
Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

Norges
Handelshøyskole

Norwegian School of Economics 

NHH
Helleveien 30
NO-5045 Bergen
Norway

Tlf/Tel: +47 55 95 90 00
Faks/Fax: +47 55 95 91 00
nhh.postmottak@nhh.no
www.nhh.no

Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

 

Teams in Relational Contracts

BY
Ola Kvaløy AND Trond E. Olsen

FOR 23 2016
ISSN: 1500-4066
December 2016



Teams in Relational Contracts�

Ola Kvaløyy and Trond E. Olsenz

June 16, 2016

Abstract

We analyze relational contracting between a principal and a team of

agents where only aggregate output is observable. We deduce optimal

team incentive contracts under di¤erent set of assumptions, and show

that the principal can use team size and team composition as instru-

ments in order to improve incentives. In particular, the principal can

strengthen the agents�incentives by composing teams that utilize sto-

chastic dependencies between the agents�outputs. We also show that

more agents in the team may under certain conditions increase each

team member�s e¤ort incentives, in particular if outputs are negatively

correlated.
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1 Introduction

Incentive contracts within �rms, between a principal and her agents, are of-

ten based on performance measures that are hard to verify by a third party

(see e.g. MacLeod and Parent, 1999, and Gibbs et al, 2004). The quality

or value of the agents�performance may be observable to the principal, but

cannot easily be assessed by a court of law. The parties must then rely on

self-enforcing relational contracts. Through repeated interactions the parties

can make it costly for each other to breach the contract, by letting breach

ruin future trade. But relational contracts cannot fully solve the principal�s

incentive problem, since the agents�monetary incentives (bonuses) are lim-

ited by the value of the future relationship. If bonuses are too large (or too

small), the principal (or agents) may deviate by not paying as promised, and

thereby undermining the relational contract. The principal must thus pro-

vide as e¢ cient incentives as possible, under the constraint that the feasible

bonuses are limited.

The literature has studied this problem under the assumption that the

agents� individual outputs are non-veri�able, but still observable for the

contracting parties (as in Levin, 2002 and 2003). However, agents often

work in teams in which only aggregate output is observable, while individ-

ual outputs are non-observable.1 While a team�s aggregate output may be

easier to verify than individual outputs, there is still a range of situations

in which a team�s output is non-veri�able. Teams are also, like individuals,

exposed to discretionary bonuses and subjective performance evaluation,

which by de�nition cannot be externally enforced.2

In this paper, we thus analyze a relational contract between a principal and

a team of agents where only the team�s aggregate output is observable. We

1A majority of �rms in the US and UK report some use of teamwork in which groups
of employees share the same goals or objectives, and the incidence of team work has
been increasing over time (see Lazear and Shaw, 2007 and Bandiera et al, 2012, and the
references therein).

2As an example, �rms often promise �xed bonus pools to a team of workers before they
allocate discretionary individual rewards within the team. However, the size of the team�s
bonus pool may also be discretionary, or non-contractible, and �rms will need relational
contracts in order to commit to actual pay the total team bonus as promised, see Glover
and Xue (2014) and Deb et al (2015) and the references therein. Another example is
corporate bonuses or division bonuses, which by de�nition are group-based, and often
discretionarily determined by the board at the end of the year.
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show that when the maximum team bonus is limited by the relational con-

tract, the principal can use team size and team composition as instruments

in order to improve incentives. In particular, the principal can strengthen

the agents�incentives by composing teams that utilize stochastic dependen-

cies between the agents� outputs.3 These outputs will often be positively

correlated, for instance if team members are exposed to the same business

cycles. In other situations, agents� outputs are negatively correlated, for

instance when specialists with di¤erent expertise are di¤erently exposed to

business cycles, or meet di¤erent sets of demands from customers or supe-

riors. In this paper we investigate how the principal can use information

about correlation between the workers�individual output in order to imple-

ment optimal team based incentives. Moreover, we investigate how adding

more agents to a team a¤ect incentives. In particular, we ask: can a larger

team do better (in terms of output per agent) than a smaller team? That

is: can a larger team yield higher-powered incentives?

We �rst show that as long as the monotone likelihood ratio property (MLRP)

holds, the optimal team incentive scheme is simple: Each agent is paid a

bonus for aggregate output above a threshold. However, when MLRP does

not hold (which may well be the case under correlated outputs), then it

may be optimal to reward the team for e.g. low and high output, but not

for intermediate ones. Moreover, we show that if individual outputs are

stochastically independent, more agents in the team always reduces e¤ort.

However, once outputs are correlated (positively or negatively), the 1=n

free-rider problem does not generally hold. More agents in the team may

under certain conditions increase each team members�e¤ort incentives, in

particular if outputs are negatively correlated.

The general mechanism that lies behind these results is as follows: In any

relational contract there is a maximal self-enforcing bonus; its magnitude

is bounded by the value of the future relationship. For this given bonus,

incentives will be maximal when the bonus is awarded for all outcomes

where the marginal e¤ect of e¤ort on the probability of those outcomes is

positive. Correlation among individual outputs will a¤ect the distribution

of team output, and hence also these marginal e¤ort e¤ects; their signs as

3Even if individual outputs are unobservable, the parties may know how and to what
extent they are correlated.
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well as their magnitudes. Thus it will a¤ect the set of outputs for which the

bonus is awarded, as well as the individual e¤ort incentives generated by

this bonus. Whenever the latter is strengthened by adding another agent to

the team, the bigger team will do better. We show that this is often more

likely under negative than under positive correlation.

These e¤ects, and in particular the e¤ects of correlated outputs on the team�s

e¢ ciency, turn out to be quite transparent and very striking in the case of

normally distributed outputs. The MLRP then holds for team output, and

hence the bonus is optimally awarded for output above a threshold. More-

over, the individual marginal e¤ect of e¤ort on the probability of obtaining

the bonus is inversely proportional to the standard deviation of the team�s

output. Hence, since the standard deviation is reduced (increased) when

more agents are added under negative (positive) correlation, a larger team

provides stronger incentives and thus performs better if and only if individ-

ual outputs are negatively correlated. Under normally distributed outputs,

this result is thus related to the fact that by including more agents in the

team, we may obtain a more precise performance measure. This is bene�-

cial not because a more precise measure reduces risk (since all agents are

risk neutral by assumption), but because it strengthens, for any given bonus

level, the incentives for each team member to provide e¤ort. The analysis of

the normal case reveals that for su¢ ciently small variance, the standard �rst

order approach (used by e.g. Levin, 2003) is not valid, but we show that a

threshold bonus is nevertheless optimal, and we characterize its properties.

However, the results of the normal case may well not hold for other distri-

butions; in particular we may have MLRP satis�ed for individual outputs,

but not for aggregate output. This will a¤ect the shape of optimal incentive

schemes, and will generally also a¤ect how optimal schemes and associated

e¤orts are in�uenced by correlations between individual outputs. We there-

fore also analyze a setting with discrete (binary) outputs, and characterize

conditions under which a larger team will do better, but also show that a

hurdle scheme may well not be optimal in this setting.

Our results have several implications. First, the canonical 1=n free-rider

problem does not generally hold. This may inform practitioners and em-

pirical researchers: Under correlated outputs, larger teams may actually do
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better than smaller ones. Second, threshold schemes are not necessarily

optimal under correlated outputs, and may in fact lead to perverse incen-

tives under certain conditions. Empirical researchers who observe team in-

centives schemes that fail, may wrongfully infer that it is due to a free-

rider problem. Third, the positive incentive e¤ects of negative correlation

relates to questions concerning optimal team composition. One can con-

jecture that negative correlations are more associated with heterogeneous

teams than homogenous teams, and also more associated with task-related

diversity (functional expertise, education, organizational tenure) than with

bio-demographic diversity (age, gender, ethnicity). There is no reason to

believe that e.g. men and women�s outputs are negatively correlated. How-

ever, workers with di¤erent functional expertise may be di¤erently exposed

to common shocks, and meet di¤erent sets of demands. This can give rise

to negative output correlations. Interestingly, a comprehensive meta-study

by Horwitz and Horwitz (2007), investigating 35 papers on the topic, �nds

no relationship between bio-demographic diversity and performance, but

a strong positive relationship between team performance and task-related

diversity.4 An explanation is that task-related diversity creates positive

complementarity e¤ects. We point to an alternative explanation, namely

that diversity may create negative correlations that increases each agents�

marginal incentives for e¤ort. The team members �must step forward when

others fail�. Diversity and heterogeneity among team members can thus

yield considerable e¢ ciency improvements.

The rest of the paper is organized as follows. In Section 2 we discuss related

literature, while in Section 3 we introduce the model. Section 4 analyzes

the case of normally distributed outputs, while Section 5 considers discrete

outputs. Section 6 concludes.

2 Related literature

We study optimal incentive contracts for n > 1 agents when both individ-

ual outputs are unobservable and aggregate output is non-veri�able. Non-

4Hamilton et al (2003) provide one of a very few empirical studies on teams within the
economics literature. They �nd that more heterogeneous teams (with respect to ability)
are more productive (average ability held constant).
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veri�able output calls for relational contracts, and relational contracts be-

tween a principal and a team of agents where only aggregate output is ob-

servable has (to our best knowledge) not yet been studied. Levin (2002)

considers a multilateral relational contract between a principal and n > 1

agents, but where individual outputs are observable and stochastically inde-

pendent. He shows among other things that a tournament scheme is optimal.

The few relational contracting papers on team incentives also consider sit-

uations in which individual outputs are observable. Here, team incentives

turns out optimal due to repeated interaction between agents (Kvaløy and

Olsen, 2006; Rayo, 2007) or complementarity in production (Kvaløy and

Olsen, 2008, Baldenius et al. 2015). Recent papers also consider relational

team incentive contracts where individual bonuses are based on subjective

measures (Glover and Xue, 2014, and Deb et al, 2015)

Although we focus on the multiagent case, our paper is indebted to the

seminal literature on bilateral relational contracts, starting with Klein and

Le er (1981), Shapiro and Stiglitz (1984) and Bull (1987).5 MacLeod and

Malcomson (1989) provides a general treatment of the symmetric informa-

tion case, while (the now in�uential paper by) Levin (2003) generalizes the

case of asymmetric information. Our threshold scheme, in which each agent

is paid a maximal bonus for aggregate output above a threshold and a min-

imal (no) bonus otherwise, parallels Levin�s (2003) characterization for the

single-agent case. However, while Levin (like most other papers in this lit-

erature) uses the standard �rst order approach (FOA), we characterize the

optimal bonus scheme in our application (the normal case) also when FOA is

not valid, and we show that it is in fact a threshold scheme. Technically this

hinges on MLRP being valid for team output. In fact, the analysis shows

that in the single-agent case, MLRP will generally ensure that a threshold

bonus is optimal (whether FOA is valid or not).

