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Abstract 

In this thesis, mixed-integer linear programming models for optimising product distribution 

in three- and a four-stage retail food supply chains (SC) are formulated, and use of the 

models are exemplified in a case study with large amounts of data. The four-stage supply 

chain model is comprised of production plants, warehouses, cross docking facilities, and 

retail stores. The three-stage supply chain model excludes the cross docking facilities, but 

includes a stricter division of shelf life between the supply chain actors. The models 

minimise total cost by making decisions on production volumes, inventory levels and 

shipped product volumes. A product quality measure is explicitly integrated in the models as 

an index on product volumes. In the case study, historical data from a large, Norwegian 

meat-processing corporation is used to run the models in order to capture differences in costs 

incurred in the two supply chain structures. Data for four products with varying demand 

patterns, degree of demand uncertainty and shelf life lengths are run. The results show that 

lack of information sharing within the supply chain will increase waste for all products, and 

that shorter shelf life has a greater impact on waste volumes than that of uncertainty in 

demand. 
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1. Introduction 

In a world with an ever-increasing population and a shortage of food, companies have a moral 

obligation to maximise utilisation of raw materials and make sure the products reach 

consumers with as little waste of food as possible. Minimising waste is also in the food-

producing companies’ interest from an economic perspective, as spoiled products mean loss 

of revenue and reduced profitability of their operations. As the large retail chain corporations’ 

power over the retail supply chain increases (Volden, 2003), food-producing companies may 

lose access to information of actual consumer demand, and be left with greater uncertainty 

when planning production and product distribution. 

This thesis presents a case of a large, Norwegian meat-processing company that is currently 

facing this problem. Retail chain corporations have demanded that they be allowed to take 

over the part of regional distributors, making Nortura’s warehouses redundant. This also has 

an impact on how great a part of the products’ shelf life is assigned to Nortura, making 

production and distribution planning more difficult.  

The aim of this thesis is three-fold. First, I formulate a mixed-integer linear programming 

(MILP) model for optimising product distribution in a four-stage food supply chain consisting 

of production plants, warehouses, cross docking facilities, and retail stores. The model 

explicitly considers product quality throughout the supply chain. In this model formulation, 

the production company controls the warehouses and the inventory levels of the entire supply 

chain. The wholesalers’ role in this model formulation is only cross docking and last-leg 

distribution. 

I then formulate an MILP-model of the same supply chain, excepting the cross docking 

facilities, where wholesalers control warehouses. In this formulation, information on inventory 

levels and retail demand is not shared between the food production company and the 

wholesalers, resulting in both keeping safety stocks in their storage facilities.  

Lastly, I exemplify use of the models by running them with historical data from the Nortura 

case, in an attempt to analyse how the restructuring of the supply chain will impact the total 

costs, including cost of waste, in the supply chain as a whole. 
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2. The company 

Nortura is a large Norwegian corporation dealing in slaughtering, cutting and refining meat 

from cattle, sheep, goats, pigs and poultry, as well as collecting, cleaning, sorting and packing 

eggs. It is a cooperation owned by about 19,000 egg and meat producers from all over the 

country and employs about 5,550 people. In 2015, Nortura had a turnover of 22.2 billion NOK. 

Customers include retailers, industry and commercial kitchens (Nortura, 2015). This paper 

focuses on the meat processing part of the company, poultry excepted, and their retail 

customers. 

Nortura operate 16 slaughterhouses, from which the production plants receive the raw material 

for processing and packing. The meat processing is carried out at 13 production plants. Each 

of the production plants is specialised for a unique set of products with little or no overlap in 

products between plants. The production plant at Rudshøgda, for instance, produces bacon, 

pre-cut steaks and a variety of meat patties and rissoles, among other products. Other plants 

specialise in other meat products, such as sausages, cured meat or cold cuts. 

Nortura’s main retail customer base is comprised of three large retail corporations, some of 

which have multiple retail chain brands in their portfolio. Together these corporations held 

over 93% of the Norwegian retail market in 2015 (nielsen.com). As large corporations, they 

have expanded vertically within the supply chain, taking over the part of wholesalers and 

distributors (Volden, 2003). This fits well with McLaughlin’s (2002, as referenced in Lütke 

Entrup et al., 2005) findings in the UK. Although they have only taken over the role of the 

wholesaler, “wholesaler” will henceforth refer to the retail corporations’ distribution network, 

in order to distinguish them from the retail stores. The wholesalers manage the transportation 

of products from Nortura’s warehouses to the wholesalers’ warehouses, as well as distribution 

to the individual retail stores. 

2.1 Current downstream supply chain 

Nortura operate five regional warehouses, each serving retail customers in their respective 

regions. Each of these warehouses holds inventory of all products with expected demand at 

any certain time, and receives products from all Nortura production plants. In addition, each 

production plant has storage capacity for finished products. Nortura warehouses currently 

receive orders from each individual retail store and prepare bulk shipments for retail stores 
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served by the same warehouse. In general, the wholesalers pick up shipments at the Nortura 

warehouses and ship the products to one of their own warehouses. These warehouses act only 

as cross docking facilities and do not hold inventory of Nortura products. After cross docking, 

shipments are distributed to the individual retail stores. As a rule, each retailer is served by 

one cross docking facility, and each cross dock is served by one Nortura warehouse. 

Ownership of the product is transferred when the wholesaler picks up the shipment at the 

Nortura warehouse. As the ownership is transferred to the wholesaler, risk is also transferred, 

meaning that Nortura need not concern themselves with products surpassing their shelf life 

after they have left the warehouse.  

Figure 1 shows the current downstream supply chain with 1, … , 𝑝 production plants, 1, … , 𝑤 

regional warehouses, 1, … , 𝑐 cross docking facilities, and 1, … , 𝑟𝑐 retail stores served by cross 

docking facility 𝑐. 

 

Figure 1: Current supply chain structure. 
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2.2 Division of shelf life 

Nortura’s perishable products are all marked with an expiration date, after which the product 

is no longer saleable to consumers. The producer is responsible for estimating the shelf life of 

their products (mattilsynet.no). A product’s shelf life is divided between the producer, 

wholesaler and retailer; The Standardization Committee for the Norwegian Retail Industry 

issues standards for the division of shelf life. Take for example a product with a total shelf life 

of 30 days. The producer is given 5 days of the shelf life, the wholesaler gets 9 days, and the 

retailer gets the remaining 16 days (STAND, 2007). 

If the producer holds a quantity of a product for longer than their apportioned period, they will 

usually have to accept a lower price for the product from the wholesaler, though in some 

instances the product is deemed unsaleable. In Nortura’s case, if the product is unsaleable, it 

may be reintroduced into the production process in order to be heat-treated or used as an 

ingredient in other products with a longer shelf life. If further processing is not possible and 

the product is unsaleable, a last resort is donating the product to charity instead of throwing 

away food that is completely edible. 

With the current supply chain structure, Nortura get both the producer’s and most of the 

wholesaler’s portion of a product’s shelf life. This is because the wholesaler only picks up the 

products at Nortura’s warehouses, cross docks them at one of their own warehouses and ships 

them to the retail stores, the whole process taking only one to three days. The longer shelf life 

portion gives Nortura a great deal of flexibility when planning production and distribution, 

and helps keeping the cost of waste down. 

2.3 Restructured downstream supply chain 

Recently, the retail corporations have demanded that they be allowed to take over the role that 

Nortura’s warehouses currently hold, so that the retail warehouses start holding inventory of 

the products. This way, Nortura’s warehouses will be shut down, and only the production 

plants will hold inventory for Nortura. The new supply chain structure will also incur a new 

division of shelf life between the supply chain actors, relocating the wholesaler’s portion of 

shelf life from Nortura to the retail corporation’s distribution network. At the same time, 

Nortura will no longer receive orders directly from the retail stores, but from the retail 

warehouses. These warehouses will surely need to operate with a safety stock to cover 
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fluctuations in demand, and thereby increase the total volume of products in transit within the 

supply chain. In addition, each of Nortura’s production plants will have to keep inventory of 

their set of products, including a safety stock of their own. Nortura fear that the new supply 

chain structure will result in a large increase in waste costs. Indeed, van der Vorst et al. (2009) 

identify information transparency and synchronising logistical decisions with consumer 

demand as two key strategies in order to attain joint supply chain objectives. 

Figure 2 displays the restructured supply chain, where Nortura’s warehouses have been 

removed, and the retail corporations’ warehouses hold inventory. Each warehouse 𝑤 is served 

by all production plants 𝑝. Each retailer 𝑟 is served by only one warehouse. 

 

Figure 2: Restructured supply chain. 
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3. Research question 

In light of the situation that Nortura are facing, this paper will attempt to formulate MILP-

models to represent both the current and the restructured supply chains described in the 

previous chapter. I will then exemplify use of the models in a case study by running them with 

historical data from Nortura. The following research questions are formulated: 

1. How can the supply chains be modelled with a discrete measure of product quality? 

2. Should the company expect changes in the cost structure of products after the 

restructuring? 

a. Which costs will change, and by how much? 

b. How will the changes in costs vary between products with different demand 

uncertainties? 

c. How will the changes in costs vary between products with different shelf life 

lengths? 
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4. Literature review 

In this section, I take a look at the published literature relevant for the research questions and 

modelling of the problem in the thesis. 

