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ABSTRACT

This paper investigates the effects of intermittent solar and wind power generation on
electricity price formation in Germany. We use daily data from 2010 to 2015, a period with
profound modifications in the German electricity market, the most notable being the rapid
integration of photovoltaic and wind power sources, as well as the phasing out of nuclear
energy. In the context of a GARCH-in-Mean model, we show that both solar and wind power
Granger cause electricity prices, that solar power generation reduces the volatility of electric-
ity prices by scaling down the use of peak-load power plants, and that wind power generation
increases the volatility of electricity prices by challenging electricity market flexibility.
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1 Introduction

Electricity markets are gaining increasing importance on the global energy scene. Through
adjustments in their market design, electricity markets endeavour to adapt to new challenges
and integrate renewable energy sources into the power generation mix. Renewables pledge
to mitigate climate change and diversify the energy mix, increase the security of energy
supply, and decouple economic growth from increasing energy demand. However, the use of
renewables has profound effects on the power systems with which they are integrated, and
challenge the economics and operation of the electricity markets through their intermittent
nature. See, for example, Pérez-Arriaga and Battle (2012). It is subject to market design
whether intermittent power volatility, caused by nature, will penetrate into the power system
and pass-through to electricity prices.

Electricity prices reflect the physical peculiarities and economics of the power system as
these are captured by supply and demand forces. On the one hand, there is the instanta-
neous nature of electricity and transmission constraints, and on the other the highly inelastic
short-term demand (Sensfuss et al., 2008) and limited economic possibilities of large-scale
storage rendering the behavior of electricity prices special and dynamic. Pricing methods
that work in the case of financial assets often break down when applied to electricity markets,
because the latter are driven by multiple factors and exhibit different underlying data gen-
erating processes. Deregulation of electricity markets, which already counts for more than
two decades, has provoked fundamental reforms within electricity industries, by introducing
increased competition and driving electricity prices to phases of relative tranquility followed
by periods of high volatility. In this already challenging power system, intermittent renew-
ables influence electricity prices according to the so-called ‘merit-order principle,’ which has
its origins in the standard microeconomic concept of perfect competition. In line with this,
the price of electricity should be equal to the marginal cost of the last needed electricity
generation technology, otherwise called marginal plant, to meet electricity demand. Renew-
ables penetrate into the supply curve of the day-ahead market with nearly zero marginal
cost and thus get priority dispatch compared to other electricity generation technologies.
Accordingly, they shift the supply curve to the right, resulting in a lower electricity price
and complex electricity market dynamics.

The effects of renewables on electricity prices are of great concern, not only to energy
market participants such as, for example, risk managers who must have a clear understanding
of price dynamics, but also to policymakers who need to adjust the market design based on
new challenges in order to improve market efficiency and thus social welfare. As Huisman et
al. (2015, p. 151) recently put it, “an incomplete understanding of these relations could lead
to an unintended outcome of the implied policy.” Hence, as the role of intermittent renewables
increases, it is expected to have remarkable and unprecedented effects on electricity price
dynamics, while testing the adequacy and flexibility of electricity market design.

Germany is a pioneer country for renewables integration, and 2015 has been a landmark
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year, with the growth of renewables in the power generation mix at its highest ever recorded.
Agora (2016), a leading energy policy instrument in Germany, points out that “2015 goes
down on record as the year in which renewables dominated the power system for the first
time ever, becoming by far the most important energy source.” The large-scale integration
of intermittent renewables has been a natural development in the German electricity indus-
try, especially after its decision in March 2011 to scale down nuclear power plants. This
transition of Germany’s energy system, known as ‘Energiewende,’ has been assisted by the
German renewable support scheme, which promotes investments in renewable energy gener-
ation through the implementation of policy instruments. Accordingly, we can safely argue
that the German electricity market has experienced such drastic reforms during the energy
transition, that nowadays it constitutes a different electricity market.

This paper contributes to the literature on the effects of renewable power on electricity
prices in several ways. First, it fills the gap by disentangling the differential effects of solar
and wind power on German day-ahead electricity prices, using daily data, which is as recent
as June 2015. Apart from a few studies such as, for example, Clò et al. (2015), the majority of
the literature focuses on the effects of wind power on electricity prices (because in past years
solar power penetration was limited), or treats both solar and wind power as a combination
under the name of intermittent renewables. Hence, they ignore the unique features of solar
power as well as the corresponding implications for the power system; see Gull̀ı and Balbo
(2015). Secondly, since electricity supply nowadays consists largely of stochastic solar and
wind power, while electricity demand is captured by electricity load, we are interested in
exploring the dynamic relationship between day-ahead electricity prices and supply and
demand forces in a multivariate context.

We estimate a univariate GARCH-in-Mean model in order to investigate the effects of
solar and wind power on electricity price formation, and therefore explore their different
implications in relation to market design. Only a few studies, with the most notable being
Ketterer (2014), investigate the effects of renewables on day-ahead electricity price volatility,
and most of them do not consider the recent period of high renewable penetration in the
German electricity market. Finally, in line with Jónsson et al. (2010), we explore the impact
of solar and wind power on the distributional properties of German day-ahead electricity
prices, under different scenarios of solar and wind power penetration. By doing so, we
understand better the effects of solar and wind power on the complex behavior of electricity
prices, for instance negative or extreme prices, and consider it in relation to the market
design and economics of the German power market.

The paper is structured as follows. In section 2, we give an overview of the deregulation of
electricity markets, the subsequent transition towards renewables, as well as the merit-order
effect. We also discuss the new challenges of the German electricity market derived from the
combination of large-scale integration of intermittent renewables and the limited flexibility
of the electricity market. An analysis of negative electricity prices concludes this section. In
section 3, we describe the data and investigate their time series properties, while in Section
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4 the effects of solar and wind power on the distributional properties of electricity prices are
investigated. In section 5, we present the GARCH-in-Mean model and discuss the empirical
evidence, while in Section 6 we conduct a multivariate Granger causality investigation. The
last section concludes the paper.

