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Abstract

We evaluate the role of a fossil fuel tax and research subsidy in directing inno-
vation from fossil fuel toward renewable energy technologies in the electricity sector.
Using a global firm-level electricity patent database from 1978 to 2011, we find that
the impact of fossil fuel taxes on renewable energy innovation varies with the type of
fossil fuel. Specifically, a tax on coal reduces innovation in both fossil fuel and re-
newable energy technologies while a tax on natural gas has no statistically significant
impact on renewable energy innovation. The reason is that easily dispatchable energy
sources like coal-fired power plants need to complement renewable energy technologies
in the grid because renewables generate electricity intermittently. Our results suggest
that a tax on natural gas, combined with research subsidies for renewable energy, may
effectively shift innovation in the electricity sector towards renewable energy. In con-
trast, coal taxation or a carbon tax that increases coal prices has unintended negative
consequences for renewable energy innovation.

Key words: Electricity; Energy taxes; Renewable, coal, natural gas technologies
JEL Classification Codes: O3, Q4, L9

∗We are grateful to Ragnhild Balsvik, Estelle Cantillon, Antoine Dechezleprêtre, Gernot Doppelhof-
fer, Isis Durrmeyer, Gunnar Eskeland, Sturla Kvamsdal, Stefan Lorenz, Maria Marchenko, Joëlle Noailly,
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1 Introduction

The combustion of fossil fuels to generate electricity is the largest single emitter of carbon
worldwide. In 2014, 70% of global electricity production came from fossil fuels such as coal,
natural gas, and oil, making up 40% of global carbon emissions. In the U.S. only, electric-
ity generation accounts for 37% of total carbon emissions and 31% of total greenhouse gas
emissions (International Energy Agency, 2015b). With increasing concerns over climate
change, many economists argue in favor of decarbonizing the electricity sector through
higher use of less carbon-intensive technologies such as solar, wind, and other clean tech-
nologies.1 For decades, an increasing number of private research firms have been competing
for new technological breakthroughs to minimize the human carbon footprint. In addition,
for at least three decades, governments throughout the world have implemented policies to
promote the invention of both efficiency-improving fossil fuel technologies and technologies
utilizing renewable energy.2 In particular, there are two types of environmental policies
that economists favor: subsidies to promote cleaner technologies and taxes to internal-
ize the environmental costs of burning fossil fuels.3,4 While these efforts have resulted in a
range of technological innovations, it is unclear whether there has been a shift in innovation
efforts towards cleaner technologies. In this paper, we explore the role of environmental
regulations, specifically fossil fuel taxes, in shifting innovation from fossil fuel to renewable
energy.

In particular, we ask the following questions. First, are fossil fuel taxes successful
at promoting innovation in renewable technologies in the electricity sector? Second, how
effective are research subsidies in shaping global innovation in the electricity sector? Finally,
what other factors shift innovation in the electricity sector towards renewable technologies?
To answer these questions, we estimate a directed technological change model using global

1While these technologies are commercially available, renewable energy still represents a modest share
in global electricity production. According to the World Development Indicators, 21.5% of the world’s total
electricity generation comes from renewable sources, whereas only 5.4% comes from non-hydro renewable
sources (see Table 1).

2According to the International Energy Agency (IEA), global subsidies for renewable energy totaled
$112 billion in 2014 while fossil fuel subsidies totaled $493 billion (International Energy Agency, 2015e).

3See for example Acemoglu et al. (2012); Bovenberg and Smulders (1995, 1996); Goulder and Schneider
(1999) for a rigorous characterization of the role of these policies in decarbonizing the economy.

4In addition to these two policies, there are other policies like feed-in tariffs and cap and trade that
promote innovation. Since only some countries have implemented these policies and for a relatively short
period of time, we do not quantify their effect in this study. However, we do control for these policies in
our empirical analysis.
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firm-level electricity patent data from 1978 to 2011. Past work has focused on the aggregate
impact of all energy prices in fossil fuel and renewable technologies. In contrast, we take a
different approach and distinguish fuels used in power generation (e.g., coal, natural gas,
and oil) and technologies used for electricity generation (e.g., coal-fired plants, gas plants,
solar power plants).5 By doing so, we identify specific taxes that encourage and discourage
renewable energy innovation.

The directed technological change (DTC) framework of Acemoglu (2002); Acemoglu
et al. (2012, 2016) guides our empirical analysis. These and other DTC models predict
that energy prices, taxes, subsidies and past innovation activity affect technological ad-
vancements, and that these effects depend on the elasticity of substitution between fossil
fuels and renewable energy. Specifically, when fossil fuel and renewable energy technologies
are substitutes, higher fossil fuel prices can shift innovation towards more renewable energy
technologies. However, when they are complements, a higher fossil fuel price discourages
innovation in renewable technologies. Empirical studies have presented evidence for a sub-
stitute relationship between fossil fuel and renewable technologies in the electricity sector
(see, for example, Papageorgiou et al., 2016). However, this and other studies employed an
aggregate measure for fossil fuel technologies that summarizes all fossil fuel technologies
into one composite index. We take a different approach by disaggregating fossil fuel prices
and technologies between coal, natural gas, and oil in order to capture the idiosyncrasies
of the electricity market.

In the electricity grid, renewable energy technologies are imperfect substitutes for fossil
fuel-burning technologies because they supply electricity intermittently (see, for example,
Joskow, 2011). The intermittency issue of many renewable energy sources, especially wind
turbines and solar power plants, makes them an unstable energy source for base-load power
plants that supply electricity continuously without any interruption.6 This suggests that

5The distinction among electricity generating technologies is important because some plants are used
in base-load electricity generation while others are used in peak-load electricity generation. Base-load
electricity refers to electricity generated from power stations that operate continuously and are available
24 hours a day. In contrast, peak-load power plants run only when demand for electricity is high, such as
during summer afternoons when air conditioning loads are high (International Energy Agency, 2015d). In
2013, coal (41.1%), hydro (16.1%), and nuclear (10.6%) generated most global base-load power. Table 1
presents electricity production by source and region in 2013.

6Hydropower technology is the exception. According to the International Energy Agency (2015b), 16%
of the world’s total electricity generation comes from hydroelectric power plants. The most common plants
store water in a reservoir and release water to create energy when electricity is needed, depending on
water availability. Thus, hydroelectric plants have been able to dispatch electricity since the late 19th cen-
tury. Unfortunately, large hydroelectric plants are concentrated geographically and hydroelectric capacity
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as long as wind and solar energy cannot be efficiently stored for later use, they cannot
replace coal from base-load electricity generation and they present an imperfect substitute
for fossil fuels.7 Thus, the supply of electricity from renewable sources must be comple-
mented with easily dispatchable fossil fuels like coal. Then, as predicted by the directed
technological change models, we should expect a higher coal price to discourage innovation
in renewable technologies as well as coal-burning technologies. The main goal of our paper
is to empirically test this hypothesis.

To empirically evaluate the above hypothesis, we first construct a unique firm-level
panel data set where we use electricity patent application data to measure innovation. To
mitigate the problem that many patents have low values, our empirical analysis focuses on
“triadic” patents, which are series of patents filed at all three of the world’s most important
patent offices: the European Patent Office (EPO), the U.S. Patent and Trademark Office
(USPTO), and the Japan Patent Office (JPO). We classify these patents into the following
three groups: renewable energy, base-load fossil fuel, and peak-load fossil fuel patents. By
separating fossil fuel patents into base- and peak-load technologies, we can infer about the
heterogeneity in the elasticity of substitution between renewable energy and different types
of fossil fuels. In addition to the main patent data, we collect data on coal, natural gas, and
oil prices, research subsidies, and economic indicators. Altogether, our data set includes
13,054 firms across 26 countries between 1978 and 2011, which covers 96.20% of all triadic
electricity patents globally (OECD, 2009).

Our estimation results find evidence for a mixed effect of fossil fuel prices in renewable
energy innovation. First, an increase in the price of coal discourages innovation in renewable
energy. The reason is that renewables rely of coal-fired plants to complement their supply
to the grid. Specifically, a 10% increase in the price of coal is associated with 3.4% decrease
in renewable energy innovation. In contrast, we find an insignificant impact of an increase
in the price of natural gas on the firm-level likelihood of innovation in renewable energy.
These results imply that a tax on coal and a carbon tax that increases the price of coal
may create unintended effects by discouraging the development of renewable electricity-
generating technologies. In addition to energy prices, we also find that research subsidies
play a significant role in shifting the direction of innovation in the electricity sector. Our

expansion is limited.
7Many argue in favor of electricity storage as the solution to the intermittency issue of renewable sources,

but the cost of large-scale electricity storage is the biggest roadblock for its success. See Lazkano et al.
(2016) for an analysis of the role of electricity storage in the transition from fossil fuels to renewable sources
in electricity generation.
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results show that, to effectively direct innovation in the electricity sector towards more
renewable energy, a combination of renewable energy research subsidies and natural gas
taxation is desired. On the other hand, excessive reliance on a coal tax may negatively
affect renewable energy innovation because the need of base-load fossil fuels to complement
renewable energy.

Our paper contributes to recent empirical literature that studies incentives for innova-
tion in the energy sector (for example, Buonanno et al. (2003); Popp (2002, 2005)).8 While
the empirical evidence from this literature is extensive, previous work has mainly focused
on documenting the factors that affect clean innovations rather than focusing on whether
these factors can steer innovations away from fossil fuel technologies (Newell et al., 1999;
Lanzi et al., 2011). In addition, many of these papers rely on country-level data as the
basis for their analysis, and have therefore ignored the responses of innovations to different
environmental policy regimes at the firm level (Popp, 2002, 2010).

Methodologically, our paper closely relates to Aghion et al. (2016), who focuses on
the direction of technological innovation in the auto industry. The paper also relates to
Noailly and Smeets (2015) who look at innovation in the electricity sector by focusing on
European firms. However, our paper also differs from these previous studies in several
aspects. First, Aghion et al. (2016) and Noailly and Smeets (2015) focus on capturing the
aggregate impact of all energy prices using a composite fossil fuel price index; therefore,
they are unable to separate the impact of different types of energy prices on innovation. We
take a different approach and distinguish between the impact of coal and natural gas prices
on innovation. By doing so, we identify the relationship between renewables and different
types of fossil fuels that previous empirical work overlooked. Our results show that the
effectiveness of fossil fuel-price regulations in fostering renewable energy innovation varies
largely with the type of fossil fuel targeted by these regulations. At the current technology
level, taxing coal may be harmful for renewable innovation in the electricity sector. In
contrast, taxing natural gas may steer innovation in the electricity sector towards more
renewable energy by lowering the firm-level incentive to innovate in fossil fuel technology.
Second, our paper is the first to explore the global pattern of innovation in the electricity
sector. This is important because as shown in Table 1, electricity generation by source

8See also Calel and Dechezleprêtre (2012); Dechezleprêtre and Glachant (2014); Gans (2012); Hassler
et al. (2012). In addition, Fischer and Newell (2008); Nesta et al. (2014); Sanyal and Ghosh (2013);
Klemetsen et al. (2016) focus on the effectiveness of environmental policies to promote renewable energy
technologies.
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varies considerably across the most innovative regions and therefore a regional account of
innovation cannot be extended to offer solutions to curb emissions from global electricity
generation.9 Finally, we are able to highlight the importance of government policies in
shifting the direction of innovation in the electricity sector, alongside market forces like
firm-level past knowledge stocks, energy prices, and other macroeconomic factors.

The paper is organized as follows. Section 2 summarizes our theoretical hypotheses,
Section 3 describes the construction of our data, and Section 4 specifies our identification
strategy. Section 5 presents our empirical results and discusses their robustness and policy
implications. Finally, Section 7 presents our conclusion.

2 Theoretical background: energy taxes and innovation in
the electricity sector

In this section, we present theoretical predictions and testable hypotheses about the di-
rection of innovation in the electricity sector. These predictions are based on the directed
technological change framework by Acemoglu et al. (2012). Building on Acemoglu (2002);
Acemoglu et al. (2012, 2016), we apply a directed technological change model to the elec-
tricity sector. Because our theoretical predictions are in line with previous work, we present
our model in Appendix A and restrict this section to the discussion of the idiosyncrasies
of the electricity sector, theoretical predictions, and testable hypotheses.

One distinguishing feature of electricity is that it needs to be consumed as soon as it
is produced; therefore, it is important to immediately adjust electricity supply to meet
changes in electricity demand to avoid blackouts or other problems. System operators re-
solve this issue by producing a base electricity load available 24 hours a day in order to meet
the minimum demand for electricity. During times of high demand, such as during summer
afternoons when air conditioning loads are high, peak electricity loads are added to meet
excess demand. Thus, we can separate electricity-generating technologies in two groups:
base- and peak-load technologies. There are many sources used to generate electricity with

9For example, Noailly and Smeets (2015) study electricity innovation among European firms, which
covers only 38.07% of all electricity patents and uses fossil fuels to generate 50.6% of electricity. In contrast,
the U.S. applies for most electricity generating patents and uses fossil fuels to generate 61,7% of electricity.
Our data set includes firms that claim residence worldwide and covers 96.2% of all electricity patents globally
(OECD, 2009). Figure B.1 shows that most firms are located in the U.S. and Japan, followed by Germany,
France, and the U.K. and as shown in Table 1, electricity generation by sources differs considerably in these
countries.
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these technologies. Generally, coal and nuclear are used to produce base-load electricity,
while hydroelectric sources are used for both base-load and peak-load electricity because
it is cheap to switch them on and off. Natural gas used to meet peak electricity load but
since a new supply of natural gas from shale formations is available, natural gas is used in
both base and peak-load electricity. Renewable resources can potentially meet base-load
electricity demand since once they are installed, the marginal cost of using them is zero.
These examples show that many energy sources can be used in electricity generation but
their use depends on regional electricity markets. Table 1 summarizes the sources of elec-
tricity generation by region. At the global level, fossil fuels are used to generate 66.4% of
total electricity, followed by hydropower (16.1%) and nuclear (10.6%). Renewable resources
excluding hydro comprise a modest share of total electricity generation. Because the ex-
pansion of hydroelectric and nuclear capacity is limited, many argue in favor of increasing
the share of other renewable sources in the energy mix as a solution to curb emissions from
burning fossil fuels. The expansion of renewables in the electricity grid, however, presents
several technological challenges.

Table 1: Electricity production by source and region in 2013.

Region Production
Sources of electricity production (%)

Fossil fuel Renewable Nuclear
Coal Natural gas Oil Hydropower Other Ren.