Our paper also relates to the literature on optimal team incentives. This

literature is twofold. One strand, starting with Alchian and Demsetz (1972),

assume, like us, that individual output is unobservable, but (unlike us) that

aggregate output is veri�able. The main focus is then on the free-rider

5While the formal literature starts with Klein and Le er, the concept of relational
contracts had was �rst de�ned and explored by legal sholars (Macaulay, 1963, Macneil,
1974,1978)
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problem, and how it can be solved or mitigated with legally enforceable

contracts.6 Such contracts are not feasible here.

Another strand of the literature studies team incentives when individual out-

put is observable. The idea is that the principal, by tying compensation to

the joint performance of a team of agents, can foster cooperation (e.g. Itoh;

1991, 1992, 1993; Holmström and Milgrom, 1990; Macho-Stadler and Perez-

Castrillo 1993), exploit peer e¤ects (e.g. Kandel and Lazear, 1992; Che and

Yoo, 2001), or help mitigate multitask problems (Corts, 2007, Mukherjee

and Vasconcelos 2011, Ishihara 2016). While we do not consider observable

individual output, our paper is related to this literature in the sense that we

also exploit dependencies between the agents in order to improve e¢ ciency,

see in particular Rajan and Reichelstein (2006) who show (in a model where

total team output is veri�able) that correlation between subjective perfor-

mance measures within teams may bene�t the principal.

Our focus on stochastic dependencies also relates to the literature on rela-

tive performance evaluation. By tying compensation to an agent�s relative

performance, the principal can improve e¢ ciency by �ltering out common

noise and thereby expose them to less risk (Holmström, 1982; and Mookher-

jee, 1984).7 We show that correlation may improve e¢ ciency even in the

absence of risk considerations. In this respect, the correlation e¤ects we

demonstrate (in the normal case application) relates to insights from the

�nance literature, starting with Diamond (1984) who show that correlated

signals/shocks may reduce output variance and thus reduce entrepreneurs�

moral hazard opportunities towards investors.

Although the literature on team incentives generally recognizes team size

as an important determinant for team performance, questions concerning

optimal team size has received limited attention. Most notable are the con-

6Holmström (1982) formalized Alchian and Demsetz argument and showed that a bud-
get breaker who holds claim on the team�s output can assure �rst best e¤ort incentives. A
literature has followed that both extend and re�ne Holmström�s insights (e.g. Rasmussen,
1987, and McAfee and McMillan (1991), including papers showing that the budget break-
ing requirement is too strong, and that �rst-best incentives can be achieved without re-
quiring that all agents are made residual claimant (Legros and Matsushima, 1991; Legros
and Matthews, 1993).

7Fleckinger (2012) provides a more general treatment of stochastic dependencies and
RPE, and shows that greater correlation in outcomes does not neccesarily call for RPE
schemes.
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tributions within the accounting literature, see Ziv (2000), Huddart and

Liang (2005) and Liang et al. (2008) who show that team size can e¤ect

monitoring activities within teams, as well as how teams respond to exoge-

nous shocks.

3 The setting

We analyze an ongoing economic relationship between a principal and n

(symmetric) agents. The agents constitute a team. All parties are risk

neutral. Each period, each agent i exerts e¤ort ei incurring a private cost

c(ei). Costs are strictly increasing and convex in e¤ort, i.e., c0(ei) > 0,

c00(ei) > 0 and c(0) = c0(0) = 0. Each agent�s e¤ort generates a stochastic

contribution (output) xi to the team�s total output y = �xi. Agents are

symmetric, and each agent�s output has a probability distribution depending

only on the agent�s own e¤ort, and represented by a CDF F (xi; ei). We focus

here on team e¤ects generated by stochastic dependencies among agents�

contributions, and thus assume a simple linear "production structure", but

allow individual outputs to be stochastically dependent. Expected outputs

are given by �x(ei) = E(xij ei) =
R
xidF (xi; ei) and total surplus per agent is

W (ei) = �x(ei)�c(ei). First best is then achieved when �x0(eFBi )�c0(eFBi ) = 0.

Outputs are stochastically independent (given e¤orts) across time.

The parties cannot contract on e¤ort provision. We assume that e¤ort ei is

hidden and only observed by agent i. With respect to output, we assume

that only total output y = �xi is observable, and moreover non-veri�able by

a third party. Hence, the parties cannot write a legally enforceable contract

on output provision, but have to rely on self-enforcing relational contracts.

Each period, the principal and the agents then face the following contracting

situation. First, the principal o¤ers a contract saying that agent i receives

a non-contingent �xed salary �i plus a bonus bi(y), i = 1:::n conditional on

total output y = �xi from the n agents.8 Second, the agents simultaneously

choose e¤orts, and value realization y = �xi is revealed. Third, the parties

observe y and the �xed salary �i is paid. Then the parties choose whether

8We thus assume stationary contracts, which have been shown to be optimal in settings
like this (Levin 2002, 2003).
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or not to honor the contingent bonus contract bi(y).

Conditional on e¤orts, agent i�s expected wage in the contract is then wi =

E(bi(y)j e1:::en)+�i, while the principal expects � = E(yj e1:::en)��wi =
�iE(xij ei)��wi. If the contract is expected to be honored, agent i chooses
e¤ort ei to maximize his payo¤, i.e.

ei = argmax
e0i

�
E(bi(y)j e0i; e�i)� c(e0i)

�
(IC)

The parties have outside (reservation) values normalized to zero. In the

repeated game we consider, like Levin (2002), a multilateral punishment

structure where any deviation by the principal triggers punishment from

all agents. The principal honors the contract only if all agents honored

the contract in the previous period. The agents honor the contract only if

the principal honored the contract with all agents in the previous period.

Thus, if the principal reneges on the relational contract, all agents take their

outside option forever after. And vice versa: if one (or all) of the agents

renege, take her outside option forever after.9 A natural explanation for this

is that the agents interpret a unilateral contract breach (i.e. the principal

deviates from the contract with only one or some of the agents) as evidence

that the principal is not trustworthy (see discussions in Bewley 1999, Levin

2002).

Now, (given that (IC) holds) the principal will honor the contract with all

agents i = 1; 2; :::; n if

��ibi(y) +
�

1� � (E(yj e1:::en)� �wi) � 0 (EP)

where � is a common discount factor. The LHS of the inequality shows

the principal�s expected present value from honoring the contract, which

involves paying out the promised bonuses and then receiving the expected

value from relational contracting in all future periods. The RHS shows

the expected present value from reneging, which implies breaking up the

relational contract and receive the reservation value in all future periods.

9See Miller and Watson (2013) on alternative strategies and "disagreement play" in
repeated games.
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Agent i will honor the contract if

bi(y) +
�

1� � (wi � c(ei)) � 0 (EA)

where similarly the LHS shows the agent�s expected present value from hon-

oring the contract, while the RHS shows the expected present value from

reneging.

Following established procedures (e.g. Levin 2002) we have the following:

Lemma 1 For given e¤orts e = (e1:::en) there is a wage scheme that sat-
is�es (IC,EP,EA) and hence implements e, i¤ there are bonuses bi(y) and

�xed salaries �i with bi(y) � 0, i = 1; :::; n; such that (IC) and condition

(EC) below holds:

�ibi(y) �
�

1� ��iW (ei) (EC)

To see su¢ ciency, set the �xed wages �i such that each agent�s payo¤ in the

contract equals his reservation payo¤, i.e. �i+E(bi(y)j e)� c(ei) = 0. Then
EA holds since bi(y) � 0. Moreover, the principal�s payo¤ in the contract

will be � = �iW (ei) i.e. the surplus generated by the contract. Then EC

implies that EP holds. Necessity follows by standard arguments.

Unless otherwise explicitly noted, we will follow the standard assumption

in the literature and assume that the �rst order approach (FOA) is valid,

and hence that each agent�s optimal e¤ort choice is given by the �rst-order

condition (FOC):
@

@ei
E(bi(y)j e1:::en) = c0(ei) (1)

We will refer to this as a �modi�ed�IC constraint.

The optimal contract now maximizes total surplus (�iW (ei) = �i(E(xij ei)�
c(ei))) subject to EC and the �modi�ed�IC constraint (1). To state our �rst

result, let G(y; e1:::en) denote the CDF for team output y = �xi. We will

consider discrete as well as continuos outputs, and will let g(y; e1:::en) de-

note the probability of outcome y in the former case, and the density at

outcome y in the latter. We will further say that the �monotone likelihood

ratio property�(MLRP) holds for aggregate output y if
gei (y;e)

g(y;e) is increasing

in y. Then we have the following:
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Proposition 1 The optimal symmetric scheme pays a maximal bonus to
each agent for all outputs y for which @

@ei
g(y; e1:::en) > 0. If MLRP holds,

then this entails paying the bonus for output above a threshold (y > y0) and

no bonus otherwise.

The maximal symmetric bonus is by EC bi(y) = b(y) = �
1��W (ei) when

e¤orts ei are equal for all i. The result under MLRP parallels that of Levin

(2003) for the single agent case. The threshold property comes from the

fact that incentives should be maximal (minimal) where the likelihood ratio

is positive (negative). Since this ratio is monotone increasing under MLRP,

there is a threshold y0 where it shifts from being negative to positive, and

hence incentives should optimally shift from being minimal to maximal at

that point.

Letting Y n+ be the set of outcomes for which @
@ei
g(y; e1:::en) > 0 under

equilibrium e¤orts (and given that FOA is valid), then these e¤orts are

given by the IC constraint (1), where now the marginal incentive for e¤ort

is b @@eiP (y 2 Y
n
+

�� e1:::en). For given bonus of magnitude b, the marginal
incentive for e¤ort is here determined by the marginal e¤ect of e¤ort on the

probability of obtaining the bonus. This bonus is in turn determined by EC,

and thus we have in equilibrium

c0(ei) = b
@

@ei
P (y 2 Y n+

�� e1:::en) and b =
�

1� �W (ei)

This equilibrium will depend on team size (n) and team composition�in par-

ticular the type of stochastic dependencies among members�contributions�

via the term @
@ei
P (y 2 Y n+

�� e1:::en), i.e. via the marginal e¤ect of individual
e¤ort (ME) on the probability of obtaining the bonus under the optimal

scheme. Any variation �in team size or composition�that makes this mar-

ginal e¤ect of e¤ort stronger, will improve team e¢ ciency in the sense that

it will allow higher individual e¤orts to be implemented.