2 Challenges in Electricity Markets

Although electricity markets were traditionally designed merely for delivering electricity,
nowadays they play numerous important roles in society. For example, sustainable develop-
ment of energy supply, energy security, environmental protection, climate change mitigation,
employment opportunities, and economic efficiency are some of their policy targets. In order
to achieve these goals, electricity markets experience profound restructuring, with the most
notable being their deregulation and the integration of renewable energy sources into their
electricity production mix.

2.1 Deregulation and Stylized Facts

The deregulation of electricity markets has provoked fundamental reforms within their in-
dustries. Before deregulation, the electricity sector used to be vertically integrated and the
public utility commissions set the prices in such a way as to ensure the solvency of the firm.
Hence, price variation was minimal and under the rigorous control of regulators (Knittel
and Roberts, 2005). After deregulation, however, competition was introduced and price
variation rose significantly. Deregulation, in combination with the physical peculiarities and
economics of the power system, introduced distinct dynamic properties in electricity prices,
which are considerably different from those of financial assets (see Keles et al., 2013). These
properties, or stylized facts, have been investigated by a substantial body of literature, in-
cluding studies by Knittel and Roberts (2005), Higgs and Worthington (2008), Karakatsani
and Bunn (2008), Escribano et al. (2011), and Fanone et al. (2013).

Seasonality is one of the most interesting characteristics of electricity prices, which is
predominantly attributed to the highly inelastic short-term electricity demand (see Sensfuss
et al., 2008). This can be viewed as a result of the limited efficient storage capabilities
that preclude any kind of inventory strategy to be implemented in both the residential and
commercial sectors. In combination with the transmission constraints and the instantaneous
nature of electricity, any supply and demand shocks will be transmitted immediately to
electricity prices, resulting in price spikes and high volatility. Ullrich (2012) investigates the
realized volatility and the frequency of price spikes in eight wholesale electricity markets
and underlies the need for better understanding of price spikes and volatility. Some other
interesting studies on these stylized facts are Huisman and Mahieu (2003), Worthington et
al. (2005), Karakatsani and Bunn (2010), and Efimova and Serletis (2014). Finally, mean
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reversion is another specific characteristic of electricity prices, mainly driven by weather
conditions (Koopman et al., 2007); it refers to the tendency of electricity prices to revert to
a long-run level reflecting the long-run cost of electricity generation.

2.2 Transition towards Renewables

Although Germany had not been a pioneer country in the deregulation of electricity markets,
as for instance the United Kingdom and Norway, nowadays it attracts special attention as a
prominent example of a country integrating renewable energy sources. In fact, 30.1 per cent
of its electricity in 2015 came from renewables such as wind and solar, up from 16.6 per cent in
2010 (see Table 1). This energy transition, known as Energiewende, is characterized by high
growth in renewable energy, and is a natural development in the German electricity industry
after the German government’s decision in 2011 to phase out nuclear power. Therefore,
significant changes have occurred in the German energy mix over the following years with
the nuclear power generation falling by 21 per cent during the first year.

Germany achieved this rapid transition through a generous renewable support scheme
that relies on three policy instruments: a) fixed-feed in tariffs for renewables accompanied
by a take-off obligation, b) a priority dispatch for renewables, and c) very restrictive rules
for renewables curtailment that takes place only for security reasons — see Brandstätt et al.
(2011) and Henriot (2015). Although this support scheme inspired confidence for investors,
thus boosting renewable energy investments (Klessmann et al., 2008), it raised a broad
discussion related to its high cost that consumers are eventually required to finance (Tveten
et al., 2013). Some notable studies that discuss the renewable electricity support instruments
are Falconett and Nagasak (2010), Frondel et al. (2010), and Verbruggen and Lauber (2012).

2.3 Price Formation and the Merit-Order Effect

Similar to every other economic system, the setting of electricity prices is based on the
law of supply and demand. Renewables constitute a large part of the current electricity
supply in the German electricity market and therefore their influence on electricity prices,
through the supply and demand mechanism, should not be disregarded. Economic aspects
and peculiarities of electricity markets are actually reflected in the pricing mechanism. That
is to say, electricity demand is highly inelastic, capturing the limited ability of consumers
to alter their consumption patterns in the short-run, while electricity supply or merit-order
curve is discontinuous, convex, and sharply increasing at the high demand level (Karakatsani
and Bunn, 2008), indicating the special characteristics of the electricity power generation
mix.

The electricity supply curve is constructed based on the aforementioned merit-order prin-
ciple, according to which supply offers are ranked dependent on their short-run marginal costs
(Morales et al., 2014). Therefore, the left part of the curve traditionally consists of supply
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offers from power plants with low marginal cost such as lignite and hard coal, while the
right part of the curve represents the supply offers from electricity generating units with
high marginal cost, for instance gas and oil fired power plants. Renewable energy generation
faces very low, or even negative marginal cost if renewable support schemes are taken into
account, and therefore is usually prioritized in comparison to other electricity generation
technologies. Consequently, offers from renewables are located on the left part of the supply
curve, thereby replacing more expensive supply offers and shifting the entire curve to the
right as illustrated in Figure 1. Subject to a specific inelastic demand curve, this results
in a lower electricity price and the so-called merit-order effect. The latter simply describes
the price diminishing mechanism that is attributed to the renewable electricity generation,
which penetrates into the power system.

The magnitude of the merit-order effect depends, predominantly, on three factors: a) the
level of electricity demand, b) the slope of the supply curve, which in this context will also be
referred to as the merit-order curve, and c) the renewable electricity generation (Sensfus et
al., 2008 and Keles et al., 2013). Electricity demand and more particularly residual demand,
which must be served by conventional power plants, determines the marginal technology
that sets the electricity price based on its production cost. The slope of the merit-order
curve plays the most important role in the size of the merit-order effect, and depends on
numerous factors. Thus, fuel prices influence the value of the merit-order effect, but not all
of them have the same impact. Therefore, the prices of the underlying fuels for the base-load
power plants are not expected to have a significant impact on the volume of the merit-order
effect, since these power plants are rarely substituted by renewables. On the contrary, the
prices of fuels that support the mid-load and especially the peak-load power plants, have a
greater effect on the size of the price reduction. In fact, Sensfus et al. (2008) investigate
the merit-order effect on the German electricity market, and conclude through simulation
runs with different fuel prices that although a 20 percent price change of the fuels for lignite
and nuclear power plants affects the merit-order effect by only 2 percent, a 20 percent price
reduction in the price of natural gas reduces the size of the merit-order effect by around 30
percent. Moreover, they underline the significant effect of the ratio of fuel prices, for instance
of gas and coal prices on the final result.