4.1 Optimisation in supply chains with perishable products 

Product quality is one of the most important characteristics to consider throughout the food 

supply chain. Low product quality at the end demand point (retail store) can result in anything 

from low sales rates because of the product’s appearance at one end of the scale, to making 

the consumer critically ill on the other end (Smith and Sparks, 2004). 

The literature on supply chain optimisation in the meat industry is not very extensive. In their 

study, Gribkovskaia, Gullberg, Hovden and Wallace (2006) optimise the collection and 

stocking of livestock at abattoirs to reduce transportation costs, while maintaining animal 

welfare. Another study, by Bixby, Down and Self (2006), takes a look at an integrated system 

of linear programming-models in Swift & Company, used to dynamically schedule beef 

processing in real time based on received orders. As the output of different meat cuts varies 

according to the different ways of cutting a carcass, the system helps reduce inventory of cuts 

with low demand. Animal welfare and inventory turnover both have an effect on product 

quality, and are important factors for the quality level and value of the end product 

(Gribkovskaia et al. 2006, Bixby et al. 2006). 

Literature on optimisation of supply chains with perishable products is also not very 

comprehensive. One study by Lütke Entrup et al. (2005) integrates shelf life in three MILP-

models for optimising yoghurt production. Shelf life considerations are integrated by assigning 

product batches for covering demand at a certain later date. The models do not take distribution 

of finished products into account, “because it is often performed by retail organizations” (p. 

5078). 

A more explicit integration of shelf life considerations can be found in Rong et al. (2011). 

They formulate an MILP-model for optimising distribution in a generic, three-stage food 

supply chain. The model minimises costs of production, transportation, cooling, storage and 

waste. By implementing quality levels as an index 𝑞 on decision variables, they are able to 

track product batches with different quality levels throughout the supply chain. The index is 



 14 

an integer measure of quality levels, which degrades from one time period to the next, 

depending on temperature decisions made in the model. Decisions on temperature are made 

for all stages of the supply chain, including transportation. They also introduce a maximum 

quality level 𝑞𝑚𝑎𝑥, and a minimum quality level required by retailers, 𝑞𝑚𝑖𝑛. If the quality level 

of a product batch does not satisfy the quality requirement by any retailer, the batch is 

discarded, and waste cost is incurred. The model assumes that production batches can vary in 

terms of quality, meaning that producers can chose which level of quality to produce. In their 

model, retailer demand start in time period 1. In order for the model to satisfy this demand, 

the planning interval is expanded by the maximum lead time from a producer to a retailer, 

𝜔𝑚𝑎𝑥, making the planning interval [1 − 𝜔𝑚𝑎𝑥, … , 𝐻], where 𝐻 is the planning horizon.  

4.2 The bullwhip effect 

According to Lee et al. (1997), the bullwhip effect (BWE) is the phenomenon where the orders 

received by a supplier have greater variance than actual sales of the ordered products, and the 

variance is amplified upstream in the supply chain. In other words, the supplier may receive 

multiple orders covering the same demand and then experience a fall in ordered quantities, 

even if demand is fairly linear. When the supplier then orders components or raw products, 

the effect is transferred to their suppliers, and amplified. This variance makes it challenging 

to plan procurement, production and inventory, and can incur an increase in a number of costs. 

Lee et al. (1997) state that when present, the BWE may increase costs of inventory, 

warehousing, manufacturing and transportation, among others. They identify four causes for 

the BWE: demand signal processing, rationing game, order batching and price variations.  

Demand signal processing can attribute to the BWE even when the actors in the supply chain 

act completely rational, if they base their forecasts on historical demand from their customers, 

and not on actual demand from further down the supply chain. Consider an example of a 

supply chain consisting of consumers, a retailer, a wholesaler and a supplier, each holding a 

certain inventory of a product. If the retailer experiences an increase in demand from 

consumers in period 𝑡, the forecast for period 𝑡 + 1 will increase. As a consequence, the 

retailer’s safety stock will also increase, and their next order to the wholesaler will include the 

forecast and the increase in safety stock. Acting only on the orders from the retailer, the 

wholesaler will also increase their next order with their own forecast and added safety stock. 

When the supplier receives the order from the wholesaler, the consumer demand has been 
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inflated twice over. Even if consumer demand in period 𝑡 + 1 turns out to be equal to the 

retailer’s forecast, the supply chain is loaded with an excess quantity of the product.  

The rationing game is described as a situation where demand for a product is greater than the 

supply, and actors in the supply chain place orders that are larger than what would be the case 

if supply were unlimited (Lee et al. 1997). In this situation, the ordered quantities are greater 

than what the forecast implies. In a supply chain with non-perishable products, the supply 

chain actor would risk being stuck with a large inventory and the resulting added capital costs. 

In addition, in a supply chain of perishable products, the actor would risk seeing a portion of 

the inventory go to waste as the products exceed their shelf life. 

Order batching occurs when multiple customers (e.g. assembly plants) place their orders in 

the same time period. This can be often be seen in plants operating on a monthly planning 

cycle using MRP systems. These plants tend to place their orders for the next month at the end 

of the month. When many plants order at the same time, the supplier of these plants are subject 

to the “hockey stick” phenomenon, where the demand graph increases greatly at the end of the 

period.  

Price variations can create and contribute to the BWE when the price of a product from a 

distributor varies over time. For instance, if a distributor randomly lowers the price from 𝑃𝐻 

to 𝑃𝐿, one would expect to see a rise in demand in that period, as customers hoard products, 

and a drop in demand in the consecutive periods, as the customers consume/sell from their 

increased inventory (Lee et al. 1997). 

4.3 Demand patterns and XYZ-analysis 

For Nortura, as for most producers, demand patterns vary between products and over time. 

Some products have a relatively stable demand all year with low uncertainty/volatility; others 

have a seasonable demand with moderate uncertainty, and others yet have a seemingly random 

demand pattern, which results in high uncertainty. These products can be categorised by their 

demand patterns and level of uncertainty by doing an XYZ-analysis, where X-products have 

stable demand, Y-products have variable demand (seasonality), and Z-products have 

random/irregular demand patterns (Dhoka and Choudary, 2013; Scholz-Reiter et al., 2012). A 

visualisation of the different demand patterns can be seen in Figure 3 below. 
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Figure 3: Demand patterns for XYZ-products. 

 

4.4 Food supply chain redesign 

Literature on supply chain management (SCM) has, since the 1980s, stressed the importance 

of collaboration between all actors in the supply chain, in order to better satisfy consumer 

demand at lower costs (van der Vorst and Beulens, 2002). In light of the aforementioned 

vertically expanding behaviour of retail corporations, a brief look at key aspects of SC redesign 

and integration seems in order. 

Van der Vorst and Beulens (2002) present a list of key SC redesign strategies for attaining 

joint SC objectives in a generic SC: 

 Redesign the roles and processes in the supply chain 

 Reduce customer lead times 

 Synchronise all logistical processes to customer demand 

 Coordinate and simplify logistical decisions 

 Create information transparency in the supply chain 

 Jointly define chain objectives and performance indicators 



 17 

Van der Vorst et al. (2009) further expand on this list by adding the redesign strategy to change 

the environmental conditions under which products are transported and stored, in order to 

improve on product quality, meaning temperature regulation and modified atmosphere 

packaging. 
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5. Methodology 

5.1 Research design 

To answer the research questions, MILP-models are formulated to represent the current, four-

stage supply chain, and the restructured, three-stage supply chain. Both models are then 

applied in a case study of Nortura’s ongoing restructuring of their downstream supply chain, 

using historical data. The aim of the case study is firstly to exemplify use of the models and 

secondly, to measure differences in volumes produced, transported and wasted, and the 

affiliated costs. 

5.2 Data collection 

The data for this paper can be divided into two categories: qualitative data on the structure of 

the supply chain and the decision-making processes, and quantitative historical data from 

2015. The qualitative data, mainly a description of the company and both the current and the 

future (restructured) downstream supply chain, was gathered from Nortura mainly per 

telephone, email and one meeting in person with logistics manager Halvor Hjelle and planning 

manager for the internal supply chain, Bjørn Tore Lindseth. 

The quantitative data set was gathered from Nortura’s databases by mr. Hjelle and mr. 

Lindseth. As some of the data files were very large, a user on Nortura’s intranet was set up for 

me so that I could download files directly, rather than receiving them via email. The most 

relevant data includes historical forecasts, actual demand from warehouses and retailers, 

volumes transported, shelf life, and volume and cost of waste for multiple products. All 

quantitative data stems from, and covers, the year 2015. 