In particular, to analyse variations in team size n for the optimal scheme in

Proposition 1, de�ne

mn(ei) =
@
@ei
P (yn 2 Y n+

�� e)
where we have emphasized that team output yn = �n1xi depends on n, and
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where the partial on the RHS is evaluated at e = (e1:::en) with all individual

e¤orts equal (due to symmetry). Comparing teams of size n and n+1, it is

clear that If ei = en1 is optimal for team size n, and

mn+1(en1 ) > m
n(en1 ),

then the larger team (of size n+1) can implement higher individual e¤orts,

and will thus be more e¢ cient. It turns out that this can not occur if

the agents� contributions/outputs are independent, and thus we have the

following.

Proposition 2 For stochastically independent outputs we have mn+1(ei) �
mn(ei) for all ei; hence incentives for e¤ort will then decrease with increasing

team size.

This tells us immediately that for increasing team size to be bene�cial in

this setting, individual contributions must be stochastically dependent. To

this we now turn.

4 Normally distributed outputs

We will now consider normally distributed outputs. As in several other

areas, e.g. tournaments (Lazear-Rosen 1981) or multi-tasking (Holmstrom-

Milgrom 1991), this assumption greatly simpli�es the analysis, and can be

highly relevant for applications. So we now consider the case where out-

puts are (multi)normally distributed and correlated. We assume also that

covariances are independent of e¤orts. Given this assumption, and (by sym-

metry) each xi being N(ei; s2), then total output y = �xi is also normal

with expectation Ey = �ei and variance

s2n = var(y) = �ivar(xi) + �i6=jcov(xi; xj) = ns
2 + s2�i6=jcorr(xi; xj)

Letting g(y; e1:::en) denote the density of y, it follows from the form of the

normal density that the likelihood ratio is linear and given by
gei (y;e1:::en)

g(y;e1:::en)
=

(y � �ei)=sn. As shown in Proposition 1, the optimal bonus is maximal
(minimal) for outcomes where the likelihood ratio is positive (negative),

12



and hence has a threshold y0 = �e�i in equilibrium. Applying the normal

distribution, it then follows (as shown below, see (5)) that the marginal

return to e¤ort for each agent in equilibrium is given by

b
@

@ei
P (y > y0) = b

Z
y>y0

gei(y; e
�)dy =

b

Msn
, M =

p
2� (2)

The marginal return to e¤ort is thus inversely proportional to the standard

deviation of total output in this setting. This implies that a team composi-

tion that reduces this standard deviation, and thus increases the precision

of the available performance measure (total output) will improve incentives

and thus be bene�cial here.10

The IC condition (1) for each agent�s (symmetric) equilibrium e¤ort is now

c0(ei) =
b
sn

1
M , and it then follows that the maximal e¤ort per agent that can

be sustained, is given by

c0(e�i )snM = b =
�

1� �W (e
�
i ) (3)

Consider now a variation in team size. When all agents�outputs are fully

symmetric in the sense that all correlations as well as all variances are equal

across agents, i.e. var(xi) = s2 and corr(xi; xj) = � for all i; j, then the

variance in total output will be

s2n = ns
2 + s2�i6=jcorr(xi; xj) = ns

2(1 + �(n� 1))

If � � 0 the variance will increase with n, and this will be detrimental for
e¢ ciency. Optimal n should therefore be smaller with larger �. Moreover,

the standard deviation of total output (sn) increases rapidly with n when

� � 0 (at least of order
p
n), hence the e¤ort per agent that can be sustained

will then decrease rapidly with n. Large teams are therefore very ine¢ cient

if all agents�outputs are non-negatively correlated.

For negative correlations the situation is quite di¤erent. If � < 0 one can in

principle reduce the variance to (almost) zero by including su¢ ciently many

agents. The model then indicates that adding more and more agents to the

10There is however a caviat. For su¢ ciently small standard deviation, the �rst-order
approach is no longer valid, and the analysis must be modi�ed. See the following section.
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team is bene�cial, at least as long as 1+ �(n� 1) > 0 and the conditions for
FOA to be valid are ful�lled. 11(We show below that for this to be the case,

the variance of the performance measure, here s2n, cannot be too small.)

Note that assuming symmetric pairwise negative correlations among n sto-

chastic variables only makes sense if the sum has non-negative variance, and

hence 1 + �(n � 1) � 0.12 Given � < 0, there can thus only be a maxi-

mum number n of such variables (agents). And given n > 2, we must have

� > � 1
n�1 . Note also that for given negative � > �1

2 , the variance is �rst

increasing, then decreasing in n (it is maximal for n = 1
2(1�

1
�)). Hence the

optimal team size in this setting is either very small (n = 2) or �very large�

(includes all).

Proposition 3 For normally distributed outputs, e¢ ciency decreases rapidly
with team size if outputs are non-negatively correlated. For symmetric agents

with negatively correlated outputs, e¢ ciency �rst decreases (for n > 2) and

then increases with increasing team size, hence e¢ ciency is maximal either

for a small or for a large team (within the feasible range).

The assumption of equal pairwise correlations among all involved agents is

admittedly somewhat special, but illustrates in a simple way the forces at

play when the team size varies. In reality there might be positive as well

as negative correlations among agents. A procedure to pick agents for least

variance would then be for each n, to pick those n that yield the smallest

variance.

4.1 Optimal schemes when FOA fails

We will now �rst examine under what conditions the FOA is valid for the

normal model analyzed here, and second derive optimal bonus schemes when

FOA fails in this setting. A recent literature has examined such issues for sta-

tic moral hazard with contractible outputs, see Kadan and Swinkels (2013),

Ewerhart (2014) and Kirkegaard (2014), but not (to our best knowledge)

11This is related to results by Hwang (2014), who analyzes conditions under which
additional signals (information) will be valuable in a single-agent relational contract.
12 Indeed, 1 + �(n � 1) > 0 is the condition for the covariance matrix to be positive

de�nit, and hence for the multinormal model to be well speci�ed.
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for moral hazard in relational contracting, neither for single-agent nor multi-

agent settings.

So consider y normally distributed with expectation Ey = �ei and a variance

that will be denoted by s2 = var(y) in this section (to simplify notation).

As already noted, this distribution satis�es MLRP. Given that FOA holds,

and the principal seeks to implement e¤ort e�i from each agent, the optimal

bonus b(y) has a threshold at y0 = �e�i = ne�i . Agent i�s expected payo¤,

given own e¤ort ei and e¤orts e�j = e
�
i from the other agents, is then

bPr(y > y0j ei)� c(ei)

= bPr(y � �j 6=ie�j � ei > e�i � ei)� c(ei)

= b(1�H(e�i � ei))� c(ei)

where H() is the CDF for an N(0; s2) distribution. The FOC for the agent�s

choice is

bh(e�i � ei)� c0(ei) = 0 (4)

where h() is the density; h() = H 0(). The FOA is valid if the agent�s optimal

choice is e�i and is given by this �rst-order condition, i.e. if

bh(0)� c0(e�i ) = 0 (5)

and no other e¤ort ei 6= e�i yields a higher payo¤ for the agent. We note in
passing that h(0) = 1=

p
2�var(y), verifying the formula (2) above.

Due to the shape of the normal density, the agent�s payo¤ is generally not

concave.13 The payo¤ is locally concave at ei = e�i (since h
0(0) = 0), hence

e�i is a local maximum, but there may be other local maxima (other solutions

to FOC) for ei < e�i . The situation is illustrated in Figure 1, which depicts

the agent�s marginal revenue (bh(e�i �ei)) and marginal cost for two values of
the variance s2 = var(y). If the variance is su¢ ciently small there is a local

maximum at some ei < e�i (satisfying the FOC), and the �gure indicates

(comparing areas under MC and MR) that this local maximum dominates

that at e�i .

(See Figure 1 in the appendix)

13The second derivative is �bh0(e�i � ei)� c00(ei), where h0(e�i � ei) < 0 for ei < e�i .
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This indicates that the FOA is valid here only if the variance of the per-

formance measure (y) is not too small, and is con�rmed in the following

proposition.14 (The �rst part of the proposition also follows from a gen-

eral result by Hwang 2016 on the validity of FOA in the single agent case.)

Moreover, this proposition con�rms that a symmetric solution with equal

e¤orts across agents is then indeed optimal.

Proposition 4 For the normal case y � N(�iei; s2) the �rst order approach
is valid if the variance of output s2 is su¢ ciently large, but not valid if s2 is

su¢ ciently small. In the former case, symmetric e¤orts is indeed optimal.

For negatively correlated agents, the variance in the performance measure y

can be made quite small by including many agents in the team. We saw that

this was bene�cial for incentives and consequently for e¢ ciency as long as

the analysis building on FOA was valid. But for su¢ ciently small variance

FOA is not valid, so this immediately raises the question of what a team

can achieve under such circumstances. In the following we will show that

a threshold bonus is nevertheless always optimal for the team model with

normally distributed outputs, and moreover characterize its properties.

The EC constraint for symmetric e¤orts is 0 � b(y) � �
1��W (ei). To pro-

vide incentives, the bonus cannot be maximal for all outputs y, hence the

expected bonus payment for an agent must be less than the maximal bonus,

i.e. E(b(y)j ei; e�i) < �
1��W (ei). On the other hand, the agent�s expected

payo¤ from exerting e¤ort must be non-negative; E(b(y)j ei; e�i) � c(ei) �
E(b(y)j ei = 0; e�i) � 0, so in any symmetric equilibrium we must have

c(ei) <
�
1��W (ei). It follows from this that the e¤ort e�u and associated

surplus W (e�u) de�ned by

c(e�u) =
�

1� �W (e
�
u) (6)

constitute upper bounds for, respectively, the e¤ort and surplus (per agent)

that can be achieved in a relational contract.15 Note also that this upper

bound can be achieved if there is no uncertainty, i.e. if (team) e¤ort can be

14This is similar to results on the validity of FOA in tournaments, see Gurtler (2011).
15We assume that � is small enough so that e�u is below �rst best e¤ort.
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observed without noise; namely by paying the maximal bonus b = c(e�u) to

each agent conditional on total e¤ort being at least ne�u.

We will now show that the optimal bonus is a threshold bonus which induces

e¤ort that converges to the upper bound as the variance in the performance

measure goes to zero. The scheme is a simple modi�cation of the threshold

bonus scheme identi�ed in the FOA analysis, and consists of a relaxation of

the threshold combined with an increase of the bonus relative to the latter

scheme.

To show this let, for any (symmetric) bonus b = b(y), agent i�s performance-

related payo¤ (utility) be denoted

u(b; e) = u(b; ei; e�i) =
R
b(y)g(y; e)dy � c(ei)

As a �rst step we show that if a non-threshold and a threshold bonus yield

the same payo¤ to the agent (for given e¤ort), the latter bonus yields the

strongest marginal incentives.