Some additional driving factors on the slope of the supply curve are the price of the
emission allowances, the capacity of the renewable electricity generation, and the various
efficiencies of the power plant portfolio. See Sensfus et al. (2008) and Keles et al. (2013).
Huisman et al. (2015) investigate the impact of fuel and emission cost on Nordpool day-ahead
electricity prices, and provide empirical evidence of nonlinear dependence. Market power is
also an important driving factor for the slope of the merit-order curve, which has seldom been
studied in the literature. Gull̀ı and Balbo (2015) investigate the impact of solar production
on the Italian electricity prices and analyze the role of the market power in the final outcome.
They conclude that solar production can lower the electricity price but only below a specific
threshold. The reason is that operators of thermal power plant units may adapt their price
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strategy based on the expected availability of the renewable power generation in order to
offset their reduced revenues which occur during times of renewable penetration. The latter
refers primarily for the case of solar power, since it exhibits less intermittent power generation
patterns compared to wind. Therefore, renewable power generation does not affect electricity
price formation only in a direct way, but also by challenging the economics of the electricity
markets with their intermittent nature. Clò et al. (2015) provide an interesting literature
review of empirical studies regarding the merit-order effect in several countries, including
Denmark, Germany, and Spain.

2.4 Renewable Energy Intermittency

Although renewable energy sources provide essential benefits for our environment, health,
and economy, their intermittent nature challenges the design and operation of electricity
markets. As Pérez-Arriaga and Battle (2012, p. 2) put it, “intermittency comprises two sep-
arate elements: non-controllable variability and partial unpredictability.” Non-controllable
variability refers to those situations in which renewable power plants are either unavailable
when increased energy requirements occur in the system, or inject substantial amount of
energy into the grid irrespective of the electricity demand level. The main reason for this
is that renewable energy is determined by weather conditions such as solar radiation or
wind speed, contrary to dispatchable generators that adapt their output as a reaction to
economic incentives, and therefore the current energy requirements (Hirth, 2013). On the
other hand, partial unpredictability describes the limited knowledge about future renewable
power generation, due to the stochastic nature of weather conditions.

It is worth noting that similar to other applications, the forecasting horizon is an impor-
tant factor of precision, and therefore the shorter the time horizon, the more accurate the
weather predictions become. Accordingly, electricity markets should be designed in such a
way that power systems are getting updated frequently with more accurate forecasts. Al-
though a detailed description of each individual type of electricity market is not within the
scope of this paper, it is important to underline that uncontrollable variability effects of
renewables impact the day-ahead electricity markets primarily, while unpredictability issues
influence the intraday and balancing markets through forecast errors (Morales et al., 2014).
This work focuses on the non-controllable variable nature of renewables and its effects on
the German day-ahead electricity price, which constitutes a European reference due to its
underlying liquidity.

The replacement of dispatchable, conventional power plants with non-controllable vari-
able renewables is a complex procedure, which introduces uncertainty with respect to the
market design and particularly for the renewable support mechanism. The main reason is
that electricity demand is time-varying and the upstream electricity market should have
short-term flexibility to serve the required load. Nicolosi (2010, p. 7257) defines the flex-
ibility of the electricity markets as “their ability to efficiently cover fluctuating electricity
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demand,” and he adds “this flexibility is influenced by the installed power plant mix and the
interaction with other markets.” Traditionally, the German power generation mix consisted
of thermal power plants that were designed and scheduled to cover dispatch requirements,
which were merely subject to the varying demand forces. However, the integration of re-
newables increased the variability of residual demand and therefore the operating modes of
thermal power plants. Hence, the number of start-ups and shutdowns in thermal production
increased significantly in order to balance electrical load and avoid power blackouts. There-
fore it can be seen that the role of the conventional power plants is currently twofold; firstly,
to adjust to the intermittent renewable power generation, and secondly, to cover the time-
varying electricity demand. This significantly increases the call for power system flexibility,
as well as the need for the necessary regulatory and operational adjustments. Pérez-Arriaga
and Battle (2012) underline the importance of flexibility for the cost of economic dispatch,
and comment on their inversely proportional relation. Shutting down and starting up ther-
mal power plants implies increased operation costs due to lower power efficiencies. So the
higher the flexibility of the power generation fleet is, the lower the overall cost that is incurred
and vice versa.

2.5 Negative Prices and their Implications

In the same way that natural resource prices reflect the underlying market scarcities, negative
electricity prices represent the limited system’s flexibility. The first negative electricity prices
in the European Energy Exchange were observed in October 2008, after the European Energy
Exchange (EEX) decided to correct inefficient incidents and more particularly situations
when energy oversupply needed to be cut (Nicolosi, 2010). Since then, they have become
increasingly common events attracting considerable attention in the literature. Fanone et al.
(2013) study the case of negative day-ahead electricity prices in the German day-ahead spot
market and underline their considerable challenge in energy risk management activities. In
a similar study, Genoese et al. (2010) show that a sufficient condition for the appearance of
negative prices is either a low system load, combined with a moderate wind generation or a
moderate system load combined with high wind generation. Besides the other factors, they
find wind generation to be the most important influential factor, while they comment on the
occurrence of all negative prices during the off-peak period.

