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1 Introduction

Most modern macroeconomic models assume price stickiness, i.e. that price setters are

faced with frictions, without sufficient knowledge about the underlying microeconomic

implications. This calls for a further empirical assessment of the theoretical premises

in the macroeconomic models we use today.

A common method for analysing price stickiness is to investigate the role of

thresholds in the pricing patterns of individual firms. In this literature, the (S, s)

rule proposed by Sheshinski and Weiss (1977) plays an important role. Sheshinski

and Weiss (1977) argued that firms kept the price fixed within the certain bounds,

denoted (S, s). As a result, prices exhibit a pattern of inaction followed by large price

changes, so called “zeros and lumps”. The authors argue that this pattern is caused

by the fact that changing the price induces a fixed cost for the firm, which is referred

to as the menu cost. The (S, s) methodology has later been adopted and further

extended by many, and thereby represents a large share of the current price sticki-

ness literature (see e.g. Caballero and Engel, 1993; Ratfai, 2006; Alvarez et al., 2011;

Dhyne et al., 2011; Honoré et al., 2012). An essential assumption in these models is

that adjustment costs are independent of the size of the price change (Zbaracki et al.,

2004).

One aspect to consider when searching for thresholds in pricing patterns is whether

the thresholds are symmetric, i.e. if the magnitude of the thresholds are the same

upwards and downwards. A study on microeconometric evidence from Switzerland

by Honoré et al. (2012), finds a smaller upper than lower threshold. According to

this study, price changes are more likely to be positive than negative, ceteris paribus.

The study ignores, however, the magnitude of price changes, as only the frequency

and the duration of inaction are accounted for. Loupias and Sevestre (2012), on the

other hand, include the magnitude of price changes, and find that when firms face

cost variations, they appear to adjust their prices more often and more rapid upwards
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than downwards.

The counterpart of the (S,s) methodolgy in the price stickiness literature assume

that the adjustment cost is a convex function of the size of the price change, i.e. that

larger changes lead to higher costs (Rotemberg, 1982). While the assumption of fixed

costs implies that one should observe large and infrequent price changes, the convex

cost assumption implies the opposite: frequent changes of small size. As emphasized

by Zbaracki et al. (2004), most of the literature finds evidence supporting the former.

However, if there are only fixed and not convex price adjustments costs, we fail to see

why the pricing data shows a relatively high proportion of small price changes.1Earlier

research with (S, s) pricing rules has in part failed to include small price changes.

As highlighted by Klenow and Malin (2011), access to good microeconomic data

is crucial, and is a common problem in all empirical research related to pricing. The

basis of our analysis is monthly collected micro price data for Norwegian manufac-

turers. Although consumer prices are relevant for the monitoring of inflation by

central banks, it is the prices on producer level that are most often modelled into

the macroeconomic policy models (Vermeulen et al., 2012). Accordingly, knowledge

about producer price adjustments is essential to improve macroeconomic modelling

and central bank policies.

In this paper we propose a model where the adjustment towards the new price is

conditional on both thresholds and partial adjustments. Our model therefore allows

for both inaction and inertia in pricing. The hypothesis is that the firm is faced

with a fixed cost when setting a new target price and that there are costs associated

with deviating from the frictionless price in addition to convex costs associated with

adjusting to this price. For example, as in Zbaracki et al. (2004), the convexity of

1The study of Eichenbaum et al. (2014) on CPI data suggests that the observance of small
price changes is largely due to measurement errors and quality adjustments, and should therefore
be neglected. However, the study is opposed by a vast majority of empirical research suggesting
that small price changes are relatively common (Klenow and Kryvtsov, 2008; Barros et al., 2009;
Bhattarai and Schoenle, 2014; Midrigan, 2011; Wulfsberg, 2016).
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managerial-, customer- and negotiation costs makes the firm favour slow adjustments

and small price changes. Thus, our model sets out to explain both the occurrence

price adjustments of different sizes and inaction. The model is tested on a dataset

based on survey data behind the commodity price index for the Norwegian indus-

trial sector (PPI). These data include monthly prices quotations for a representative

sample of Norwegian plants. The data show a high frequency price change inaction,

by relatively small price changes when changed, and by a much higher occurrence

of price changes in the beginning compared to the end of a year. To analyse the

intermittent nature of the model, a simulated method of moments is used. The es-

timations reveal thresholds such that prices are changed only if the deviations from

the underlying frictionless prices are approximately 15 percent. When changed, the

prices are changed rather quickly with only 10 percent of the initial gap existent after

three months. The asymmetry between upward- and downward rigidities are minor

but statistically significant. Finally, the thresholds in January are approximately two

thirds compared to the other months.

The remainder of the paper is organized as follows. Section 2 describes the data,

while the model, method and moments are presented in Section 3. Section 4 reports

and discusses the results and Section 5 gives some concluding remarks.