East Asia and Pacific 8,427.9 62.1 13.4 2.2 13.8 3.7 3.6
Europe and Central Asia 5,305.3 25.0 24.3 1.3 16.9 9.5 21.9
Latin America and
Caribbean

1,546.0 6.4 25.6 10.9 47.1 5.3 2.1

Middle East and North
Africa

1,323.2 3.4 64.7 21.6 3.1 0.3 0.4

North America 4,940.8 36.0 24.8 0.9 13.4 5.8 18.7
South Asia 1,372.6 63.5 9.8 5.0 13.4 4.4 2.8
Sub-Saharan Africa 454.3 53.7 7.9 3.4 20.5 0.9 3.1
World 23,354.4 41.1 21.7 3.6 16.1 5.4 10.6
Note: Electricity production is measured in kilowatt hours (billions).
Source: World Development Indicators.

One such challenge is that some electricity-generating sources such as fossil fuels are
easily dispatched to the grid, while others, such as renewables, are difficult to dispatch
(Joskow, 2011). For example, wind and solar technologies can only be used when the
wind is blowing or the sun is shining, and in absence of large-scale electricity storage
solutions, these technologies can only supply electricity to the grid intermittently. The
high variability in the supply of electricity from renewable energy make them an unstable
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input for base-load electricity power stations that must run continuously. This implies three
things. First, renewable energy technologies are imperfect substitutes for fossil fuel-burning
technologies. Second, renewable energy is as of today unable to replace coal from base-load
power stations. Finally, renewable electricity relies on coal-fired plants as a complement to
meet the electricity demand.

While these idiosyncrasies are well understood, previous work has concentrated on
studying the incentives to innovate as if renewable and fossil fuels were substitutes. Thus,
this previous work has concluded that higher energy prices and taxes promote innovation
in renewable technologies with the underlying assumption that renewable energy and fossil
fuels are substitutes. Indeed, the empirical literature has included all fossil fuels into one
composite price index and all fossil fuel technologies into one group. While the assumption
of a high elasticity of substitution is appropriate for other sectors,10 this assumption is not
applicable to the electricity sector. In contrast, our goal in this paper is to analyze firm-
level incentives to innovate in the electricity sector while taking into account that some
electricity-generating technologies complement each other.

Our theoretical model is a general equilibrium model with two types of agents: (i)
utility-maximizing consumers who consume electricity and an aggregate consumption good,
and (ii) profit-maximizing firms who are either electricity generators or electricity retailers.
There are two types of electricity generators: renewable and nonrenewable. Renewable
generators use renewable energy to produce electricity, while nonrenewable generators use
fossil fuels. At the beginning of each period, both renewable and nonrenewable generators
engage in research to develop new electricity-generating technologies, which are later used
to produce electricity. Each generator is eligible for a research subsidy that lowers the
cost of innovation. At the end of the period, electricity retailers purchase electricity from
renewable and nonrenewable generators and resell it to the end consumers. All electricity
generators and retailers take prices, subsidies and initial technologies as given.

We solve the above general equilibrium model to derive the equilibrium innovation
intensity for both renewable and nonrenewable technologies and we present the detailed
solution of the model in Appendix A. In line with prior work, our model shows that the
equilibrium innovation intensity depends on research subsidies, energy prices, and firms’
research history. Moreover, the impact of energy prices on innovation depends on the
elasticity of substitution between fossil fuel and renewable energy technologies. When this

10For example, Aghion et al. (2016) study innovation in the automobile sector under this assumption.
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elasticity of substitution is sufficiently high (i.e., when fossil fuels and renewable energy are
easily substitutable in electricity production), then an increase in fossil fuel prices and taxes
promote innovation in renewable technologies. In contrast, when fossil fuels and renewable
energy are complements, increasing fossil fuel prices and taxes discourage innovation in
renewable technologies.

From these theoretical predictions, we derive the following hypotheses:

Hypothesis 1. A higher coal price negatively affects the development of both renewable
and fossil fuel based base-load technologies.

Hypothesis 2. A higher natural gas price negatively affects both fossil fuel based base-load
and peak-load innovation.

In addition, in line with previous work, we expect research subsidies to increase the
likelihood of innovation in all technologies. Finally, the higher a firm’s past innovation in
a particular type of technology (knowledge stock), the more likely it is to innovate in that
type of technology.

Hypothesis 3. Research subsidies increase the likelihood of innovation in all technologies.

Hypothesis 4. The larger a firm’s knowledge stock in a particular type of technology, the
more likely it is to innovate in that type of technology.

Next, we empirically test the above hypotheses using global firm-level panel data. We
begin by describing the data set in Section 3 and turn to the empirical analysis in Sections
4 and 5.

3 Data

The estimation of the drivers of innovation requires firm-level data on research output,
energy prices, taxes, research subsidies, and past innovation in addition to country-level
economic data. Specifically, we measure research output and past innovation with patents,
which are drawn from the OECD Patent Database (see OECD, 2009, for a description).
Energy prices including taxes and research subsidies, are from the IEA, and economic
data are from the Penn World Tables (International Energy Agency, 2015a,c; Feenstra
et al., 2013). Altogether, our data set spans 34 years (1978-2011) across 26 countries
and contains 96.2% of triadic electricity patents from all over the world. Table B.1 in
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Appendix B summarizes the source of data for each variable, while Table B.2 lists countries.
As follows, we describe the construction of this data set before presenting the overall
descriptive statistics.

We use data on patent applications to measure innovation.11 Each patent application
contains detailed information about the inventor(s), applicant(s), and the specific type
of technology, which allows us to identify specific firms, while the International Patent
Classification (IPC) codes assigned to each patent make it possible to identify technologies
related to electricity generation.

Individual patents differ considerably in their worth, with many patents having low
values (Aghion et al., 2016). We address this issue by only considering the most valuable
patents from the OECD’s Triadic Patent Database.12 A patent belongs to this database
when the same applicant or inventor files the same invention at the three most important
patent offices: the EPO, the USPTO, and the JPO. Triadic patents then form a highly-
valued patent family, which is a collection of patents that protect the same idea across
different countries. Specifically, to qualify as a triadic patent family member, a partic-
ular patent must have equivalent applications at the EPO, the JPO, and the USPTO.
Because triadic patents are applied for in three separate offices, they include only the most
valued patents and allow for a common worldwide measure of innovation that avoids the
heterogeneity of individual patent office administrations (Aghion et al., 2016).13

Once we have all patent information, we select patents related to electricity genera-
tion using IPC codes. We then categorize them into two broad groups: renewable energy
and fossil fuel technologies. Renewable energy technologies are identified from the World
Intellectual Property Office’s (WIPO) IPC Green Inventory14, while fossil fuel technolo-

11Patents are a common measure of innovation in economic studies. (Popp, 2005) notes that other
measures of innovation, such as R&D expenditures, are generally only available at the industry level and
for limited technology types. Thus, the detailed nature of patent data proves particularly useful when
examining firm-specific incentives to innovate in selected technologies.

12One disadvantage of triadic patent families is the lag time associated with the USPTO. Legal delays
for publishing applications are 18 months after the priority date and up to 5 years between the priority
date and publication date (Dernis and Khan, 2004). As a consequence, U.S. patent grants may delay the
completion of data on triadic patent families. To mitigate this limitation, the OECD utilizes forecasts
called “nowcasting” in order to improve the timeliness of triadic patents (Dernis and Khan, 2004). Despite
this difficulty, triadic patents still provide the most inclusive measure of high-value, firm-level, innovative
performance.

13Furthermore, the OECD utilizes “extended families,” which are designed to identify any possible links
between patent documents (Martinez, 2010). This is advantageous, as it provides the most comprehensive
method of consolidating patents into distinct families, allowing us to include an extensive number of patented
ideas.

14The IPC codes listed in the IPC Green Inventory have been compiled by the IPC Committee of Experts
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gies are selected from the IPC codes used by Lanzi et al. (2011). Specifically, renewable
energy patents are related to alternative energy production, which includes fuel cells, py-
rolysis, harnessing energy from manufactured waste, wind, solar, geothermal energy, other
production or use of heat, using waste heat, and devices for producing mechanical power
from muscle energy. Fossil fuel technologies combine both general and efficiency-improving
technologies. Specific descriptions of the IPC codes used to identify electricity-generating
patents are presented in Tables B.3-B.5 in Appendix B.1. Moreover, we separate fossil fuel
technologies into those used to generate base- or peak-load electricity (Tables B.6-B.7 in
Appendix B.1). We build on Voigt et al. (2009) and Lanzi et al. (2012) to identify base-
load technologies, while we create a list of peak-load technologies by searching for specific
patents on the EPO’s Espacenet patent search website.

Next, we aggregate individual patent counts at the firm level. Using OECD’s Har-
monized Applicants Names (HAN) Database and REGPAT Database (OECD, 2009), we
can match each patent applicant with a firm. Unfortunately, the HAN database does not
contain firms’ information for every patent application in our sample. Names that cannot
be matched using the HAN database are synchronized using applicant information in the
Triadic Patent Families Database. Although this allows us to match every patent to an
applicant, it poses two difficulties. First, applicant names in the Triadic Patent Database
contain a number of spelling, character, and name variations. For example, “General
Electric” and “General Electric Inc” would be incorrectly treated as separate firms in the
absence of name harmonization. Second, the Triadic Patent Families Database does not
directly link patent applications to applicant names. Instead, applicant names are linked to
family identifiers. Thus, if a given family contains more than one firm name, we are unable
to determine which firm to associate with each patent. In order to minimize the compli-
cations that may result from these challenges, we harmonize the database in three steps.
In the first step, we select all firms that contain full information from the HAN register.
Second, we clean the firm-level information in the Triadic database. Third, we manually
harmonize the Triadic and HAN databases. With these steps, we guarantee firm-level har-
monization of the entire database. In addition, we account for multiple patent owners.
Because some patents are owned by more than one firm, we allocate a patent to a firm
weighted by the number of owners.

Following Aghion et al. (2016), we construct two variables that measure past innovation

in concordance with the United Nations Framework Convention on Climate Change (UNFCCC). For more
information, see http://www.wipo.int/classifications/ipc/en/est/.
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for each firm: internal and external knowledge. Internal knowledge measures past innova-
tion by the cumulative count of all patents a firm has applied for in the past, while external
knowledge measures the total number of patents other firms in the region have applied for.
As listed in table B.2, we have patent data available for 73 countries and we use these to
construct the regional external knowledge variables. We define five regions following the
World Bank’s income classification. These geographical regions are: Eastern Asia, Eastern
Europe, Europe, Northern America, and Oceania. In our robustness analysis, we explore
alternative definitions of spillover regions.

A distinguishing feature of innovation count data is that firms are widely heterogeneous
in their success rate. While some firms make few innovations, others have a high innovation
record. We create two variables to account for this permanent unobservable heterogeneity
following Blundell et al. (1995). First, using patent data from 1963 to 1977, we construct
a pre-sample research history variable that measures the average number of patents each
firm applied for in a specific technology in the pre-sampling period. In addition, a dummy
variable indicates whether a firm innovated in the pre-sample period. These variables are
used to control for the size and propensity to patent of research firms.

Another feature of our data set is that only some firms exist during the entire sample
period. We account for this by including each firm in the data set from the first until the
last year they applied for a patent. Thus, only active firms are accounted for in our panel
data set.

In addition to patent data, we include data on electricity input and output prices and
taxes. Our energy price and tax data are drawn from the IEA Energy Prices & Taxes
database and are measured in 2005 U.S. dollars (International Energy Agency, 2015a).
Specifically, we use electricity retail prices to measure output and we proxy input with the
prices of thermal coal and natural gas used in the production of electricity, which are those
paid by power generation companies to purchase fuels for electricity production for sale. A
limitation of these data is that net prices are rarely available. To address this, we use gross
(tax-inclusive) fossil fuel prices. Although this implies that we are unable to separate net
prices and taxes, we are able to infer the effect of taxes in our estimates. Another issue
we account for is that international companies are affected by the regulations and taxes of
several countries. Because we know the locations of international firms, we address this by
constructing firm-level energy prices after calculating the average energy price across all
locations for each firm.

The second environmental policy we study is public research and development subsidies
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for the energy sector. Data are drawn from the IEA Energy Technology RD&D Statistics
and span 34 years (1978-2011) and 26 countries (International Energy Agency, 2015c).
This gives us the total amount of subsidies to promote the development of renewable
and different fossil fuel based technologies. While our research subsidy data set contains
a smaller number of countries than our patent data set, firms in the 26 countries for
which research subsidy data are available account for 96.2% of global electricity triadic
patents. We convert R&D data to 2005 U.S. dollars and separate them by technology
type: renewable technologies, efficiency-improving fossil fuel technologies, and general fossil
fuel technologies. As with energy prices, we construct a firm-level subsidy variable by
calculating the average subsidies a firm is exposed to across all locations. We think of this
variable as a proxy that captures a firm’s exposure to research subsidies because we are
unable to determine if a given research firm received any subsidies. We exclude data on
other environmental policies designed to promote renewable energy, such as feed-in tariffs,
due to data availability. However, we control for country-level policies using country-level
fixed effects and country-by-year dummies in our identification strategy.

Finally, we use economic data to measure the size and wealth of countries from the Penn
World Table (Feenstra et al., 2013). We use real GDP to measure the size of a country and
real GDP per capita to measure wealth. Both GDP and GDP per capita are at constant
2005 U.S. dollars. As before, we construct a firm-level exposure variable by calculating the
average across all locations.

In total, we identify 236,605 unique triadic patent applications across 13,054 firms
from 1978 to 2011. Of this total, 120,059 are designated as renewable technologies, while
116,546 are classified as fossil fuel technologies. Our baseline estimates combine efficiency-
improving and fossil fuel technologies into one category, but once we separate these two
types of technologies, we have 99,454 and 17,092 general and efficiency-improving fossil fuel
technologies, respectively. In addition, we divide fossil fuel technologies into 89,425 base-
load and 27,121 peak-load technologies. Fossil fuel base load technologies include both coal
and natural gas based technologies while fossil fuel peak load technologies include diesel
and natural gas. Table B.8 presents the number of patents by specific technology. The table
shows that solar patents account for the largest share of all renewable patents, followed by
fuel cells and waste patents. On the other hand, base-load fossil fuel patents account for
76.7% of all fossil fuel patents over the period 1978 to 2011. Figures 1a and 1b illustrate
the OECD’s trends in patent activity from 1978 to 2011. The number of renewable and
general fossil fuel patents increased considerably until the mid-2000s, while the number
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(a) Renewable, fossil fuel, and efficiency-improving patents. (b) Base- and peak-load fossil fuel technologies.