Negative electricity prices are not problematic per se, since they are basically efficient
for non-storable goods (Nicolosi, 2010). They arise mainly as a result of the large-scale
renewable power generation, and the priority dispatch that the renewable support scheme
provides them (Brandstätt et al., 2011). Hence in some hours, when the aforementioned
sufficient conditions are satisfied, inflexible conventional power plants are forced to ramp-
down and give priority to renewables. However, renewables may stop generating electricity
only few hours later, and thereby base-load plants need to ramp-up quickly in order to serve
the electricity demand. High opportunity costs may occur in these following hours, when
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prices are above variable costs for conventional power plants, due to their limited flexibility
and expensive ramp-ups. This results in the fact that conventional plant operators are willing
to bid negative prices into the market in order to avoid these ramp-downs and continue to
produce, increasing their revenues. They can follow this pricing strategy as long as the
opportunity costs and start-up costs are higher than the negative prices that they need to
bid. It is worth mentioning that apart from these costs, long minimum standstill periods
and accordingly revenue losses arise for the conventional power plants, before they can start
producing again (Genoese et al., 2010). In fact, these long inactive periods threaten the
sustainability of the conventional power plants that need high utilization in order to cover
their high investment costs (Nicolosi, 2010). Furthermore, they create higher system costs,
since a part of demand needs to be produced by other power plants that exhibit lower
response time, but more expensive generation.

Another implication of negative electricity prices is the creation of investment incentives
for flexible power generation. However, these incentives can be very inefficient and costly to
society (Brandstätt et al., 2011). That is to say, although during some hours conventional
power plants exhibit negative marginal costs and bid negative electricity prices to avoid their
ramp-down, renewables penetrate into the system with zero marginal costs, owing to their
priority dispatch. Brandstätt et al. (2011) discuss how the operation of renewable energy
sources constraints the two leverages of the electricity market, namely prices and quantities;
prices are established through fixed-feed in tariffs, while quantities are fixed through priority
dispatch and restrictive curtailment. In fact, Brandstätt et al. (2011, p. 3736) underline the
fact that “market loses degrees of freedom to perform its market-clearing function, at the
expense of system-wide economic efficiency.” Therefore they suggest voluntary curtailment
agreements, as well as maintenance of the priority rule for renewables. Henriot (2015)
comments on the limited literature on the economic curtailment, and argues that negative
prices are the first market signals for economic curtailment of renewables. Finally, motivated
by the aforementioned discussions, we proceed to the next section with the data description.

3 The Data

We use daily German electricity spot prices, solar (st) and wind (wt) power generation, and
total electricity load (lt) over the period from January 1, 2010 to June 30, 2015 — a total
of 2007 observations. Specifically, we use the day-ahead spot electricity price, Phelix Day
Base, which is calculated as the average price of the 24 hours of one day; the Phelix Day
Peak, which is the average electricity price of the peak hours; and the average electricity
price of the off-peak hours. It is worth mentioning that peak hours cover hours 9 to 20, while
off-peak hours cover hours 1 to 8 and hours 21 to 24.1 The main reason for distinguishing
between peak and off-peak hours is the fact that during these hours electricity markets

1The definition of peak and off-peak hours remains the same during all the months of the year.
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exhibit different characteristics, for instance, flexibility, and economic efficiency, which are
accordingly reflected in the electricity price dynamics. In fact, as Ballester and Furió (2015,
p. 1606) put it, “the picture has become more informative when peak and off-peak hours are
analyzed separately, confirming the fact that these price series should be viewed as different
commodities, with different features.” All electricity prices and renewable power generation
are from the European Energy Exchange, while total electricity load is from the European
Network of Transmission System Operators for Electricity (ENTSO-E).

It is worth mentioning that since we investigate the effects of variable solar and wind
power generation on day-ahead electricity prices, the predicted, rather than the actual power
generation should be employed in the analysis. The main argument behind this is that
the actual power generation does not affect the day-ahead electricity volumes and prices
directly, but through their predictions that are placed in the market to be cleared (Morales
et al., 2014). However, in this analysis we employ the actual renewable power generation
and total load for two reasons. First, the data availability for predicted solar and wind
power generation is limited, and second, since the predicted total load data is not available
we would have to construct our own prediction model. However, this would render our
estimation results subject to the generated regressor problem studied in detail by Pagan
(1984), since the estimated predictions of total load would only be a proxy for the market
expectations. Hence, we follow Nicolosi (2010) and accordingly use the actual solar and wind
power generation, as well as the actual total electricity load. Nicolosi (2010, p. 7261) argues
that “since, in this article, the actual market situation is analyzed, the realised values are
used.” From a similar point of view, Mauritzen (2013), who investigates the effect of wind
power production on Danish and Norwegian day-ahead prices, uses the actual wind power
generation data, as an approximation of the forecasted wind.

Table 2 presents summary statistics for the electricity prices, solar and wind power gen-
eration, and total electricity load. Figure 2, and Figures 6-10 depict the development of
the series from January, 2010 to June, 2015. This is the period after the latest profound
modification which occurred in Germany’s renewable energy policy in 2010. Significant
changes followed in the electricity production mix [see Table 1], with the most important
being the nuclear phase-out, and the rapid integration of photovoltaic and wind power sys-
tems. Despite the aggressive renewable energy transition, Germany currently produces more
electricity from coal (hard coal and lignite) than renewables, with coal being at a slightly
higher level than in 2010. This comes about as a result of the fact that energy transition
towards renewables is a long-term and complex process, and therefore the major part of
nuclear power production has to be replaced by other energy sources, such as coal. Natural
gas also remains a considerable source of the electricity production mix, despite its decline
in recent years, since it supports the flexible peak-load power generation that complements
the variable nature of renewables. So in fact, Germany is still strongly dependent on heav-
ily polluting fossil-fuels, and therefore far from meeting the emission reduction target of 40
percent by 2020, compared to 1990 levels.
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Some stylized facts of electricity prices are discernible from Figure 2. A yearly season is
present with the price showing a tendency to decrease during the first half of the year and
recover gradually by the end of it. The pattern becomes more obvious during the last years
of our sample period, possibly due to implications of the energy transition. In addition, we
identify a mean reverting behaviour, and a slight tendency for the price to decrease over the
last six years, signifying the success of the regulatory changes. Some periods of high volatility
followed by periods of relative tranquility can also be identified. Another interesting stylized
fact of electricity prices is sudden price spikes. Ullrich (2012) defines price spikes as the
combination of an upward jump and a reversal, while he underlines their risky nature for
wholesale electricity markets. Electricity price spikes can be attributed to limited economic
possibilities of large-scale electricity storage, but should also be investigated in relation to
renewable energy sources. Due to these price spikes, the electricity price distributions exhibit
high kurtosis and fat tails (see Figures 3-5), thus leading to substantial challenges for the
operations of energy risk management.