Lemma 2 If MLRP holds for (general) g(y; e), we have:
i) If ~b(y) is not a threshold bonus, then for a threshold scheme bh(y) with

u(~b; e) = u(bh; e) it holds: uei(bh; e) > uei(~b; e).

ii) If ~b(y) is not a threshold bonus, and e� is the associated equilibrium,

then there is a threshold scheme bh(y) with u(~b; e�) = u(bh; e�), uei(bh; e
�) >

uei(
~b; e�) = 0 and u(bh; ei; e��i) � u(bh; e�i ; e��i) for all ei < e�i .

Remark Note that in a single-agent case, statement (ii) in the lemma im-
plies that a threshold scheme must be optimal whenever MLRP holds. For

should some other scheme be optimal, then (ii) shows that there is a thresh-

old scheme that will induce higher e¤ort by the agent (ei > e�i ). This means

that the assumptions traditionally invoked to ensure validity of FOA, such

as convexity of the distribution function (CDF) in addition to MLRP (as in

e.g. Levin 2003), are much stronger than necessary to ensure that a thresh-

old bonus is optimal in a relational contract with moral hazard.16 On the

other hand, Hwang (2016) has recently shown that a weaker condition than

16This result is in some respects similar to results in Poblete and Spulber 2012, showing
that simpler assumptions than CDF and MLRP are su¢ cient for a debt-type contract to
be optimal in the static principal-agent model under risk neutrality and limited liability.
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CDF is su¢ cient for FOA to be valid in the single-agent case (irrespective

of whether MLRP holds or not).

Using the lemma above, we can show that a threshold bonus will be opti-

mal in the team model with normally distributed output considered in this

section.

Proposition 5 For the team model with normally distributed output y �
N(�iei; s

2), the optimal symmetric bonus is a threshold bonus.

When FOA is valid, the optimal threshold is the output at which the likeli-

hood ratio is zero, which is the output y0 = �e�i in the normally distributed

case. The problem with this scheme is that for su¢ ciently small s the agent�s

payo¤ is non-concave. In particular, for c0() convex (c000 � 0), the payo¤ has
two local maxima17, at e�i and at e

0
i < e�i , respectively, and e

0
i then gives

the highest payo¤ for small s, so the agent will deviate from the supposed

equilibrium e¤ort e�i . Now, this can be recti�ed by setting a lower threshold

y00 < y0 = ne�i , i.e. making it easier to obtain the bonus, and at the same

time increase the bonus level. We �nd that this is indeed optimal.

Proposition 6 For y � N(�iei; s2) we have: Given convex marginal costs
(c000 � 0), there is a critical sc > 0 for the standard deviation of output such
that for s � sc FOA is valid and the optimal threshold y0 is the output at

which the likelihood ratio is zero, thus y0 = ne�i . For s < sc the optimal

threshold is an output y00 = ne�i � � , (at which the likelihood ratio is nega-
tive), and the optimal scheme is given by (20 - 22) in the appendix, with all

relations holding with equality. E¤ort e�i is strictly higher when s is lower,

and e�i ! e�u de�ned by (6) as s! 0.

It may be noted that for the set of variances s2 = var(y) su¢ ciently large

to make FOA valid, the largest e¤ort per agent that can be implemented

must satisfy 2c(e�i ) � �
1��W (e

�
i ), and hence be considerably smaller than

the upper bound e�u de�ned in (6). This is so because the agent obtains

the bonus (b) with probability 1
2 in equilibrium in the FOA scheme, hence

17 It follows from the shape of the density h() that for c0() convex (c000 � 0), the FOC
(4) for e¤ort can yield at most two local maxima.
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we must have b12 � c(e�i ) in that setting. This illustrates that a lower

output variance can yield considerable bene�ts in relational contracting.

The bene�ts are not associated with risk reduction (since all agents are

risk neutral by assumption), nor with sharper competition, since in the

team setting there is none. The bene�ts arise because a lower variance

strengthens individual incentives for e¤ort, for a given bonus level. Since

the bonuses in the relational contract are discretionary and hence must be

kept within bounds, the added e¤ort incentives coming from a lower variance

are valuable. And the value added may be considerable, as we have seen.

In this subsection we have taken the output variance (s2 = var(y)) as an ex-

ogenous parameter. We know that this variance can be substantially reduced

if a team can be put together, consisting of several agents whose individual

outputs are negatively correlated. Under normally distributed outputs, an

expansion of the team will thus enhance e¢ ciency exactly when it leads a

lower variance for the team�s output, i.e. a more precise performance mea-

sure. The enhanced precision is thus the decisive factor, but this is related

to properties of the normal distribution.

5 Discrete outputs

In the normal case analyzed so far, the precision of the performance mea-

sure was a decisive factor, in the sense that higher precision unambiguously

lead to stronger individual incentives. The analysis revealed that this partly

hinges on the fact that a hurdle scheme was optimal for any team composi-

tion, a fact which technically follows from the property that MLRP always

holds in the normal case. This may well not hold for other distributions; in

particular we may have MLRP satis�ed for individual outputs, but not for

aggregate output. This will a¤ect the shape of optimal incentive schemes,

and will generally also a¤ect how optimal schemes and associated e¤orts are

in�uenced by correlations between individual outputs. To this we now turn.

To handle teams with correlated individual contributions (outputs) in a rel-

atively general setting, we consider discrete outputs. Moreover, we assume

binary individual outcomes, so an agent�s contribution is xi 2 fG;Bg, with
G > B � 0. Without loss of generality we will normalize and set G = 1 and
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B = 0. In this setting we can also identify an agent�s e¤ort with his/her

probability of a good outcome: if p(ei) is this probability as a function of

"natural e¤ort", with p(ei) 2 [p0; �p] � [0; 1], p0(ei) > 0, rede�ne e¤ort to be
pi = p(ei) with cost c(p�1(pi)). We assume that this cost function is also

strictly convex with zero marginal cost at pi = p0.

We allow for correlations between team members contributions. Following

Fleckinger (2012), the joint distribution for two agents� (i 6= j) outcomes

can be written as

P (1; 1) = pipj + (pi; pj), P (1; 0) = pi(1� pj)� (pi; pj) (7)

P (0; 1) = (1� pi)pj � (pi; pj), P (0; 0) = (1� pi)(1� pj) + (pi; pj);

where P (k; l) is the probability of xi = k; xj = l. Given our normalization

with xi 2 f1; 0g, the function (:) is simply the covariance between the two
agent�s outcomes, i.e. (pi; pj) = cov(xi; xj). To have a manageable and

yet interesting model we follow Gupta-Tao (2010) and others and assume

that for any n, the random variables x1:::xn have no second- or higher-order

interactions (see appendix for details). It then follows that the joint distrib-

ution of x1:::xn, and hence the distribution of total team output yn = �n1xi,

is determined by "e¤orts" p1:::pn and covariances (pi; pj),i 6= j. Speci�cally
we have:

P (yn = k) = P (yn�1 = k� 1)pn +P (yn�1 = k)(1� pn) +�n�1j=1 (pn; pj)a
j
n;k

(8)

where the coe¢ cients ajn;k depend on (p1; :::pn�1) and can be determined

inductively (see appendix), and we de�ne P (yn
0
= r) = 0 for r = �1; n0 +

1. For independent variables ( � 0) this is a standard binomial formula,

conditioning on one agent�s success or failure (here agent n). The last term

in the formula adjusts for stochastic dependencies.

Di¤erentiating this (wrt pn, say) and using symmetry �including symmetric

derivatives and pi = p1, all i �we obtain

@

@p1
P (yn = k) = P (yn�1 = k � 1)� P (yn�1 = k) + �n�1j=1 1(p1; p1)a

j
n;k (9)

The marginal e¤ect of an agent�s e¤ort on the probability that the team

achieves yn = k will thus now depend both on the covariance level  (via
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the �rst two terms on the RHS) and on its derivative 1. These in�uences

imply, among other things, that optimal bonus schemes may well not be

of the simple threshold type, and that a larger team may provide stronger

incentives than a smaller one. To illustrate this, we consider the case where

the covariance level  is independent of e¤orts, thus  = const.18

Note �rst that under this assumption we have from (8) that all output

probabilities, and hence an agent�s expected bonus payments, are linear in

the agent�s e¤ort (pn), and hence that FOA will certainly be valid (given

strictly convex e¤ort costs).

From (9) we have now, since 1 � 0:

@

@p1
P (yn = k) = P (yn�1 = k � 1)� P (yn�1 = k); (10)

and thus
@

@p1
P (yn � k) = P (yn�1 = k � 1) (11)

In a team of n agents where a bonus is o¤ered for team output yn � k, the
marginal e¤ect of an agent�s e¤ort to obtain the bonus is thus determined by

the probability that the ensemble of the other n� 1 agents achieves exactly
the output yn�1 = k � 1.

For independent contributions ( = 0) it turns out that @
@p1
P (yn = k) is

positive i¤k > np1 (and k � 1). This implies that to implement (symmetric)
individual e¤ort p1 2

�
k�1
n ;

k
n

�
it is then optimal to reward for all team

outcomes with yn � k. The optimal scheme under stochastic independence
is thus a threshold scheme, with a threshold adapted to the e¤ort that is to

be implemented. We �nd the following.

Proposition 7 For stochastically independent contributions the optimal bonus
scheme is a threshold scheme for the team�s output, and we have

mn(p1) =
@

@p1
P (yn � k) = P (yn�1 = k � 1), p1 2 ((k � 1)=n; k=n] ; (12)

for k = 1; :::; n � 1. Moreover, a larger team will always provide weaker

incentives than a smaller one, and thus be less e¢ cient. Speci�cally we
18 If the covariance depends on e¤ort, the analysis becomes much more complicated, but

does not (for our purpose) add new insights. The analysis is available from the authors.
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have mn+1(p1) � mn(p1) with strict inequality for all p1 except p1 = k
n ,

k = 1; :::; n� 1.

Consider now correlated outputs ( 6= 0). To build intuition we consider

�rst small teams. For n = 2 and e¤ort p1 � 1
2 the optimal bonus scheme

here is a scheme with threshold y2 � 2, and thus with marginal e¤ect of

e¤ort (ME)

m2 = @
@p1
P (y2 = 2) = P (y1 = 1) + 0 = p1

This scheme is optimal because we have @
@p1
P (y2 = k) � 0; k = 0; 1 for

p1 � 1
2 . The formula for m

2 shows that the marginal e¤ect of individual

e¤ort to achieve a team outcome with 2 successes is given by P (y1 = 1), i.e.

by the probability that the other agent achieves a success. This is trivially

true for independent outcomes, where the probability of two successes is

p1p2, and thus the marginal e¤ect of individual e¤ort is given by the other

agent�s success probability. When 1 � 0 the same formula also holds for

correlated projects.

