threshold for when the firm should 

invest in the expansion of the property, 𝑃𝜏. By substituting 𝑃𝜏 from (19) into (17) we obtain 

the expected option value at 𝑡 = ℎ. The present value is found by simply discounting (17) as 

shown in (20) below. 

 

We see from (20) that the present value of the option depends on the length of the approval 

lag, ℎ. Thus, by setting ℎ = 0, we obtain the expression of the optimal investment threshold 

in the absence of an approval lag in (19), and thus the value of the option without an 

approval lag in (20). In Appendix E we show that when ℎ → 0, then 𝑬[𝐹(𝑃ℎ)] → 𝐹(𝑃). 

5.3 Model 3: Investment under a stochastic approval lag 

So far, we have introduced a model with a fixed investment lag. Now, we extend the 

framework from section 5.2 by assuming that the time until approval of the project, ℎ, is no 

longer fixed, but rather determined by an exponentially distributed stochastic variable. The 

arrival time of the approval is thus stochastic and follows a Poisson process where the 

parameter λ denotes the mean arrival rate of approval during an infinitesimal period of time, 

𝑑𝑡.  The value of the option to expand prior to approval is denoted by 𝐺(𝑃) and depends on 

the probability of approval, which is determined by the input parameter, λ. The probability 
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that the application is approved during the short time interval, 𝑑𝑡, is given by 𝜆𝑑𝑡, and the 

probability that the application is not approved is (1 − 𝜆𝑑𝑡). Hence, if the application has 

not been approved for 𝑡 years, then the probability that it will be approved within the next 

short time period is 𝜆𝑑𝑡, as shown in (21), 

 

where 𝑞 denotes a Poisson process. The expected duration of the approval period is    

𝑬(ℎ) =
1

𝜆
. Therefore, a higher λ implies a shorter expected approval period. Notice that in 

the short time period, 𝑑𝑡, the application will either be approved, and the firm will receive 

the value of the option to invest in the expansion, 𝐹(𝑃), or the application will not be 

approved and the firm will continue to hold the value of the function 𝐺(𝑃), as illustrated in 

Figure 11.  

 

The dynamics of the expected value of the project during the approval period are found 

following a similar approach as Miltersen and Schwartz (2007). Thus, the expected value of 

the project during the approval period, 𝐺(𝑃), is denoted in (22). 

 

The first term on the right hand side of (22) represents the expected present value of the 

option to expand, multiplied by the probability that the expansion will be approved within 

the next short time period. The second term represents the possibility that the expansion will 

not be approved in the next short time period, and thus that they will continue to hold the 

value of the unapproved option. We expand the right hand side of (22) using Itô’s Lemma, as 

shown in equation (23).  
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We simplify equation (23) and obtain the differential equation indicated in (24). 

 

Notice that (24) provides two expressions, one for each of the two branches of 𝐹(𝑃) in 

equation (8) in Section 5.1. Therefore, each expression must be solved separately as 

indicated in (25) and (26). 

 

The value of the function 𝐺(𝑃), as denoted in (27), is determined by solving (25) and (26), 

and thus depends on whether or not 𝑃 < 𝑃𝜏 at 𝑡 = 0. 

 

The first term on the right hand side of the top branch in (27) is the value of the option to 

expand should the project be approved, and is comparable to the same term in (8). However, 

since the project is yet to be approved, the value of the option is adjusted via the second term 

on the right hand side of the top branch in (27). Intuitively, the second term reduces the 

value of the option due to the possibility that that the firm may have to wait for a long time 

for the project to be approved. On the other hand, the first term on the right hand side of the 

bottom branch in (27) represents the expected present value of the excess future cash flow 

from the rental income of the finished project, and the second term represents the investment 

cost. Lastly, the third term on the right hand side in the bottom branch of (27) adjusts the 

expected net present value of the project by considering the probability that the rental rate 

will drop below the optimal investment threshold by the time the application is approved. 

Intuitively, the last term in the bottom branch in (27) should be interpreted as the value of the 
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firm’s flexibility to not have to decide today, but rather wait with the decision. Hence, the 

term 𝐵𝑃𝜔2 is positive.  

In equation (27), the input parameters 𝜔1 and 𝜔2 are the positive and negative roots of the 

quadratic equation 
1

2
𝜎2𝜔(𝜔 − 1) + 𝜇𝜔 − (𝜌 + 𝜆) = 0, respectively. Notice that when     

𝜆 = 0, then 𝜔1 = 𝛽1 and 𝜔2 = 𝛽2. However, when there is a positive possibility that the 

application will be approved, i.e. 𝜆 > 0, then 𝜔1 > 𝛽1 > 1 and 𝜔2 < 𝛽2 < 0. The 

implication is that when 𝜆 = 0, the value of G(P) is eliminated. Intuitively, when 𝜆 = 0 the 

probability of approval is equal to 0. On the other hand, as 𝜆 → ∞, the loss in value due to 

the possibility of a long approval period is eliminated, and 𝐺(𝑃) → 𝐹(𝑃).  

To solve for 𝐺(𝑃) we must obtain the endogenous constants 𝐴0 and 𝐵, by applying the value 

matching and smooth pasting conditions to (25) and (26) as shown in (28) and (29).  

 

By solving for 𝐴0 and 𝐵 and substituting into (27) we obtain the value of 𝐺(𝑃). See 

Appendix F for details. 
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6. Numerical Results 

In our numerical presentation we have developed a base case with estimated input 

parameters that reflect current market conditions in Oslo. We have been in contact with 

experts in the Norwegian commercial real estate industry to inquire about realistic 

expectations for input parameters in the model4. Consequently, all numbers are presented in 

NOK unless otherwise stated. 

We begin our presentation of numerical results with a discussion of the input parameters in 

our base case. We continue by presenting the results for each of the three models. Lastly we 

compare the results from the three models, with an emphasis on the effect of the approval lag 

and uncertainty regarding future rental rates. 