Figures 6 and 7 show the actual solar and wind power generation during the sample
period. We find out that each energy source has its own advantages and areas where com-
promise is necessary. Wind power production provides the power market with high amounts
of energy most of the year, but its output is highly volatile due to its intermittent nature. In
contrast, solar power production is more stable than wind power production, and therefore
easier to incorporate into medium-term planning (Kovacevic et al., 2013). However, a consis-
tent pattern related to the seasons of the year becomes obvious in the solar production that
reaches its maximum during the summer and decreases again gradually during the winter.
The inverse seasonal pattern is partly identified in wind power production, thus indicating
the extent to which the complementary nature of the solar and wind power generation can
be exploited in the future for a hybrid power generation system. The high penetration rate
of solar power into the electricity generation mix is also discernible from Figure 6, as a result
of generous policy incentives and sharp decline in installation costs.

Electricity demand is an equally important factor in price formation as the electricity
supply. In the power systems, it is captured by the total electricity load which is illustrated
in Figure 8. We can see clearly that electricity demand is well aligned to wind power
production, reaching its maximum during the winter, and falling off gradually during the
summer. In fact, as Agora (2015, p. 15) puts it, “Germany continues to be a winter peaking
country primarily due to the demands of lighting and water and space heating; 6.1 percent
of space heating is fueled electrically, including night storage systems and heat pumps.” In
fact, electricity demand follows an inverse seasonal pattern than solar power production,
which pushes down the peak electricity price. By looking at Figure 6, and Figures 9 and
10, we notice that peak electricity prices get lower values than off-peak electricity prices
during the spring and summer seasons. So, we may conclude that the spread between peak
and off-peak electricity prices decreases when solar power generation reaches its maximum
and vice versa. However, this conclusion might rely only on some coincidental facts, and

11



therefore additional empirical investigation is necessary.
Before we continue with the empirical analysis, we conduct some necessary unit root

and stationary tests in each of the employed series in Table 3, in order to test for the
presence of a stochastic trend in the autoregressive part of the series. The Augmented
Dickey-Fuller (ADF) test [see Dickey and Fuller, 1981] and the Dickey-Fuller GLS test [see
Elliot, Rothenberg, and Stock (1996)] evaluate the null hypothesis of a unit root against an
alternative of stationarity. We assume a constant, and select the optimal lag length based on
the Bayesian information criterion (BIC). In addition, Kwiatkowski et al. (1992) tests are
used in order to test the null hypothesis of stationarity (around a constant, for test statistic
η̂µ, and around a trend, for η̂τ ). We note that electricity prices during all hours and peak
hours are not very informative regarding their unit root properties, although they should
be stationary based on their mean reverting behavior [see Schwartz (1997), Simonsen et al.
(2004), Weron et al. (2004), and Cartea and Figueroa (2005)], which is also verified by their
historical development. Since overdifferencing may be more harmful than including a unit
root series in levels, we use the levels of these series alongside the careful checking of the
stationarity of the residuals in the model. An examination of the unit root and stationarity
tests for the rest of the series, in combination with their historical development in Figures
6-8, and Figure 10, suggest that their levels are stationary, or integrated of order zero, I(0).
Last, we check for multicollinearity by using auxiliary regressions, as well as by examining
the correlation matrix of the independent variables. Both of them suggest that there is no
sign of severe multicollinearity.

4 The Effects of Solar and Wind

Having analyzed the descriptive statistics and characteristics of the employed series, the
question remains how solar and wind power generation affects day-ahead electricity prices.
Therefore, in this section we analyze the way that the main properties of the electricity price
distribution react to different amounts of solar and wind power generation, while taking into
account total electricity load. We follow Jónsson et al. (2010) and divide our data into
intervals, according to solar and wind power penetration; penetration here is defined as the
ratio of each electric power source to the total electricity load. Tables 4 and 5 summarize the
properties of price distribution for different scenarios of solar and wind power penetration
respectively, while Figures 11 and 12 illustrate the corresponding histograms of electricity
prices.

In the case of solar, the first two lines of the table show that both the mean and standard
deviation of the electricity price decrease as solar power penetration increases. Moreover,
the third and fourth central moments are calculated for each interval. Skewness, which is a
measure of the degree of asymmetry of a distribution, takes always negative values indicating
the left long tail, while kurtosis is high in the beginning, thus capturing the heavy tails of the
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distribution, and decreases significantly for solar power penetration higher than 7 percent.
Hence, there is statistical evidence that the probability of extremely low electricity prices
decreases when solar power penetration gets larger. Figure 11 verifies this change in the
distributional properties of electricity prices.

The mean of the electricity price also decreases for higher levels of wind power penetra-
tion. It is important to state that for wind power penetration higher than 25 percent, the
mean of electricity price declines by around 50 percent. However, the standard deviation of
the electricity price distribution increases as wind power penetration gets larger, providing
some evidence of augmented volatility — see Jónsson et al. (2010). Skewness and kurto-
sis do not provide any obvious pattern, apart from the last interval where electricity price
distribution exhibits negative skewness and high kurtosis. That is to say, the probability
of very low electricity prices increases when wind power serves more than 25 percent of the
electricity demand. This rapid change of distributional properties during the large interval
might be an indication of non-linear effects of wind power generation on electricity prices.