Figure 1: Annual aggregate patent count, 1978-2011.

of efficiency-improving fossil fuel patents enjoyed a modest increase. Our data also shows
a downward trend in the number of patent applications between 2000 and 2009.15 The
reason for this downward trend is lag from the application date to the actual granting of
the patent at the USPTO which lasts from 18 months to five years (Popp, 2005). We
account for this by skipping the last 2 years of the data set to run our estimations.

15This trend is consistent with prior work. For example, Noailly and Smeets (2015) observe the same
trend in European patents, even though they use non-triadic patent data, and Nesta et al. (2014) find a
downward trend for German renewable patent families.
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(a) Thermal coal for electricity generation (USD per tonne). (b) Natural gas for electricity generation (USD per MWh).

Figure 2: The price of coal and natural gas in the most innovative regions, 1978-2009.

Figure 3: Electricity retail price (USD per MWh) in the most innovative regions, 1978-2009.

Figures 2 and 3 illustrate the evolution of coal, natural gas and electricity prices in the
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most innovative countries: U.S., Japan, and OECD-Europe.16 Coal price is measured in
USD per tonne while natural gas and electricity prices are measured in USD per MWh. All
inputs used in the production of electricity followed a similar trend. Coal was the cheapest
input and most heavily used for electricity production in many countries. The price of coal
stayed low and stable in the U.S., while it rose considerably in Japan and Europe after
2000, peaking in 2008. Because coal is heavily used for base-load electricity production in
the U.S., it is no surprise that the price of electricity also hit its lowest price in 2000 and
its highest price in 2008. In Japan, however, the price of electricity followed the price of
natural gas, which presents a higher variation than in other regions. Finally, the average
European price showed a rapid rise after 2000. Figures 4, 5, 6 show a scatter plot of energy
prices and the total number of patents in each type of technology for the U.S., Japan, and
OECD-Europe. The figures show a negative correlation between coal prices and innovation
in both renewable and fossil fuel technologies. On the other hand, natural gas prices show
a weaker correlation with innovation in all types of technologies.

16Prices in Europe are represented by the average prices of Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Iceland, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and
the U.K..
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Figure 4: Renewable innovation and energy prices.
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Figure 5: Base-load fossil fuel innovation and energy prices.
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Figure 6: Peak-load fossil fuel innovation and energy prices.

Figure 7 illustrates global aggregate research subsidies. Most subsidies were directed
towards general fossil fuel technologies until the early 1990s, when subsidies towards
efficiency-improving fossil fuel technologies took off. Moreover, general fossil fuel subsidies
decreased from 1980 to 2000, and after reaching their lowest point in 2000, they started
increasing again. On the other hand, subsidies for renewable technologies peaked around
the 1980s, and after a decade of relatively smaller subsidies, they started increasing again
in the late 1990s.
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Figure 7: Global RD&D subsidies in million USD in renewable, general fossil fuel and
efficiency-improving technologies, 1978-2009.

4 Identification strategy

This section describes the econometric approach we adopt to identify the firm-level deter-
minants of innovation in the electricity sector. We estimate a dynamic innovation model
with fixed effects. This model accounts for current patent applications yj,it that depend
on past patent applications yj,it−1 for firm i’s innovation in technology j in year t and it
captures the feedback effects that result from innovations in different technologies affecting
each other (Cameron and Trivedi, 2013). In particular, our baseline specification with one
lag is:

E[yj,it|Xj,it,Yj,it−1, αj,i] = αj,iλj,i, (1)

where Xj,it =
(
xj,it,xj,it−1, . . . ,xj,i1

)
are observable variables, Yj,it−1 = (yj,it−1, . . . , yj,i1)

is a vector of past innovations, αj,i captures individual technology-specific fixed effects, and
λj,i is the specified function of yj,it−k, xj,it, and β. We consider a linear feedback model to
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explain how yj,it−1 enters λj,i following Blundell et al. (2002). Specifically:

E[yj,it|Xj,it,Yj,it−k, αj,i] = ρyj,it−1 + exp(x′j,itβ)αj,i, (2)

where the lagged of past innovations enters linearly. The observable variables xj,it are the
determinants of innovation discussed in section 2. Thus, we estimate:

yj,it =Ait−1 + exp(ln Pit−1βj,p + ln Sj,it−1βj,s + ln EIit−1βj,e

+ γ1 lnXj,it + γ2IDit +Dnt)αj,i + µj,it, (3)

where j denotes the type of technology, while i, n and t represent firm, country and year. In
the baseline specification, technology type j is renewable (r) or fossil fuel (f). In addition,
we consider efficiency-improving (e), base-load (b) and peak-load (p) fossil fuel technologies.
yj,it is the number of patents in technology j that firm i applied for in year t.

One of the main determinants of current innovation is past innovation. Ait indicates
the firm’s existing stock of knowledge, which depends both on the firm’s internal cu-
mulative stock of past renewable and fossil fuel innovation, as well as aggregate knowl-
edge spillovers from other firms. More specifically, following Aghion et al. (2016), a
firm’s total knowledge stock is given by internal and external knowledge stocks follow-
ing Ait = Kj,itβj,k + SPILLj,itβj,spill. The internal knowledge stock Kj,it is a vector of
firm i’s patent stock of the designated technology type j in year t. The external knowledge
stock SPILLj,it is a vector of knowledge spillover from other firms for technology type j,
calculated as the aggregate patent stocks of all other firms located in the same region as
firm i. The baseline specification considers a 1-year lag in past innovations, but we consider
other lag structures in the robustness section 6.

Another main determinant of innovation is given by energy prices and taxes. Pit is a
vector that denotes a firm’s exposure to energy prices including taxes in year t. We take
the prices of both inputs and outputs in the electricity sector into account. Specifically,
we use coal and natural gas prices as a proxy for input prices in electricity generation and
electricity prices to proxy for output prices. We use alternative measures in our robustness
analysis. Recall that we characterize governments’ support for innovation, Sit, using R&D
subsidies in the energy sector. We use R&D subsidies in renewable energy as a measure of
government’s support for innovation in renewable technologies, while we use subsidies in
efficiency-improving and pure fossil fuel technologies as a measure of government’s support
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for innovation in fossil fuel technologies. We control for other country-level environmental
policies, such as feed-in tariffs, with country-level fixed effects.

Our empirical model also accounts for other macroeconomic factors that may impact
innovation, such as the economic environment of countries in which the firm is located.
Specifically, EIit is a vector that captures the firm-specific exposure to the economic en-
vironment, which we characterize by its size (proxied by GDP) and wealth (proxied by
GDP per capita). Note that we calculate EIit for each firm by taking the average of all
the economic indicators across the countries in which the firm is located. This allows us
to account for the fact that a multinational firm is exposed to the macroeconomic and
policy conditions of all countries in which the firm operates, not just its home country. We
consider other controls in the robustness section.

A challenge to estimate a linear feedback model with fixed effects is to get consistent
estimates. We account for this by controlling for firm-level unobserved heterogeneity using
patenting in the pre-sampling period following (Blundell et al., 1995, 1999). Specifically,
we use information on firms’ pre-sample history of successful innovation. Taking advantage
of our extended patent data set, we include the average pre-sample patent count (Xj,it) for
each firm and technology type. In addition, we use a dummy variable (IDit) that equals 1
if the firm innovated in the pre-sample period (1963-1977).

We control for time-varying, firm- and country-specific differences using fixed effects.
Specifically, we use a set of dummy variables (Dnt), which include year, country and
country–year dummies to control for time-varying country-specific differences. Because
all country-level variables, such as energy prices and research subsidies have been con-
verted into firm-level variables, country and time dummies can be used to control for other
unobserved variations in electricity markets and relevant policies such as feed-in tariffs
across countries over time. Finally, αj,i denotes a firm-level fixed effect, which captures
other time-invariant unobservable firm-specific characteristics, such as differences in firm
size, industry focus, and others.17

Finally, µj,it denotes the error term by technology type. We cluster standard errors at
the firm level for each technology since our data are structured at the firm level. Since
some of our firms are international and we calculate their average energy prices, subsidies

17The large number of fixed effects often presents another challenge to obtain consistent estimates of
dynamic innovation models because of a potential incidental parameter problem. As Blundell et al. (1999)
and Lancaster (2002) show, a linear Poisson maximum likelihood model has no incidental problem in
parameters and therefore the maximum likelihood estimation of our model obtains consistent estimates.

21



and macroeconomic indicators taking into account all their locations, there are additional
correlations in the data. Following Thompson (2011), we deal with this by using fixed
effects in one dimension and clustering in the other dimension given that our data are
not nested. Thus, dummies control for country fixed effects and the standard errors are
clustered at the firm level.

We estimate the linear dynamic count data model in equation (3) using a fixed-effect
Poisson estimator while controlling for pre-sample history (Blundell et al., 1995, 1999). The
equation for each technology is estimated separately. We analyze alternative estimators in
the robustness analysis in Section 6.

This identification strategy shows that energy prices, research subsidies, and past inno-
vation cause any differences in a firm’s probability to apply for a patent in each technology
type after controlling for pre-sample, macroeconomic, country and time-varying hetero-
geneity.

5 Estimation results

In this section, we present our main estimation results followed by multiple robustness
tests to validate our results. Our main objectives are to identify whether increasing fossil
fuels prices promotes innovation in renewable technologies and to quantify how research
subsidies shape the direction of technological change in the electricity sector. To do this,
we estimate the innovation equation given by equation (3) and we present our main results
in Tables 2-5.

We use coal prices as a proxy for input prices in the electricity sector for our baseline
estimation Table 2. To validate our results, we present multiple robustness checks in Section
6. Standard errors in all estimations are clustered at the firm level for each technology.
Overall, our estimation results show that energy prices, R&D subsidies, and past innovation
significantly influence innovation in the electricity sector. Therefore, policies targeting these
factors can potentially direct innovation towards renewable energy. Let us first discuss how
each of these factors determines the pattern of innovation in the electricity sector.
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5.1 Are energy taxes successful at promoting innovation in renewable
technologies?

The main estimation results in columns (1) and (2) of Table 2 suggest that energy prices
and taxes have a significant impact on firm-level innovation. Specifically, a 10% increase
in coal prices leads to a 3.8% decrease in the probability of applying for a renewable
patent. This finding is in line with the theoretical directed technological change literature
that shows a negative effect of fossil fuels on renewables when renewable and fossil fuel
technologies are complements. However, our finding is in contrast to previous empirical
work that concludes that fossil fuel prices promote innovation in renewable technologies.
One explanation is that in the electricity sector, intermittent renewable sources are unable
to supply electricity constantly and they rely on easily dispatchable technologies like coal-
fired plants to meet the electricity demand. Cheap fossil fuels such as coal are typically
used to generate base-load electricity that is easily dispatchable and available at all times.
On the other hand, more expensive fossil fuels such as natural gas have been typically used
in the generation of peak-load electricity that complements base-load electricity during
peak hours (when the demand for electricity is high). While it may sound counterintuitive,
it is thus reasonable to find that the number of renewable and base-load fossil fuel patents
respond similarly to changes in coal prices. Columns (3)-(5) of Table 2 further explore this
relationship by separating fossil fuel patents into base- and peak-load patents. We find
that higher coal prices have a negative and statistically significant effect on innovations
in renewable and base-load fossil fuel technologies, but no significant impact on peak-load
fossil fuel innovations.

These results imply that making coal more expensive, for example, by increasing coal
taxes or setting a carbon tax, is an ineffective tool to encourage innovation in renewable
technologies. In absence of large-scale storage solutions, intermittent renewable sources
such as wind and solar cannot fully replace coal in electricity generation; therefore, a tax
on coal produces unintended negative effects on the development of renewable technologies.

Tables 3 and 4 further explore the relationship between coal and natural gas prices and
innovation in renewable, base- and peak-load fossil fuel patents. Specifically, we analyze:
(i) Coal and electricity prices, (ii) Coal prices only, (iii) Natural gas prices and electricity
prices, and (iv) Coal and natural gas prices.18 In the robustness analysis, we also consider

18We omit electricity prices in specifications (ii) and (iv) to address a potential endogeneity issue as
electricity output prices are affected by the prices of inputs such as coal or natural gas. Tables 3 and 4
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the square term of coal prices, oil prices and the gap between electricity and coal prices.
Overall, we find evidence for a negative relationship between coal prices and innovation in
renewable and base-load fossil fuel patents, thereby confirming the complementary rela-
tionship between renewable and base-load fossil fuel technologies in electricity generation.
In contrast, increasing natural gas prices is only associated with a decrease in base-load
fossil fuel innovation; it has no statistically significant impact on innovation in renewable
energy. In addition, our estimates show that energy prices do not significantly affect the
development of peak-load fossil fuel technologies (columns (5) in Table 2, columns (9)-(12)
in Table 4). We explore additional specifications in the robustness section (6).

In addition to coal prices, firm-level innovation also depends on electricity prices; how-
ever, we only find a significant impact of electricity prices on fossil fuel innovation. Column
(2) of Table 2 suggests that a 10% increase in electricity prices increases the probability of
applying for a patent in fossil fuel by 4%. Moreover, the relationship between electricity
prices and fossil fuel innovation is primarily driven by base-load innovations. As columns
(4) and (5) of Table 2 show, increasing electricity prices has a positive and statistically
significant impact on base-load innovations, where a 10% increase in electricity prices leads
to a 3.7% increase in the number of base-load patents. On the other hand, the effect of
electricity prices on peak-load innovations is much smaller and statistically nonsignificant.
These effects are not surprising because coal, which is used in base-load electricity gener-
ation, contributes to 41.1% of global electricity generation (International Energy Agency,
2015b).

In addition to separating fossil fuel patents into base- and peak-load technologies, we
also classify fossil fuel patents into general fossil fuel patents and efficiency-improving
technologies.19 Columns (3)-(5) of Table 5 report the estimation results for renewable,
general fossil fuel, and efficiency-improving fossil fuel technologies. The coefficients on coal
prices are negative and significant in all columns. Specifically, a 10% increase in coal prices
decreases the number of patents in renewable, pure fossil fuel, and efficiency improving
technologies by 3.5%, 3.3%, and 6.6% respectively.