6.1 Data 

While some parameters in our base case are observable in the market, others must be 

estimated based on historical data or economic intuition. As previously mentioned, we 

assume that operating expenses remain a fixed percentage of gross rental income, and thus 

that net rental rates are observed in the market for both the existing property and newly 

constructed properties. Experts have indicated that operating expenses are typically 10% of 

gross rental income. With that in mind, we determine that 𝐶0 = 1 350 and 𝑃 = 3 100,    

𝑀 = 85, 𝐷1 = 15 000, 𝐷2 = 37 000, and 𝑇 − 𝜏 = 2. Furthermore, investment cost is 

observed to be 20 000 per square meter of new construction, thus, 𝐼 = 740 000 000. While 

we classify the mentioned parameters as observable in the market, every property has 

individual features when it comes to age, current rental space, potential for expansion, and 

construction specifics. Therefore, expertise and diligence is required not only when 

calculating the estimated parameters, but also when determining the observable input 

parameters. Table 2 summarizes all base case input parameters.  

 

                                                 

4 We have been in contact with Malling & Co, Entra, NewSec, Pangea Property Partners, DTZ Realkapital, NAI First 

Partners. Since most commercial real estate brokers publish market reports every quarter, these data are recently updated. 
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Parameter Value 

𝐶0 1 350 

𝑃0 3 100 

𝑀 85 

𝐷1 15 000 

𝐷2 37 000 

𝐼 740 000 000 

𝑇 − 𝜏 2 

σ 10.58% 

μ 2.5% 

ρ 10% 

ℎ 4 

λ 0.25 

Table 2: Base case input parameters 

In the following sections, we will briefly discuss the most important input parameters in the 

model. 

6.1.1 Standard Deviation 

To calculate the volatility of office rental rates in Oslo, we have used a dataset of gross rental 

rates, comprised of between 697 and 93 properties for each observation, for Class A 

properties in Oslo5. The dataset trails back to the beginning of year 2000 and includes 

observations for every 6 months up to the current period. Based on these data, we estimate 

the historical volatility to 𝜎 = 10.54%. We use this measure in our base case6.  

6.1.2 Permit Approval Time 

Obtaining approval from the local government to expand a rental space is often a lengthy 

political and bureaucratic process. Although developers have a good estimate of time to 

approval, the duration of such a process is ultimately uncertain. In our model, we use a 

Poisson process to model this uncertainty. According to developers and real estate experts in 

Oslo, the average expected time interval for approval of a project with the size and scope of 

our base case, is around 4 years. Hence, ℎ = 4 in our base case. However, depending on case 

                                                 

5 The dataset is from Arealstatistikk and covers Class A properties in all of Oslo. More geographically detailed data may be 
preferred if available for a property’s area. Class A properties are considered high-end properties. 

6 Other volatility measures such as an exponentially weighted moving average (EWMA) or generalized autoregressive 

conditional heteroskedasticity (GARCH) may provide different results. 
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to case specifics, an approval process can be shorter, sometimes less than one year, and it 

can be longer, sometimes more than 10 years. We found that using a 𝜆 = 0.25 gave us a 

distribution for the time of arrival that fitted best with the information we got from local 

experts. The Poisson distribution with 𝜆 = 0.25 is shown in Figure 12.  

 

Figure 12: Poisson distribution with 𝜆 = 0.25 

6.1.3 Development Costs 

We have determined that investment costs for a project like our base case would be 

approximately 20 000 per square meter. Therefore, 𝐼 = 740 000 000 in our base case. These 

costs include all costs associated with the demolition of the existing building and the 

construction of the finished project. Hence, cash outflows such application costs, demolition 

costs, construction costs, and compensation paid to current tenants for temporary termination 

of lease contracts must all be included in 𝐼. Certain tax considerations such as value-added 

tax must also be considered. 

6.1.4 Discount Rate 

Determining an appropriate discount rate can be a challenging task. Firms often use the 

Weighted Average Cost of Capital (WACC) when selecting a discount rate for their 

investments. Since most firms are mainly financed by equity and debt, the WACC is simply 
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the weighted average cost of these two sources of financing. However, since discount rates 

differ between investors, we have spoken to local real estate companies in Oslo and found 

that an appropriate discount factor would be around 10%. Generally, commercial real estate 

investors consider development projects to be more risky than investment in existing assets. 

Thus, while the market yield for office buildings in Oslo roughly range from 4.5% to 6.5% 

for finished properties, development projects tend to be discounted at a higher rate. Thus, it 

is reasonable to add a risk premium to current market yields to account for the added risk of 

development projects. We will therefore use a discount factor of 10% in our base case.  

6.1.5 Drift 

The drift parameter represents the expected annual increase in rental rates over time. As 

shown in Figure 13, the average annual increase in office rental rates in Oslo from the past 

15 years has been 3.58%7. However, in the long run, rental rates should increase at the same 

rate as the rest of the economy on average. If rental rates continued to increase at a higher 

rate than the rest of the economy, then the value of holding real estate would increase 

disproportionally to the rest of the economy. Therefore, we assume a drift parameter equal to 

the inflation target set by the Norwegian Central Bank at 𝜇 = 2.5%.  

 

Figure 13: Historical drift in rental rates 

  

                                                 

7 The dataset is from Arealstatistikk and covers Class A properties in all of Oslo. 
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6.2 Model 1: Investment in the absence of an approval lag 

Using the input parameters determined in section 6.1, we begin by looking at numerical 

results from the simple model with an investment in the absence of an approval lag. Figure 

14 illustrates the value of the option to expand the rental space of a building, 𝐹(𝑃), at 

different levels of volatility in rental rates. The Figure also illustrates the expected NPV of 

exercising the option immediately, 𝑉(𝑃).  