Safety stock and re-order point 

Nortura’s warehouses operate with a combined safety stock and re-order point. The formula 

for calculating the re-order point for a product at a warehouse is: (
∑ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑑

𝑡+10
𝑑=𝑡+1

10
) ∗ 𝑥, where 

𝑡 is the day the formula is used, and 𝑡 + 1 is the next day. In plain text, the safety stock equals 

the average of the forecast for the next 10 days multiplied with an integer number 𝑥. This 

integer represents the transportation lead time from the production plant to the warehouse, 

expressed in number of days. An order is issued when inventory dips below this point. For the 
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most part, this means that orders are issued to the Rudshøgda production plant every weekday, 

assuming there is a forecasted demand, since the transportation lead time from plant to 

warehouse is only one to two days. 

Forecasts 

A data set with daily and weekly demand forecasts for nine products was received. The 

forecasts are made at each warehouse, and the sum of these is one of the inputs used by the 

production plant as a basis for production planning. 

Demand and product flows 

The demand data consists of two worksheets: demand data from Nortura’s warehouses to the 

Rudshøgda production plant, including orders and volumes shipped, and a worksheet with 

demand data from retail stores to the six warehouses. This worksheet includes, among other 

things, orders, volumes shipped, delivery dates, customer numbers and retail chain 

membership of the individual retail store. Together, these worksheets consist of over 335 000 

MS Excel rows. 

Waste 

A worksheet with recorded waste was also received, containing volumes, costs and week 

numbers for occurred waste at the Rudshøgda production plant, and aggregated numbers for 

the six warehouses. For the case study, average cost of waste per kilogram is calculated for 

each product. Actual waste of products for Nortura lies between 1 % and 2.5 %. However, 

waste in the data set for the selected four products is a lot less, and lies between 0 % and 1.5 

%, with an average of only 0.42 %. This may come from the fact that three out of the four 

products have fairly long shelf lives compared to the rest of Nortura’s products, and therefore 

it is easier to plan distribution and avoid waste for these products. On the other hand, there 

may be discrepancies between actual waste and reported waste. In the analysis I will compare 

the results from the model mainly with reported waste for each product. 

Distance between facilities 

In order to calculate lead times and variable transportation costs, the distances between 

facilities must be known. The number of facilities included in the study is 4,137, one of which 

is a production plant, 6 are Nortura warehouses, 23 are cross docking facilities, and the 

remaining 4,107 are retail stores. Even though retail stores are assigned to cross docking 
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facilities of the same retail chain, which limits the number of distances by some degree, more 

than 35,000 distances have to be measured. 

Collecting addresses 

The data set does not include addresses for retail stores. Rather, the retail store name is on the 

form “retail chain” “geographical location,” e.g. “Snarkjøp Stranda” (fictional name). Two 

approaches were tested to collect the addresses for the stores: an HTML-scraping macro in 

MS Excel, and using the Google Maps Geocode Application Programming Interface (API). 

When typing a store name in the search bar on http://maps.google.com, the address of the store 

will appear in the search bar after the search has finished. As the address appears, it should be 

possible to find the address as a string in the resulting website’s source code. In the HTML-

scraping approach I attempted to write an Excel macro that opens an Internet Explorer window 

where it enters an http-address for a Google Maps search, for each store. It would then look 

up the tag-ID of the string containing the address, and write the address string in a cell in the 

spreadsheet. Before writing the Excel macro, each store name was split into different cells. 

The cells were then gathered in a string function, resulting in an http-address for a Google 

Maps search for each retail store. The problem with this approach is, as it turns out, that the 

tag-ID for the string containing the address in the website source code changes after each 

search, making it very difficult to do an HTML-scrape without scraping the whole source code, 

and process it further.  

In the Google Maps Geocode API approach, two scripts were written in the programming 

language Python, using the free version of the integrated development environment PyCharm. 

The Google Maps API were not able to transform store names to addresses directly, as store 

names are already seen as a type of address string. 

Therefore, the first script transforms retail store names to latitude – longitude coordinates. This 

script imports the Google Maps library and creates a client with an API-key manually created 

on the Google Maps Geocoding API website. The script then reads retail store names from a 

.CSV file, checks them one by one via the Google Maps Geocoding API, and writes the 

resulting coordinates in a second .CSV file. Each API-key allows the user to check coordinates 

or addresses of 2,500 geographical points per day. A free Google account can generate 13 

API-keys in total. This total also includes API-keys from other Google Maps APIs, e.g. the 

Google Maps Distance Matrix API. 

http://maps.google.com/
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The second script does a so-called reverse geocoding, transforming latitude-longitude 

coordinates to addresses using the same method as above, but with coordinate input instead of 

store names, and slight modifications in the code. 

Measuring distances 

In order to measure distances between the facilities, a third Python script were written. This 

script uses the Google Maps Distance Matrix API to check distances between addresses. As 

each API-key allows the user to collect distances between 2,500 geographical points each day, 

a single Google account can measure about 15,000 distances each day when utilising all 

available API-keys. 

Firstly, the script imports the Google Maps library and creates a client, like the two other 

scripts. The script then reads a manually created .CSV file with a list of all addresses to be 

checked. The script checks the distance between a constant starting point (e.g. cross docking 

facility 1) and each address in the .CSV input file. Lastly, the script writes the resulting data 

in a .CSV output file.  

Transportation cost 

Variable transportation cost 

Transportation from the production plants to Nortura’s warehouses is handled by external 

transport companies. Nortura enter into annual agreements with these companies, paying a 

fixed fee for transportation of an expected volume of pallets transported on each distance. 

These fees vary between distances, but the average price per pallet per kilometre is quite 

similar for all distances. As products differ in density, and thus weight per pallet, a variable 

transportation cost per kilogram per kilometre is calculated. 

Fixed transportation cost 

In addition to the variable transportation cost, a fixed cost should also be calculated per 

shipment in order to capture the cost of shipment frequency. This cost represent the time spent 

on order handling, preparing the shipment, and loading and offloading the truck. Nortura do 

not currently calculate fixed transportation costs. However, up until 2005 Nortura (then Gilde) 

handled their own distribution in cooperation with Prior and Tine, and mr. Hjelle was able to 

produce a cost calculation from 2005. Every month Statistics Norway, on behalf of the 

Norwegian Truck Owner Association (Norges Lastebileier-Forbund), issues a cost index for 

truck transportation in Norway. The cost index measures the change in average costs for a 
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sample of Norwegian trucking companies. The index was first published in 1998, setting the 

basis value for January 1998 = 100. In 2009, the weights for the index were changed some, 

and a new basis was set, making January 2009 the new basis value of 100 (ssb.no). The cost 

index from 2005-2016 is represented in Table 1 below. The increase in cost is calculated with 

the following formula: (
138.1

128
) ∗ (

119.9

90.1
) − 1 = 0.436, meaning the cost index increased by 

43.6%. By multiplying the fixed cost per shipment from the 2005 calculation by 1.436, we get 

a reasonable estimate of today’s fixed transportation costs.  

 

Table 1:Truck transport index 2005 – 2016. 

 

Transportation lead time 

Transportation lead times were calculated by dividing the distance between facilities by an 

average speed of 65 km/hour. This average speed was recommended by Nortura. Lead times 

are measured in whole days, and a truck can operate 13.5 hours per day. With this in mind, an 

IF-function was written in Excel, that returns an integer number of lead time days. 

Inventory holding cost 

Timme, S. G. (2003) states that inventory holding cost consists of two parts: inventory 

noncapital carrying cost plus inventory capital charge. Under inventory noncapital carrying 

cost he lists warehousing, obsolescence, pilferage, damage, insurance, taxes, and 

administration and other. He calculates inventory capital charge as 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ∗ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡. 

As the capital cost, he recommends calculating the company’s Weighted Average Cost of 

Capital (WACC), which is the opportunity cost for the company’s average risk investment 

(Timme, 2003).  

Nortura do not usually calculate inventory holding cost, and therefore no inventory noncapital 

carrying costs can be calculated. However, some form of holding cost should be included in 

the optimisation model. As a compromise, the weighted average capital cost multiplied with 

the value of the average annual inventory is chosen. This will not accurately represent the 



 23 

actual inventory holding cost, but it will, at least, give the model an incentive for holding 

inventory at a minimum. 

5.3 Mixed-Integer Linear Programming-models 

When modelling the two versions of the supply chain, I draw on the model by Rong et al. 

(2011), which explicitly considers quality degradation in a food supply chain. In contrast to 

the model by Rong et al., however, my models do not consider decisions on temperature levels 

in storage or transportation, as these are seen as fixed. The quality level of a product batch is 

measured in an integer number of remaining shelf life days, which is represented by the index 

𝑞. As they come out of production, all products have a known number of remaining shelf life 

days, 𝑞𝑚𝑎𝑥. Similarly, each product has a minimum number of shelf life days required by 

retail stores, 𝑞𝑚𝑖𝑛. 