5 GARCH Modelling

This section presents three univariate GARCH-in-Mean models for three different electricity
prices. In particular, we estimate three GARCH(1,1) models that apply to German day-
ahead electricity prices during all hours, peak hours, and off-peak hours. In each case, we
specify the mean equation based on the Schwarz Information Criterion (SIC), the Akaike
Information Criterion (AIC), and the Hannan-Quin Information Criterion (HQC) (see panels
A, B, and C of Table 6), which all suggest the AR(7) as the optimal model specification.
Accordingly, the three mean equations are represented as

pt = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (1)

ppeak,t = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (2)

poff−peak,t = α + β1
√
ht +

7∑
i=1

β1+ipt−i + β9st + β10wt + β11lt + εt (3)

where
√
ht is the conditional standard deviation, st the solar power generation, wt the wind

power generation, and lt is the total electricity load.
The variance equation of the model is a classic GARCH(1,1) equation augmented with

additional regressors — the solar power generation, wind power generation, and the total
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electricity load. The resulting variance equation is

ht = c0 + a1ε
2
t−1 + b1ht−1 + b2st + b3wt + b4lt (4)

where ht is the conditional varianceand ε2t−1 are the squared residuals.
It is noteworthy that in contrast to a large part of the literature, we actually include

the negative electricity prices in our analysis, since we consider them useful for a better
understanding of the market functioning, and also because there is some evidence for a
direct relation between them and renewable power generation. The empirical consideration
of negative electricity prices for the case of the German/Austrian electricity market is rarely
found in the literature since they were not present until 2009 (Ziel et al., 2015). However,
Keles et al. (2012) include them in their simulation study and get better results, while Fanone
et al. (2013) also argue in favor of their inclusion. Therefore, we include the negative prices in
our analysis without cutting off or shifting the series. Moreover, we do not apply any extreme
value theory, and we merely filter values that exceed, by ten times, the standard deviation
of the original price series2. We replace the outliers, which arise from the combination of
exceptional high wind penetration and low demand, with the median of the respective series,
which is a robust statistic.3

The empirical estimates for the three models, equations (1) and (4), equations (2) and
(4), and equations (3) and (4), are presented in panels A and B of Tables 7, 8, and 9.
All autoregressive coefficients, with the exception of the fifth during all hours and off-peak
hours, as well as the fourth and fifth during peak hours, are found positive and statistically
significant at the 1% level, while GARCH-in-Mean effects are found significant at the 5%
level, but only for the case of electricity prices during peak hours. Hence, risk captured by
electricity price volatility seems to propagate towards electricity prices during peak hours
and affect them in a positive way. The most striking feature in the mean equation is the
negative effect of solar and wind power generation on electricity prices, which is in line with
the literature. In fact, wind exhibits a more severe effect than solar during all hours of the
day, while the solar effect is significant during peak hours, but not during off-peak hours. In
contrast, the total electricity load has, as expected, a positive impact on electricity prices
throughout all hours of the day, while its effect becomes more prominent during peak hours
when the electricity system is tight. Consequently, electricity prices increase with higher
demand, and this rise is even greater when demand is high, relative to the other hours of
the day and the power system capacity.

In the variance equation, the GARCH coefficient on ht−1, which reflects the persistence of
past shocks on the variance, is moderately high (0.552) during peak hours, and low (0.278)

2It is a common practice in the literature, for outlier detection purposes to filter values that exceed three
times the standard deviation of the original series. However, we use the threshold of ten times, so that we
solve some potential numerical problems and at the same time include as many observations as possible.

3Only 2 observations out of 2007 for the electricity price during off-peak hours are replaced with the
median of the series.
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during off-peak hours. The ARCH coefficient on ε2t−1, which captures the impact of new
shocks, is always found very low, while total electricity load which reflects the electricity
demand profile, surprisingly, decreases electricity price volatility during all hours of the
day. Finally, the most interesting feature in the variance equation is the significant effect
of solar and wind power generation on electricity price volatility. Specifically, solar power
production reduces electricity price volatility in contrast to wind power production that
augments it. This finding is in accordance with the previous results from the analysis of
distributional properties of electricity prices under different renewable power penetration,
where the standard deviation of electricity prices was found to decrease with higher solar
power penetration, but to increase with higher wind power penetration.

The effects of solar and wind power generation on electricity price characteristics can be
understood better through the analysis of the merit-order effect (see Figure 1). First of all,
every type of renewable power generation technology induces a merit-order effect, since they
can always replace expensive fossil-fuel power generation due to their low, short-run marginal
cost and priority dispatch. What really differentiates the effect of each renewable power
source on electricity prices, is the relation of its power generation pattern with the special
power system characteristics. In the case of solar, it is common knowledge that its greatest
amount of production occurs during the same hours of peak electricity demand and therefore
expensive peak-load power generation. Hence, solar power generation is expected to exhibit
the strongest merit-order effect, compared to different renewable power sources, during peak
hours. Accordingly, by looking at Figure 1, we notice that the new electricity price, after
solar power penetration, is set by the intersection of the demand curve D2 and the new supply
curve S2. What is really noteworthy in this case, is not only the significantly lower system
price but also the lower gradient of the new merit-order curve, where the demand curve
crosses it. Thus, a new electricity price is set by ‘cheaper’ power generation, and demand
variation can be handled adequately without high cost peak power plants penetrating into
the system.

Moreover, solar power generation exhibits low variability, and therefore mid-load power
plants can adjust their power production to residual demand efficiently, through their flexi-
bility. In this way, solar power generation manages to reduce electricity price volatility which
is characterized by large and frequent price spikes. On the other hand, wind power capacity
is more than double that of solar and so, it is expected to induce a larger merit-order effect
in total during the day. Combined with high variable power production, wind challenges
the operation of power system, and more particularly its flexibility. That is to say, large
amounts of wind power penetrate the system with high variability, and alternate the level of
residual demand that conventional power plants need to serve. Thus, increased cycle effects
and technology switching occur, causing frequent price spikes and increased price volatility.
This effect becomes more prominent during off-peak hours, when system flexibility is even
lower; base-load power plants, such as lignite or hard coal, bid negative prices in order to
avoid ramp-downs, and thereby introduce negative price spikes and increase electricity price
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volatility.
Finally, Panel C of Tables 7, 8, and 9 reports the Ljung-Box test statistics for the resid-

uals. The Ljung-Box Q test for residual autocorrelation does not pass at conventional sig-
nificance levels for all the lags; however, autocorrelation plots for residuals show very little
autocorrelation and certainly no particular pattern that can be due to non-stationarity or
seasonality. Overall, the diagnostic tests suggest that all GARCH models are correctly spec-
ified.