 

Figure 14: Option values for different levels of volatility using the framework in Model 1. 

As expected, an increase in volatility leads to greater option values. Notice that the value of 

the option to expand, 𝐹(𝑃), is always greater than, or equal to, the value of immediate 

exercise, 𝑉(𝑃). At the optimal investment threshold, 𝑃𝜏, the value of the option to expand 

and the expected NPV of immediate exercise are equal. At any rental rate 𝑃 < 𝑃𝜏, we 

observe that 𝐹(𝑃) > 𝑉(𝑃), and similarly, when 𝑃 ≥ 𝑃𝜏, we observe that 𝐹(𝑃) = 𝑉(𝑃). 

Intuitively, the optimal investment threshold represents the lowest market rental rate at 

which exercising the option to expand is the preferred decision. The implication is that as 

soon as the market rental rate for new buildings reaches the optimal investment threshold, 

the firm should immediately invest in the expansion. Notice that this holds for any level of 

volatility. However, we observe from Figure 14 that while an increase in volatility leads to 
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an increase in option value, the expected NPV of immediate exercise remains the same for 

any level of volatility. Consequently, the optimal investment threshold for each level of 

volatility can be found along the same NPV-line, and thus 𝑃𝜏 is also increasing in volatility. 

Notice that because the decay factor, 𝑟, depends on 𝑃, as denoted in equation (2), the NPV 

line is slightly curved. For very low values of 𝑃, the rental rate of the existing building 

becomes greater than the rental rate for new buildings, and thus 𝑟 becomes negative. 

Therefore, the NPV of immediate exercise decreases at an increasing rate as 𝑃 becomes very 

low, as shown in Figure 14. Figure 15 illustrates the optimal investment threshold as a 

function of volatility, and shows that an increase in volatility leads to an increase in the 

optimal investment threshold. 

 

Figure 15: Optimal investment threshold as a function of volatility 

Intuitively, Figure 15 tells us that an increase in the uncertainty in future rental rates favors a 

delay in the investment of an expansion. In practice this implies that investors in a volatile 

real estate market should delay their investment in development projects longer than 

investors operating in a less volatile market. In our base case, where 𝜎 = 10.58%, the 

optimal investment threshold, 𝑃𝜏 = 3 829, is greater than the market rental rate, 𝑃 = 3 100. 

Consequently, the value of the option to expand is greater than the value of immediate 

exercise, and the firm’s optimal decision will be to delay the investment, and allow the 
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market rental rate to reach the optimal investment threshold before they invest in the 

expansion. Remembering that the option to expand depends on the current market rental rate, 

𝑃, we observe from Figure 14 that the firm’s option is currently “in the money”. The point 

where the NPV line in Figure 14 crosses the X-axis can be interpreted as the strike price of 

the option, 𝑋. At any rental rate above the strike price, immediate exercise of the option is 

profitable, and is thus “in the money”. However, for any value of  𝑃 < 𝑃𝜏 the value of the 

option to expand is greater than the value of expanding immediately. Therefore, although 

immediate exercise of the option would provide the firm with 𝑁𝑃𝑉 = 186 𝑀𝑁𝑂𝐾 in our 

base case, the firm will wait with the investment because the value of the option,        

𝐹(𝑃) = 222 𝑀𝑁𝑂𝐾, is greater than the value of immediate exercise. In practice this impacts 

the decision making process of investors. Contrary to traditional beliefs, this model suggests 

that even though a project provides a positive NPV, real estate investors should consider the 

value of waiting when deciding whether to invest or not, because the value of waiting maybe 

greater than the value of investing immediately.  

The difference between the value of the option to invest, and the value of immediate exercise 

at a given rental rate, 𝑃, is illustrated by the gap between the NPV-line and the option value 

line in Figure 14. Notice that the gap is larger for high levels of volatility than for low levels 

of volatility, and hence that option values for high levels of volatility are greater than option 

values for low levels of volatility. Quite intuitively, if there was no uncertainty in future 

rental rates, i.e. 𝜎 = 0%, the value of the option would either be 0, if the rental rate was low, 

or it would be equal to the value of the NPV, if the rental rate was sufficiently high. Since 

the rental rate where the NPV is equal to the option value represents the point at which it is 

optimal to invest, the optimal investment threshold in the case of price certainty is equal the 

strike price of the option. Therefore, in the case of no uncertainty in rental rates, the value of 

an option to expand is equal to the NPV of the project, which is only a positive value if the 

project is profitable. In our base case 𝑋 = 2 553. This implies that property owners with the 

option to expand a building, would prefer more volatile rental rates. However, in practice 

volatile rental rates are also likely to increase discount rates which would decrease the value 

of the existing building as well as affect the value of the real option negatively. 

Interestingly, notice that an increase in volatility has a greater impact on the size of the gap 

between the option value and the NPV when the rental rate, 𝑃, is close to the strike price 

than for rental rates that are far higher or far lower than the strike price. For example, we 
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observe from Figure 14 that for high values of 𝑃, the option value is equal to the value of 

immediate exercise, regardless of the volatility. Hence, the level of volatility becomes less 

significant as 𝑃 becomes very high, and does in fact become completely insignificant when a 

change in volatility does not result in an optimal investment threshold, 𝑃𝜏, that is greater than 

the market rental rate, 𝑃. Thus, for an investment in the absence of an approval lag, real 

estate investors should be most concerned with the volatility of the market rental rate when 

the NPV of immediate exercise of the option is close to 0. 

6.3 Model 2: Investment under a fixed approval lag 

In Model 2, we extended Model 1 to include a fixed approval lag, ℎ. The framework used in 

Model 2 considers an optimal stopping time problem where the optimal investment 

threshold, 𝑃𝜏, depends on 𝑃. While this model does not provide a closed form analytical 

solution for the optimal threshold, we are still able to solve for it numerically. Hence, we 

should be mindful when analyzing the optimal threshold in Model 2, and cautious to draw 

any strict conclusions from the optimal threshold. In this model, we obtain the expected 

value of the option at the time of approval, 𝑡 = ℎ, and simply discount that value back to the 

present to obtain the present value of the option to expand.  