Consider now, for n = 3 a bonus scheme with threshold y3 � 2. From the

formula (11) above it follows that the ME for this scheme is given by

@
@p1
P (y3 � 2) = P (y2 = 1) = 2p1(1� p1)� 2;

where the second equality follows from (7). Comparing the ME�s for the

two team sizes, we see that the di¤erence is

P (y2 = 1)� P (y1 = 1) = 2p1(1� p1)� 2 � p1

For  � 0 the di¤erence is negative for all p1 � 1
2 , but for  < 0 the

di¤erence is positive for a range of p1�s exceeding 1
2 . Thus, with negatively

correlated outputs, the larger team will provide stronger incentives for a

range of e¤ort levels exceeding p1 = 1
2 . This is due to the fact that under

negative correlation and for these e¤orts, the probability that two agents

produce exactly one unit of output is higher than the probability that a

single agent does so. The marginal incentives for individual e¤ort are then

larger in a team of 3 agents than in a team of 2 agents.

Consider now n > 3. Since threshold bonus schemes are optimal for  = 0,

and the marginal e¤ects of e¤ort @
@p1
P (yn = k) depend continuously (in
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fact linearly) on  (see formulas (9) and (8)), such threshold schemes will

also be optimal for jj small. In this bonus regime we can show that for

given team size n, marginal incentives will decrease with increasing  for all

e¤orts p1 in an interval In � ( 1n ; 1 �
1
n). Thus, except for very small and

very high (perhaps infeasible) e¤ort p1, marginal incentives will be higher

when individual contributions are negatively correlated compared to non-

negatively correlated, at least for a range of  with jj small. In this range,
negative covariance will then improve incentives and hence e¢ ciency in the

team, while positive covariance will reduce the team�s e¢ ciency.

Proposition 8 For given n � 3, a threshold bonus scheme is optimal for

jj small. In this scheme, the marginal incentive for e¤ort �and hence the
team�s e¢ ciency�will be decreasing in  for p1 2 (�n1 ; �nn�1) and increasing
in  for p1 < �n1 or p1 > �

n
n�1, where �

n
1 ! 1

n ; �
n
n�1 ! 1� 1

n as  ! 0.

This means that if the team�s optimal e¤ort under zero correlation entails

p1 2 In � ( 1n ; 1 �
1
n), then a stronger positive (negative) covariance will

reduce (improve) the team�s e¢ ciency for some range of  including  =

0. Note that the optimal e¤ort p1 will certainly be contained in In if the

feasible range for e¤ort (measured as the probability of success) is within

this interval, i.e. p(ei) 2 [p0; �p] � In.

Comparing team sizes, we have the following result.

Proposition 9 Comparing n and n + 1 for n � 3, then for jj small we
have (i) the larger team provides weaker incentives (mn+1 � mn) for all p1
if  > 0, and (ii) the larger team provides stronger incentives (mn+1 > mn)

for some set of p01s if  < 0. The set includes neighborhoods of all p1 =
k
n ,

k = 1; :::; n� 1.

These results show that if the covariance level is independent of e¤orts and

relatively small in absolute value, then a larger team can never be more

e¢ cient if the covariance is positive, but it may well be more e¢ cient if the

covariance is negative.

So far this analysis has demonstrated that threshold schemes are optimal

when covariances are small (and e¤ort independent), and that a larger team
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may then provide stronger incentives if and only if outputs are negatively

correlated. But what if covariances are positive and large? We will now

demonstrate that a larger team may provide stronger incentives also when

outputs are positively correlated, provided covariances are su¢ ciently large.

Moreover, the optimal bonus scheme may then well not be a threshold

scheme.

To see this, compare teams of sizes n = 3 and n = 2. Consider a bonus

scheme for the larger team that awards for exactly 1 or 3 units of output

(y3 = 1; 3). From (10) and (7) we see that the ME for this scheme is

@
@p1
P (y3 = 1; 3) = P (y2 = 0)�P (y2 = 1)+P (y2 = 2) = 1�4p1(1�p1)+4

For  = const, the optimal bonus scheme for the smaller team is independent

of , and hence has hurdle y2 � 1 for p1 < 1
2 and hurdle y

2 � 2 for p1 � 1
2 .

Comparing the ME�s for the two teams we have

@

@p1
P (y3 = 1; 3)�m2 = 1� 4p1(1� p1) + 4 �max fp1; 1� p1g (13)

This reveals that, provided  > 1
8 , this di¤erence will be positive for e¤ort

level p1 = 1
2 , and thus for a range of e¤orts around this level. Thus we

see that the larger team may also provide stronger incentives for positively

correlated individual outputs, but only if the covariance level exceeds a lower

positive bound.19 In fact, for this case of  = const, one can verify that the

larger team provides stronger incentives under positive correlation only if

the covariance exceeds this lower bound and the bonus scheme for the larger

team rewards for exactly 1 or 3 units of output. The larger team can in this

case never provide stronger incentives under positive correlation if hurdle

schemes are optimal for both teams.

To see why a hurdle scheme may well not be optimal under positive corre-

lation, consider

@
@p1
P (y3 = k) = P (y2 = k � 1)� P (y2 = k); k = 1; 2

With positive and relatively high correlation, a team of 2 agents is more

likely to achieve k = 2 successes than only one success, and then more e¤ort

by a third agent will only reduce the probability that the 3-agent team

19 It may be noted that  > 1
8
for p1 = 1

2
implies a correlation coe¢ cient of at least 0.5.
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will achieve 2 successes, so @
@p1
P (y3 = 2) < 0. A team of two agents is

then also more likely to have 2 failures (y2 = 0) than 1 failure (y2 = 1),

hence @
@p1
P (y3 = 1) > 0. If the 3-agent team is paid a bonus for 1 success,

the marginal incentive for e¤ort is then positive, while it is negative if the

team is paid for 2 successes. A hurdle scheme is then clearly not optimal.

Technically, MLRP does not hold under these conditions. We have the

following:

Proposition 10 When individual contributions are correlated, the optimal
bonus scheme for the team may well not be a hurdle scheme. In particular,

for n = 3 and  = const, the optimal scheme awards for team output y3 2
f1; 3g if the covariance is positive and su¢ ciently large ( > 1

9).

This non-monotonic incentive scheme may look peculiar. Since the team is

rewarded for y3 = 1 but not for y3 = 2, the agents are in some sense rewarded

for failure. But the intuition is simple; under correlated outputs, low e¤ort

may yield a high probability for an intermediate result (y3 = 2), and should

thus not be rewarded. However, non-monotonic incentive schemes are rarely

observed in practise. But the fact that they may be optimal, indicates that

the more standard hurdle schemes can give rise to perverse incentives if the

hurdle is not accurately placed.

6 Conclusion

In relational contracts, the agents�incentives, i.e. the size of the bonuses, are

limited by the value of the future relationship. If bonuses are too large (or

too small), the principal (or agents) may deviate by not paying as promised,

and thereby undermine the relational contract. For a given maximum bonus,

the principal must thus look for other ways to strengthen the agents�incen-

tives. In this paper, we show that when the principal contracts with a team

of agents, and the maximum bonuses are limited by the relational contract,

the principal can strengthen the agents�e¤ort incentives by composing teams

that utilize stochastic dependencies between the agents�outputs.

We have shown that e¢ ciency decreases with team size when individual

contributions are stochastically independent. This is due to the well known
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1=n free-rider problem. However, e¢ ciency may increase with team size if

outputs are stochastically dependent, and particularly when individual con-

tributions are negatively correlated. Hence, correlation �and in particular

negative correlation �between team members�contributions may enhance

team performance. We have also shown that correlation may a¤ect the type

of incentive scheme that is optimal for the team. Hurdle schemes may or

may not be optimal, depending on the stochastic dependencies. In particu-

lar we point out that under correlated outputs, it may be optimal to reward

the team for e.g. low and high outputs, but not for intermediate ones.

Stochastic dependencies relates to questions concerning optimal team com-

position. In the management literature a central question is whether teams

should be homogenous or heterogeneous with respect to tasks as well as

bio-demographic characteristics (e.g. Horwitz and Horwitz, 2007). One can

conjecture that negative correlations are more associated with heterogeneous

teams than homogenous teams, and also more associated with task-related

diversity than with bio-demographic diversity. Our model can thus con-

tribute to explain why heterogeneity among team members and task-related

diversity can yield considerable e¢ ciency improvements.
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APPENDIX

Proof of Proposition 1. Maximizing total surplus (�iW (ei) � �i(E(xij ei)�
c(ei))) subject to EC and the �modi�ed�IC constraint (1) yields

�i
@
@ei
g(y; e1:::en)� �(y) � 0, bi(y) � 0,

where the inequalities hold with complementary slackness, and �i > 0,

�(y) � 0 are Lagrange multipliers. It is clear that bi(y) > 0 i¤ @
@ei
g(y; e1:::en) >

0, and then EC will bind (�(y) > 0).

Given MLRP and symmetry we have @
@ei
g(y; e1:::en) > 0 i¤ y > y0, and thus

EC binding with all bonuses equal and maximal for y > y0. On the other

hand, for y < y0 we have @
@ei
g(y; e1:::en) < 0 by MLRP and hence bi(y) = 0

for all i.

Proof of Proposition 2. Consider the case of continous outputs (the

discrete case is similar), and let gn(yj en) be the density for a team of size

n under e¤orts en = (e1:::en). By stochastic independence we then have

gn+1(yj en+1) =
R1
�1 g

n(y � xj en)f(xj en+1)dx:

(Densities are zero outside bounded supports.) So for variations in any of

e1::en we have

gn+1ei (yj en+1) =
R1
�1 g

n
ei(y � xj e

n)f(xj en+1)dx

Consider i = 1, and let Y n+1+ = fy : gn+1e1 (yj en+1) > 0g. Then

mn+1(e1) =
R
Y n+1+

gn+1e1 (yj en+1)dy =
R
Y n+1+

R1
�1 g

n
e1(y � xj e

n)f(xj en+1)dxdy

=
R1
�1 f(xj en+1)

R
Y n+1+

gne1(y � xj e
n)dydx

=
R1
�1 f(xj en+1)

R
Y (x) g

n
e1(y

0j en)dy0dx

where Y (x) = fy0 : y0 = y � x, y 2 Y n+1+ g

Given that Y n+ = fy : gne1(yj e
n) > 0g, we have, for any set Y :R

Y g
n
e1(yj e

n)dy �
R
Y n+
gne1(yj e

n)dy = mn(e1)

Combined with the expression for mn+1(e1) above this yields

mn+1(e1) �
R1
�1 f(xj en+1)m

n(e1)dx = m
n(e1)
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By symmetry this is true for any ei, and this proves the proposition.

Proof of Proposition 4. It is obvious from the shape of h() that the FOC

for e¤ort has a single solution for s su¢ ciently large, and hence that FOA

is then valid. (See also Hwang 2016, p129.)