6 Granger Causality

In this section, we test for Granger causality from solar power generation, wind power gen-
eration, and total electricity load to day-ahead electricity prices, within the already specified
GARCH framework given by the equations (1) and (4), equations (2) and (4), and equations
(3) and (4). In fact, we investigate in the spirit of Granger (1969) whether past information
about solar power generation, wind power generation, or total electricity load improves the
prediction of electricity prices, beyond predictions that are based merely on past electricity
prices.4 We do that in a multivariate context, and use the Wald (1943) test in order to
investigate whether the coefficients of solar, wind, or load, respectively, are zero, thus not
Granger-causing electricity prices.

First, we test for Granger causality between electricity prices and solar power genera-
tion. Hence, we test the null hypothesis that the set of coefficients of solar, in the mean and
variance equations, are jointly zero. If the null hypothesis is rejected, then we can safely con-
clude that solar Granger-causes the corresponding electricity price distribution. In addition,
we explore the same causal relations for the case of wind power generation as well as total
electricity load. Table 10 reports the results of these tests for electricity prices during all
hours, peak hours, and off-peak hours; p-values lower than 0.01 indicate rejection of the null
hypothesis of no Granger causality at the 1% significance level. The results clearly indicate
that solar power generation, wind power generation, and total electricity load Granger-cause
electricity prices at the 1% significance level.

Moreover, we investigate the combined impact of the two most important, intermittent,
renewable energy sources in the German electricity market, solar and wind on electricity
prices. Hence, we test the null hypothesis that the four coefficients of solar and wind power
generation in the mean and variance equations are jointly zero. By looking at Table 10,
we conclude that their combined impact Granger-causes electricity prices and modifies their
distributions. Hence, we arrive at the conclusion that with our data, there is statistically sig-
nificant evidence for Granger causality from solar power generation, wind power generation,
and total electricity load to electricity prices. An interesting direction for future research

4Market forecasts about solar power generation, wind power generation, and total electricity load are
provided before daily auction takes place at 12.00 pm.
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would be to investigate the same causal relations in the context of non-linear models, while
exploring the complex intraday dependence of hourly prices.

7 Conclusion

Climate change, environmental degradation, growing energy demand, depletion of natural
resources, and limited energy security, all render the deployment of renewable energy sources
in the electricity industry of high importance for decades to come. However, despite their
many advantages, renewables challenge the operation of electricity markets with their inter-
mittent nature. This paper discusses the ongoing transition of the German electricity market
towards renewables, as well as the effects of intermittent solar and wind power generation on
electricity price formation through the supply and demand mechanism. More importantly, it
provides a study of the relationship between day-ahead electricity prices and solar and wind
power generation and total electricity load for all hours, peak hours, and off-peak hours, us-
ing data over the period from 2010 to 2015. It also investigates the distributional properties
of electricity prices under different scenarios of solar and wind power penetration.

We find that there are causal relationships from solar power generation, wind power
generation, and total electricity load to electricity prices during all hours, peak hours, and
off-peak hours. We provide evidence that although both solar and wind power generation
induce a merit order effect, they have different effects on the volatility of electricity prices
and their higher order moments. In particular, solar power generation reduces the volatility
of electricity prices while it reduces the probability of electricity price spikes. On the other
hand, wind power volatility passes through to electricity prices volatility, and introduces
electricity price spikes. While the volatility of renewable power is driven by the stochastic
nature of weather conditions, the volatility of electricity prices is also subject to market
design.

The findings of this paper underline that effective and sustainable integration of large-
scale renewable energy begins with a clear understanding of the distinct properties of each
renewable energy source, as well as of its interaction with different parts of the power sys-
tem. Increased flexibility seems to be the crucial element for addressing different aspects of
renewable energy intermittency, such as variability or uncertainty, and rendering renewable
energy sources viable and reliable. Hence, flexible conventional power generation, adequate
transmission grid, and contribution of renewable energy to system stability are some of the
potential ways to increase system flexibility. However, reducing the flexibility requirements
through policy measures, such as economic curtailment of renewable generation, energy
storage, demand response, and market interconnection can achieve similar results. Lastly,
optimal management of renewable resources, for example, through geographic decorrelation,
or resource complementarity is another key consideration for future deployment of large-scale
renewables.
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[4] Ballester, C. and D. Furió. “Effects of renewables on the stylized facts of electricity
prices.” Renewable and Sustainable Energy Reviews 52 (2015), 1596-1609.

[5] Brandstätt, C., G. Brunekreeft, and K. Jahnke. “How to deal with negative power price
spikes?—Flexible voluntary curtailment agreements for large-scale integration of wind.”
Energy Policy 39 (2011), 3732-3740.

[6] Cartea, A. and M.G. Figueroa. “Pricing in electricity markets: A mean reverting jump
diffusion model with seasonality.” Applied Mathematical Finance 12 (2005), 313-335.
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Table 1: Electricity production in Germany by source (%)

Source 2010 2011 2012 2013 2014 2015

Hard coal 18.5 18.3 18.5 19.9 18.9 18.1
Lignite 23.0 24.5 25.5 25.2 24.8 23.8
Nuclear 22.2 17.6 15.8 15.2 15.5 14.1
Natural Gas 14.1 14.0 12.1 10.6 9.7 9.1
Oil 1.4 1.2 1.2 1.1 0.9 0.8
Others 4.2 4.2 4.1 4.1 4.3 4.1
Renewable energies from which 16.6 20.2 22.8 23.9 25.9 30.1

Biomass 4.7 5.3 6.3 6.5 6.9 6.8
Hydro power 3.3 2.9 3.5 3.6 3.1 3.0
Photovoltaic 1.8 3.2 4.2 4.9 5.7 5.9
Waste-to-energy 0.7 0.8 0.8 0.8 1.0 0.9
Wind 6.0 8.0 8.0 8.1 9.1 13.5

Source: AG Energiebilanzen, 2016.