Figure 16 illustrates option values for different lengths of approval time, ℎ. Notice that the 

present value of 𝐹(𝑃ℎ) represents a combination of the option value if 𝑃ℎ < 𝑃𝜏 and of the 

option value if 𝑃ℎ ≥ 𝑃𝜏, as denoted in equation (14). Therefore, we cannot obtain an NPV 

line for any ℎ > 0. On the other hand, when ℎ = 0, we obtain the same option values in 

Model 2 as in Model 1, and also the same NPV. Thus, the option value line where ℎ = 0 in 

Figure 16 can be interpreted as the value of the option to expand in the absence of an 

approval lag, and provides the same results as Model 1. Recall from the previous section that 

because 𝑟 is dependent on 𝑃, the NPV line is slightly curved for low values of 𝑃, as 

illustrated in Figure 16.  
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Figure 16: Option value for different values of P using the framework in Model 2. 

In our base case, we include an approval lag of ℎ = 4 years, and we obtain the optimal 

investment threshold, 𝑃𝜏 = 4 018, marked in Figure 16. Since 𝑃 < 𝑃𝜏 in our base case, we 

obtain that Φ = 19,52%, which implies that there is a 19,52% probability that the market 

rental rate will reach the optimal investment threshold by the end of the approval period, in 4 

years. If 𝑃ℎ ≥ 𝑃𝜏 by the time of approval, the optimal decision for the firm would be to 

exercise the option immediately upon approval. On the other hand, we know that there is a 

(1 − 19,52%) = 80,48% probability that the rental rate will not have reached the optimal 

threshold by the time the firm receives the approval. In that case, it would be optimal for the 

firm to delay the investment. Consequently, in our base case, the probability that the optimal 

decision at 𝑡 = ℎ, is to wait, is greater than the probability that the optimal decision upon 

approval is to exercise the option immediately. Notice that when the approval period 

becomes longer, i.e. ℎ increases, the probability that 𝑃ℎ ≥ 𝑃𝜏 at the end of the approval 

period increases. Intuitively, a longer approval period increases the probability of an 

increased rental rate because the expected drift in rental rates over time, µ, has a greater 

effect over long time periods. However, an increased approval period also suggests that the 

firm has to wait longer before they start receiving cash flow from the expanded building. 

Therefore, although increasing the time to approval increases the probability of the rental 

rate reaching the optimal investment threshold by the time of approval, an increased 
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approval period reflects negatively on the option value because the firm has to wait longer 

before they receive the cash flow. Intuitively, the firm does not mind waiting for approval as 

long as 𝑃ℎ < 𝑃𝜏. However, if 𝑃𝑡 reaches 𝑃𝜏 before the project is approved, the firm would 

miss out on the cash flow it would have received in the absence of an approval lag. Thus the 

introduction of an approval lag causes a decrease in the value of the option to expand. 

In our base case, we obtain the option value 𝐹(𝑃ℎ) = 320 𝑀𝑁𝑂𝐾 at 𝑡 = ℎ. By discounting 

this value back to 𝑡 = 0, we obtain the present value of the option to expand the rental space 

of the building, 𝐹(𝑃) = 214 𝑀𝑁𝑂𝐾, which is 8 MNOK lower than the option value 

obtained for the same investment in the absence of an approval lag. We see that for any 

value of ℎ > 0, the option value for investment with a fixed approval lag is lower than the 

option value in the absence of an approval lag. Notice also that option values decrease as ℎ 

increases. There are several practical implications to this observation. Firstly, our model 

suggests that real estate investor should be willing to pay a premium for properties that are 

already regulated for expansion. Secondly, the result implies that the value of real estate 

development projects decreases as regulatory demands increases. Therefore, real estate 

investors should be concerned with the rate at which regulatory authority approve projects. 

Furthermore, our results show that policy makers should keep in mind the implications of 

longer regulatory processes.  

Interestingly, notice that the difference in option value between Model 1 and Model 2 in our 

base case is less than 4%. Intuitively, the relatively small loss in option value in Model 2 due 

to the introduction of an approval lag can be explained by that as long as 𝑃ℎ < 𝑃𝜏, the firm 

will not exercise the option. Thus, when the firm receives the approval, they will not invest 

unless market conditions are favorable. Consequently, the loss in option value due to the 

approval lag is greater for high values of 𝑃 than for low values of 𝑃 because the probability 

that the market rental rate will reach the optimal investment threshold before the project is 

approved is high for high values of 𝑃. On the other hand, for low values of 𝑃, the probability 

that the rental rate will reach the optimal investment threshold before approval of the project 

is low.  

Notice also that, whether or not the market rental rate will reach the investment threshold by 

the time of approval depends on the volatility in rental rates. Figure 17 below illustrates the 

optimal investment threshold as a function of volatility. As in Model 1, the optimal 

investment threshold in Model 2 increases with volatility. 
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Figure 17: Threshold as a function of the volatility for different approval lags 

Figure 17 illustrates that greater uncertainty in future rental rates increases optimal 

investment thresholds. Consequently, an increase in volatility favors a delay in investment in 

this model, and it also leads to a greater option value. In practice, this observation implies 

that real estate investors should be less willing to invest immediately in a development 

project when they are uncertain about future rental rates, than when they have good 

information.  

6.4 Model 3: Investment under a stochastic approval lag 

In Model 3, we extend the investment problem by assuming that the length of the approval 

period is no longer fixed, but rather determined by an exponentially distributed stochastic 

variable, as explained in section 5.3. Figure 18 illustrates option values and corresponding 

NPV’s using our base care parameters for different levels of volatility in rental rates. 