The first model presented considers a four-stage food supply chain consisting of production 

plants, warehouses, cross docking facilities, and retailers. The inventory balance constraints 

measure inventory on day 𝑡 based on inventory levels, volumes received and volumes shipped 

on day 𝑡 − 1. This way, inventory levels on the first day of the planning interval are not 

constrained. To mitigate this, and to let the model satisfy demand on day 1, −𝑞𝑚𝑎𝑥 is added 

to the interval, not dissimilar to Spitter et al. (2005). The resulting planning interval is 

{−𝑞𝑚𝑎𝑥, … , 𝑇}, where 𝑇 is the planning horizon. 

Although this is chiefly a general model, constraint (10) is included specifically to fit the 

Nortura case. The constraint ensures that warehouses hold safety stock when there is 

forecasted demand. As the safety stock is calculated as the average of the next 10 days’ 

forecast, an extra 10 days should be added to the planning horizon 𝑇. 

The “sufficiently great, positive number”, 𝐴, constrains the volumes transported between 

facilities. To ensure that the number is in fact great enough, it should be greater than the 

maximum demand during a time period equal to 𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛. This way, if a batch is both 

produced and shipped to a warehouse with lead time equal to zero on day 𝑡, that batch can be 

used to satisfy demand from the day of production until the day the product batch is unsaleable. 
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5.3.1 Current downstream supply chain model formulation 

The following assumptions are made: 

 All stages of the supply chain comply with the temperature requirements of the 

products in question. 

 Production plants have unlimited production capacity on weekdays. 

 All products have an initial remaining shelf life of 𝑞𝑚𝑎𝑥. 

 Product volumes produced and/or received can be shipped the same day. 

 Each retailer can only be served by one cross docking facility. 

 All facilities require the same number of remaining shelf life days, 𝑞𝑚𝑖𝑛. 

 Safety stock is held by warehouses. The calculation of safety stock is based on 

Nortura’s current method. 

 

Sets: 

𝑃: Production plants. 

𝑊: Warehouses. 

𝐶: Cross docking facilities. 

𝑅: Retail stores. 

𝐻: All facilities with storage capacity, 𝐻 = 𝑃 ∪ 𝑊. 

𝐼: All predecessor facilities, 𝐼 = 𝑃 ∪ 𝑊 ∪ 𝐶. 

𝑆: All successor facilities, 𝑆 = 𝑊 ∪ 𝐶 ∪ 𝑅. 

𝐾𝑖: Predecessor facilities for facility 𝑖 ∈ 𝑆. 

𝐿𝑖: Successor facilities for facility 𝑖 ∈ 𝐼. 

𝑄: Set of shelf life days. 

𝑈: Set of weekend days, 𝑈 ⊂ {1, … , 𝑇}. 
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Parameters: 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡: Demand volume at retailer 𝑖 ∈ 𝑅 on day 𝑡 ∈ {1, … , 𝑇}. 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑡: Forecasted demand volume at warehouse 𝑖 ∈ 𝑊 on day 𝑡 ∈ {1, … , 𝑇}. 

𝑙𝑡𝑖,𝑗: Transportation lead time from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖. 

𝑑𝑐𝑜𝑠𝑡𝑖,𝑗: Cost of transporting one kilogram of product from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖. 

𝑞𝑚𝑎𝑥: Maximum shelf life days for the product. 

𝑞𝑚𝑖𝑛: Minimum remaining shelf life days required by retailers. 

𝑝𝑐𝑜𝑠𝑡: Direct production cost per kilogram of the product. 

𝑓𝑡𝑐𝑜𝑠𝑡: Fixed cost per shipment. 

𝑤𝑐𝑜𝑠𝑡: Cost of waste per kilogram of the product. 

𝑢𝑐𝑜𝑠𝑡: Unit cost, used to calculate inventory holding cost. 

𝑐𝑎𝑝𝑐𝑜𝑠𝑡: Capital cost in percent. 

𝑇: The planning horizon, meaning the last day in the planning period. 

𝐴: A sufficiently great, positive number. 

 

 

Decision variables: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡: Volume produced with remaining shelf life 𝑞 ∈ 𝑄 at production plant 𝑖 ∈ 𝑃 on 

day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 

𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡: Volume transported with remaining shelf life 𝑞 ∈ 𝑄 from facility 𝑖 ∈ 𝐼 to facility 

𝑗 ∈ 𝐿𝑖 on day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 
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𝑖𝑛𝑣𝑖,𝑞,𝑡: Inventory with remaining shelf life 𝑞 ∈ 𝑄 on the start of day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} at 

facility 𝑖 ∈ 𝐻. 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡: Volume gone to waste at facility 𝑖 ∈ 𝐻 on day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 

𝛼𝑖,𝑗,𝑡: Binary variable. 1 if products are sent from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖 on day 𝑡 ∈

{−𝑞𝑚𝑎𝑥, … , 𝑇}, 0 otherwise. 

𝛽𝑖,𝑗: Binary variable. 1 if cross docking facility 𝑖 ∈ 𝐶 serves to retailer 𝑗 ∈ 𝐿𝑖, 0 otherwise. 

 

Objective function: 

min     ∑ ∑ ∑ 𝑝𝑐𝑜𝑠𝑡 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑖∈𝑃   

+ ∑ ∑ ∑ 𝑓𝑡𝑐𝑜𝑠𝑡 ∗ 𝛼𝑖,𝑗,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑗∈𝐿𝑖𝑖∈𝐼   

+ ∑ ∑ ∑ ∑ 𝑑𝑐𝑜𝑠𝑡𝑖,𝑗, ∗ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑗∈𝐿𝑖𝑖∈𝐼   

+ ∑ ∑ 𝑤𝑐𝑜𝑠𝑡 ∗ 𝑤𝑎𝑠𝑡𝑒𝑖,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑖∈𝐻   

+ ∑ ∑ ∑
(𝑢𝑐𝑜𝑠𝑡∗𝑖𝑛𝑣𝑖,𝑞,𝑡)

365
∗ 𝑐𝑎𝑝𝑐𝑜𝑠𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑖∈𝐻     (1) 

  

s.t. 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡  ∀𝑖 ∈ 𝐻, ∀𝑞 ∈ {𝑄|𝑞 = 𝑞𝑚𝑖𝑛 − 1}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (2) 

𝑖𝑛𝑣𝑖,𝑞−1,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡−1 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡−1 − ∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡−1𝑗∈{𝐿𝑖|𝑞𝑚𝑖𝑛+𝑙𝑡𝑗,𝑖≤𝑞≤𝑞𝑚𝑎𝑥}   ∀𝑖 ∈ 𝑃,

∀𝑞 ∈ {𝑄|𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥 + 1, … , 𝑇}     (3) 

𝑖𝑛𝑣𝑖,𝑞−1,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡−1 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑗,𝑖,𝑞+𝑙𝑡𝑗,𝑖,𝑡−𝑙𝑡𝑗,𝑖−1𝑗∈{𝐾𝑖|𝑞𝑚𝑖𝑛≤𝑞≤𝑞𝑚𝑎𝑥−𝑙𝑡𝑗,𝑖| 𝑡>−𝑞𝑚𝑎𝑥+𝑙𝑡𝑗,𝑖} −

∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡−1𝑗∈{𝐿𝑖|𝑞𝑚𝑖𝑛+𝑙𝑡𝑖,𝑗≤𝑞≤𝑞𝑚𝑎𝑥}  ∀𝑖 ∈ 𝑊, ∀𝑞 ∈ {𝑄|𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈

{−𝑞𝑚𝑎𝑥 + 1, … , 𝑇}          (4) 
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∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑗∈{𝐿𝑖|𝑞𝑚𝑖𝑛+𝑙𝑡𝑖,𝑗≤𝑞} = ∑ 𝑡𝑟𝑎𝑛𝑠𝑗,𝑖,𝑞+𝑙𝑡𝑗,𝑖,𝑡−𝑙𝑡𝑗,𝑖𝑗∈{𝐾𝑖|𝑞≤𝑞𝑚𝑎𝑥−𝑙𝑡𝑗,𝑖|𝑡≥−𝑞𝑚𝑎𝑥+𝑙𝑡𝑗,𝑖}   ∀𝑖 ∈ 𝐶,

∀𝑞 ∈ 𝑄, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}        (5) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡 = ∑ ∑ 𝑡𝑟𝑎𝑛𝑠𝑗,𝑖,𝑞+𝑙𝑡𝑗,𝑖,𝑡−𝑙𝑡𝑗,𝑖𝑞∈{𝑄|𝑞𝑚𝑖𝑛≤𝑞≤𝑞𝑚𝑎𝑥−𝑙𝑡𝑗,𝑖}𝑗∈𝐾𝑖
  ∀𝑖 ∈ 𝑅, ∀𝑡 ∈

{1, … , 𝑇}           (6) 

𝑖𝑛𝑣𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝐻, ∀𝑞 ∈ {𝑄|𝑞 = 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}   (7) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑈      (8) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ {𝑄|𝑞 <> 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}  (9) 

∑ 𝑖𝑛𝑣𝑖,𝑞,𝑡𝑞𝑚𝑖𝑛≤𝑞≤𝑞𝑚𝑎𝑥 ≥ 𝑙𝑡𝑗,𝑖 (
∑ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑑

𝑡+10
𝑑=𝑡+1

10
)  ∀𝑖 ∈ 𝑊, ∀𝑗 ∈ 𝐾𝑖 , 𝑡 ∈ {1, … , 𝑇 − 10}  (10) 

∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑞∈{𝑄|𝑞≥𝑞𝑚𝑖𝑛+𝑙𝑡𝑖,𝑗} ≤ 𝛼𝑖,𝑗,𝑡 ∗ 𝐴 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖 , ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (11) 

∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑞∈𝑄 ≤ 𝛽𝑖,𝑗 ∗ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡+𝑙𝑡𝑖,𝑗
 ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐿𝑖 , ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (12) 

∑ 𝛽𝑗,𝑖𝑗∈𝐾𝑖
= 1  ∀𝑖 ∈ 𝑅         (13) 

 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 ≥ 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (14) 

𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}   (15) 

𝑖𝑛𝑣𝑖,𝑞,𝑡 ≥ 0  ∀𝑖 ∈ 𝐻, ∀𝑞 ∈ 𝑄, 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (16) 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡 ≥ 0  ∀𝑖 ∈ 𝐻, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}     (17) 

𝛼𝑖,𝑗,𝑡 ∈ {0,1}  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (18) 

𝛽𝑖,𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐿𝑖       (19) 

 

The model’s objective function (1) minimises the costs of production, transportation, 

inventory capital cost, and wasted products. Both fixed and variable transportation costs are 

calculated. Constraint (2) measures the volume of wasted products, more specifically the 
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volume of products that have a remaining shelf life of one day less than 𝑞𝑚𝑖𝑛. Constraints (3) 

and (4) measure the inventory at production plants and warehouses respectively. They also 

ensure that all products shipped will have minimum 𝑞𝑚𝑖𝑛 of remaining shelf life when 

reaching their destination. Constraint (5) ensures that product volumes received from 

warehouses are shipped to retailers on the same day. It also ensures that products will have 

minimum 𝑞𝑚𝑖𝑛 of remaining shelf life when reaching the retailer. Constraint (6) forces the 

model to satisfy all demand at retailers. Constraint (7) completes constraints (3) and (4), letting 

there be no inventory with remaining shelf life equal to 𝑞𝑚𝑎𝑥. This is necessary because 

produced volumes are measured on the day after production at the earliest. Constraints (8) and 

(9) make sure no production is planned on weekends, and that all products have an initial 

remaining shelf life equal to 𝑞𝑚𝑎𝑥 respectively. Constraint (10) is, as mentioned earlier, 

specific to the Nortura case and the way they calculate safety stock. Constraint (11) causes the 

binary variable 𝛼𝑖,𝑗,𝑡 to be equal to 1 if products are shipped from facility 𝑖 to facility 𝑗 on day 

𝑡, and equal to 0 otherwise. Constraints (12) and (13) make sure the binary variable 𝛽𝑖,𝑗 is 

equal to 1 if shipments are made from cross docking facility 𝑖 to retailer 𝑗, and that only one 

cross docking facility can serve each retailer, respectively. Constraints (14) through (19) are 

non-negativity and binary constraints. 

5.3.2 Restructured downstream supply chain model formulation 

In the following model, the cross docking facilities have been removed, production plants and 

warehouses different 𝑞𝑚𝑖𝑛𝑖, which is the minimum remaining shelf life required by the next 

stage in the SC, and both production plants and warehouses keep a safety stock. 

The following assumptions are made: 

  All stages of the supply chain comply with the temperature requirements of the 

products in question. 

 Production plants have unlimited production capacity on weekdays. 

 All products have an initial remaining shelf life of 𝑞𝑚𝑎𝑥. 

 Product volumes produced and/or received can be shipped the same day. 

 Each retailer can only be served by one warehouse. 

 Retailers and warehouses require a different number of remaining shelf life days. 

 Safety stock is held by both warehouses and production plants. The calculation of 

safety stock is based on Nortura’s current method. 



 29 

 

Sets: 

𝑃: Production plants. 

𝑊: Warehouses (former cross docking facilities). 

𝑅: Retail stores. 

𝐼: Both predecessor facilities and facilities with storage capacity, 𝐼 = 𝑃 ∪ 𝑊. 

𝑆: Successor facilities, 𝑆 = 𝑊 ∪ 𝑅. 

𝐾𝑖: Predecessor facilities for facility 𝑖 ∈ 𝑆. 

𝐿𝑖: Successor facilities for facility 𝑖 ∈ 𝐼. 

𝑄: Shelf life days. 

𝑈: Weekend days, 𝑈 ⊂ {1, … , 𝑇}. 

 

Parameters: 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡: Demand volume at retailer 𝑖 ∈ 𝑅 on day 𝑡 ∈ {1, … , 𝑇}. 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑡: Forecasted demand volume at warehouse 𝑖 ∈ 𝐼 on day 𝑡 ∈ {1, … , 𝑇}. 

𝑙𝑡𝑖,𝑗: Transportation lead time from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖. 

𝑑𝑐𝑜𝑠𝑡𝑖,𝑗: Cost of transporting one kilogram of product from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖. 

𝑞𝑚𝑎𝑥: Maximum shelf life days for the product. 

𝑞𝑚𝑖𝑛𝑖: Minimum remaining shelf life days required by the next stage in the supply chain, for 

facility 𝑖 ∈ 𝐼. 

𝑝𝑐𝑜𝑠𝑡: Direct production cost per kilogram of the product. 
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𝑓𝑡𝑐𝑜𝑠𝑡: Fixed cost per shipment. 

𝑤𝑐𝑜𝑠𝑡: Cost of waste per kilogram of the product. 

𝑢𝑐𝑜𝑠𝑡: Unit cost, used to calculate inventory holding cost. 

𝑐𝑎𝑝𝑐𝑜𝑠𝑡: Capital cost rate. 

𝑇: The planning horizon, meaning the last day in the planning period. 

𝐴: A sufficiently great, positive number. 

 

Decision variables: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡: Volume produced with remaining shelf life 𝑞 ∈ 𝑄 at production plant 𝑖 ∈ 𝑃 on 

day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 

𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡: Volume transported with remaining shelf life 𝑞 ∈ 𝑄 from facility 𝑖 ∈ 𝐼 to facility 

𝑗 ∈ 𝐿𝑖 on day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 

𝑖𝑛𝑣𝑖,𝑞,𝑡: Inventory with remaining shelf life 𝑞 ∈ 𝑄 on the start of day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} at 

facility 𝑖 ∈ 𝐼. 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡: Volume gone to waste at facility 𝑖 ∈ 𝐼 on day 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}. 

𝛼𝑖,𝑗,𝑡: Binary variable. 1 if products are sent from facility 𝑖 ∈ 𝐼 to facility 𝑗 ∈ 𝐿𝑖 on day 𝑡 ∈

{−𝑞𝑚𝑎𝑥, … , 𝑇}, 0 otherwise. 

𝛽𝑖,𝑗: Binary variable. 1 if warehouse 𝑖 ∈ 𝑊 serves retailer 𝑗 ∈ 𝐿𝑖, 0 otherwise. 

 

 

 

 

 



 31 

Objective function: 

min     ∑ ∑ ∑ 𝑝𝑐𝑜𝑠𝑡 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑖∈𝑃   

+ ∑ ∑ ∑ 𝑓𝑡𝑐𝑜𝑠𝑡 ∗ 𝛼𝑖,𝑗,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑗∈𝐿𝑖𝑖∈𝐼   

+ ∑ ∑ ∑ ∑ 𝑑𝑐𝑜𝑠𝑡𝑖,𝑗, ∗ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑗∈𝐿𝑖𝑖∈𝐼   

+ ∑ ∑ 𝑤𝑐𝑜𝑠𝑡 ∗ 𝑤𝑎𝑠𝑡𝑒𝑖,𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑖∈𝐼   

+ ∑ ∑ ∑
(𝑢𝑐𝑜𝑠𝑡∗𝑖𝑛𝑣𝑖,𝑞,𝑡)

365
∗ 𝑐𝑎𝑝𝑐𝑜𝑠𝑡𝑡∈{−𝑞𝑚𝑎𝑥,…,𝑇}𝑞∈𝑄𝑖∈𝐼      (20) 

 

s.t. 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡  ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ {𝑄|𝑞 = 𝑞𝑚𝑖𝑛𝑖 − 1}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (21) 

𝑖𝑛𝑣𝑖,𝑞−1,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡−1 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡−1 − ∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡−1𝑗∈{𝐿𝑖|𝑞𝑚𝑖𝑛𝑖+𝑙𝑡𝑗,𝑖≤𝑞≤𝑞𝑚𝑎𝑥}   ∀𝑖 ∈ 𝑃,

∀𝑞 ∈ {𝑄|𝑞𝑚𝑖𝑛𝑖 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥 + 1, … , 𝑇}     (22) 