To see that the optimal solution then must be symmetric, note �rst that

the normal density can be written as g(y; l(e1:::en)), with l(e1:::en) = �iei.

Assume the solution is asymmetric; say that ei < ej . Let b0 = (bi + bj)=2

and considerR
b0(y)gl(y; l(e1:::en))dy =

1
2

R
bi(y)gl(y; l(e1:::en))dy+

1
2

R
bj(y)gl(y; l(e1:::en))dy

= 1
2c
0(ei) +

1
2c
0(ej) � c0( ei+ej2 )

Hence the bonus b0(y) to each of i and j is feasible and would induce e¤ort at

least ei+ej2 = e0 from each. Thus a slightly lower bonus to each is feasible and

will induce e¤ort e0 from each. This yields higher value since the objective

is concave.

Now consider s small. If FOA is valid, the agent�s optimal payo¤ is b12�c(e
�
i ).

This must be no less than the payo¤ for ei = 0, which is positive, thus we

have c(e�i ) < b12 �
�
1��W (e

�
i )
1
2 . There is a critical �

F > 0 such that these

inequalities do not hold for e�i = e
FB
i and � < �F , hence �rst best e¤ort can

not be obtained for � < �F . Given such a �, if FOA is valid for all s > 0,

then b ! 0 as s ! 0 (since h(0) � 1
s ), and hence, since EC binds, e

�
i ! 0.

But this is a contradiction, since when FOA is valid, e¤ort e�i should increase

when s is reduced. This is so because if bonus bs implements e¤ort e�i for

some s > 0, then bs implements (by FOC) a higher e¤ort for s0 < s, yielding

slack in EC, and hence room for a higher bonus to increase e¤ort further.

This shows that FOA cannot be valid for all s > 0.

Proof of Lemma 2. For given e, admissible bonuses satisfy 0 � b(y) �
�
1��W (ei) � B. Let y0 be the hurdle (threshold) for bh(y). Then

0 = u(bh; e)� u(~b; e) =
Z y0

y
(�~b(y))g(y; e) +

Z �y

y0

(B � ~b(y))g(y; e) (14)

This yields
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uei(bh; e)�uei(~b; e) =
R y0
y (�~b(y))

gei (y;e)

g(y;e) g(y; e)dy+
R �y
y0
(B�~b(y))gei (y;e)g(y;e) g(y; e)dy

>
gei (y0;e)

g(y0;e)

hR y0
y (�~b(y))g(y; e)dy +

R �y
y0
(B � ~b(y))g(y; e)dy

i
= 0

where the inequality follows from MLRP, and the last equality from u(~b; e) =

u(bh; e). This proves statement (i)

(ii) Note that, for given e = e� the RHS of (14) is strictly decreasing in y0,

and hence there is a unique y0 satisfying the equation. Let bh(y) be the

associated hurdle scheme. To simplify notation, write u(~b; e) = ~u(e) and

u(bh; e) = u(e). Then from (i) we now have ~u(e�) = u(e�) and uei(e
�) >

~uei(e
�), where ~uei(e

�) = 0 since e� is an equilibrium for bonus ~b(y).

Now assume, to get a contradiction, that there is e0i < e
�
i with u(e

0
i; e

�
�i) >

u(e�i ; e
�
�i). Then for �(ei) = u(ei; e

�
�i)� ~u(ei; e��i) we have �(e0i) > �(e�i ) = 0

and �0(e�i ) = uei(e
�
i ; e

�
�i) > 0. Hence by continuty there must be some

e00i 2 (e0i; e
�
i ) such that �(e

00
i ) = 0 and �0(e00i ) � 0. At e00i we thus have

u(e00i ; e
�
�i) = ~u(e00i ; e

�
�i) and uei(e

00
i ; e

�
�i) � uei(e

00
i ; e

�
�i). But this contradicts

statement (i) in the lemma. This proves (ii) and thus the lemma.

Proof of Proposition 5. Suppose the optimal bonus ~b(y) is not a hurdle
(threshold) bonus, and let e� > 0 be the associated e¤orts. So uei(~b; e

�) = 0

by FOC. Let b = �
1��W (e

�
i ), and let bh be a symmetric hurdle scheme (with

0 � bh(y) � b), with the same utility as ~b; i.e. u(~b; e�) = u(bh; e�), and hence
uei(bh; e

�) > uei(
~b; e�) = 0 by Lemma 2. Let y0 be the threshold for bh. The

idea of the proof is to modify this threshold (to y0 � �0) such that e� gets
to be an equilibrium for the modi�ed threshold bonus

To show this, note that for a bonus with threshold y00 = y0 � � an agent�s
expected bonus payment is bPr(y > y00j e), and that for y � N(�ei; s

2)

the agent�s expected payo¤ (excluding the �xed salary) can be written, for

e�i = e��i as

u(� ; ei; e
�
�i) = b(1�H(y�0 � � � ei))� c(ei); y�0 = y0 � (n� 1)e�i ;

where H() is the CDF for N(0; s2). For � = 0 the threshold is that of bh
(i.e. y0) and we have by Lemma 2

u(0; ei; e
�
�i) � u(0; e�i ; e��i) for all ei < e

�
i ; (15)
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and 0 < uei(0; e
�
i ; e

�
�i) = bh(y

�
0�e�i )�c0(e�i ), where h() = H 0() is the normal

density. Now de�ne �0 > 0 such that

uei(�0; e
�
i ; e

�
�i) = h(y

�
0 � �0 � e�i )� c0(e�i ) = 0 and y�0 � �0 � e�i < 0 (16)

This is feasible because by the shape of h(), if h(x) > C > 0, then there

is �0 > 0 such that h(x � �0) = C and x � �0 < 0. Note that this implies
h(y�0 � �0 � ei) < h(y�0 � �0 � e�i ) and thus uei(�0; ei; e��i) < 0 for ei > e�i .

No deviation to ei > e�i can therefore be pro�table.

Next, if 2(y�0 � �0) > e�i de�ne e0i 2 (0; e�i ) by

y�0 � �0 � e0i = �(y�0 � �0 � e�i ) > 0 (17)

and note that this implies (by the shape of h()):

h(y�0 � �0 � ei) > h(y�0 � �0 � e�i ) for ei 2 (e0i; e�i ) (18)

This in turn implies, since h(y�0 � �0 � e�i ) = c0(e�i ) > c0(ei) for ei < e�i , that
we have uei(�0; ei; e

�
�i) > uei(�0; e

�
i ; e

�
�i) = 0 and hence

u(�0; ei; e
�
�i) < u(�0; e

�
i ; e

�
�i) for ei 2 [e0i; e�i ) (19)

If 2(y�0 � �0) � e�i de�ne e
0
i = 0, and it is then straightforward to see that

(18) and hence (19) holds for that case as well. In that case the proof is then

complete since (19) implies that no deviations to ei < e�i can be pro�table.

For the case e0i > 0, de�ne, for ei < e
0
i and � 2 [0; �0] the payo¤ di¤erence

�(� ; ei) = u(� ; e
�
i ; e

�
�i)� u(� ; ei; e��i)

By (15) we know that for � = 0 we have �(0; ei) � 0 for all ei � e0i < e�i .

Let now � 2 (0; �0), and consider
@�(�;ei)
@� = bh(y�0 � � � e�i )� bh(y�0 � � � ei)

For � < �0 and ei < e0i we have y
�
0 � � � ei > y�0 � �0� e0i > 0 (see (17)) and

hence h(y�0 � � � ei) < h(y�0 � �0 � e0i). Thus we have
@�(�;ei)
@�

1
b > h(y

�
0 � � � e�i )� h(y�0 � � � e0i)

= h(y�0 � �0 � e�i + (�0 � �))� h(y�0 � �0 � e0i + (�0 � �))
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Note that by (17) the last di¤erence can be written as h(�x+ z)� h(x+ z)
with x; z > 0, and this di¤erence is thus positive (by the shape of h()). Since
@�(�;ei)
@� > 0 we then have, for ei � e0i:

�(�0; ei) = u(�0; e
�
i ; e

�
�i)� u(�0; ei; e��i) > u(0; e�i ; e��i)� u(0; ei; e��i)

It now follows from (15) that u(�0; e�i ; e
�
�i) > u(�0; ei; e

�
�i) for ei � e0i, This

completes the proof that e� is a (symmetric) equilibrium for the modi�ed

bonus with threshold y0 � �0.

Proof of Proposition 6. As noted in the text, an agent�s payo¤ has two
local maxima, at e�i and at e

0
i < e�i , respectively, and e

0
i gives the highest

payo¤ for su¢ ciently small s. The critical s is where the two local maxima

yield the same payo¤; i.e. b(1�H(0; s))�c(e�i ) = b(1�H(e�i �e0i ; s))�c(e0i ),
where Pr(y > y0j ei; e��i) = 1 �H(e�i � ei; s) and H(�; s) is the CDF for an
N(0; s2) variable. In addition they both satisfy FOC, so bh(e�i � e0i ; s) =
c0(e0i ) and bh(0; s) = c

0(e�i ).

For s below this critical level, the agent�s payo¤ is higher at e0i . This can be

recti�ed by setting a lower threshold y00 < y0 = ne
�
i , and at the same time

increase the bonus level. For y00 = y0 � � we have

Pr(y > y00j e��i; ei) = 1�H(e�i � ei � � ; s)

We can then choose � and the bonus b such that e�i satis�es FOC and yields

a payo¤ at least as high as the other local maximum e0i , i.e. such that we

have

b(1�H(�� ; s))� c(e�i ) � b(1�H(e�i � e0i � � ; s))� c(e0i ) (20)

and

bh(�� ; s)� c0(e�i ) = 0 = bh(e�i � e0i � � ; s)� c0(e0i ) (21)

The smaller � is, the smaller is the required bonus to satisfy FOC for e�i .

The minimal such � yields equality between the payo¤s. Now, this scheme

can at most allow a bonus

b � �

1� �W (e
�
i ) (22)

Hence, we see that the highest e¤ort ei that can be implemented by this
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scheme is the e¤ort e�i de�ned by the conditions (20 - 22), where all hold

with equality. We now show that this is indeed the optimal scheme for s

below the critical level where FOA ceases to be valid.

We have H(x; s) = �(xs ), and h(x; s) = �(
x
s )
1
s where �() is the N(0,1) CDF

and �() its density. The relations (20 - 22) can then be written as

b(1� �(��
s
))� c(e�i ) � b(1� �(

e�i � e0i � �
s

))� c(e0i ) (23)

b�(
��
s
)
1

s
� c0(e�i ) = 0 = b�(

e�i � e0i � �
s

)
1

s
� c0(e0i ) (24)

b � �

1� �W (e
�
i ) (25)

For c000 � 0, so c0(ei) is convex, there can at most be two local maxima

(e�i and e
0
i ) for the agent�s payo¤. Note that for the minimal s = sc for

which the FOA is valid, all relations (20 - 22) hold with equality, and � = 0.