 3 000

 3 500

 4 000

 4 500

 5 000

 5 500

 6 000

5% 7% 9% 11% 13% 15% 17% 19%

O
p

ti
m

al
 T

h
re

sh
o

ld
,  

P
τ

Volatility, σ

h=0

h=4

h=8



 49 

Figure 18: Option value for different values of 𝜎 using the framework in Model 3. 

Notice that the base case optimal investment threshold in this model, 𝑃𝜏 = 3 829 is equal to 

that of Model 1. That implies that the expected length of the approval period does not affect 

the optimal investment threshold or the firm’s optimal decision. Intuitively, the optimal 

investment threshold represents the rental rate that maximizes the profitability of the project, 

and since the project itself is not affected by the approval period, the optimal investment 

threshold in the presence of a stochastic approval lag remains the same as in the absence of 

an approval lag. As expected, we see from Figure 18 that an increase in volatility leads to an 

increase in option values, and thus an increase in the optimal investment threshold.  

Furthermore, notice that the interpretation of the NPV in this model is different from that of 

Model 1. In Model 1, the NPV is the value of the now-or-never exercise of the option, and 

since there is no approval lag in Model 1, the investment is available immediately. In Model 

3 however, the firm cannot invest in the expansion until the project gets approved. 

Therefore, the NPV’s plotted in Figure 18 should rather be interpreted as the value of having 

to commit to invest in the project immediately, before the project is approved. Upon the time 

of approval, the firm would then be obligated to pay the investment cost to receive the cash 

flow from the expanded property, regardless of the rental rate at that time. Hence, the NPV 

line illustrated in Figure 18 reflects the now-or-never value of committing immediately to 

invest at an unknown time in the future, in a project with an uncertain payoff. The notion 
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that the NPV line is slightly curved due to the varying decay factor, 𝑟, still holds in this 

model. 

Notice that in our base case, the rental rate, 𝑃 = 3 100, is below the optimal investment 

threshold, 𝑃𝜏 = 3 829. Recall from equation (27) that when 𝑃 < 𝑃𝜏 the value of the option to 

expand in the presence of a stochastic approval lag is equal to the value of the option to 

expand in the absence of an approval lag, adjusted for the possibility that the firm may have 

to wait for a long time before the project gets approved. With our base case input parameters, 

we obtain the option value, 𝐹(𝑃) = 209 𝑀𝑁𝑂𝐾, which is lower than the option values for 

both Model 1 and Model 2. Intuitively, the implied cost to the firm of having to wait an 

uncertain amount of time for approval is 222 𝑀𝑁𝑂𝐾 − 209 𝑀𝑁𝑂𝐾 = 13 𝑀𝑁𝑂𝐾. Recall 

that the implied cost to the firm when the approval period was fixed was 8 𝑀𝑁𝑂𝐾. Hence, 

the firm would prefer the case with a fixed approval lag to the case with a stochastic 

approval lag. In practice, this implies that real estate investors should be willing to pay a 

premium for information about the length of the approval period. Notice that this observation 

holds for any level of volatility, and any level of expected approval time. Figure 19 below 

illustrates option values and corresponding NPV’s for different expected approval periods.  

 

Figure 19: Option values and corresponding NPV for different values of 𝜆. 
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in 𝜆, leads to a lower option value. As 𝜆 → ∞, the expected approval time goes towards 0, 

and the option values and NPV’s in Figure 19 becomes equal to those of Model 1. Hence, 

the option values and NPV’s for the case where 𝜆 = 12 in Figure 19 are very close to the 

values of Model 1.  

The gap between the option value line and its corresponding NPV line in Figure 19 

represents the difference between the value of holding the option and the value of 

committing to invest immediately. Hence, the gap can be interpreted as the value of the 

flexibility to delay the investment decision. If the firm had to make a decision immediately, 

the expected value of the investment would be given by the NPV line in Figure 19. However, 

when the firm has the flexibility to wait with the decision, the value of the option is 

illustrated by the option value line in Figure 19. Interestingly, the NPV line in Figure 19 will 

always be below the option value line. This implies that the optimal decision will never be to 

commit to the investment prior to approval of the project, if the firm has the option to wait 

with the decision.  

6.4.1 Sensitivity to change in demand 

When investing in real estate with potential options to expand, investors are concerned with 

the future demand for rental space at the market rental rate, 𝑃𝑡. Figure 20 shows option 

values for different levels of demand.  

Figure 20: Option values at different levels of demand 

As expected, an increase in demand for new rental space, leads to greater option values. 
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as the investment cost does not increase disproportionately with the rental income, the 

optimal investment threshold, 𝑃𝜏, decreases as 𝐷2 increases. Interestingly, the option value 

stays significantly positive even, as 𝐷2 < 𝐷1. Intuitively, this can be explained by that the 

current property earns a rental income lower than the market rental rate for newly 

constructed properties. Therefore, by constructing a new building with a decreased rental 

space, but an increased rental rate, the firm can collect increased future cash flows. However, 

we see from Figure 20 that option values when 𝐷2 < 𝐷1, are much lower than when the firm 

has the option to expand, rather than simply increase rental rate per square meter. Similarly, 

when 𝐷2 = 𝐷1, the value of the option is also positive, and can be interpreted as the value of 

the option to renovate, rather than the option to expand. Notice however that the optimal 

investment threshold increases as 𝐷2, decreases, as shown in Figure 21. 

Figure 21: Optimal investment threshold at different levels of demand 

We also note that the optimal investment threshold increases dramatically as 𝐷2 approaches 

the existing rental space, 𝐷1 = 15 000. On the other hand, for higher values of 𝐷2, the 

optimal investment threshold flattens out, and goes towards, and eventually below, 𝑃. Thus, 

high demand in the space market of real estate speeds up investment in development 

projects, as reflected by a decrease in 𝑃𝜏, while low levels of demand delays investment.  