𝑖𝑛𝑣𝑖,𝑞−1,𝑡 = 𝑖𝑛𝑣𝑖,𝑞,𝑡−1 + ∑ 𝑡𝑟𝑎𝑛𝑠𝑗,𝑖,𝑞+𝑙𝑡𝑗,𝑖,𝑡−𝑙𝑡𝑗,𝑖−1𝑗∈{𝐾𝑖|𝑞𝑚𝑖𝑛𝑗≤𝑞≤𝑞𝑚𝑎𝑥−𝑙𝑡𝑗,𝑖| 𝑡>−𝑞𝑚𝑎𝑥+𝑙𝑡𝑗,𝑖} −

∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡−1𝑗∈{𝐿𝑖|𝑞𝑚𝑖𝑛𝑖+𝑙𝑡𝑖,𝑗≤𝑞≤𝑞𝑚𝑎𝑥}  ∀𝑖 ∈ 𝑊, ∀𝑞 ∈ {𝑄|𝑞𝑚𝑖𝑛𝑖 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈

{−𝑞𝑚𝑎𝑥 + 1, … , 𝑇}          (23) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡 = ∑ ∑ 𝑡𝑟𝑎𝑛𝑠𝑗,𝑖,𝑞+𝑙𝑡𝑗,𝑖,𝑡−𝑙𝑡𝑗,𝑖𝑞∈{𝑄|𝑞𝑚𝑖𝑛𝑖≤𝑞≤𝑞𝑚𝑎𝑥−𝑙𝑡𝑗,𝑖}𝑗∈𝐾𝑖
       ∀𝑖 ∈ 𝑅, ∀𝑡 ∈

{1, … , 𝑇}           (24) 

𝑖𝑛𝑣𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝐼, ∀𝑞 ∈ {𝑄|𝑞 = 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}   (25) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑈      (26) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 = 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ {𝑄|𝑞 <> 𝑞𝑚𝑎𝑥}, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}  (27) 

∑ 𝑖𝑛𝑣𝑖,𝑞,𝑡𝑞𝑚𝑖𝑛𝑖≤𝑞≤𝑞𝑚𝑎𝑥 ≥ (
∑ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑡

𝑡+10
𝑑=𝑡+1

10
)  ∀𝑖 ∈ 𝑃, ∀𝑡 ∈ {1, … , 𝑇 − 10}  (28) 

∑ 𝑖𝑛𝑣𝑖,𝑞,𝑡𝑞𝑚𝑖𝑛𝑖≤𝑞≤𝑞𝑚𝑎𝑥 ≥ 𝑙𝑡𝑗,𝑖 (
∑ 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖,𝑑

𝑡+10
𝑑=𝑡+1

10
)   ∀𝑖 ∈ 𝑊, ∀𝑗 ∈ 𝐾𝑖, 𝑡 ∈ {1, … , 𝑇 − 10} (29) 
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∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑞∈{𝑄|𝑞≥𝑞𝑚𝑖𝑛+𝑙𝑡𝑖,𝑗} ≤ 𝛼𝑖,𝑗,𝑡 ∗ 𝐴 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖 , ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (30) 

∑ 𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡𝑞∈𝑄 ≤ 𝛽𝑖,𝑗 ∗ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,𝑡+𝑙𝑡𝑖,𝑗
 ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐿𝑖 , ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇} (31) 

∑ 𝛽𝑗,𝑖𝑗∈𝐾𝑖
= 1  ∀𝑖 ∈ 𝑅         (32) 

 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑𝑖,𝑞,𝑡 ≥ 0 ∀𝑖 ∈ 𝑃, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (33) 

𝑡𝑟𝑎𝑛𝑠𝑖,𝑗,𝑞,𝑡 ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}   (34) 

𝑖𝑛𝑣𝑖,𝑞,𝑡 ≥ 0  ∀𝑖 ∈ 𝐻, ∀𝑞 ∈ 𝑄, 𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (35) 

𝑤𝑎𝑠𝑡𝑒𝑖,𝑡 ≥ 0  ∀𝑖 ∈ 𝐻, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}     (36) 

𝛼𝑖,𝑗,𝑡 ∈ {0,1}  ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐿𝑖, ∀𝑡 ∈ {−𝑞𝑚𝑎𝑥, … , 𝑇}    (37) 

𝛽𝑖,𝑗 ∈ {0,1}  ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝐿𝑖       (38) 

 

The objective function (20) is the same as for the first model. Constraints (21) through (27) 

are the same as for the first model, except for the 𝑞𝑚𝑖𝑛 parameter, which has been changed to 

𝑞𝑚𝑖𝑛𝑖 in order to capture the different minimum shelf life requirements of wholesaler 

warehouses and retailers. Constraint (28) is new, making sure production plants keep a safety 

stock. In contrast to (29), which ensures warehouse safety stocks and is multiplied by the lead 

time from plant to warehouse, the safety stock in (28) is not multiplied, making plants hold 

only one average day’s forecast as safety stock. Constraints (29) through (38) have not been 

changed from the previous model. 
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6. Case study 

To exemplify use of the models, historical data from Nortura is implemented in the models. 

In the following sections, I present the scope of the case study, the historical data collected 

and data processing methods performed. 

6.1 Scope of the case study 

Due to the restricted scale of this paper, the case study is limited to one production plant and 

four products, but includes all Nortura warehouses and retail customers. The geographical 

distribution of the production plant and warehouses is presented in Figure 4 below. All 23 

cross docking facilities and 4,107 retail stores are included in the case study. Both cross 

docking facilities and retailers have distributions similar to that of the warehouses, with 

concentrations around cities, and a higher density in the southern part of the country versus 

the northern part. They are not plotted on a map due to the sheer number of facilities, which 

would cover the map completely. 

 

Figure 4: Geographical distribution of the production plant (blue) and 
warehouses (red) in the case study. 
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Three products A, B, C and D are chosen for the case study. Product A has a high demand 

with low uncertainty all year, product B has seasonal demand with low uncertainty, and 

product C has a seasonal demand with high uncertainty. Product D has low demand and 

medium uncertainty, and has a very high unit cost, and therefore also a high waste cost. The 

reason for choosing these products is to highlight the effect of different SC strategy decisions 

on products with differences in demand patterns, uncertainty in demand, and shelf life 

lengths.  

The shelf life distribution is shown in Table 2, and average weekly demand for the whole 

year is shown in Figure 5. 

 

Table 2: Shelf life distribution of products A, B, C and D. 

 

 

Figure 5: Average weekly demand for the four products. 
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6.2 Running the models 

The models were coded in A Mathematical Programming Language (AMPL), and run using 

the IBM ILOG CPLEX solver. The first run was done using the data set for product A. The 

product was chosen because it has the most extensive data set, with the highest number of both 

customers and demand days. This way, if the run was successful, running the data sets for the 

other products should be successful as well. The models are run with a planning interval of 

{−𝑞𝑚𝑎𝑥, … ,375} in order to capture differences between historical data supplied by the 

company, and data produced by the model. 10 days are added at the end of the interval in order 

for the safety stock constraints (10), (28) and (29) to calculate safety stock for the last of the 

365 days of the year. 

The run was firstly done using a laptop with a 2.5 GHz CPU and 8 GB RAM, with an 

additional 50 GB allocated virtual memory. The run was terminated by the software after 10-

15 minutes due to insufficient memory. The model was then run in a computer cluster. After 

approximately 12 hours, the model still was not solved, having a mixed-integer optimality gap 

of 2.74 %. This gap is the difference between the best integer solution found, and the optimal 

value of linear programming relaxation (Fourer, Gay and Kerninghan, 2003). The goal is to 

have no gap, i.e. 0 %.  

To allow for multiple runs to be executed simultaneously, two Amazon Web Services (AWS) 

Elastic Compute Cloud (EC2) instances were created. An EC2 instance is a virtual computer 

which is hosted by a server centre. Virtual CPU (vCPU), memory, storage, and network 

capacity is allocated to the instance according to the specifications of the instance type. The 

instances are rented on an hourly basis, and can be started and stopped as needed. A stopped 

instance does not incur any costs. The instance types created was one r3.xlarge instance and 

one r3.8xlarge instance rented from a server centre in Ireland. The R3 instance types are 

memory optimised instances with varying levels of allocated capacity and price. The allocated 

CPU, memory and storage capacities, and the price of the rented instances can be found in 

Table 3 below. The total cost of renting instances for the thesis amounted to $182.83. 

 

Table 3: AWS EC2 instance type capacities and price (aws.amazon.com). 
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6.2.1 Relaxation 

The thesis is restricted in time to one semester, and the research method requires the model 

formulations to be run multiple times. Therefore, some form of relaxation has to be made in 

order to get to more reasonable solve times for the model. Two relaxation approaches are 

considered: aggregation of retailer demand, and excluding binary variables. 

Retailer demand aggregation 

The original data set have more than 4,100 retail customers, each with 365 days of demand, 

resulting in over 1.4 million demand values. Retailers are spread all over the country, with 

concentrations in the more populated areas. With the original model formulation, shipments 

from cross docking facilities/warehouses to retailers are done individually, not considering 

vehicle routing. This is a weakness in the model as, in reality, distribution trucks from cross 

docking facilities will visit multiple retailers in the same area. With aggregation of demand by 

geographical area, the model will be easier to solve, and may even result in a more realistic 

solution in that shipments are made to multiple retailers by the same truck.  