2 Data

The basis for our empirical analysis is the survey data behind the commodity price

index for the Norwegian manufacturing industry (PPI) obtained from Statistics Nor-

way (SSB).2 The data are collected on a monthly basis for a selection of Norwegian

plants.3 Plants with more than 100 employees are included in the sample at all times,

and the selection of producers is updated continuously, securing a high level of rel-

2See SSB (2015) for more information about the PPI.
3In the remainder of the paper we use the terms plant, firm, producer and establishment inter-

changeably.
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evance (SSB, 2015). Plants are repeatedly surveyed, participation is compulsory and

Statistics Norway revise the data regularly to detect measurement errors and non-

conformity.4 Considering this, and that the PPI is an important tool for governing

bodies, it is fair to assume that the data is representative for Norwegian producers

and of high quality.

The initial dataset contains monthly price observations for Norwegian producers

ranging from year 2002 until 2009. In the construction of the final dataset for this

study, plants with observations for less than 24 months have been omitted, as well

as plants with less than 10 employees. Furthermore, only years with observations

for all months in a given year are included. Due to the implementation of a new

sampling procedure at Statistics Norway, there was a clear shift in the reported price

change frequency in 2004. We therefore choose to discard the data prior to January

2004. Furthermore, plants related to the energy sector (oil, gas, electricity, etc.), and

mining and quarrying have been left out of the sample as they are known to have

an abnormally high adjustment frequency. The original dataset also contains prices

for both domestic and export markets, but to prevent interference by exchange rate

movements and international competition, export market prices are omitted. Addi-

tionally, as very large price changes are likely to reflect changes to design or quality of

the product rather than common pricing decisions, price growth observations outside

the [0.01, 0.99] interval we consider to be new products. Finally, we focus on single

plant firms only.5 This leaves us with a final sample of 76 804 observations for 1676

products over the years 2004-2009 covering 21 2-digit SIC2002 industry codes.

4One plant might be recorded with one or multiple products. It should be noted that for data
collection purposes firms may be targeted for certain, but not all of the products they manufacture.
If Statistics Norway regards a subset of the products to be important to obtain an accurate estimate
of the price index, data will be requested for these ones only.

5With this choice, we are sure that the price decisions are not made beyond the plant level.
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2.1 Descriptives

[Figure 1 "Distribution of Price Change Rates" about here]

Figure 1 shows the proportion of observations in different price change intervals,

both for the actual data and for the later preferred simulated model (black, and grey

columns, respectively). As seen, observations with price changes with absolute value

less than 0.005 represent the majority of the dataset. We will later on refer to this as

the “zero price-change” interval. In other words, most observations are characterized

with inaction. This indicates the existence of fixed price adjustment costs. At the

same time, we observe that a substantial proportion of the observations are small price

changes in the intervals between 0.5% and 5.0% (in absolute value). If there is only

a fixed cost, which is independent of the magnitude of the price change, one would

not expect to see these small price changes. This observation could, however, be an

indication of convex adjustment costs, which put a penalty on large adjustments and

thereby force the producers to adjust gradually. The observation of several periods of

inaction combined with series of small price changes may tell a story of firms being

faced with both fixed and convex price adjustment costs.

In order to identify lumpy adjustment behaviour, we rank for each plant, for each

year, the 12 monthly price changes from lowest to highest.6 Rank 1 thereby represents

the average largest monthly price change, Rank 2 the average second largest price

change, and so on. The intuition is that if there is a large gap between the largest

(smallest) and the second largest (second smallest) price change compared to the

other ranks, this indicates that producers are faced with fixed costs of adjustment

and therefore change the price quite substantially when first changing it. Opposite,

with normally distributed shocks to the fundamentals, and no adjustment costs, one

would expect the mean investment rate of adjacent observations to be rather similar,
6Such a measure has been used in the investment- and labour demand literature (see for instance

Doms and Dunne (1998), Nilsen and Schiantarelli (2003) and Varejão and Portugal (2007)).
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and therefore that there is a downward sloping linear relationship between the ranks

(for more details, see Doms and Dunne 1998).

[Figure 2 "Ranked Price Change Rates" about here]

Figure 2 shows the ranking of the monthly price changes of each plant by month

for every year, and then taking the average of each rank across plants and years.

As seen from Figure 2, there is a gap of approximately 3 percentage points between

both the first and second rank and the eleventh and twelfth rank. In contrast, the

differences between the intermediate ranks are modest. The importance of episodes

characterized by relatively large prices changes is consistent with nonconvexities in

adjustment costs. Note however, even though the difference between the gaps on the

edges and the gaps between the middle ranks is existent, the potential co-existence

of both fixed and convex adjustment costs can not be excluded. That means, even

if fixed adjustment costs are preventing the firms to adjust continuously, when they

actually do change their price, convex costs are forcing them to do so gradually.7

[Figure 3 "The Occurrence of Price Changes by Months" about here]

Figure 3 shows the average share of price change quotations within each month.