To summarize, we find evidence that increasing coal prices discourages innovation not
only in base-load electricity generation technologies, but also in renewable technologies. In

show that the impact of energy prices on innovation is robust to alternative specifications of energy prices.
19Tables B.4 and B.5 in Appendix B.1 detail the IPC codes for efficiency-improving and pure fossil fuel

technologies. Ideally, we would like to further separate efficiency-improving and fossil fuel technologies into
base- and peak-load technologies; however, the number of observations for each sub-group is too small to
produce any significant result.
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addition, we find evidence of a negative impact of coal prices on efficiency-improving fossil
fuel technologies. Therefore, our results suggest that policymakers looking for solutions to
reduce the use of coal in electricity generation should be careful when taxing coal as it may
have unintended consequences for innovation in renewables as well as efficiency-improving
fossil fuel technologies. Taxing natural gas, however, does not significantly affect innovation
in renewable and peak-load technologies, but it does discourage innovation in base-load
technologies.

5.2 How effective are research subsidies in shaping global innovation in
the electricity sector?

In addition to energy prices and taxes, government research subsidies play an important
role in determining innovation in the electricity sector. The results from Table 2 show
that innovation in renewable energy technologies is significantly increased by an increase
of those technologies’ research subsidies. In particular, a 10% increase in renewable re-
search subsidies increases the number of patents in renewable energy by 1.4% (columns (1)
and (3)). Our results also suggest that research subsidies play a role in the development
of fossil fuel technologies. While subsidies for general fossil fuel technologies promote in-
novation in base-load technologies, efficiency-improving subsidies increase the probability
of successfully innovating in peak-load technologies. Specifically, increasing subsidies for
general fossil fuel technologies by 10% increases the number of base-load fossil fuel patents
by 1.4%, while a 10% increase in subsidies for efficiency-improving fossil fuel technologies
increases the number of peak-load fossil fuel patents by 3.3%. The results are robust to
alternative specifications of energy prices (Tables 3 and 4).

In Table 5, we classify fossil fuel technologies into general fossil fuel and efficiency-
improving technologies. After we separate these technologies, we find that general fossil fuel
technologies promote the development of efficiency-improving technologies. Specifically, a
10% increase in general fossil fuel technologies increases the number of efficiency improving
patents by 1.2%. Note, however, that we do not find any evidence that research subsidies
improve the success rate of general fossil fuel research (column (2) in Table 2). One
explanation for this small impact of research subsidies on fossil fuel innovation is that
market forces have created strong incentives to develop fossil fuel technologies because the
market share of fossil fuels in electricity generation has long been and remains very large
(International Energy Agency, 2015b). We turn to studying these market forces in the
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next subsection.
In summary, the analysis in Sections 5.1 and 5.2 proves that environmental policies

such as energy prices, taxes, and research subsidies are effective at shifting the direction
of innovation in the electricity sector. Not surprisingly, our results in Tables 2 through
5 show that research subsidies play a role in promoting the development of all types of
technologies in electricity generation. Note, however, that as seen in Figure 7, the amount
of subsidies directed at fossil fuels is larger than that directed towards renewables. This
implies that allocating more research subsidies to renewable innovators and cutting back on
research subsidies to fossil fuel innovators can potentially shift innovation in the electricity
sector towards more renewable energy. However, our results also suggest that, at the cur-
rent technology level, renewable and fossil fuel technologies are complements in electricity
production; therefore, energy price taxes may not have the expected effect on changing the
direction of electricity-related innovations towards cleaner technologies. Our results are
consistent with Acemoglu et al. (2012)’s theoretical conclusions that the optimal policy to
promote clean innovation involves both taxes and research subsidies, and that excessive
reliance on tax policies may have some negative impacts on innovation.

5.3 What other factors shift innovation in the electricity sector toward
renewable technologies?

In addition to environmental policies, a firm’s innovation is determined by its past innova-
tion and macroeconomic indicators. Past innovation is a combination of the firm’s internal
cumulative stock of past innovation and the aggregate knowledge spillovers from other firms
within the same region. Columns (1) and (2) of Table 2 indicate that a firm is more likely
to innovate in fossil fuel technologies if it has a larger knowledge stock in fossil fuels. In
addition, accumulated knowledge about peak-load technologies and/or general fossil fuel
technologies plays a significant role in fostering fossil fuel innovation in the current period,
as shown in columns (3)-(5) of Tables 2 and 5. On the other hand, firms that invested
in more renewable innovations in the past are less likely to be involved in inventing re-
newable technologies in the current period. One possible explanation is that unlike fossil
fuels, storable forms of renewable energy are not readily available to generate electricity at
all times; therefore, the use of renewable energy in electricity production is intermittent.
Unfortunately, many of the storage technologies are in their early development stages, and
thus the lack of cheap and large-scale storage solutions may hinder further innovation in
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renewable technologies.
Moreover, we find that a firm’s probability of successfully innovating in renewable

research is affected by spillovers from other firms’ innovation activities within the same
region.20 Specifically, a firm located in a region with a larger stock of fossil fuel innovations
by other firms is less likely to apply for a renewable patent (Table 2). In addition, Table
4 shows that a firm located in a region with an extensive knowledge stock of peak-load
technologies is also less likely to innovate in renewable technologies. Finally, a firm located
in a country with extensive renewable research is less likely to innovate in base-load fossil
fuel technologies. Note that most coefficients on the spillover variables are not statistically
significant in most cases, and even when they are, the coefficients are close to zero. One
explanation for this phenomenon could be that regional innovation spillovers may have two
opposite effects on firm-level decisions to conduct research. First, a firm is more willing to
engage in research if it is located in a research-intense region because the firm can benefit
from the existing knowledge created by other firms (i.e., standing on the shoulders of
giants). At the same time, more intensive regional innovation activity also means tougher
competition, which makes it more difficult to devise new patents. These two effects offset
each other, leading to a small overall regional knowledge spillover effect on innovation.

In short, our estimation results suggest that a firm’s past innovation is a strong de-
terminant of future successful innovations. Specifically, firm-level innovation activity in
renewables is negatively impacted by firms’ internal knowledge stock, while fossil fuel in-
novation is positively affected by past innovation. On the other hand, it is not necessarily
true that a firm is more likely to conduct research or to successfully create new innovations if
it is exposed to a larger level of knowledge spillover from other firms within the same region.
Our results are robust to alternative price measures, lag structures, pre-sample conditions,
and to separating general fossil fuel technologies from efficiency-improving technologies.21

Finally, we consider other determinants of innovations such as country size (proxied by
GDP) and wealth (proxied by GDP per capita). In our baseline estimates, we find that
country size negatively affects innovation in all technology types, while wealth promotes
innovation in base-load technologies in the electricity sector. When we classify fossil fuel
technologies into general fossil fuel patents and efficiency-improving technologies (Table

20In our baseline results, we calculate regional knowledge spillovers using the World Bank income classifi-
cation of countries. We define regional spillover variables instead of country-level spillover variables because
we are interested in employing country-level fixed effects in our estimations.

21We find similar results when we exclude energy prices from our estimation.
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5), our results show that a 1% increase in GDP decreases a firm’s incentive to conduct
efficiency-improving research by 1.449%.
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Table 2: Baseline: Fixed-effect Poisson estimates of the determinants of firm-level innova-
tion in renewable and fossil fuel technologies using global data from 1978 to 2009.

Dependent variable: firm-level number of patents

Renewable Fossil fuel Renewable Fossil fuel
base load

Fossil fuel
peak load

(1) (2) (3) (4) (5)
Energy prices including taxes

L1.Coal price -.3864∗∗ -.2919 -.4139∗∗ -.4051∗∗ -.5788
(.1801) (.2197) (.1666) (.1695) (.3614)

L1.Electricity price .1745 .2533 .2475 .3674 -.02734
(.222) (.2845) (.1925) (.2372) (.37)

Research subsidies
L1.Renewable .1589∗∗ .04735 .1275∗ -.02836 .1749

(.07334) (.1122) (.07382) (.08402) (.2144)
L1.Fossil fuel .00146 .0569 .02102 .06796 .06561

(.03799) (.05768) (.04018) (.0585) (.08176)
L1.Efficiency-improving .01012 .06886 .0401 -.00051 .3624∗∗∗

(.04104) (.0728) (.04048) (.05797) (.1072)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00046 -.00045∗∗∗ 5.3e-05 -.00077
(.00013) (.00043) (.00016) (.00052) (.00062)

L1.Fossil fuel 4.9e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Baseload -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00023) (.00049)
L1.Peakload .00098∗∗∗ .00082∗∗∗ .00017

(.0002) (.00017) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -5.8e-06 -1.4e-05 -5.2e-05
(2.0e-05) (2.7e-05) (1.8e-05) (2.1e-05) (5.1e-05)

L1.Fossil fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Baseload 2.2e-05 2.3e-05 5.5e-05
(1.9e-05) (2.3e-05) (3.5e-05)

L1.Peakload -.00013∗∗∗ -9.9e-05∗ -2.7e-05
(4.8e-05) (5.5e-05) (9.4e-05)

Macroeconomic indicators
L1.GDP -.1463 -.1171 -.1941∗∗ -.1632∗ -.4785∗∗

(.08928) (.1004) (.09409) (.09283) (.1935)
L1.GDP per capita -.362 .591 .2939 1.267∗∗ .6879

(.815) (.8263) (.8069) (.644) (1.629)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39317 25194 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table 5: Fixed-effect Poisson estimates of innovation in general and efficiency-improving
nonrenewable technologies using global data from 1978 to 2009.

Dependent variable: firm-level number of patents

Renewable Fossil fuel Renewable Fossil fuel
general

Fossil fuel
Eff.- improv.

(1) (2) (3) (4) (5)
Energy prices including taxes

L1.Coal price -.3864∗∗ -.2919 -.2829∗ -.2756 -.4781∗∗

(.1801) (.2197) (.1734) (.2306) (.2044)
L1.Electricity price .1745 .2533 .104 .2184 -.1111

(.222) (.2845) (.2284) (.2966) (.3321)
Research subsidies

L1.Renewable .1589∗∗ .04735 .1633∗∗ .06486 -.05534
(.07334) (.1122) (.07353) (.1074) (.1177)

L1.Fossil fuel .00146 .0569 -.01499 .07245 .1021
(.03799) (.05768) (.03968) (.05756) (.07579)

L1.Efficiency-improving .01012 .06886 .0225 .07435 .1242
(.04104) (.0728) (.0416) (.07893) (.1022)

Past innovation knowledge
L1.Renewable -.00055∗∗∗ -.00046 -.00055∗∗∗ -.00054 -.00016

(.00013) (.00043) (.00014) (.00045) (.00043)
L1.Fossil fuel 4.9e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Pure fossil fuel .00013 .00033∗∗∗ .00033∗∗∗

(.00034) (6.5e-05) (8.9e-05)
L1.Efficiency-improving -.00072 -.00064 -.00188∗∗∗

(.00266) (.00044) (.00053)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -2.9e-05 -3.8e-05 -2.6e-05
(2.0e-05) (2.7e-05) (2.3e-05) (2.7e-05) (3.0e-05)

L1.Fossil fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Pure fossil fuel -5.0e-05∗∗ -5.8e-06 -2.7e-05
(2.0e-05) (2.1e-05) (2.9e-05)

L1.Efficiency-improving 7.9e-05 4.6e-05 9.3e-05
(5.9e-05) (8.9e-05) (.00013)

Macroeconomic indicators
L1.GDP -.1463 -.1171 -.1616 -.07996 -.1449∗

(.08928) (.1004) (.1012) (.09475) (.08561)
L1.GDP per capita -.362 .5909 -.1454 .6122 .6944

(.815) (.8263) (.8161) (.7438) (.5516)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39292 26221 10768
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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6 Robustness analysis

To complete our empirical analysis, we discuss potential caveats associated with our anal-
ysis. Specifically, we investigate common estimation issues of dynamic count data models,
alternative energy tax specifications, the selection of the most innovative countries and
firms, alternative definitions of spillovers, adequate lag structures and other macroeco-
nomic controls.

We start by considering the choice of estimator. One distinguishing feature of patent
data is that in each period, the number of patents that a firm applies for depends on
two factors. First, it depends on whether they decide to engage in research on a given
technology. Second, it depends on whether the firm’s R&D activity is successful (i.e.,
results in a patent application). In other words, a firm can have a zero patent count in
a given period either because its R&D activity was not successful or simply because it
chose not to enter the research market. This explains why we typically observe a large
number of zeros in patent data. To account for this over-dispersion in the data, we employ
a zero-inflated Poisson estimator, where we first use a logit model to determine whether
a firm engaged in research in a given period, i.e., the extensive margin. Then we use a
Poisson estimator to determine whether the firm is successful at innovating, conditional on
a positive R&D decision, i.e., the intensive margin.

Table C.1 presents zero-inflated Poisson estimation results for the baseline specification
in equation (3). We lag the explanatory variables by one period to account for the delayed
responses of firms and to reduce contemporaneous feedback effects. Columns (1) and
(2) present Poisson estimates of firm-level patent counts; i.e. the intensive margin which
explains whether a firm’s research activity successfully leads to the application of a new
patent. On the other hand, columns (3) and (4) present our logit estimates of the extensive
margin which explains a firm-level likelihood to engage in research in a given period.22

These results confirm our main findings.
Another issue to consider when working with count panel data is the degree of over-

dispersion, a situation where the variance exceeds the mean. The negative binomial distri-
bution is more appropriate than a fixed-effects Poisson specification when data exhibits a
high degree of over-dispersion. Our data do not represent a high over-dispersion problem
as we control for entry and exit of firms in the market; therefore, our baseline estimates use

22Because the logit estimates explain the probability of observing excess zero patent counts, a negative
impact on the likelihood of excess zero patents is interpreted as a positive probability of engaging in research.
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a Poisson fixed effects estimator. However, one might argue that firms in our unbalanced
panel appear to be more productive than in reality because we only include them in the
sample after they apply for their first patent. To address this, we consider fully balanced
panel data where all firms are active from 1978 to 2009. The fully balanced panel data
exhibits an over-dispersion problem because the variance is 88 times larger than the mean;
therefore, we use a negative binomial specification. Poisson estimates are used as a start-
ing point for the negative binomial estimation. Table C.2 shows that our main results are
robust to a negative binomial specification.

Another potential issue to consider with a Poisson regression specification is unob-
served heterogeneity. Our baseline estimates include technology-specific average patenting
activity prior to our sampling period of 1978-2009 (Blundell et al., 1995). These controls
are not statistically significant for any technology type, which suggests that pre-sampling
patenting activity is not a strong determinant of the likelihood of innovation during the
sampling period.23 However, controlling for pre-sampling activity allows us to take the
wide heterogeneity in firms’ innovation success rate into consideration. In addition, we
estimate our baseline specification with alternative definitions of patenting activity in the
sampling period. In particular, we consider the average number of total patents prior to
1978 and the technology-specific average patenting activity only in the years a firm was
active in the pre-sampling period. Because our main results and the estimated values are
unchanged, we do not report a table with these estimates; however, they are available upon
request.