Norway is divided into areas with four-digit zip codes. The digits refer to specific geographical 

areas, with an increasing level of accuracy. The first two digits may, for example refer to one 

part of a county, while de last two digits refer to different towns or neighbourhoods within that 

area. As we can see from Figure 6 below, zip code areas are smaller in the southern part of the 

country where population density is higher, and larger in the northern part of the country, 

where population is more scattered. By aggregating daily demand on the zip codes’ first two 

digits, I reduce the number of customers from 4,100 to 101, and demand values from more 

than 1.4 million to a little less than 37,000.  

When aggregating demand this way, one has to calculate values of the 𝑑𝑐𝑜𝑠𝑡𝑖,𝑗 and 𝑙𝑡𝑖,𝑗 

parameters for the demand areas. First, I calculated new distances from the cross docking 

facilities to the demand areas. For each cross docking facility and demand area, this was done 

by counting the number of demand days (i.e. shipments) per retailer, and multiplying this 

number by the distance from the cross dock in question. The resulting values were then 

summed up, and divided by the total number of shipments. This way, I get an average distance 
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travelled per shipment. This average distance was then used to calculate new 𝑑𝑐𝑜𝑠𝑡𝑖,𝑗 and 𝑙𝑡𝑖,𝑗 

parameters.  

 

Figure 6: Zip code areas (bring.no). 

 

Excluding binary variables 

After additional test runs, it is clear that the binary variable 𝛼𝑖,𝑗,𝑡 makes the model hard to 

solve, much more so than the variable 𝛽𝑖,𝑗. This is probably due to the sheer number of 𝛼𝑖,𝑗,𝑡 

variables. By excluding the 𝛼𝑖,𝑗,𝑡 variable from the model, solver times are drastically reduced, 

and solutions with a 0 % gap are found. The downside to removing the variable is that the 
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model will not be able to consider fixed transportation costs, as the variable is included in the 

objective function. This is a weakness in the analysis. However, in respect to the Nortura case, 

it may not be a major drawback. Nortura already have a very high frequency of shipments, 

transporting products from production plants to warehouses on an almost daily basis. The time 

and frequency of these shipments are in fact the only ones that can be chosen by the solver. 

The demand constraints (6) and (24) enforces shipments between cross docking 

facilities/warehouses and retailers to be made to satisfy all demand on all days, meaning that 

these shipments cannot vary as long as the same demand data set is used. As a result, the 

second summation in the objective functions (1) and (20) are removed from the AMPL model 

formulations. Also, the constraints (11), (18), (30) and (37) are removed, as these include the 

𝛼𝑖,𝑗,𝑡 variable. 
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7. Analysis 

In this section, I will present the data resulting from the model runs. The models were run with 

data for all four products. As a consequence of the large data sets, the runs for products A and 

D were made on the EC2 r3.8xlarge instance. The data sets for products B and C are much 

smaller, and were run on the r3.xlarge instance to save costs. 

7.1 Current supply chain model 

The solve times for the current supply chain model varied greatly between the products, with 

the shortest solve times being those of products B and C at 1 minute each. The longest solve 

time was that of product A, which was 50 minutes. Optimal solutions were found for all 

products. 

 

Table 4: Solve times for the current SC model. 

The dominating cost type is production cost, which accounts for an average 98.3 % of the 

objective function value. The next costs are, in descending order: variable transportation cost 

(1.5%), waste cost (0.2%), and inventory holding cost (0.05%). Although fixed transportation 

costs were omitted from the model, one can still calculate it by counting the number of 

shipments and multiplying them by the 𝑓𝑡𝑐𝑜𝑠𝑡 parameter. The average fixed transportation 

cost is 16.2% of the objective function value. The span is large, however, with a minimum 

value of 4.7 % and a maximum value of 26 %.  Figure 7 below shows the cost structure for all 

the products. 
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Figure 7: Cost structure comparison, current SC. 

The waste volume was reduced for products A, B and C in the optimal solution. There was no 

waste reported for product D, but compared with the 1.5 % reference, the model waste was 

very low. Waste volumes, in percent of the total production volumes, are shown in Figure 8. 

 

 

Figure 8: Percentage waste volumes comparison, current SC structure 
model. 
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7.2 Restructured supply chain model 

Although the models themselves are fairly similar, and the restructured supply chain one stage 

shorter than the current supply chain, solve times increased greatly when running the 

restructured SC model. This is probably due to the double safety stocks in both production 

plants and warehouses. The shortest solve time is 23 minutes for product B, and the longest 

solve time is again that of product A, which is 652 minutes.  

 

Table 5: Solve times for the restructured SC model. 

 

Production costs were almost exactly the same in the restructured SC model as in the first 

model, owing to the fact that the same demand data was used, and there was therefore very 

little change in the production volume. Variable transportation cost was decreased by between 

11 % and 17 % for products A, B and C, but increased 5.6 % for product D. Inventory holding 

cost increased for all products, with increase rates between 28 % and 67 %. Waste cost varied 

between the products, but most products had increased waste in the restructured SC. Fixed 

transportation costs were reduced for all products, from -2.8 % to -39 %. This is probably a 

result of larger shipments, as there is a greater volume of products throughout the supply chain. 

Product A still had around 0 % waste, while products B, C and D had increased waste costs of 

49 %, 7,800 % and 366 %, respectively. In order to visualise the changes in costs, waste costs 

have been let out of Figure 9, owing to the fact that it would completely dominate the other 

cost measures. For product C, which is the product with both the highest uncertainty and the 

shortest shelf life, the waste cost in this run accounts for 13.9 % of the objective function value 

(Figure 10). 
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Figure 9: Changes in costs. 

 

 

Figure 10: Cost structure comparison, restructured SC. 

 

The great increase in waste cost for product C is, of course, a result of a large increase in waste 

volume. Waste volume for product C is indeed greater than both that of the current SC model 

and the reported actual waste for all products. However, for products A, B and D, waste is still 

under 1 % of the produced volume. For product C, 13.8 % is wasted. In order to visualise the 

data, product C have been placed in a diagram by itself in Figure 12, less it completely 

dominates the other products in Figure 11.  
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Figure 11: Percentage waste volumes comparison for products A, B and D. 

 

 

Figure 12: Percentage waste volumes comparison for product C. 

In order to check if the large waste volume for products C is a result of the greater uncertainty 

of demand compared to the other products, or if the shorter shelf life has more of an impact, 

two hybrid products are defined and run with both models. Hybrid 1 have the demand and 

forecast data for product B, but have the short shelf life of product C. Hybrid 2 have the 

demand and forecast data for product C, but the long shelf life of product B. In other words, 

Hybrid 1 has low uncertainty and short shelf life, and hybrid 2 has high uncertainty and long 
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shelf life. Products B and C are used to compare the resulting waste. As can be seen in Figure 

13, it is clear that the products with short shelf life have very high waste percentages, while 

the products with longer shelf lives have very little waste. The level of uncertainty seems to 

have little impact on the resulting waste. 

 

Figure 13: Percentage waste volumes of products B and C, and hybrid 
products 1 and 2. 
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8. Conclusion 

This paper has presented mixed-integer linear programming models for food product 

distribution with a discrete measure of product quality in three- and four-stage supply chains. 

Use of the models has been exemplified in a case study of Nortura’s ongoing supply chain 

restructuring with historical data from 2015. The case study shows how the models can be 

relaxed to run with very large amounts of data within a reasonable time. Analysis of the results 

from the case study show that a company that finds itself in a situation similar to Nortura’s, 

should expect increased inventory holding costs and waste costs for all products. Increase in 

waste costs will be much greater for products with shorter shelf life and high uncertainty in 

demand, although shelf life lengths have a far greater impact on the resulting waste than that 

of demand uncertainty. 

The main contribution of this thesis lies in the implementation of large, real life data sets in 

MILP-models that consider product quality explicitly, and in finding ways to relax the model 

formulations in order to run the models. The presented models could be useful tools to help 

food supply chain actors analyse and exemplify the consequences of supply chain 

restructuring.  