The shares are given as the number of price changes larger than |0.005| within each

month divided by the total number of price quotations within the same month. As

seen, there is a relatively high price change frequency in the beginning of the year

compared to the remaining months. This seasonality could of course be explained by

producers’ economic environment, for instance seasonal demand effects. Furthermore,

it may be explained by staggered contracts with for instance price contracts starting in

January with a duration of one year (see for instance Taylor (1980, 1999)). It should

be noted that the higher incidence of price changes in January, is also consistent
7In addition, we observe that all the ranks are shifted to the left, as only rank five is below

zero. This observation is expected as inflation will cause the producers to have more positive price
changes than negative.
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with theories focusing on the costs of information acquisition and processing (see

Maćkowiak and Wiederholt (2009) and Mankiw and Reis (2002)).

3 Model, Method and Moments

As already discussed, there are several theories that could explain the intermittent

price adjustment patterns observed in many datasets at both consumer level and at

producer level. Here we suggest a simple reduced form model that describes pro-

duction plants’ price adjustment behaviour with the following three features; plants

adjust prices infrequently as only 20 percent of the price observations change from one

month to another, there is a lot of small price changes, and there is a seasonal pattern

in the incidence of price changes with most price changes taking place in January.

3.1 Model Specification and Predefined Parameters

As firms require a degree of monopoly power to be able to set prices, we assume that

producers operate in monopolistic competitive markets. Furthermore, it is assumed

that each firm is able to continuously observe and monitor its frictionless price without

any costs.

We start from the observations of high frequencies of zero price adjustments. This

would be observed if there would be some menu costs, and that it would be costly to

continuously adjust the product prices. The firm operates with a target price (in logs)

for product i at time t denoted p#
it , and leave this unchanged unless the distance to

the frictionless price p∗it (also in logs) is becoming too large. The latter mentioned p∗it

represents the frictionless equilibrium price decided by the market conditions. The

costs associated with setting a new target price is F · I
(
p#
it 6= p#

it−1

)
, where F is the

actual costs and I
(
p#
it 6= p#

it−1

)
is an indicator function. The formation of the target
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price is determined by:

p#
it =


p∗it if | p∗it − p

#
it−1 |> τ

p#
it−1 otherwise

(1)

where τ denotes a threshold. Thus, if the shock to the frictionless price is large

enough, in absolute value, relative to its target value, the firm finds it profitable to

set a new target price and to start to adjust its price in response to the shock. The

formulation in eq. (1) states that the threshold is symmetric, i.e. that the “band

of inaction” is the same whether the price shock is positive or negative. We relax

this restriction and allow the thresholds for price increase and price decreases to be

different. With this modification, the formation of the target price is determined by:

p#
it =


p∗it if p∗it − p

#
it−1 > U or p∗it − p

#
it−1 < L,

p#
it−1 otherwise

(2)

where U denotes the upper threshold and L denotes the lower threshold, i.e. L ≤

0 ≤ U . It means that the target price is changed only if the frictionless price moves

outside the interval determined by L and U . Opposite, if the frictionless price is

larger than L and lower than U , the producer leaves its target price p#
it unchanged.

Following Alvarez et al. (2011), Dias et al. (2015), and others, we let the logarithm

of the frictionless nominal price for product i at time t , denoted by p∗it, follow a random

walk with drift:

p∗it = α + p∗it−1 + εit, where εit ∼ N(0, σ2
ε) (3)

Here α denotes the deterministic drift, and εit denotes idiosyncratic shocks with

variance σ2
ε . If α were not included, trend inflation would be embedded into the

threshold parameters and therefore bias the results. If α is set too low (too high)

compared to the actual trend inflation, the estimated threshold parameters L and U
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would be biased downwards (upwards). The deterministic trend parameter, α, is set

as close to the actual inflation as possible to limit the effect of inflation bias.8 The

idiosyncratic shock parameter, εit, is meant to reflect any shocks to either demand,

cost or technology excess of the underlying trend captured by the trend parameter α.9

In principle, it is possible to allow for serial correlation in εit, but for computational

ease and in order to simplify the exposition, we assume that the shocks are serially

uncorrelated.

Even though the firm has decided to change its target price, and therefore also to

change the price of the given product, it does not move directly to the new target price.

As discussed by for instance Zbaracki et al. (2004), price change costs also include

convex components such it is costlier to make one larger price change compared to

several smaller ones. Furthermore, the descriptive evidence given in Figure 1 indicates

that smaller prices changes are not that uncommon, while larger price changes are.