In addition to considering alternative estimators, we also choose alternative variables
to represent the effect of fossil fuels, past innovations, and macroeconomic indicators. Re-
garding the effect of fossil fuel prices in innovation, Table C.3 presents additional fossil
fuel prices. In particular, we consider the square term of coal prices and the gaps be-
tween electricity, coal, and oil prices. These estimates suggest that a higher gap between
electricity and coal prices promotes innovation in renewable technologies, which implies a
complementary relationship between renewable energy innovation and base-load fossil fuel
innovation. We do not find evidence for a statistically significant effect of oil prices on
innovation. We do not find this surprising because at the global level, the use of oil in
electricity generation is modest (see Table 1).

In addition to energy prices, we analyze past innovation in more detail. One might
23In Table C.13, we exclude pre-sample activity from our sample and find results consistent with our

main estimation results.
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argue that it takes several years before past innovation affects current innovation levels.
To address this, we include past firm-level and spillover innovations lagged by 2 and 3 years
in Tables C.4 and C.5. Our main conclusions about the impact of past innovation are still
valid with these alternative lag structures.

Another issue related to past innovations relates to the definition of spillovers. Our
baseline estimates, which include 11 regions, show that spillovers are not strong deter-
minants of innovation. One reason for this low significance is that we are using triadic
patents, which by construction, have a global nature. We do, however, consider alternative
definitions of regions. In particular, we consider one global innovation spillover as well
as five geographical regions: Africa, Asia and the Pacific, Europe, Latin America and the
Caribbean, and North America. Overall, Table C.6 shows that these coefficients are sim-
ilar to our earlier estimates in Table 2; therefore, our main results are robust to different
definitions of regional spillovers.

Finally, we consider alternative macroeconomic characteristics in addition to control-
ling for the size of the economy and its wealth. Following Carlino et al. (2007), who present
evidence for a positive effect of employment density on the innovation rate, we also control
for population density. Table C.7 shows that population density is not statistically signifi-
cant and that our main results are robust. One might also argue that energy consumption
could be a determinant of innovation. Because the correlation between GDP and energy
consumption is 85%, we exclude country-level energy consumption from our estimates. We
include a country fixed effect in all our specifications to control for other macroeconomic
indicators.

In addition to considering different specifications of our main equation, we categorize
our data into sub-groups to identify whether groups of firms behave differently systemati-
cally. First, we analyze the choice of countries. While our data set contains 26 countries,
the majority of patent applications are concentrated in a small number of countries. In
Table C.8, we conduct a firm-level fixed-effect Poisson estimation using data from France,
Germany, Japan, U.K. and U.S., which are the five countries with the largest number of
patents in the sample. Compared to our full sample estimates, we find a stronger negative
impact of coal prices on renewable innovation in these five countries, which reassures our
prediction about the complementarity between renewable energy and base-load fossil fuel
in electricity generation.

Our second group categorization involves firms. Our data contain a diverse set of 13,054
firms. We separate these firms into large and small research firms in Table C.9. We consider
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a firm large if they applied for more than 15 patents in total during the sampling period.
These firms represent the top 15% of innovators in our sample. We consider alternative
definitions of large firms, including 20 (top 11,7%) and 10 (top 21,7%) patents per firm,
but these results are consistent with those in Table C.9, and we exclude them from the
Appendix. Finally, we categorize firms as specialized or mixed firms in Table C.10. We
consider a firm specialized if they only apply for patents in either renewable, base-, or
peak-load technologies while mixed firms are those that applied for a patent in more than
one technology. Specialized firms represent 53% of our sample. Table C.10 shows that
firms that specialized in renewable technologies are more likely to be negatively affected
by an increase in the price of coal than other types of firms. Moreover, compared with
mixed firms, specialized firms also respond more strongly to changes in research subsidies
and past innovation.

A final issue we address is the definition of renewable technologies. While most patent
applications in renewable technologies involve solar and wind technologies (see Table B.8),
a small number of patents include technologies that can be used for base-load electricity
generation. To address this, we exclude patent applications from hydro, geothermal, and
biomass technologies from renewable technologies in Table C.11. These results show that
our main results are robust. In addition, we found that increasing coal prices produces a
more negative impact on the innovation of these peak-load renewable energies, which is in
line with the complementary relationship between base- and peak-load electricity. Finally,
in Table C.12, we categorize all patent applications into technologies used for base- and
peak-load electricity generation, instead of renewable and fossil fuel technologies. We
found that increasing the coal price negatively affects innovation in both base- and peak-
load technologies. As explained earlier, this is due to the fact that base- and peak-load
power plants complement each other in electricity generation.

Overall, these alternative specifications show that our main results presented in Section
5 are robust to different assumptions and econometric specifications. This suggests idiosyn-
crasies in the responses of innovation to changes in energy prices in the electricity sector.
Specifically, because renewable energies like the sun or wind complement base-load fossil
fuels such as coal in electricity generation, discouraging fossil fuel innovation through coal
or carbon taxes may produce unintended negative consequences on renewable innovation.
On the other hand, taxing peak-load fossil fuels such as natural gas may steer the direction
of innovation in the electricity sector towards more renewable energy by lowering fossil
fuel innovation. Finally, our results also suggest that to effectively promote innovation in
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renewable energy, a combination of tax and research subsidy policies is desirable.

7 Policy recommendations and concluding remarks

As scientists and policymakers seek options to reconcile concerns about climate change
with economic growth targets, increasing the use of renewable technologies seems crucial,
particularly for carbon-intensive sectors such as electricity generation. The idiosyncrasies
in the substitution relationship between renewable technologies and various types of fossil
fuel technologies imply that an all-inclusive tax policy that raises the price of all fossil fuels
may have unintended consequences in the development of renewable technologies. In the
present paper, we explore this issue by analyzing the specific roles of various fossil fuel
taxes on renewable innovation in the global electricity market.

Our study supports the idea that policymakers interested in using energy price signals
to induce renewable innovation in the electricity sector must carefully structure energy reg-
ulations and taxes. In contrast to previous work, we are able to infer about the relationship
between energy prices and innovation in base- and peak-load fossil fuel technologies. While
many expect energy taxes to reduce the innovation gap by promoting the invention of re-
newable technologies, we find that coal prices have a negative impact on the invention
of renewable technologies. This implies that until we are able to replace the use of coal
from base-load electricity generation, renewable energy sources and coal are complements
in electricity generation. Thus, taxing coal and a carbon tax that raises coal prices have
negative effects not only on the development of base-load technologies, but also on the
development of renewable technologies.

We also find evidence in support of research subsidies to reduce the innovation gap
between fossil fuels and renewables. In fact, policymakers can foster new inventions in
renewable technologies by increasing renewable research subsidies and/or reducing subsidies
for general fossil fuel technologies.

Finally, a third mechanism to change the direction of innovation relates to historical
research activity. Successful past research in fossil fuel technologies encourages more fos-
sil fuel innovation in the future. Unfortunately, we do not observe such a relationship
when we consider renewable energy innovation, potentially due to the absence of storable
forms of renewable energy given the current state of technology. Finally, we find that eco-
nomic growth policy can successfully enhance renewable innovation in the electricity sector
through discouraging the development of fossil fuel technologies.
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In short, our results suggest that regulations that raise the prices of all fossil fuels may
be ineffective at fostering the invention of new renewable technologies in the electricity
sector because of the imperfect substitution relationship between renewable energy and
fossil fuels in electricity production. Researchers and policymakers interested in fostering
renewable innovation in the electricity sector should consider this heterogeneity in their
analysis.
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Appendix

A A directed technological change model of the electricity
sector

In this section, we present a directed technological change model of the electricity sector
where we distinguish between innovation in renewable and nonrenewable technologies. Our
goal is to derive the equilibrium condition that explains firm-level innovation that guides
our empirical analysis in section 4. Aghion et al. (2016) used the directed technological
change framework by Acemoglu et al. (2012) to study innovation in the automobile industry.
We follow a similar approach but focus instead on the electricity sector.

There are two types of agents in this economy: consumers and electricity producers.
Consumers derive their utility from the consumption of goods and electricity:

U = c0 + β

β − 1

(∫ 1

0
Y

σ−1
σ

i di

) σ
σ−1

β−1
β

, (A.1)

where U denotes utility, c0 is consumption good and Yi is electricity purchased from retailer
i. β is the elasticity of substitution between electricity and the consumption good while
σ is the elasticity of substitution between electricity from different electricity retailers.
Consumers allocate their budget between the consumption goods and electricity such that
their utility is maximized. This maximization process yields the consumers’ electricity
demand function:

Yi = P σ−βP−σi , (A.2)

where Yi is consumer electricity demand from retailer i, Pi is the price of electricity charged
by retailer i, while P is the market price of electricity. In this model, we consider tax-
inclusive electricity prices.

Two types of firms participate in the electricity sector: the generators and the retailers.
Electricity generators produce electricity using either renewable or non-renewable resources
while electricity retailers buy electricity from the generators and deliver it to the consumers.
Let us start with electricity generators.

There are two types of electricity generators: renewable and nonrenewable. Renewable
electricity generators produce electricity using renewable resources (r) while nonrenewable
electricity generators use fossil fuels (f). At the beginning of each period, they engage
in research to develop new electricity-generating technologies. Research efforts can im-
prove firms’ existing technology by Ai,j = (1 + xi,j)A0

i,j , where Ai,j measures generator
i’s advancement in technology j and A0

i,j is the firm’s initial knowledge in technology j
for j = r, f . At the end of the period, newly developed technologies are used to generate
electricity, which is then sold to electricity retailers. All electricity generators engage in
research, thus there exists a continuum of renewable and nonrenewable electricity genera-
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tors with local market power, which allows them to seek monopoly rents from electricity
retailers.24

Electricity retailers buy electricity from renewable and nonrenewable generators, which
are substitutes. There are multiple electricity retailers and they take the consumer demand
for electricity in equation (A.2) as given. Retailers maximize profits by choosing the amount
of renewable and nonrenewable electricity to buy. The profit function for electricity retailers
is given as:

πRi = max
yi,r,yi,f

{PiYi − pi,ryi,r − pi,fyi,f}, (A.3)

where πRi are the profits of retailer i, Pi is the price of electricity that retailer i charges
its consumers, yi,j (j = r, f) is electricity purchased from renewable and nonrenewable
sources, and pi,j (j = r, f) are their corresponding prices. Electricity for final consumption,
Yi, combines electricity from renewable and nonrenewable sources:

Yi ≡
(
y
ε−1
ε

i,r + y
ε−1
ε

i,f

) ε
ε−1

, (A.4)

where ε is the ease of substitution between renewables and nonrenewables.25 Retailers
maximize profits in (A.3) and determine their demands for renewable and nonrenewable
electricity: yi,j = Yi

(
Pi
pi,j

)ε
for j = r, f . Since electricity generators earn monopoly profits

from their research by exerting their market power over the prices of electricity sold to
retailers (i.e. pi,j for j = r, f), using (A.2), we rewrite the retailers’ inverse demand
function for electricity generated from source j (j = r, f) in terms of prices as:

yi,j = P σ−βP ε−σi p−εi,j . (A.5)

We consider two types of environmental policies: energy taxes and research subsidies.
Energy taxes affect firms through the price of electricity (P ) while research subsidies (τj)
affect firms by reducing the cost of innovation.26

With the retailers’ inverse demand function in place, we can calculate the profit max-
imization of electricity generators and their equilibrium level of investment in research.

24In reality, each electricity generator would be able to decide whether to conduct research at the begin-
ning of each period. While this distinction is important to study the impact of policies on innovation from
an empirical standpoint, note that there is no change in firms’ level of technology when they choose not
to conduct research or when they conduct unsuccessful research. In other words, from a theoretical stand-
point, the economic outcome resulting from firms’ decision not to engage in research is the same as those
resulting from firms’ unsuccessful research. Therefore, we assume that all electricity generators engage in
research in our theoretical model while our empirical model separately analyzes the impact of policies on
firms’ decision to engage in research and on the probability that the research is successful.

25There is much debate about how ease it is to substitute renewable and nonrenewable technologies in
electricity generation. While some people argue that they are easily substitutable, others find evidence for
a complementary relationship.

26We can think of these subsidies as lowering the costs of doing research.
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At the beginning of each period, electricity generator i invest 1
2ψxi,j of the consumption

goods in research for technology type j (j = r, f). The equilibrium level of research xi,j
maximizes:

max
xi,j

{
πi,j −

1
2
ψxi,j
τj

}
, (A.6)

where πi,j are generator i’s expected profits from selling electricity generated by source
j to the retailers and τj are research subsidies for technology type j (j = r, f). We cal-
culate the equilibrium level of research backwards. First, we calculate electricity gen-
erators’ equilibrium profits πi,j and second, we calculate their equilibrium level of re-
search intensity xi,j . Profit maximization becomes: πi,j = maxyi,j{pi,jyi,j − 1

Ai,j
yi,j}

where pi,j is the inverse demand function in equation (A.5). From this maximization
problem, we obtain the equilibrium demand for renewable and nonrenewable electricity,
yi,j =

(
ε−1
ε

)ε
, their corresponding equilibrium prices, pi,j = ε

ε−1
1
Ai,j

, and equilibrium prof-

its, πi,j =
(

(ε−1)ε−1

εε

)
P ε−σi P σ−βAε−1

i,j , for j = r, f . We use these equilibrium profits in (A.6)
to calculate the equilibrium level of innovation.

Innovation intensity for each electricity generator satisfies the first order condition:

xi,j =
(
ε− 1
ε

)ε τj
ψ
P ε−σi P σ−β

 A0
i,j(

(1 + xi,j)A0
i,j

)2−ε

 . (A.7)

Equation (A.7) describes each firm’s incentives to innovate. This equation shows that
the equilibrium innovation intensity depends on environmental policies, such as energy
taxes and research subsidies, energy prices and firms’ past research. More importantly,
the impact of energy prices and taxes on the direction of innovation depends on the ease
at which firms can substitute between electricity generated from fossil fuels and renewable
energy (ε), as well as the ease at which consumers can substitute between electricity and
the consumption good (β) and between electricity supplied by different producers (σ).
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B Data appendix

Table B.1: Variables and sources of data.

Variable Unit of measure Source
Patents Number of applications OECD Triadic Patent Families

Database
Firms’ name and location OECD REGPAT Database
Firms’ name and location OECD HAN database

Research subsidies Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

IEA Energy Technology RD&D
Statistics

Energy prices including taxes Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

IEA Energy Prices & Taxes

Real GDP Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

Penn World Table

Population Millions of people Penn World Table
Population density People per square km of land area World Development Indicator

Table B.2: List of countries.