6.4.2 Sensitivity to change in investment cost 

Figure 22 shows option values as a function of the rental rate for different values of the 

investment cost, 𝐼. The values of the investment cost is chosen around our base case scenario 

of 𝐼 = 740 000 000. As expected, higher investment cost leads to lower option values. For 

our base case rental rate of 𝑃 = 3 100, a decrease in the investment cost down to                          
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On the other hand, an increase in investment costs to 𝐼 = 940 000 000 will decrease the 

option value with 33%, from 209 𝑀𝑁𝑂𝐾 to 139 𝑀𝑁𝑂𝐾.  

 

Figure 22: Option values for different investment costs 

Interestingly, a decrease in investment cost leads to a greater change in option values than an 

increase in investment cost, and the relationship between the option value and the investment 

is thus nonlinear. Furthermore, notice than a 200 𝑀𝑁𝑂𝐾 decrease in investment cost does 

not lead to an increase in the option value of the same amount, but rather a smaller amount. 

The same applies to a 200 𝑀𝑁𝑂𝐾 increase in investment cost. This observation is mainly 

due to the discounting of the investment cost.  

6.4.3 Sensitivity to change in construction time 

Figure 23 illustrates option values as a function of the rental rate for different lengths of 

construction time, (𝑇 − 𝜏). As expected, an increase in the construction time leads to a 

decrease in option values. There are mainly two reasons that can explain this decrease. 

Firstly, the future cash flows from the expansion will be discounted more when the 

construction time increases, as the cash flow will be received at a later time, thereby making 

the cash flow less valuable. Secondly, since the firm does not receive cash flow from the 

current property when construction is on-going, an increased construction period implies a 

longer period with no cash flow.  
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Figure 23: Option values for different construction times 

Holding all other input parameters unchanged, a one-year decrease in construction time in 

our base case, will increase the option value by approximately 27%, to 266 MNOK, while a 

one-year increase in construction time from our base case will decrease the option value by 

approximately 22%, to 162 MNOK. Hence, an increase or a decrease in the length of the 

construction lag can severely impact the option price. Thus, the estimated length of the 

construction period is an important measure to determine accurately when investing in a 

development project. 

Comparing the option value’s sensitivity to the uncertain stochastic approval lag and the 

fixed construction lag, we observe from Figure 24 that the option value is considerably more 

sensitive to changes in the construction time.  

Figure 24: Option values for different construction times and expected approval lags 
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There are several reasons that explain why the option value is more sensitive to changes in 

the construction lag than to changes in the approval lag. Firstly, during the approval period 

the existing building still generates a cash flow, while during the construction period the 

existing building has been demolished and the cash flow during this period is therefore 

eliminated. Hence, the opportunity cost is greater with a long construction period than with a 

long approval period. Secondly, a longer approval period does not always intervene with the 

timing of the investment, since there is a probability that 𝑃ℎ < 𝑃𝜏 at the end of the approval 

period. If 𝑃ℎ < 𝑃𝜏 at the end of the approval period, it would be optimal to wait longer before 

investing in the expansion, even though the application is approved. On the other hand, the 

construction lag will always begin at the optimal time of investment, and a longer 

construction time will with certainty delay the cash flow from the expanded building.  

6.4.4 Monte Carlo simulation of timeline 

To estimate the amount of time it takes from first applying for approval of the project to the 

time of investment in the expansion in our base case, we have performed a Monte Carlo 

simulation with 10 000 simulations. The rental rate follows a Geometric Brownian Motion 

while the permit approval time follows a Poisson process, as stated in section 5. The 

simulation incorporates that if the rental rate reaches the optimal investment threshold, but 

the firm has not yet received approval of the project, the firm will have to wait for the 

approval before the expansion is made. On the other hand, if the firm has not yet received 

approval of the project, but the rental rate has reached the optimal investment threshold, the 

rental rate may still fall below the threshold during the approval period. Results of the 

simulation are shown in Figure 25.  
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Figure 25: Probability distribution, 10 000 Monte Carlo simulations of time to investment 

From the Monte Carlo simulation, we obtain a mean of 11.62 years and a median of 7 years. 

This tells us that the expected time from submitting the application of approval to the time 

when expansion is executed is almost twelve years. A median of 7 years tells us that the 

distribution is severely skewed, which we also observe from Figure 25. The simulation gave 

us several outliers and in some instances the time from applying for approval of the project 

to investment the expansion took up to a 100 years. However, the probability distribution 

illustrated in Figure 25 is in line with our expectations. Given the combination of the Poisson 

process with 𝜆 = 0.25 and the GBM with 𝜇 = 0.025 and 𝜎 = 0.1058, we expect a 

probability distribution that illustrates a quite high probability that the firm should begin 

construction within 10 years, but there is also a probability that the firm has to wait for a 

longer time.  
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case parameters, which includes 𝜆 = 0.25 and ℎ = 4. Figure 26 illustrates base case option 

values for the three models and also marks the optimal investment threshold for each model.  

 

Figure 26: Comparison of the three models 

Notice that for any rental rate, 𝑃, the option value from Model 1 is always greater than the 

option values from Model 2 and Model 3. Intuitively, the firm in Model 1 will always have 
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projects would be greater than in the presence of such authorities, and a long regulatory 

process reduces the value of an investment opportunity more than a short regulatory process.  

Notice in Figure 26 that the optimal investment threshold for Model 3 is the same as that of 

Model 1, while the optimal investment threshold for Model 2 is different. Figure 27 

illustrates optimal investment thresholds for the three models for different levels of volatility 

in rental rates. 