Denote the associated e¤ort and bonus by e�i = e
�
c and b = bc, respectively.

For s < sc the optimal threshold must be some y00 6= ne�i , thus y00 = ne�i � � ,
� 6= 0. We show below that � > 0, as assumed in the text, is optimal.

First we show that for an optimal � > 0 all constraints must bind. To see

this, de�ne � as the di¤erence in payo¤s between e�i and e
0
i , i.e. from (23);

� = b(�(
e�i � e0i � �

s
)� �(��

s
))� (c(e�i )� c(e0i )); (26)

and note that � is increasing in b and in � . This is so because (by the

envelope property) d�db = �(
e�i�e0i��

s )��(��s ) > 0 and
d�
d� s = c

0(e�i )�c0(e0i ) >
0. But then, if the EC constraint (25) does not bind, we can increase b

without violating the payo¤ constraint (23), since d�db > 0. The higher bonus

will induce higher e¤ort e�i (by FOC), hence EC must bind in optimum.

If the payo¤ constraint (23) does not bind, then by reducing � , keeping b

�xed, e¤ort e�i will increase (by FOC), and the EC constraint (25) will be

relaxed. The payo¤ constraint (23) must therefore also bind in optimum.

Now we show that � < 0 cannot be optimal. Suppose it is, i.e. that for some

s < sc a hurdle y00 = y0�� 0 with � 0 < 0 is optimal. The optimal bonus b and
e¤ort e�i must satisfy FOC. Note that the FOC for e

�
i will also be satis�ed
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for � 00 = �� 0 > 0, because �(��s ) = �( �s ) Then, since d�
d� > 0, the payo¤

di¤erence � will be strictly higher for � = � 00 > 0 than for � 0 < 0. But then

e�i is a strict optimum for the agent (� > 0) for � = � 00 > 0, and in such a

case it is, as we have seen above, possible to implement an even higher e¤ort

by, say, increasing the bonus somewhat. A hurdle y00 = y0 � � 0 with � 0 < 0
can thus not be optimal.

We now show that e¤ort e�i is higher when s is lower. To this end �x

sa < sc, and let the optimal e¤ort, bonus and hurdle parameter be e�i = e
�
a,

b = ba and � = �a, respectively. Then � = 0 and EC (25) binds. We �rst

show that for s < sa e¤ort e�i = e�a can be implemented with b = ba, and

a suitable choice of � . Indeed, �x e�i = e�a and b = ba, and let �(s) and

e0i (s) be de�ned by the FOCs (24) for e
�
i and e

0
i , respectively. For s = sa

we have � = �a and all relations hold with equality. We show below (see

(27)) that the payo¤ di¤erence � = �(�(s); e0i (s)) satis�es
d�
ds < 0 (keeping

e�i = e�a and b = ba �xed). This implies that e�i = e�a can be implemented

with b = ba and � = �(s) when s < sa, and that the associated payo¤

di¤erence is then strictly positive (� > 0). But in such a case we can, as

shown above, implement a strictly higher e¤ort e�i > e�a. This shows that

for s < sa optimal e¤ort is e�i > e
�
a, as was to be shown.

Finally we show that in the limit we have e�i ! e�u as s ! 0. For suppose

that (at least along a subsequence) e�i ! e�l < e�u as s ! 0. Note that we

then must have �
s ! 1 as s ! 0. For if not, then b ! 0 by FOC for e�i in

(24), which implies a negative payo¤at e�i . For the same reason we must also

have e
�
i�e0i��
s !1. Then we must have e0i ! e0l = 0 as s! 0, for otherwise

the payo¤ at e0i would converge to �c(e0l ) < 0. This is impossible, since the
payo¤ at e0i exceeds that at ei = 0, and hence must be non-negative.

Taking limits in the �rst relation (23) with equality, we then get lim b � 1�
c(e�l ) = 0, and hence from the last equation (for b) that c(e�l ) =

�
1��W (e

�
l ).

This cannot hold for e�l < e
�
u, hence we must have e

�
l = e

�
u.

It remains to prove d�ds < 0, where� is given by (26), � = �(s) and e
0
i = e

0
i (s)

are given by the FOCs in (24), and b and e�i are kept �xed (e
�
i = e

�
a; b = ba).
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In fact, we will show that

d�

ds
= (c0(e�i )� c0(e0i ))(�

s

�
)� c0(e0i )

e�i � e0i
s

< 0 (27)

To this end, using the FOC (24) we �nd, for the payo¤ at e0i :

d
ds

�
b(1� �( e

�
i�e0i��
s ))� c(e0i )

�
= c0(e0i )

�
d�
ds +

e�i�e0i��
s

�
Similarly, for the payo¤ at e�i we �nd

d
ds

�
b(1� �(��s ))� c(e

�
i )
�
= c0(e�i )(

d�
ds �

�
s )

Hence

d�
ds = (c

0(e�i )� c0(e0i ))(d�ds �
�
s )� c

0(e0i )
e�i�e0i
s

From the FOCs (24) and the fact that �0(z) = �z�(z) we obtain by di¤er-
entiation (d�ds �

�
s ) = �

s
� . This proves (27), and thus completes the proof.

Proof of Proposition 7. From (10) with  = 0 we have

@
@p1
P (yn = k) = [

�
n�1
k�1
�
(1� p1)�

�
n�1
k

�
p1]p

k�1
1 (1� p1)n�1�k

The square bracket equals
�
n�1
k�1
�
(k � np1) 1k , and hence

@
@p1
P (yn = k) > 0

for k > np1, so it is optimal to award the bonus for all such outcomes. This

veri�es (12).

Consider now p1 2
�

k
n+1 ;

k+1
n+1

i
for k = 0; ::; n. For team size n+ 1 we there

have

mn+1(p1) =
@

@p1
P (yn+1 � k+1) = P (yn = k); p1 2

�
k

n+ 1
;
k + 1

n+ 1

�
: (28)

Note that k
n+1 <

k
n <

k+1
n+1 . Consider �rst p1 2

�
k
n ;

k+1
n+1

i
. There we have

mn(p1) =
@
@p1
P (yn � k + 1) = P (yn�1 = k)

hence

mn+1(p1)�mn(p1) = [
�
n
k

�
(1� p1)�

�
n�1
k

�
]pk1(1� p1)n�1�k < 0

where the inequality follows from the square bracket being equal to
�
n�1
k

�k�np1
n�k ,

and p1 > k
n .
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Consider next p1 2
�

k
n+1 ;

k
n

i
, where we have mn(p1) =

@
@p1
P (yn � k) =

P (yn�1 = k � 1), and hence

mn+1(p1)�mn(p1) = [
�
n
k

�
p1 �

�
n�1
k�1
�
]pk�11 (1� p1)n�k

The square bracket equals [nk p1 � 1]
�
n�1
k�1
�
� 0, and the inequality is strict

except at p1 = k
n . This completes the proof.

Veri�cation of (8) Let here P (x1:::xn) denote the joint probability that
n outputs take values x1:::xn, with xi 2 f0; 1g. No second- or higher-order
additive interaction entails that we have (Gupta-Tao 2010)

P (x1;x2;:::xn)
P (x1)P (x2)���P (xn) =

X
1�i;j�n

P (xi;xj)
P (xi)P (xj)

� n(n�1)
2 + 1

Assuming this holds for all n > 1, Gupta-Tao (2010) showed that formula (8)

then follows, with coe¢ cients ajn;r(p1:::pn�1) given by an inductive formula,

see their Theorem 2.2.3 p.67. (Gupta-Tao considered the case of constant

pairwise correlations, i.e. (pi; pj) = �
p
pi(1� pi)pj(1� pj) but their argu-

ments do not depend on this speci�cation.) For p1 = ::: = pn the coe¢ cients

ajn;r are for n > 2 given by

ajn;r = p1a
j�1
n�1;r�1 + (1� p1)a

j�1
n�1;r if j = n� 1 (29)

ajn;r = p1a
j
n�1;r�1 + (1� p1)a

j
n�1;r if j = 1; 2:::; n� 2 (30)

where ajn;r = 0 if r < 0 or r > n, while for n = 2 we have

a12;0 = 1; a12;1 = �2; a12;2 = 1

This veri�es (8), based on Gupta-Tao (2010).

For later use, we note here that for symmetric pi�s the coe¢ cients a
j
n;r enter

(8) via the sums �n�1j=1 a
j
n;r � Anr . From (29-30) we �nd, for n = 3 (see also

Gupta-Tao 2010, p. 64):

A30 = 2(1� p1), A31 = 2(3p1 � 2), A32 = 2(1� 3p1), A33 = 2p1 (31)

From (9) we then obtain, for n = 3 (when 1 � 0)

@
@p1
P (y3 = 3) = p21 + 
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@
@p1
P (y3 = 2) = p1(2� 3p1)� 3

@
@p1
P (y3 = 1) = (1� p1)(1� 3p1) + 3

@
@p1
P (y3 = 0) = �(1� p1)2 � 

Proof of Proposition 8. It follows from (8) that all probabilities P (yn =

r) are linear in , and for symmetric (equal) p0is can be written as

P (yn = r) = Bnr (p1) + C
n
r (p1); (32)

where Bnr (p1) is a standard binomial probability for iid variables (corre-

sponding to  = 0). For n = 2 it follows directly from (7) that C20 = C
2
2 =

1; C21 = �2. For n � 3 we obtain the following result, which we prove below.

Lemma A. (i) For Cnr (p1) de�ned in (32) we have for n = 3; C3r (p1) =
3
2A

3
r(p1), and for n � 4:

Cnr (p1) = �np
r�2
1 (1� p1)n�2�r �nr (p1) 2 � r � n� 2

Cnr (p1) = �np
r�2
1 �nr (p1) r = n� 1; n

Cnr (p1) = �n (1� p1)
n�2�r �nr (p1) r = 0; 1

where �n =
1
2n(n� 1) and �

n
r (p1) is given as follows: �

n
0 (p1) = �

n
n(p1) = 1,

and

�nr (p1) =

�
n

r

�
p21 � 2

�
n� 1
r � 1

�
p1 +

�
n� 2
r � 2

�
, 2 � r � n� 2 (33)

�n1 (p1) = np1 � 2; �nn�1(p1) = n(1� p1)� 2 (34)

(ii) Moreover, for n � 2 we have Cnr (p1) < cnr < 0 for p1 2
h

r
n+1 ;

r+1
n+1

i
; all

r = 1; :::; n� 1, and Cnr (p1) > cnr > 0 for p1 2
h

r
n+1 ;

r+1
n+1

i
, r = 0; n:

Now, for  = 0 the optimal bonus scheme is a hurdle scheme with mn(p1) =
@
@p1
P (yn � k) for p1 2 (k�1n ;

k
n), see (12). The model is continuous in ,

hence for jj small, such a hurdle scheme is still optimal, and thus we have

mn(p1; ) =
@

@p1
P (yn � k) = P (yn�1 = k � 1) = Bn�1k�1 (p1) + C

n�1
k�1 (p1)

(35)

41



for p1 2 (�nk�1; �nk), where �nr = �nr ()! r
n as  ! 0. (The second equality

in (35) follows from (10) and the third from (32).)