Patents:

Argentina, Australia, Austria, Bahamas, Barbados, Belgium, Belize, Bermuda, Brazil, Bulgaria, Canada,
Cayman Islands, Chile, China, Colombia, Croatia, Cyprus, Czech Republic, Denmark, Dominica, Fin-
land, France, Georgia, Germany, Greece, Hong Kong, Hungary, Iceland, Indonesia, India, Iran, Ireland,
Italy, Israel, Japan, Jordan, Korea, Kenya, Kuwait, Lithuania, Luxembourg, Malaysia, Mauritius, Mexico,
Netherlands, New Zealand, Norway, Panama, Philippines, Poland, Portugal, Russian Federation, Saudi
Arabia, Seychelles, Singapore, Slovak Republic, Slovenia, South Africa, Spain, Sri Lanka, St. Kitts and
Nevis, Sweden, Switzerland, Taiwan, Thailand, Turkey, Ukraine, United Arab Emirates, United Kingdom,
United States of America, Venezuela.

Energy prices and research subsidies:

Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Japan, Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain,
Sweden, Switzerland, Turkey, United Kingdom, United States of America.

Countries in the estimations:

Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Japan, Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain,
Sweden, Switzerland, Turkey, United Kingdom, United States of America.
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B.1 International patent classifications (IPC)

Table B.3: Patent classes for renewable electricity generation technologies.

IPC code Description
H01M 4/86-4/98, 8/00-
8/24, 12/00-12/08

Fuel cells

H01M 4/86-4/98 Electrodes
H01M 4/86-4/98 Inert electrodes with catalytic activity
H01M 2/00-2/04 , 8/00-
8/24

Non-active parts

H01M 12/00-12/08 Within hybrid cells
C10B 53/00, C10J Pyrolysis or gasification of biomass

Harnessing energy from manmade waste
C10L 5/00 Agricultural waste
C10L 5/42, 5/44 Fuel from animal waste and crop residues
F23G 7/00, 7/10 Incinerators for field, garden or wood waste
C10J 3/02, 3/46, F23B
90/00, F23G 5/027

Gasification

B09B 3/00, F23G 7/00 Chemical waste
C10L 5/48, F23G 5/00,
F23G 7/00

Industrial waste

C21B 5/06 Using top gas in blast furnaces to power pigiron production
D21C 11/00 Pulp liquors
A62D 3/02, C02F 11/04,
11/14

Anaerobic digestion of industrial waste

F23G 7/00, 7/10 Industrial wood waste
B09B 3/00, F23G 5/00 Hospital waste
B09B Landfill gas
B01D 53/02, 53/04,
53/047, 53/14, 53/22,
53/24, C10L 5/46

Separation of components

F23G 5/00 Municipal waste
Hydro energy

E02B 9/00-9/06 Water-power plants
E02B 9/08 Tide or wave power plants
F03B, F03C Machines or engines for liquids
F03B 13/12-13/26 Using wave or tide energy
F03B 15/00-15/22 Regulating, controlling or safety means of machines or engines
B63H 19/02, 19/04 Propulsion of marine vessels using energy derived from water movement
F03G 7/05 Ocean thermal energy conversion (OTEC)
F03D Wind energy
H02K 7/18 Structural association of electric generator with mechanical driving motor
B63B 35/00, E04H 12/00,
F03D 11/04

Structural aspects of wind turbines

B60K 16/00 Propulsion of vehicles using wind power
B60L 8/00 Electric propulsion of vehicles using wind power
B63H 13/00 Propulsion of marine vessels by wind-powered motors

Solar energy
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Table B.3 – continued from previous page
IPC code Description
H01L 27/142, 31/00
31/078, H01G 9/20, H02N
6

Devices adapted for the conversion of radiation energy into electrical energy

H01L 27/30, 51/42-51/48 Using organic materials as the active part
H01L 25/00, 25/03, 25/16,
25/18, 31/042

Assemblies of a plurality of solar cells

C01B 33/02, C23C 14/14,
16/24, C30B 29/06

Silicon; single-crystal growth

G05F 1/67 Regulating to the maximum power available from solar cells
F21L 4/00, F21S 9/03 Electric lighting devices with, or rechargeable with, solar cells
H02J 7/35 Charging batteries
H01G 9/20, H01M 14/00 Dye-sensitised solar cells (DSSC)
F24J 2/00-2/54 Use of solar heat
F24D 17/00 For domestic hot water systems
F24D 3/00, 5/00, 11/00,
19/00

For space heating

F24J 2/42 For swimming pools
F03D 1/04, 9/00, 11/04,
F03G 6/00

Solar updraft towers

C02F 1/14 For treatment of water, waste water or sludge
F02C 1/05 Gas turbine power plants using solar heat source
H01L 31/058 Hybrid solar thermal-PV systems
B60K 16/00 Propulsion of vehicles using solar power
B60L 8/00 Electric propulsion of vehicles using solar power
F03G 6/00-6/06 Producing mechanical power from solar energy
E04D 13/00, 13/18 Roof covering aspects of energy collecting devices
F22B 1/00, F24J 1/00 Steam generation using solar heat
F25B 27/00 Refrigeration or heat pump systems using solar energy
F26B 3/00, 3/28 Use of solar energy for drying materials or objects
F24J 2/06, G02B 7/183 Solar concentrators
F24J 2/04 Solar ponds

Geothermal energy
F01K, F24F 5/00, F24J
3/08, H02N 10/00, F25B
30/06

Use of geothermal heat

F03G 4/00-4/06, 7/04 Production of mechanical power from geothermal energy
F24J 1/00, 3/00, 3/06 Other production or use of heat, not derived from combustion, e.g. natural heat
F24D 11/02 Heat pumps in central heating systems using heat accumulated in storage masses
F24D 15/04 Heat pumps in other domestic- or space-heating systems
F24D 17/02 Heat pumps in domestic hot-water supply systems
F24H 4/00 Air or water heaters using heat pumps
F25B 30/00 Heat pumps

Using waste heat
F01K 27/00 To produce mechanical energy
F01K 23/06-23/10, F01N
5/00, F02G 5/00-5/04,
F25B 27/02

Of combustion engines

F01K 17/00;23/04 steam engine plants
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Table B.3 – continued from previous page
IPC code Description
F02C 6/18 Of gas-turbine plants
F25B 27/02 As source of energy for refrigeration plants
C02F 1/16 For treatment of water, waste water or sewage
D21F 5/20 Recovery of waste heat in paper production
F22B 1/02 For steam generation by exploitation of the heat content of hot heat carriers
F23G 5/46 Recuperation of heat energy from waste incineration
F24F 12/00 Energy recovery in air conditioning
F27D 17/00 Arrangements for using waste heat from furnaces, kilns, ovens or retorts
F28D 17/00-20/00 Regenerative heat-exchange apparatus
C10J 3/86 Of gasification plants
F03G 5/00-5/08 Devices for producing mechanical power from muscle energy
Source: IPC Green Inventory, World Intellectual Property Organization.

Table B.4: Patent classes for efficiency-improving electricity generation technologies.

IPC code Description
Coal gasification
C10J3 Production of combustible gases containing carbon monoxide from solid carbona-

ceous fuels
Improved burners [Classes listed below excluding combinations with B60,B68,F24,F27]
F23C1 Combustion apparatus specially adapted for combustion of two or more kinds of

fuel simultaneously or alternately,at least one kind of fuel being fluent
F23C5/24 Combustion apparatus characterised by the arrangement or mounting of burners;

disposition of burners to obtain a loop flame
F23C6 Combustion apparatus characterised by the combination of two or more combus-

tion chambers
F23B10 Combustion apparatus characterised by the combination of two or more combus-

tion chambers
F23B30 Combustion apparatus with driven means for agitating the burning fuel; com-

bustion apparatus with driven means for advancing the burning fuel through the
combustion chamber

F23B70 Combustion apparatus characterised by means for returning solid combustion
residues to the combustion chamber

F23B80 Combustion apparatus characterised by means creating a distinct flow path for
fluegases or for non-combusted gases given off by the fuel

F23D1 Burners for combustion of pulverulent fuel
F23D7 Burners in which drops of liquid fuel impinge on a surface
F23D17 Burners for combustion simultaneously or alternatively of gaseous or liquid or

pulverulent fuel
Fluidised bed combustion
B01J8/20-22 Chemical or physical processes in general, conducted in the presence of fluids and

solid particles; apparatus for such processes; with liquid as a fluidising medium
B01J8/24-30 Chemical or physical processes in general, conducted in the presence of fluids

and solid particles; apparatus for such processes; according to “fluidised-bed”
technique

F27B15 Fluidised bed furnaces; Other furnaces using or treating finely divided materials
in dispersion
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Table B.4 – continued from previous page
IPC code Description
F23C10 Apparatus in which combustion takes place in afluidised bed of fuel or other

particles
Improved boilers for steam generation
F22B31 Modifications of boiler construction, or of tube systems, dependent on instal-

lation of combustion apparatus; Arrangements or dispositions of combustion
apparatus

F22B33/14-16 Steam generation plants,e.g.comprising steam boilers of different types in mutual
association; combinations of low-and high-pressure boilers

Improved steam engines
F01K3 Plants characterised by the use of steam or heat accumulators, or intermediate

steam heaters, therein
F01K5 Plants characterised by use of means for storing steam in an alkali to increases

team pressure,e.g. of Honigmann or Koenemann type
F01K23 Plants characterised by more than one engine delivering power external to the

plant, the engines being driven by different fluids
Super-heaters
F22G Steam super heating characterised by heating method
Improved gas turbines
F02C7/08-105 Features, component parts, details or accessories; heating air supply before com-

bustion,e.g. by exhaust gases
F02C7/12-143 Features, component parts, details or accessories; cooling of plants
F02C7/30 Features, component parts, details or accessories; preventing corrosion in gas-

swept spaces
Combined cycles
F01K23/02-10 Plants characterised by more than one engine delivering power external to the

plant, the engines being driven by different fluids; the engine cycles being ther-
mally coupled

F02C3/20-36 Gas turbine plants characterised by the use of combustion products as the work-
ing fluid; using special fuel, oxidant or dilution fluid to generate the combustion
products

F02C6/10-12 Plural gas-turbine plants; combinations of gas-turbine plants with other appa-
ratus; supplying working fluid to a user,e.g. a chemical process, which returns
working fluid to a turbine of the plant

Improved compressed-ignitionengines
[Classes listed below excluding combinations with B60,B68,F24,F27]
F02B1/12-14 Engines characterised by fuel-air mixture compression; with compression ignition
F02B3/06-10 Engines characterised by fuel-air mixture compression; with compression ignition
F02B7 Engines characterised by the fuel-air charge being ignited by compression ignition

of an additional fuel
F02B11 Engines characterised by both fuel-air mixture compression and air compression,

or characterised by both positive ignition and compression ignition,e.g.indifferent
cylinders

F02B13/02-04 Engines characterised by the introduction of liquid fuel into cylinders by use of
auxiliary fluid; compression ignition engines using air or gas for blowing fuel into
compressed air in cylinder

F02B49 Methods of operating air- compressing compression-ignition engines involving
introduction of small quantities of fuel in the form of a fine mist into the air in
the engine’s intake
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Table B.4 – continued from previous page
IPC code Description
Co-generation
F01K17/06 Use of steam or condensate extracted or exhausted from steam engine plant;

returning energy of steam, in exchanged form,to process,e.g. use of exhaust
steam for drying solid fuel of plant

F01K27 Plants for converting heat or fluid energy into mechanical energy
F02C6/18 Plural gas-turbine plants; combinations of gas-turbine plants with other appa-

ratus; using the waste heat of gas-turbine plants outside the plants themselves,
e.g. gas-turbine power heat plants

F02G5 Profiting from waste heat of combustion engines
F25B27/02 Machines, plant, or systems, using particular sources of energy; using waste heat,

e.g. from internal-combustion engines
Source: Lanzi et al. (2011).

Table B.5: Patent classes for general fossil-fuel technologies.

IPC code Description
C10J Production of fuel gases by carburetting air or other gases without pyrolysis
F01K Steam engine plants; steam accumulators; engine plants not otherwise provided for;

engines using special working fluids or cycles
F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply in

air-breathing jet-propulsion plants
F02G Hot-gas or combustion-product positive-displacement engine; use of waste heat of

combustion engines,not otherwise provided for
F22 Steam generation
F23 Combustion apparatus; combustion processes
F27 Furnaces; kilns; ovens; retorts
Source: Lanzi et al. (2011).

51



Table B.6: Patent classes for base load electricity generation technologies.

IPC code Description
C10J3 Coal gassification–production from solid carbonaceous fuels
F23C1 Integrated coal gasification combined cycle (IGCC)
F23C5/24 Burners used for combustion are used in base load activities
F23C6 Burners used for combustion are used in base load activities
F23B10 Other coal-fire technology, in general
F23B30 Burners used for combustion are used in base load activities
F23B70 Burners used for combustion are used in base load activities
F23B80 Burners used for combustion are used in base load activities
F23D1 Pulverized coal combustion (PCC) in steam cycle
F23D7 Burners used for combustion are used in base load activities
F23D17 Integrated coal gasification combined cycle (IGCC)
B01J8/20-22 FBC burns coal or any combustable material. Coal is mainly used in base load oper-

ations
B01J8/24-30 FBC burns coal or any combustable material. Coal is mainly used in base load oper-

ations
F27B15 FBC burns coal or any combustable material. Coal is mainly used in base load oper-

ations
F23C10 FBC burns coal or any combustable material. Coal is mainly used in base load oper-

ations
F22B31 Used in steam generation. From p 24 ref 7 “baseload steam generating units (e.g.,

boilers)”
F22B33/14-16 Used in steam generation. From p 24 ref 7 “baseload steam generating units (e.g.,

boilers)”
F01K3 Steam engines used in base load ops
F01K5 Steam engines used in base load ops
F01K23 IGCC
F22G PCC in steam cycle
F01K23/02-10 CCGT is the dominant gas-based technology for intermediate and base-load power

generation
F02C3/20-36 CCGT is the dominant gas-based technology for intermediate and base-load power

generation
F02C6/10-12 CCGT is the dominant gas-based technology for intermediate and base-load power

generation
Source: own calculations.
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Table B.7: Patent classes for peak load electricity generation technologies.