Further research could attempt to refine the presented model formulations. Information sharing 

settings could also be implemented in the models to test different scenarios of supply chain 

integration. 
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Appendix 

 

1. AMPL model formulation of the current supply chain. 

set P;      #production plants 

set W;      #warehouses 

set C;      #cross docking warehouses 

set R;      #retailers 

set H := P union W;    #facilities that holds inventory 

set I := P union W union C;   #all predecessor nodes 

set S := W union C union R;   #all successor nodes 

set K{S};      #predecessor nodes for node s 

set L{I};      #successor nodes for node i 

param T := 375;     #end of the planning horizon 

set Q;      #shelf life days 

set U within 1..T;    #weekend days 

 

 

 

param demand{R,1..T} default 0; #demand at retailer k on day t 

param forecast{W,1..T} default 0; #forecast for warehouse i on day t 

param lt{i in I,L[i]};   #transportation time from facility h to 

facility y 

param dcost{i in I,L[i]};  #cost of transporting one kg from 

facility H to facility G 

param qmax;     #maximum shelf life 

param qmin;     #minimum shelf life required by 

retailers 

param pcost;    #cost of producing one kg 

param ftcost;    #fixed transportation cost 

param wcost;    #cost of one kg wasted 

param ucost;    #unit cost, used for measuring inventory 

costs 

param capcost;    #inventory capital cost (interest) 

param A := #confidential#; 

 

 

 

var produced{P,Q,-qmax..T}>=0;   #volume produced at plant i 

of product n on day t 

 

var trans{i in I,L[i],Q,-qmax..T}>=0;  #volume sent from facility i 

to facility j with shelf-life s on day t 
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var inv{H,Q,-qmax..T}>=0;    #volume with shelf life s in 

inventory at facility g at the start of day t 

 

var waste{H,-qmax..T}>=0;    #volume wasted at facility g 

on day t 

 

var beta{i in C,L[i]} binary;    #binary variable, 1 if 

retrailer j is served by cross docking facility i. 

 

 

 

minimize total_cost: 

 sum{i in P,q in Q,t in -qmax..T}pcost*produced[i,q,t] +   

 sum{i in I,j in L[i],q in Q,t in -qmax..T}(dcost[i,j]*trans[i,j,q,t])+ 

 sum{i in H,t in -qmax..T}wcost*waste[i,t] +     

 sum{i in H,q in Q,t in -qmax..T}((ucost*inv[i,q,t])/365)*capcost; 

 

 

 

subject to 

 

waste_cons{i in H,q in Q,t in -qmax..T+10:q=qmin-1}: 

 waste[i,t] = inv[i,q,t]; 

 

inventory_plants{i in P,q in Q,t in -qmax+1..T:qmin<=q<=qmax}: 

 inv[i,q-1,t] = inv[i,q,t-1] + produced[i,q,t-1] - sum{j in 

L[i]:qmin+lt[i,j]<=q<=qmax}trans[i,j,q,t-1]; 

 

inventory_warehouses{i in W,q in Q,t in -qmax+1..T:qmin<=q<=qmax}: 

 inv[i,q-1,t] = inv[i,q,t-1] + sum{j in K[i]:qmin<=q<=qmax-lt[j,i] and 

t>-qmax+lt[j,i]}trans[j,i,q+lt[j,i],t-lt[j,i]-1] - sum{j in 

L[i]:qmin+lt[i,j]<=q<=qmax}trans[i,j,q,t-1]; 

 

cross docking_balance{i in C,q in Q,t in -qmax..T}: 

 sum{j in L[i]:q>=qmin+lt[i,j]}trans[i,j,q,t] = sum{j in K[i]:q<=qmax-

lt[j,i] and t>=-qmax+lt[j,i]}trans[j,i,q+lt[j,i],t-lt[j,i]]; 

 

demand_satisfaction{i in R,t in 1..T}: 

 demand[i,t] = sum{j in K[i],q in Q:qmin<=q<=qmax-

lt[j,i]}trans[j,i,q+lt[j,i],t-lt[j,i]]; 

 

no_inv_qmax{i in H,q in Q,t in -qmax..T:q=qmax}: 

 inv[i,q,t] = 0; 

 

no_production_on_weekends{i in P,q in Q,t in U:qmin<=q<=qmax}: 

 produced[i,q,t] = 0; 
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produce_qmax_only{i in P,q in Q,t in -qmax..T:q<>qmax}: 

 produced[i,q,t] = 0; 

 

 

 

safety_stock_warehouses{i in W,j in K[i],t in 1..T-10}: 

 sum{q in Q:qmin<=q<=qmax}inv[i,q,t] >= ((sum{d in 

1..T:t+1<=d<=t+10}forecast[i,d])/10)*lt[j,i]; 

 

 

beta_cons1{i in C,j in L[i],t in -qmax..T:t<=T-lt[i,j]}: 

 sum{q in Q}trans[i,j,q,t] <= beta[i,j]*demand[j,t+lt[i,j]]; 

 

beta_cons2{i in R}: 

 sum{j in K[i]}beta[j,i] = 1; 

 

 

2. AMPL model formulation of the restructured supply chain 

set P;     #production plants 

set W;     #warehouses 

set R;     #retailers 

set I := P union W;   #all predecessor and storage facilities 

set S := W union R;   #all successor nodes 

set K{S};     #predecessor facilities for facility s 

set L{I};     #successor facilities for facility i 

set Q;     #shelf life days 

param T := 375;    #end of the planning horizon 

set U within 1..T;   #weekend days 

 

 

param demand{R,1..T} default 0; #demand at retailer k on day t 

param forecast{I,1..T} default 0; #forecast for warehouse i on day t 

param lt{i in I,L[i]};   #transportation time from facility h to 

facility y 

param dcost{i in I,L[i]};  #cost of transporting one kg from 

facility H to facility G 

param qmax;     #maximum shelf life 

param qmin{I};    #minimum remaining shelf life required 

by the next SC stage 

param pcost;    #cost of producing one kg 

param ftcost;    #fixed transportation cost 

param wcost;    #cost of one kg wasted 
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param ucost;    #unit cost, used for measuring inventory 

costs 

param capcost;    #inventory capital cost (interest) param 

A := #confidential#; 

 

 

 

var produced{P,Q,-qmax..T}>=0;   #volume produced at plant i 

of product n on day t 

 

var trans{i in I,L[i],Q,-qmax..T}>=0;  #volume sent from facility i 

to facility j with shelf-life s on day t 

 

var inv{I,Q,-qmax..T}>=0;    #volume with shelf life s in 

inventory at facility g at the start of day t 

 

var waste{I,-qmax..T}>=0;    #volume wasted at facility g 

on day t 

 

var beta{i in W,L[i]} binary; 

 

 

minimize total_cost: 

 sum{i in P,q in Q,t in -qmax..T}pcost*produced[i,q,t] +  

sum{i in I,j in L[i],q in Q,t in -qmax..T}(dcost[i,j]*trans[i,j,q,t]) 

+  

 sum{i in I,t in -qmax..T}wcost*waste[i,t] +     

 sum{i in I,q in Q,t in -qmax..T}((ucost*inv[i,q,t])/365)*capcost; 

 

 

subject to 

 

waste_cons{i in I,q in Q,t in -qmax..T_q=qmin-1}: 

 waste[i,t] = inv[i,q,t]; 

 

inventory_plants{i in P,q in Q,t in -qmax+1..T:qmin[i]<=q<=qmax}: 

 inv[i,q-1,t] = inv[i,q,t-1] + produced[i,q,t-1] - sum{j in 

L[i]:qmin[i]+lt[i,j]<=q<=qmax}trans[i,j,q,t-1]; 

 

inventory_warehouses{i in W,q in Q,t in -qmax+1..T:qmin[i]<=q<=qmax}: 

 inv[i,q-1,t] = inv[i,q,t-1] + sum{j in K[i]:qmin[j]<=q<=qmax-lt[j,i] 

and t>-qmax+lt[j,i]}trans[j,i,q+lt[j,i],t-lt[j,i]-1] - sum{j in 

L[i]:qmin[i]+lt[i,j]<=q<=qmax}trans[i,j,q,t-1]; 

 

demand_satisfaction{i in R,t in 1..T}: 

 demand[i,t] = sum{j in K[i],q in Q:qmin[j]<=q<=qmax-

lt[j,i]}trans[j,i,q+lt[j,i],t-lt[j,i]]; 
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no_inv_qmax{i in I,q in Q,t in -qmax..T:q=qmax}: 

 inv[i,q,t] = 0; 

 

no_production_on_weekends{i in P,q in Q,t in U:qmin[i]<=q<=qmax}: 

 produced[i,q,t] = 0; 

 

produce_qmax_only{i in P,q in Q,t in -qmax..T:q<>qmax}: 

 produced[i,q,t] = 0; 

 

safety_stock_plants{i in P,t in 1..T-10}: 

 sum{q in Q:qmin[i]<=q<=qmax}inv[i,q,t] >= ((sum{d in 

1..T:t+1<=d<=t+10}forecast[i,d])/10); 

 

safety_stock_warehouses{i in W,j in K[i],t in -qmax..T:1<=t<=T-10}: 

 sum{q in Q:qmin[i]<=q<=qmax}inv[i,q,t] >= ((sum{d in 

1..T:t+1<=d<=t+10}forecast[i,d])/10)*lt[j,i]; 

 

beta_cons1{i in W,j in L[i],t in -qmax..T:t<=T-lt[I,j]}: 

 sum{q in Q}trans[i,j,q,t] <= beta[i,j]*demand[j,t+lt[i,j]]; 

 

beta_cons2{i in R}: 

 sum{j in K[i]}beta[j,i] = 1; 

 

 

 

 

 

 