Figure 1: Merit-order effect during peak and off-peak hours
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Table 2: Summary statistics

Standard Excess J-B
Variable Mean deviation Skewness kurtosis normality

pt 40.710 12.144 -0.637 6.558 1194.673
ppeak,t 46.018 14.516 -0.113 4.155 115.817
poff−peak,t 35.403 11.130 -2.878 37.184 100490.115
st 67090.677 52857.637 0.673 2.433 178.431
wt 131069.269 110880.605 1.652 6.169 1752.855
lt 1326660.182 164759.086 -0.390 2.399 81.027



Figure 2: All hours electricity prices
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Figure 3: Histogram of all hours electricity prices
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Figure 4: Histogram of peak electricity prices
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Figure 5: Histogram of off-peak electricity prices
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Figure 6: Solar power production
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Figure 7: Wind power production
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Figure 8: Electricity load
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Figure 9: Peak electricity prices
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Figure 10: Off-peak electricity prices
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Table 3: Unit root and stationarity tests

ADF DF-GLS KPSS KPSS
Variable τµ µ η̂µ η̂τ

pt -4.458* -1.894 3.699* 0.408*

ppeak,t -3.969* -1.656 3.455* 0.332*

poff−peak,t -4.845* -2.340* 3.455* 0.396*

st -2.613 -1.098 1.597* 0.107
wt -11.805* -8.286* 1.107* 0.101
lt -4.838* -1.647 0.399 0.307*

Note: An asterisk indicates significance at the 5% level.



Table 4: Price distribution properties for different solar power penetration levels

0-7% 7-14% 14-21%

Mean 43.307 36.023 28.031
Standard deviation 12.128 9.725 9.676
Skewness -1.026 -0.180 -0.757
Kurtosis 5.837 0.472 0.955
Observations 1378 550 79

Table 5: Price distribution properties for different wind power penetration levels

0-5% 5-10% 10-15% 15-20% 20-25% 25-55%

Mean 46.066 42.258 39.312 36.026 32.371 22.866
Standard deviation 10.218 10.578 9.498 9.533 10.938 14.337
Skewness -0.164 0.264 -0.278 -0.151 0.182 -2.165
Kurtosis 0.350 1.021 0.507 -0.458 -0.414 9.029
Observations 684 562 353 174 100 134



Figure 11: Distribution of prices for different intervals of solar power penetration

Figure 12: Distribution of prices for different intervals of wind power penetration



Table 6: Optimal AR lag in the mean equation

A. All prices B. Peak prices C. Off-peak prices

Lag AIC SIC HQ AIC SIC HQ AIC SIC HQ

1 5.558 5.591 5.570 6.095 6.128 6.107 5.464 5.497 5.476
2 6.097 6.134 6.111 6.354 6.390 6.367 5.684 5.720 5.697
3 5.859 5.898 5.873 6.405 6.444 6.419 5.787 5.826 5.802
4 5.753 5.794 5.768 6.164 6.206 6.179 5.643 5.685 5.658
5 5.411 5.456 5.428 5.918 5.963 5.934 5.303 5.348 5.320
6 5.389 5.437 5.407 5.891 5.939 5.909 5.275 5.323 5.293
7 5.363 5.413 5.382 5.848 5.898 5.867 5.259 5.309 5.277
8 5.548 5.601 5.567 5.849 5.903 5.869 5.260 5.313 5.279



Table 7: Univariate GARCH base model

A. Conditional mean equation

Constant 10.850 (0.3252)√
ht 0.086 (0.0867)

pt−1 0.463 (0.0000)
pt−2 0.097 (0.0005)
pt−3 0.075 (0.0060)
pt−4 0.068 (0.0081)
pt−5 0.042 (0.0755)
pt−6 0.069 (0.0026)
pt−7 0.162 (0.0000)
st -3.465E-05 (0.0000)
wt -4.481E-05 (0.0000)
lt 4.037E-05 (0.0000)

B. Conditional variance equation

Constant 23.159 (0.0000)
ε2t−1 0.226 (0.0000)
ht 0.447 (0.0000)
st -1.483E-05 (0.0000)
wt 1.385E-05 (0.0000)
lt -1.436E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0001
Q2(30) p-value 0.9958



Table 8: Univariate GARCH peak model

A. Conditional mean equation

Constant -7.033 (0.3232)√
ht 0.121 (0.0233)

pt−1 0.390 (0.0000)
pt−2 0.124 (0.0000)
pt−3 0.062 (0.0096)
pt−4 0.043 (0.0719)
pt−5 0.057 (0.0116)
pt−6 0.082 (0.0001)
pt−7 0.207 (0.0000)
st -6.838E-05 (0.0000)
wt -5.035E-05 (0.0000)
lt 5.557E-05 (0.0000)

B. Conditional variance equation

Constant 26.318 (0.0000)
ε2t−1 0.198 (0.0000)
ht 0.552 (0.0000)
st -1.476E-05 (0.0018)
wt 1.953E-05 (0.0000)
lt -1.656E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0000
Q2(30) p-value 0.9011



Table 9: Univariate GARCH off-peak model

A. Conditional mean equation

Constant 3.834 (0.2747)√
ht -0.054 (0.1417)

pt−1 0.476 (0.0000)
pt−2 0.092 (0.0002)
pt−3 0.070 (0.0024)
pt−4 0.060 (0.0049)
pt−5 0.039 (0.0766)
pt−6 0.099 (0.0000)
pt−7 0.120 (0.0000)
st -1.503E-06 (0.6436)
wt -3.861E-05 (0.0000)
lt 2.552E-05 (0.0000)

B. Conditional variance equation

Constant 22.663 (0.0000)
ε2t−1 0.143 (0.0000)
ht 0.278 (0.0000)
st -1.723E-05 (0.0000)
wt 3.313E-05 (0.0000)
lt -1.394E-05 (0.0000)

C. Standardized residual diagnostics

Q(30) p-value 0.0000
Q2(30) p-value 0.0001



Table 10: p-values for Granger causality

Electricity price

Causal variable All hours Peak hours Off-peak hours

Solar 0.0000 0.0000 0.0000
Wind 0.0000 0.0000 0.0000
Load 0.0000 0.0000 0.0000
Solar & wind 0.0000 0.0000 0.0000