IPC code Description
F02C7/08-105 Gas Turbines used in peak load operations
F02C7/12-143 Gas Turbines used in peak load operations
F02C7/30 Gas Turbines used in peak load operations
F02B1/12-14 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B3/06-10 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B7 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B11 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B13/02-04 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B49 Compressed-ignition engines (or diesel engines) are used in peak load production
F01K17/06 Cogeneration is used dring peak load hours mainly using natural gases
F01K27 Cogeneration is used dring peak load hours mainly using natural gases
F02C6/18 Cogeneration is used dring peak load hours mainly using natural gases
F02G5 Cogeneration is used dring peak load hours mainly using natural gases
F25B27/02 Cogeneration is used dring peak load hours mainly using natural gases
Source: own calculations.
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B.2 Summary statistics

Table B.8: Total number of patents in each renewable and fossil fuel technology.

Technology Global
Renewables

Geothermal 2,123
Hydro 6,337
Natural heat 2,351
Solar 59,905
Thermal 43
Waste 17,361
Waste heat 2,351
Wind 5,770
Fuel cells 22,994
Biomass 808
Muscle energy 16
Total 120,059

Fossil fuels
Base load (coal and natural gas) 89,425
Peak load (natural gas and diesel) 27, 121
Total 116,546
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Figure B.1: Innovating firms by country.
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C Robustness analysis

This section presents the detailed estimation results of the robustness analysis discussed in

section 6. Specifically, tables C.1 and C.2 show the zero-inflated Poisson and negative bino-

mial estimates while Table C.3 shows additional fossil fuel prices. In tables C.4 and C.5 we

consider alternative lag structures of past innovation and table C.6 presents the estimation

results using the five geographical regions as an alternative definition of regional spillovers.

Table C.7 controls for additional macroeconomic indicators while Table C.8 considers only

firms in France, Germany, Japan, United Kingdom and United States, the five most innova-

tive countries in the dataset. Table C.9 separates firms between large and small firms while

table C.10 separates them between specialized and mixed firms. Finally, tables C.11 and

C.12 looks at different definitions of base load and peak load technologies.
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Table C.1: Zero-inflated Poisson estimates of the determinants of firm-level innovation in
renewable and non-renewable technologies using global data from 1978 to 2011.

Dependent variable: firm-level number of patents
Probability to apply for a patent
(Poisson – intensive margin)

Probability to engage in research
(Logit – extensive margin)

Renewable Fossil fuel Renewable Fossil fuel
(1) (2) (3) (4)

Energy prices including taxes
L1.Coal price -.36010*** -.30060* -.05183 -.16450***

(.10370) (.16440) (.04318) (.04526)
L1.Electricity price -.50680*** -.72890*** -.10040* .01906

(.10470) (.18690) (.05896) (.06581)
Research subsidies

L1.Renewable .08301*** .04699 -.02661 -.06508***
(.03033) (.05693) (.01890) (.02014)

L1.Fossil fuel -.10610*** -.04926 -.01698 -.00639
(.02006) (.03995) (.01332) (.01473)

L1.Efficiency-improving .03313 .06965 .03944* .06440***
(.03131) (.06131) (.02245) (.02431)

Past innovation
L1.Renewable knowledge .00345*** .00007 -.01313*** .00055

(.00018) (.00068) (.00082) (.00049)
L1.Renewable spillovers -.00002*** -.00003* -.00002*** -.00000

(.00001) (.00001) (.00000) (.00000)
L1.Fossil-fuel knowledge .00004 .00054*** .00068*** -.00792***

(.00006) (.00007) (.00017) (.00092)
L1.Fossil-fuel spillover .00003*** .00003** .00000 .00000

(.00001) (.00001) (.00000) (.00000)
Macroeconomic indicators

L1.GDP -.00629 -.00417 .01788 .03257
(.05982) (.1028) (.02037) (.022)

L1.GDP per capita .12320 -2.8430*** -.10140 .87870***
(.35030) (.68200) (.12240) (.13720)

Constant term 55.55000* -36.84000 2.96400** -7.34800***
(29.40000) (53.14000) (1.26300) (1.38500)

Firm pre-sample FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 30597 30597 30597 30597
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
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Table C.2: Negative binomial estimates of the determinants of firm-level innovation in re-
newable, base load and peak load technologies in the five most innovative countries.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Base load Peak load
Energy prices including taxes

L1.Coal price -.4939∗∗∗ -.4275∗∗∗ -.3169∗

(.06604) (.09596) (.1721)
L1.Electricity price -.00157 .0215 -.1107

(.07439) (.1032) (.1803)
Research subsidies

L1.Renewable .01648 .03532 .03243
(.0292) (.03803) (.07431)

L1.Fossil fuel .04571∗∗ .02959 -.02929
(.02059) (.02778) (.05324)

L1.Efficiency-improving .04731∗∗∗ .00883 .1616∗∗∗

(.01664) (.02333) (.04631)
Past innovation knowledge

L1.Renewable .00072∗∗∗ .00063∗∗∗ .00115∗∗∗

(5.5e-05) (.00011) (.00019)
L1.Base load .00046∗∗∗ .00135∗∗∗ .00055∗∗∗

(.0001) (.00011) (.00017)
L1.Peak load 2.8e-05 -.00048∗∗∗ 6.0e-05

(.0001) (.0001) (.00013)
Past innovation spillovers

L1.Renewable 1.2e-05 2.4e-05∗ 1.1e-05
(7.6e-06) (1.3e-05) (2.1e-05)

L1.Base load -3.6e-05∗∗∗ -6.0e-05∗∗∗ -3.1e-05
(8.9e-06) (1.4e-05) (2.5e-05)

L1.Peak load 8.1e-05∗∗∗ 7.0e-05∗∗ 4.7e-05
(1.8e-05) (2.9e-05) (4.8e-05)

Macroeconomic indicators
L1.GDP -.8157∗∗∗ -.7045∗∗∗ -.4787∗∗∗

(.04811) (.05605) (.108)
L1.GDP per capita .7797∗∗ 1.275∗∗∗ .5734

(.3149) (.4848) (.8579)
Constant term 2.69 -5.711 -1.588

(3.382) (5.33) (9.151)
Pre-sample history Yes Yes Yes
Pre-sample active Yes Yes Yes
Firm FE Yes Yes Yes
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 196903 100955 31494
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.4: Estimates with second lags of explanatory variables.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.4123∗∗ -.3538∗ -.3801∗∗ -.4599∗∗∗ -.5508

(.1621) (.2064) (.1481) (.1652) (.3651)
L1.Electricity price .2079 .3064 .1687 .3595 -.2256

(.2098) (.2732) (.187) (.2313) (.3913)
Research subsidies

L1.Renewable .1538∗∗ .04959 .1668∗∗ -.0118 .1749
(.07187) (.113) (.06896) (.08075) (.2059)

L1.Fossil fuel .00717 .05446 -.00955 .0623 .06368
(.03757) (.05815) (.03977) (.05977) (.08687)

L1.Efficiency-improving .00229 .03965 -.0096 -.02493 .3045∗∗∗
(.03686) (.06079) (.03812) (.0544) (.09123)

Past innovation knowledge
L2.Renewable -.00104∗∗∗ -.00079 -.00095∗∗∗ -5.9e-05 -.00104

(.00014) (.00054) (.00012) (.00066) (.0007)
L2.Fossil fuel -1.8e-06 .00019∗∗∗

(.0002) (6.4e-05)
L2.Base load -.0011∗∗∗ -.00125∗∗∗ .00031

(.0003) (.0003) (.00057)
L2.Peak load .00105∗∗∗ .00114∗∗∗ .00023

(.00025) (.00022) (.00036)
Past innovation spillovers

L2.Renewable -2.3e-05 -1.4e-05 -2.9e-05∗ -3.7e-05 -7.7e-05
(1.6e-05) (2.4e-05) (1.7e-05) (2.3e-05) (5.4e-05)

L2.Fossil fuel -3.9e-05∗∗ -5.4e-06
(1.5e-05) (1.5e-05)

L2.Base load -3.5e-05∗∗ 4.9e-06 8.9e-06
(1.6e-05) (2.0e-05) (3.0e-05)

L2.Peak load -3.7e-05 -3.0e-05 7.8e-05
(4.4e-05) (5.5e-05) (8.9e-05)

Macroeconomic indicators
L1.GDP -.1764∗ -.1321 -.1792∗ -.2485∗∗∗ -.6646∗∗∗

(.09771) (.1077) (.1015) (.08802) (.1872)
L1.GDP per capita -.4653 .4265 -.6343 .7695 .4334

(.7823) (.8231) (.7311) (.6287) (1.466)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 46590 31316 46620 28779 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.5: Estimates with third lags of explanatory variables.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.4294∗∗∗ -.3924∗∗ -.4012∗∗∗ -.4787∗∗∗ -.5158

(.1496) (.1959) (.1383) (.1662) (.3949)
L1.Electricity price .2292 .3448 .2845 .3623∗ -.2149

(.199) (.2579) (.179) (.2201) (.3932)
Research subsidies

L1.Renewable .1512∗∗ .04769 .1408∗∗ .00381 .1709
(.06923) (.109) (.06488) (.07456) (.2099)

L1.Fossil fuel .01373 .05483 .00358 .06109 .07089
(.0378) (.05881) (.04003) (.05967) (.0935)

L1.Efficiency-improving -.00734 .01646 -.00943 -.04462 .2936∗∗∗
(.0357) (.06259) (.03483) (.05181) (.08994)

Past innovation knowledge
L3.Renewable -.00148∗∗∗ -.00103∗ -.00134∗∗∗ -7.6e-05 -.00093

(.00027) (.0006) (.0002) (.00078) (.00065)
L3.Fossil fuel -7.0e-05 .00015∗

(.00024) (8.1e-05)
L3.Base load -.00123∗∗∗ -.00174∗∗∗ .00018

(.00038) (.00035) (.00058)
L3.Peak load .00106∗∗∗ .00147∗∗∗ .00029

(.00032) (.00027) (.00038)
Past innovation spillovers

L3.Renewable -2.8e-05 -8.7e-06 -1.6e-05 -3.8e-05∗ -7.7e-05
(1.7e-05) (2.7e-05) (1.9e-05) (2.2e-05) (6.1e-05)

L3.Fossil fuel -3.6e-05∗∗ -9.1e-06
(1.6e-05) (1.9e-05)

L3.Base load -9.5e-06 -2.5e-06 7.1e-06
(1.7e-05) (2.2e-05) (3.5e-05)

L3.Peak load -9.4e-05∗ -9.9e-06 1.0e-04
(4.9e-05) (6.0e-05) (.00011)

Macroeconomic indicators
L1.GDP -.1981∗ -.1141 -.1734∗ -.2491∗∗∗ -.6602∗∗∗

(.112) (.1196) (.1037) (.09158) (.1985)
L1.GDP per capita -.4775 .3075 -.3941 .6358 .4153

(.7639) (.8435) (.7155) (.62) (1.498)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 53642 35200 53676 32180 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.6: Alternative definition of regional spillovers: five regions.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3964∗∗ -.2992 -.4168∗∗ -.4081∗∗ -.5841

(.1809) (.2168) (.1664) (.1703) (.3599)
L1.Electricity price .1641 .2415 .2467 .3653 -.02527

(.2259) (.2857) (.194) (.2404) (.3832)
Research subsidies

L1.Renewable .1567∗∗ .0485 .1288∗ -.0253 .1756
(.07383) (.1129) (.07403) (.08381) (.2168)

L1.Fossil fuel .00263 .0551 .02039 .06659 .06384
(.03797) (.05722) (.03945) (.05826) (.08065)

L1.Efficiency-improving .00187 .06258 .0385 -.00404 .3642∗∗∗
(.0406) (.06928) (.04008) (.05664) (.1052)

Past innovation knowledge
L1.Renewable -.00056∗∗∗ -.00049 -.00045∗∗∗ 4.3e-05 -.00077

(.00013) (.00044) (.00016) (.00053) (.00062)
L1.Fossil-fuel 4.4e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Base load -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00024) (.0005)
L1.Peak load .00098∗∗∗ .00082∗∗∗ .00016

(.0002) (.00018) (.00032)
Past innovation spillovers

L1.Renewable -2.6e-05 -3.6e-05 -6.0e-06 -1.4e-05 -5.0e-05
(2.3e-05) (3.2e-05) (2.1e-05) (3.1e-05) (5.6e-05)

L1.Fossil-fuel -4.3e-05∗∗∗ -1.1e-05
(1.5e-05) (1.6e-05)

L1.Base load 2.2e-05 2.1e-05 5.9e-05
(2.3e-05) (3.0e-05) (3.8e-05)

L1.Peak load -.00013∗∗∗ -.0001∗ -3.7e-05
(5.0e-05) (6.0e-05) (9.4e-05)

Macroeconomic indicators
L1.GDP -.1662∗ -.1112 -.1941∗∗ -.1636∗ -.4713∗∗

(.09153) (.1016) (.09364) (.09356) (.1953)
L1.GDP per capita -.3539 .5974 .2637 1.255∗∗ .7033

(.8199) (.8274) (.7974) (.6389) (1.634)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39317 25194 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.7: Baseline estimates with additional macroeconomic indicators (population
density).