 

Figure 27: Optimal investment thresholds for different volatilities 

Intuitively, the optimal investment threshold should be the same for each of the three models 

as the time to approval should not affect the optimal decision. In Model 1 and Model 3, we 

observe that the threshold remains constant, regardless of the expected approval time 

determined by λ. On the other hand, we observe that the optimal investment threshold in 

Model 2 is equal to that of Model 1 and Model 3 only when ℎ = 0. When ℎ > 0, the optimal 

investment threshold for Model 2 increases relative to the other models. The difference in 

optimal threshold between Model 2 and the other models can be explained by the analytical 

framework used in Model 2. Since the threshold in Model 2 is solved for numerically, rather 

than analytically, and the optimization problem includes the input parameter ℎ, the optimal 

investment threshold depends on the length of the approval in Model 2. Hence, in contrast to 
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illustrates, our numerical results show that the threshold in Model 2 is also increasing in 

volatility.  

In our base case, Model 2 and Model 3 have the same expected approval lag, however, in 

Model 3, the length of the lag is uncertain. We observed in Figure 26 that Model 2 provides 

higher option values than Model 3 for any value of 𝑃. Intuitively, the uncertainty about the 

length of the approval time in Model 3 is not favorable for real estate investors, as they may 

have to wait longer than expected before receiving the option to expand. On the other hand, 

in Model 2, the property owner is certain that the approval period will last for ℎ = 4 years, 

and does not face the risk that the lag could be longer. Therefore, uncertainty about the 

length of the approval lag negatively effects the option value and thus reduces the option 

value in Model 3. In practice, the implication is that information about the length of the 

regulatory process can increase the value of development projects in real estate. Figure 28 

illustrates base case option values from Model 2 and Model 3 as a function of the expected 

length of the approval period. Base case option values for Model 1 is also included in the 

Figure as a reference point. 

Figure 28: Option value as a function of approval period length/expected length 

As expected, an increase in the length of the approval period leads to a decrease in option 
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corresponding values of 𝜆, the difference in option values between Model 2 and Model 3 are 

very small. Consequently, assuming large projects have longer expected approval periods 

than small projects, the value of information about the length of the approval period for 

small projects is very low compared to information about the length of the approval period 

for large projects. This observation has practical implications as the value of information 

about the length of the regulatory process becomes increasingly important as projects 

become larger. Hence, investors in large real estate projects should be willing to exhaust 

greater recourses in obtaining information about the regulatory process for a project than 

investors in smaller projects.  

Interestingly, for our base case parameters, the introduction of a stochastic approval period 

decreases the option value by less than 6% compared to the model with investment in the 

absence of an approval lag. In other words, real estate development projects may have 

significant value even if investment in the project is not available for many years. Bahr-Ilan 

and Strange (1996) points out that even in a market with chronic excess capacity, such as the 

commercial real estate market, firms continue to invest in development projects. They 

suggest that because construction takes time, investors may choose to start development 

even under unfavorable conditions in order to avoid missing out if markets improve. A 

similar way of thought may be applied to our results. We observe that commercial real estate 

investors are willing to pay large premiums today for properties that may have potential for 

expansion or improvement in the future, even if such expansions are not currently profitable, 

or even available. Our results show that the introduction of an approval period does reduce 

option values, however, we observe that even projects with long expected approval periods 

have significant values if there is demand in the market. Hence our results support the claim 

that commercial real estate investors could be willing to pay a large premium today, for a 

project that may not be available for several years, in order to avoid missing out if the project 

should become available in the future. Additionally, because projects that are already 

approved are more valuable than projects that are subject to approval, speculative real estate 

investors may invest in non-approved projects today, in hopes of receiving approval of the 

project prior to the expected time of approval. In that way, such investors can acquire a 

building, receive approval of expansion before the expected approval time, and then sell the 

building before starting construction. They can thereby realize a profit, without actually 

investing in the expansion, but rather by simply obtaining the approval to expand. 
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7. Conclusion 

We have developed an analytical framework for valuing options to expand the rental space 

of a commercial building, under uncertainty in both future rental rates and in the length of 

regulatory approval processes. Although accurate valuations are crucial for several 

participants in the commercial real estate industry, analytical formulations that consider 

potential options to improve the future cash flows of a property are limited both in theory 

and in practice. Therefore, to make the model as realistic as possible, we have put special 

emphasis on developing a practical model by considering input from experts in the industry. 

Our framework contributes to the accurate valuation of real estate as well as the real options 

literature related to real estate, by adjusting and combining existing frameworks, and 

applying them to the real estate industry.  

For the model in the absence of an approval lag, we are able to obtain closed form analytical 

solutions for both the option value and the optimal investment threshold. We show that 

option values of a for can be significantly higher than the corresponding NPV, and that the 

flexibility to delay the investment decision is valuable. Extending the model to include a 

fixed approval lag, we show that the presence of a regulatory process prior to investment 

decreases option values, and that the loss in value increases with the length of the approval 

periods. By introducing uncertainty in the length of the approval period, we find that option 

values decrease further. Our analysis of the optimal investment threshold shows that 

uncertainty in future rental rates favors a delay in investment, regardless of the length of the 

approval period. We also find that when rental rates are low, the introduction of an approval 

period is less significant than for high rental rates.  

There are several potential extensions to our framework that could be interesting for further 

research. The introduction of a stochastic investment cost could provide further insight to the 

dynamics of the industry, and also help the model become more realistic. One could argue 

that rental rates may be more predictable than a “random walk”. Therefore, an interesting 

alternation to our framework could be to replace the GBM with another stochastic process, 

such as a mean reverting process, and that way relax the limitations associated with the 

GBM.  It would also be interesting to extend the model to include the risk preferences of the 

investor, and thus perhaps alter the preference for a fixed approval lag.  
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8. Appendecies 

8.1 Appendix A: 

As explained in chapter 4, the parameter, 𝑟, is a decay factor that captures the fact that rental 

rates tend to be higher for new buildings than for old buildings.  

 

Equation (A-1) above denotes 𝑟, and Figure A-1 below shows the isolated effect of the decay 

factor on the rental rate of buildings at different ages.  