From Lemma A(ii) we have

Cn�1k�1 (p1) < c
n�1
k�1 < 0 for p1 2

�
k�1
n ;

k
n

�
; all k = 2; :::; n� 1

Cn�1k�1 (p1) > c
n�1
k�1 > 0 for p1 2

�
k�1
n ;

k
n

�
; k = 1; n

This implies that for jj small, mn(p1; ) is strictly decreasing in  for p1 2
(�n1 ; �

n
n�1), and strictly increasing in  for p1 < �n1 or p1 > �nn�1, where

�n1 ! 1
n and �

n
n�1 ! n�1

n as  ! 0. This completes the proof.

Proof of Lemma A(i). Since all probabilites are linear in , it follows
from (8) and (32) that we have, under symmetry (all pi equal):

Cnr (p1) = p1C
n�1
r�1 (p1) + (1� p1)Cn�1r (p1) + �

n�1
j=1 a

j
n;r(p1)

with C lr(p1) = 0 if r < 0 or r > l. From this relation and (29 - 30) we obtain,

by straightforward induction, the following:

Anr (p1) � �n�1j=1 a
j
n;r(p1) = (n�1)an�1n;r (p1) and Cnr (p1) = �na

n�1
n;r (p1), �n = n(n�1)=2

(36)

and, for n � 4,

an�1n;r (p1) = p
r�2
1 (1� p1)n�2�r �nr (p1) 2 � r � n� 2

an�1n;r (p1) = p
r�2
1 �nr (p1) r = n� 1; n

an�1n;r (p1) = (1� p1)
n�2�r �nr (p1) r = 0; 1

where �nr (p1) is a polynomial of degree 2, except for r = 1; n � 1, where
�nr (p1) is linear and given by (34), and for r = 0; n, where �

n
r (p1) = 1; and

moreover,

�n2 (p1) = p1�
n�1
1 (p1) + �

n�1
2 (p1) (37)

�nr (p1) = �
n�1
r�1 (p1) + �

n�1
r (p1); 3 � r � n� 2 (38)

Given these relations and the formula for Cnr (p1) in (36), it only remains to

verify (33) to complete the proof of the lemma. Given that (33) holds for

n� 1, it follows from (37) and (34) that we have, for r = 2
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�n2 (p1) = p1((n� 1)p1 � 2) +
�
n�1
2

�
p21 � 2

�
n�2
2�1
�
p1 +

�
n�3
2�2
�

= n(n�1)
2 p21 � 2(n� 1)p1 + 1

where the last equality follows by collecting terms.This veri�es (33) for r = 2.

Similarly we have from (38) and (33), for 3 � r � n� 2:

�nr (p1) = (
�
n�1
r�1
�
+
�
n�1
r

�
)p21 � 2(

�
n�2
r�2
�
+
�
n�2
r�1
�
)p1 +

�
n�3
r�3
�
+
�
n�3
r�2
�

=
�
n
r

�
p21 � 2

�
n�1
r�1
�
p1 +

�
n�2
r�2
�
;

where the last equality follows from
�
l

k�1
�
+
�
l
k

�
=
�
l+1
k

�
. This veri�es (33)

for 3 � r � n� 2, and completes the proof of Lemma A (i).

Proof Lemma A(ii). For n = 2; 3 the statement is veri�ed directly. For
n � 4 we now claim that there are numbers �nr , such that �

n
r (p1) < �

n
r < 0

for p1 2
h

r
n+1 ;

r+1
n+1

i
; all r = 1; :::; n � 1, and �nr (p1) > �nr > 0 for p1 2h

r
n+1 ;

r+1
n+1

i
, r = 0; n. The statement in (ii) then follows from the expressions

for Cnr (p1) in part (i) of the lemma.

First note that, since �n0 (p1) = �nn(p1) = 1, the claim is trivially true for

r = 0; n

For r = 1 and p1 2
h

r
n+1 ;

r+1
n+1

i
we have

�n1 (p1) � �n1 ( 2
n+1) = n

2
n+1 � 2 = �

2
n+1 � �

n
1 < 0;

and for r = n� 1 and p1 2
h

r
n+1 ;

r+1
n+1

i
�nn�1(p1) � �nn�1(n�1n+1) = n(1�

n�1
n+1)� 2 = �

2
n+1 � �

n
n�1 < 0

For 2 � r � n � 2, �nr (p1) is a strictly convex quadratic function, and
hence bounded above for all p1 2

h
r
n+1 ;

r+1
n+1

i
by its largest value at the

endpoints. The claim regarding �nr (p1) < �
n
r < 0 on

h
r
n+1 ;

r+1
n+1

i
is then true

if the endpoint values are negative. Checking this we �nd that �nr (
r
n+1) is

proportional to

n(n� 1)p21 � 2r(n� 1)p1 + r(r � 1) = r
(n+1)2

�
(3 + n)r � (n+ 1)2

�
The last parenthesis is increasing in r and strictly negative (equal to �4)
for r = n� 1.
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Next, checking p1 = r+1
n+1 we see that �

n
r (
r+1
n+1) is proportional to

n(n� 1)p21 � 2r(n� 1)p1 + r(r � 1) =
(n�r)
(n+1)2

(n� 1� (3 + n)r)

The last parenthesis is decreasing in r and is strictly negative for r = 2.

This completes the proof of the claim, and hence the lemma.

Proof of Proposition 9. Since all probabilities are linear in , so aremn+1

and mn, and hence also the di¤erence

~�n(p1; ) � mn+1(p1; )�mn(p1; ) = �
n
0 (p1) + �

n(p1) (39)

For  = 0 we know that the di¤erence (given by �n0 (p1)) is strictly negative

except at p1 = k
n , k = 1; :::; n � 1, where it is zero. We will now show

that �n(p1) < 0 at p1 = k
n , k = 1; :::; n � 1. It then follows that for jj

small, we will have ~�n(p1; ) > 0 in a neighborhood of p1 = k
n if  < 0, but

~�n(p1; ) < 0 for all p1 if  > 0. The statement in the proposition follows

from this.

So consider �n(p1) de�ned by (39), evaluated at p1 = k
n . For  = 0 the

optimal bonus scheme for team size n is a hurdle scheme where the hurdle

shifts from k (for p1 � k
n) to k + 1 (for p1 >

k
n). For jj small, the optimal

scheme will also be a hurdle scheme, but it will have hurdle k or k + 1 at

p1 =
k
n depending on the sign of

@

@p1
P (yn = k) = P (yn�1 = k�1)�P (yn�1 = k) = (Cn�1k�1 (p1)�C

n�1
k (p1)); p1 =

k

n
(40)

(Here we have used (32), and the fact that Bn�1k�1 (p1) = B
n�1
k (p1) at p1 = k

n .)

The hurdle for the team of size n will be k i¤ the expression in (40) is positive,

otherwise it will be k + 1.

For the team of size n+1 the optimal scheme has hurdle k+1 at p1 = k
n for

jj smal·l. This holds for jj smal·l because it is true for  = 0, and because
@
@p1
P (yn+1 = k) is strictly negative at p1 = k

n when  = 0. (For  = 0 the

optimal scheme has hurdle k + 1 for p1 2 ( k
n+1 ;

k+1
n+1):)

At p1 = k
n we thus have

mn+1(p1; )�mn(p1; ) =
@
@p1
P (yn+1 � k + 1)
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�( @
@p1
P (yn � k + 1) +

h
@
@p1
P (yn = k)

i+
);

where we have used the notation [x]+ = max fx; 0g. Using this relation,
(32), (35) and (39), plus the fact that �n0 (p1) = 0 at p1 =

k
n , we obtain

~�n(p1; ) = (C
n
k (p1)� Cn�1k (p1))�

�
(Cn�1k�1 (p1)� C

n�1
k (p1))

�+
; p1 =

k

n
(41)

Claim: at p1 = k
n we have, for k = 1; 2; :::; n� 1

Cnk (p1)� C
n�1
k (p1) < 0

Cnk (p1)� C
n�1
k (p1)� (Cn�1k�1 (p1)� C

n�1
k (p1)) � Dnk < 0

We prove this claim below. It follows from the claim that for  > 0 we

have ~�n(p1; ) � (Cnk (p1) � C
n�1
k (p1)) < 0 at p1 = k

n . For  < 0 and

p1 =
k
n we have

~�n(p1; ) = (Cnk (p1) � C
n�1
k (p1)) > 0 if Cn�1k�1 (p1) �

Cn�1k (p1) � 0, and ~�n(p1; ) = Dnk > 0 if C
n�1
k�1 (p1)� C

n�1
k (p1) < 0. This

veri�es the statements in the paragraph following (39), and hence proves the

proposition.

It remains to verify the claim. Using Lemma A we �nd, for 2 � r � n� 3:

Cnr (p1)�Cn�1r (p1) _ �n (1� p1)�nr (p1)��n�1�n�1r (p1) =
�r� (n)

n2� (n� r) � (r) , p1 =
r

n

where _ denotes "proportional to", and � (l) = (l� 1)! for l = 1; 2; :::. This
proves the �rst claim for 2 � k � n� 3 (details available from the authors).

Using Lemma A again we �nd, for 3 � r � n� 2:

Dnr = C
n
r (p1)�Cn�1r�1 (p1) _ �np1�nr (p1)��n�1�n�1r�1 (p1) =

� (n� r) � (n)
n2� (n� r) � (r) , p1 =

r

n

This proves the second claim for 3 � k � n � 2 (details available from the

authors). The claims can similarly be veri�ed for k = 1; 2; n � 1 by use of
Lemma A.

Proof of Proposition 10. From the formulas following (31) we see that

with 1 = 0 and  > 0 we have @
@p1
P (y3 = 3) > 0; @

@p1
P (y3 = 0) < 0.

Moreover, for  > 1
9 we then also have

@
@p1
P (y3 = 1) > 0; @

@p1
P (y3 = 2) < 0
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for all p1 2 (0; 1). A bonus scheme that awards for y3 2 f1; 3g is then
optimal.
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Figure 1. Illustration of FOC
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