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3871∗ -.2869 -.403∗∗ -.4036∗∗ -.5892

(.1986) (.2195) (.1798) (.1695) (.347)
L1.Electricity price .1767 .2685 .2707 .3659 -.03229

(.2265) (.2847) (.1989) (.2412) (.39)
Research subsidies

L1.Renewable .1575∗∗ .04417 .126∗ -.03284 .1754
(.07461) (.1154) (.07477) (.08704) (.2151)

L1.Fossil fuel .0012 .05684 .0213 .06772 .06437
(.03916) (.05764) (.04196) (.05867) (.0804)

L1.Efficiency-improving .01003 .06804 .03807 .00048 .366∗∗∗

(.04124) (.0738) (.04069) (.0585) (.1142)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00046 -.00045∗∗∗ 5.4e-05 -.00077
(.00013) (.00043) (.00016) (.00053) (.00062)

L1.Fossil-fuel 4.8e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Base load -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00023) (.00049)
L1.Peak load .00098∗∗∗ .00082∗∗∗ .00017

(.0002) (.00017) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -5.1e-06 -1.4e-05 -5.2e-05
(2.0e-05) (2.7e-05) (1.8e-05) (2.2e-05) (5.1e-05)

L1.Fossil-fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Base load 2.5e-05 2.2e-05 5.5e-05
(2.0e-05) (2.4e-05) (3.5e-05)

L1.Peak load -.00013∗∗∗ -9.9e-05∗ -2.6e-05
(5.0e-05) (5.9e-05) (9.5e-05)

Macroeconomic indicators
L1.GDP -.1374 -.1152 -.1765∗ -.1622∗ -.4801∗∗

(.09599) (.09859) (.1038) (.09144) (.1942)
L1.GDP per capita -.3662 .6039 .2445 1.287∗∗ .6931

(.8814) (.819) (.8643) (.6551) (1.53)
L1.Pop. density -.00289 -.03837 -.03412 .00132 .00953

(.07262) (.1259) (.08817) (.1257) (.2721)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39099 27020 39123 24981 9767
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.8: Five most innovative countries: France, Germany, Japan, United Kingdom,
United States.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.5212∗∗ -.0764 -.6175∗∗∗ -.3273 .02017

(.2215) (.2669) (.208) (.2093) (.4524)
L1.Electricity price .2901 .06645 .5866∗∗ .5353 -.5389

(.2539) (.3515) (.229) (.3435) (.4916)
Research subsidies

L1.Renewable .1383∗ .06597 .1274 .02422 .1783
(.08316) (.1258) (.08085) (.0935) (.2117)

L1.Fossil fuel .02769 .06799 .07531 .115∗ -.05627
(.04436) (.06448) (.04806) (.06856) (.08894)

L1.Efficiency-improving -.02535 .09217 .01101 -.00632 .4546∗∗∗
(.04325) (.06963) (.04223) (.05709) (.1068)

Past innovation knowledge
L1.Renewable -.00053∗∗∗ -.00059 -.00041∗∗ -1.7e-05 -.00086

(.00014) (.00044) (.00018) (.00051) (.00067)
L1.Fossil-fuel 4.2e-05 .00029∗∗∗

(.00017) (4.7e-05)
L1.Base load -.00101∗∗∗ -.00066∗∗ .00048

(.00028) (.00027) (.00056)
L1.Peak load .00095∗∗∗ .00078∗∗∗ .00018

(.00021) (.00022) (.00036)
Past innovation spillovers

L1.Renewable -2.4e-05 -6.1e-05∗ 1.2e-05 -1.7e-05 -8.4e-05
(2.4e-05) (3.5e-05) (2.4e-05) (4.0e-05) (6.6e-05)

L1.Fossil-fuel -4.4e-05∗∗∗ -3.1e-06
(1.5e-05) (1.7e-05)

L1.Base load 4.4e-05 3.8e-05 5.6e-05
(2.7e-05) (3.9e-05) (5.3e-05)

L1.Peak load -.00018∗∗∗ -.00012 -1.7e-05
(5.8e-05) (8.6e-05) (.00011)

Macroeconomic indicators
L1.GDP -.2038∗ -.1909 -.2624∗∗ -.1796 -.3594∗

(.1196) (.1759) (.1271) (.1184) (.1837)
L1.GDP per capita -.3636 .8395 .2975 .3559 .6358

(.9212) (.8435) (.9344) (.8418) (1.557)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 33586 23139 33652 21394 8525
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.9: Baseline estimates with large and small firms.

Dependent variable: firm-level number of patents
Large firms (> 15 total patents) Small firms (< 15 total patents)

Renewable Base load Peak load Renewable Base load Peak load
(1) (2) (3) (4) (5) (6)

Energy prices including taxes
L1.Coal price -.4436∗∗ -.4003∗∗ -.5758 .09776 .00012 -.5506

(.1832) (.1785) (.3713) (.2114) (.3373) (1.074)
L1.Electricity price .2726 .3507 -.02502 .06325 1.397∗∗∗ 1.441

(.2116) (.2488) (.3782) (.2339) (.4325) (1.312)
Research subsidies

L1.Renewable .1324∗ -.02993 .184 .01987 -.1885 .2159
(.08045) (.08819) (.2226) (.09456) (.1535) (.3421)

L1.Fossil fuel .02327 .071 .06291 .00138 -.07014 .1345
(.04323) (.06038) (.08314) (.06061) (.09505) (.2693)

L1.Efficiency-improving .04037 -.00082 .3782∗∗∗ -.08224 .064 -.1454
(.04303) (.0603) (.109) (.05443) (.09466) (.287)

Past innovation knowledge
L1.Renewable -.00039∗∗ .00012 -.00072 -.6293∗∗∗ -.2323∗∗∗ -.2383

(.00017) (.00052) (.00062) (.03314) (.08897) (.1725)
L1.Base load -.00098∗∗∗ -.00071∗∗∗ .00036 -.03261 -.9332∗∗∗ -.4581

(.00028) (.00023) (.00049) (.05756) (.07653) (.3674)
L1.Peak load .001∗∗∗ .00081∗∗∗ .00018 -.139 -.5253∗ -1.434∗∗∗

(.00021) (.00017) (.00032) (.0958) (.3102) (.2648)
Past innovation spillovers

L1.Renewable 1.1e-06 -1.3e-05 -4.9e-05 -9.4e-05∗∗ .00015∗∗ -.00024
(2.0e-05) (2.2e-05) (5.3e-05) (3.7e-05) (7.7e-05) (.00016)

L1.Base load 2.4e-05 2.0e-05 5.9e-05 .00011∗∗∗ .00038∗∗∗ .00015
(2.1e-05) (2.3e-05) (3.6e-05) (3.1e-05) (6.6e-05) (.00026)

L1.Peak load -.00014∗∗∗ -.0001∗ -3.4e-05 -2.4e-05 7.7e-05 -.00035
(5.3e-05) (5.7e-05) (9.7e-05) (.00013) (.0003) (.00207)

Macroeconomic indicators
L1.GDP -.2284∗∗ -.1731∗ -.4857∗∗ .5648 .8201∗∗ -24.85

(.1015) (.0953) (.1963) (.3449) (.3744) (111.1)
L1.GDP per capita .3592 1.344∗∗ .6504 .7158 .523 23.17

(.8471) (.6641) (1.669) (1.547) (2.657) (110.9)
Pre-sample history Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 18064 15544 7028 20736 9250 2601
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.10: Baseline estimates with specialized and mixed firms.

Dependent variable: firm-level number of patents
Specialized firms Mixed firms

Renewable Base load Peak load Renewable Base load Peak load
(1) (2) (3) (4) (5) (6)

Energy prices including taxes
L1.Coal price -.802∗∗∗ -.2684 -3.039∗ -.2009 -.3744∗∗ -.5976

(.3003) (.3301) (1.843) (.1433) (.1854) (.364)
L1.Electricity price -.5917∗ .2668 5.37∗∗∗ .4349∗∗ .3449 -.02659

(.3043) (.3646) (1.938) (.2196) (.2579) (.3743)
Research subsidies

L1.Renewable .1288 -.1609 -1.347 .1171 -.01907 .1965
(.1047) (.1403) (.9019) (.0888) (.09345) (.2183)

L1.Fossil fuel .123∗∗ -.04512 .1831 -.01608 .09057 .06972
(.0604) (.08581) (.5875) (.05007) (.06612) (.08219)

L1.Efficiency-improving -.01507 .2294∗∗ -.04686 .03205 -.01894 .3669∗∗∗

(.07171) (.1059) (.8053) (.04585) (.06322) (.1085)
Past innovation knowledge

L1.Renewable -.00315∗∗ -.00036∗ .00016 -.00076
(.0014) (.00021) (.00052) (.00062)

L1.Base load -.04717∗∗∗ -.00096∗∗∗ -.00065∗∗∗ .00036
(.01288) (.00028) (.00023) (.0005)

L1.Peak load -.327 .00098∗∗∗ .00078∗∗∗ .00018
(.2278) (.00021) (.00018) (.00031)

Past innovation spillovers
L1.Renewable -7.5e-05∗∗ 9.7e-05∗∗ -.00038 5.0e-06 -9.1e-06 -5.0e-05

(3.2e-05) (5.0e-05) (.00029) (2.3e-05) (2.4e-05) (5.1e-05)
L1.Base load .00012∗∗ .00016∗∗∗ .00026 2.4e-06 1.5e-05 5.6e-05

(5.0e-05) (4.7e-05) (.00017) (1.9e-05) (2.5e-05) (3.5e-05)
L1.Peak load -.00014 -.00031∗ 1.5e-05 -.00014∗∗ -.0001∗ -2.7e-05

(9.0e-05) (.00017) (.00107) (5.6e-05) (6.0e-05) (9.5e-05)
Macroeconomic indicators

L1.GDP .095 .2788 -10.43 -.2037∗ -.2012∗∗ -.4989∗∗

(.1785) (.7883) (81.37) (.1089) (.09996) (.1954)
L1.GDP per capita -1.713 .2664 20.45 .7907 1.316∗ .5791

(1.496) (2.998) (86.99) (.8294) (.6796) (1.651)
Pre-sample history Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 21223 7187 891 18094 18007 8891
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.11: FE Poisson estimates for top five innovating countries excluding hydro, geother-
mal, and biomass from renewable technologies.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.525∗∗ -.03552 -.6438∗∗∗ -.5085∗∗ -.05094

(.2237) (.2706) (.2142) (.2105) (.4438)
L1.Electricity price .2791 .1139 .4469∗ .4667 -.6124

(.2621) (.3462) (.2359) (.3284) (.5269)
Research subsidies

L1.Renewable .1353 .0826 .1429∗ .0567 .1857
(.08524) (.1266) (.08516) (.1024) (.197)

L1.Fossil fuel .03507 .04622 .06106 .07373 -.04772
(.04678) (.06331) (.04904) (.06969) (.08827)

L1.Efficiency-improving -.04022 .05854 -.02912 -.01993 .4737∗∗∗

(.04234) (.07206) (.0424) (.05729) (.1115)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00068 -.00047∗∗∗ 6.4e-05 -.00087
(.00015) (.00044) (.00018) (.00057) (.00069)

L1.Fossil-fuel 7.6e-08 .00029∗∗∗

(.00018) (4.3e-05)
L1.Base load -.00108∗∗∗ -.00086∗∗ .00047

(.00028) (.00034) (.00057)
L1.Peak load .00098∗∗∗ .00097∗∗∗ .00018

(.00021) (.00025) (.00035)
Past innovation spillovers

L1.Renewable -2.3e-05 -6.0e-05∗ -1.3e-05 -5.0e-05 -6.8e-05
(2.4e-05) (3.6e-05) (2.2e-05) (3.4e-05) (5.8e-05)

L1.Fossil-fuel -4.8e-05∗∗∗ -1.4e-05
(1.6e-05) (1.6e-05)

L1.Base load 2.7e-07 -1.9e-05 7.1e-05
(2.6e-05) (3.8e-05) (5.7e-05)

L1.Peak load -.00012∗∗ -1.7e-07 -3.4e-05
(5.6e-05) (7.8e-05) (.0001)

Macroeconomic indicators
L1.GDP -.271∗∗ -.07988 -.1046 -.4305∗∗∗ -.6013∗∗

(.1292) (.1968) (.1409) (.1445) (.2375)
L1.GDP per capita -.3806 .1371 -.3618 -.2393 .6567

(.9774) (.9394) (.9623) (.851) (1.768)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 32134 22914 32124 21167 8393

Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors. 67



Table C.12: All patents separated between base load and peak load technologies.

Dependent variable: firm-level number of patents
Base load Peak load

Energy prices including taxes
L1.Coal price -.3075∗ -.2522

(.165) (.1795)
L1.Electricity price .3366 .1447

(.2217) (.1772)
Research subsidies

L1.Renewable .0294 .149∗

(.08583) (.07837)
L1.Fossil fuel .07615 .03047

(.05487) (.03866)
L1.Efficiency-improving .02353 .09496∗∗

(.05639) (.04487)
Past innovation knowledge

L1.Base load -.00062∗∗ .00037
(.00025) (.00037)

L1.Peak load .00065∗∗∗ -.00013
(.00016) (.00021)

Past innovation spillovers
L1.Base load 8.3e-06 5.4e-06

(2.0e-05) (1.7e-05)
L1.Peak load -2.9e-05∗ -2.6e-05

(1.7e-05) (1.8e-05)
Macroeconomic indicators

L1.GDP -.1686 -.2283∗

(.1375) (.119)
L1.GDP per capita 1.359∗∗ .2075

(.665) (.6933)
Pre-sample history Yes Yes
Pre-sample active Yes Yes
Firm FE Yes Yes
Country FE Yes Yes
Year FE Yes Yes
Observations 27660 40011
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C.13: Baseline estimates without pre-sample patenting activity.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3891∗∗ -.344∗ -.4584∗∗∗ -.4162∗∗∗ -.4352

(.1825) (.2087) (.1675) (.1539) (.3699)
L1.Electricity price .1098 .4099∗ .2111 .3791 .00688

(.2178) (.2434) (.1965) (.2337) (.4163)
Research subsidies

L1.Renewable .1465∗ .07793 .1423∗ .00574 .1372
(.07475) (.1089) (.07332) (.08518) (.1997)

L1.Fossil fuel .00359 .06335 .01328 .0859∗ .05623
(.03823) (.05416) (.03941) (.05561) (.08003)

L1.Efficiency-improving .01639 .05165 .03249 -.00465 .3396∗∗∗

(.04148) (.07135) (.04022) (.05517) (.1128)
Past innovation knowledge

L1.Renewable -.00054∗∗∗ -.00046 -.00047∗∗∗ 3.6e-05 -.00083
(.00013) (.00043) (.00016) (.00054) (.0006)

L1.Fossil-fuel 4.4e-05 .00024∗∗∗

(.00017) (4.4e-05)
L1.Base load -.00098∗∗∗ -.00075∗∗∗ .0004

(.00027) (.00023) (.0005)
L1.Peak load .00097∗∗∗ .00085∗∗∗ .00011

(.0002) (.00016) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.6e-05 -1.3e-05 -3.7e-05∗ -4.9e-05
(2.1e-05) (2.8e-05) (1.7e-05) (2.2e-05) (4.6e-05)

L1.Fossil-fuel -3.5e-05∗∗ -1.0e-05
(1.4e-05) (1.6e-05)

L1.Base load 6.3e-06 2.0e-06 6.9e-05
(2.0e-05) (2.9e-05) (5.0e-05)

L1.Peak load -.00011∗∗ -4.9e-05 -9.2e-05
(4.8e-05) (5.8e-05) (9.5e-05)

Macroeconomic indicators
L1.GDP -.1322 -.07117 -.04709 -.00821 -.1083

(.08913) (.1212) (.09775) (.1007) (.1636)
L1.GDP per capita -.03711 .8073 .3347 .6445 .7332

(.8216) (.7256) (.7642) (.65) (1.462)
Pre-sample history No No No No No
Pre-sample active No No No No No
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39303 27240 39319 25183 9774
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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