Figure A-1: Rental rate decay over time caused by parameter, r 

Notice that since the decay factor, 𝑟, depends on the market rental rate for new rental space, 

𝑃, the decay factor is highly sensitive to current market conditions which are reflected in 𝑃. 

Although equation (A-1) makes the realistic assumption that rental rates decays at an 

average rate per year, the actual amount by which rental rates decay are likely to fluctuate 

from year to year. Crosby (2012) suggests a similar approach as we do in (A-1) to estimate 

the decay factor, however, he compares the rental rate of the existing building to a 

benchmark portfolio rather than simply the market rate. This approach ensures that the 

existing buildings rental rate is compared to its most relevant peers, however, it requires 

large amounts of data that may be difficult to obtain.  
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8.2 Appendix B: 

We have explained that the value of the option in section 5.1 is denoted by (B-1) as shown 

below. 

 

So long as the rental rate, 𝑃, is greater than or equal to the optimal investment threshold, 𝑃𝜏, 

the value of 𝐹(𝑃) is given by (B-2), 

 

where 𝛽1 and 𝛽2 denotes the positive and the negative roots of the quadratic equation 

1

2
𝜎2𝛽(𝛽 − 1) + 𝜇𝛽 − 𝜌 = 0 respectively. We know that as that as 𝑃 → 0 the value of the 

project should become very small. However, because 𝛽2 < 0, we observe that 𝐴2𝑃𝛽2 ⟶ ∞ 

as 𝑃 → 0. Therefore, to make the function economically sound, we eliminate the second 

term of the right hand side as of (B-2), and obtain (B-1).  

8.3 Appendix C: 

To find the optimal investment threshold and prove that it is indeed optimal we show that the 

first and second order necessary condition is satisfied. We begin with equation (C-1), which 

is equation (10) from section 5.1. 

 

To maximize equation (C-1) we apply the first order necessary condition i.e. 𝐹´(𝑃) = 0. 

This is shown in equation (C-2) and as expected we get the same threshold as when applying 

the smooth pasting and value matching conditions. 
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We continue with 𝐹′(𝑃) from the second line in (C-2) and obtain the simplified equation  

(C-3): 

 

We differentiate (C-3) further to observe if the second order necessary condition is negative, 

i.e.  𝐹′′(𝑃) < 0. 

 

By inserting 𝑃𝜏 =
𝛽

𝛽−1

𝐼

𝑎
 into the last bracket of (C-4) we obtain a simplified expression for 

𝐹′′(𝑃) as shown in (C-5) 

 

From equation (C-5) it is easy to observe that 𝐹′′(𝑃) < 0, and that the second order 

necessary condition therefore is satisfied.  
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8.4 Appendix D: 

Optimal threshold: 

We can rewrite 𝑃𝜏 from equation (9) in Section 5.1 as shows in (D-1) below. 

 

To find the derivative of 𝑃𝜏 with respect to 𝜎 we first find the derivative of 𝛽.  

 

Equation (D-2) is the derivation of the quadratic equation applied in Section 5.1 to obtain 𝛽1.  

In (D-3) below, we simplify and solve for 𝛽′. Since 𝛽 > 1 we have that 𝛽′ < 0. 

 

Next, we find the derivative of 𝑃𝜏 with respect to σ as indicated in (D-4).  

 

Since  𝛽′ is negative, we can observe from equation (D-4) that 
𝜕𝑃𝜏

𝜕𝜎
> 0 
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Optimal Value function 

To show that the value function, F, from equation (10) in section 5.1 is strictly increasing 

with respect to the volatility, we differentiate the function with respect to the volatility. We 

will show that 
𝜕𝐹

𝜕𝜎
> 0. By differentiating equation (10) we obtain equation (D-5) below: 

 

By inserting 𝑃𝜏 =
𝛽

𝛽−1

𝐼

𝑎
 into the last bracket in equation (D-5) and simplifying, we obtain 

equation (D-6): 

 

Each term in equation (D-6) is strictly positive, and we have therefore shown that 
𝜕𝐹

𝜕𝜎
> 0. 

8.5 Appendix E: 

Equation (19) from section 5.2 is denoted below as equation (E-1).We will show that when 

the approval period, h, goes towards zero, we will get the same threshold as in Model 1. 
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The reason for why we get the same threshold in Model 2 as in Model 1when h goes towards 

zero, can be explained by noticing that the expression for R, as denoted in (E-2), will go 

towards minus infinity when h goes towards 0. 

 

Further we notice that the expression for 𝜙, denoted in (E-3) goes towards 0, when R goes 

towards minus infinity. 

 

Noticing that 𝑃𝑝[𝑃ℎ < 𝑃𝜏] = [1 − Φ(𝑅(ℎ, 𝑃, 𝑃𝜏)] goes towards towards 1 when R goes 

towards minus infinity (because Φ(𝑅(ℎ, 𝑃, 𝑃𝜏) goes towards 0). We can subtitute this into 

equation (E-1) and get to equation (E-4). 

 

Simplifying (E-4) further we get equation (E-5) and as we can see, this will give us the same 

threshold as Model 1, since equation (E-5) is the same as equation (C-3) from Appendix C, 

which gave us the same threshold.  
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8.6 Appendix F: 

Equation (F-1) and (F-2) are determined from the value matching and smooth pasting 

conditions of equation (28) and (29) in section 5.3. Because 𝐴0𝑃𝜔1 adjusts the option value, 

when 𝑃 < 𝑃𝜏, for the possibility that the approval time might take longer than expected, 

𝐴0 < 0. On the other hand, 𝐵𝑃𝜔2 adjusts the option value, when 𝑃 ≥ 𝑃𝜏, for the possibility 

that the rental rate will drop below the optimal investment threshold. Thus 𝐵 > 0.  

 

 