Nevertheless, there might also be losses of being too far away from the new target price

p#
it . A formulation that encompasses both these elements, given that the deviation

between the new frictionless price, p∗it, and the target price p#
it is large enough to

initiate price changes, the “out-of-equilibrium costs” could be modelled as follows

AC(pit) = C ·
{

(1− θ)
(
pit − p#

it

)2
+ θ (pit − pit−1)2

}
(4)

Thus, the formulation consists of a weighted sum (where 0 ≤ θ ≤ 1) of two

8We could also include α as a parameter to be estimated. A simpler approach, as adopted here,
is to perform a series of simulations with different values for α. We comment on this further when
testing the robustness of our model.

9An argument against letting demand-, technology-, and or cost- shocks to be treated identically
is that firms react quicker to positive than to negative cost shocks, but slower to positive than
to negative demand shocks (see for instance found in Dias et al. (2015) and Loupias and Sevestre
(2012)). Differencing between the types of shocks would implicate a more sophisticated derivation
of both the frictionless price and the inertia parameters than presented above. Furthermore, with
the available data it might also be difficult to identify different types of shocks. Considering this,
and that the focus of our paper is the combination of thresholds and inertia, we choose to include
the shocks as an aggregate effect (see Appendix for an analysis how the price is affected by demand-,
technology, and cost- shocks).
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quadratic terms, which denotes the difference between the new price and the target

price, and the difference between the new price and the previous price, respectively.

A plant seeks to minimise these “out-of-equilibrium costs” AC(.). The first order

condition of equation (4) with respect to new current price pit rearranged is therefore;

(pit − pit−1) = (1− θ)
(
p#
it − pit−1

)
(5)

Thus, we have the traditional partial adjustment model where the “out-of-equilibrium

costs” AC(.) prevent the producer to adjust immediately to its target price, only that

the “usual” frictionless seen in partial adjustment models is exchanged with the tar-

get price p#
it . An implication is that the producer will close (1 − θ) of the deviation

between the target price and the old actual price. For example, θ = 0.10 will implicate

that the producer closes 90 percent of its desired price change in the first period. If

the target price remains unchanged in the subsequent period, the producer will close

90 percent of the remaining price gap. This will keep on until the producer decides

to set a new target price or when the target price is reached.

To avoid the restriction that the weights in equation (4), (1− θ) and θ, are com-

mon to price increases and price decreases, we allow the model specification for asym-

metric inertia in addition to the already discussed asymmetric thresholds. This re-

flects asymmetric adjustment costs discussed and analysed in the microeconomic lit-

erature (e.g. Peltzman, 2000; Yang and Ye, 2008; Xia and Li, 2010; Lewis, 2011; Loy

et al., 2016). Thus, we allow pit to have three outcomes, depending on whether the

price is either equal to the target price, heading upwards or heading downwards. If

the price is heading upwards, θup is supposed to capture upward inertia. Conversely,

if the price is heading downwards, θdown is supposed to capture downward inertia.
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Thus, we let the logarithm of the nominal price of product i at time t be given by:

(pit − pit−1) =



(1− θup)(p#
it − pit−1) if p#

it − pit−1 > 0.005,

0 if |p#
it − pit−1| ≤ 0.005,

(1− θdown)(p#
it − pit−1) if p#

it − pit−1 < −0.005,

(6)

As seen from (6), we consider price differences within the following bounds [−0.005, 0.005]

as zeros. Such small variations are likely to have little economic meaning. In addi-

tion, the numerical simulations described in subsequent section, makes it necessary

to allow for small deviations from a mathematical true zero. Thus, our definition of

zero corresponds to the definition used in later applied moments. The formulation in

(6) also implies that the price does not adjust further when the deviation from the

target price gets small enough.

It should be mentioned that if θup 6= 0, θdown 6= 0, U = L = 0, the model specific-

ation reduces to a partial adjustment model (since then p∗it = p#
it and eq.s (1) and (2)

would be irrelevant). Conversely, if θup = θdown = 0, U 6= 0, L 6= 0, the model reduces

to a (S, s) pricing model.10 Note also, if the target price p#
it would not have been

introduced explicitly, the (symmetric) threshold specification would be as follows;

pit =


p∗it if | p∗it − pit−1 |> τ

pit−1 otherwise

(7)

Furthermore, the (symmetric) partial adjustment expression would then be:

(pit − pit−1) =


(1− θ)(p∗it − pit−1), if |p∗it − pit−1| > 0.005,

0 if |p∗it − pit−1| ≤ 0.005,
(8)

Note however, then the price-adjustment process would stop when p∗it − pit−1 would

10Eq. (5) states that conditional on changing, one immediately goes to the new target price.
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reach the threshold τ . Thus, without the target price p#
it in the model we would not

observe that many small price changes and p∗it would never will be fully reached.11

It is assumed that the friction parameters U, L, θup and θdown are all independent

of product characteristics. There is a broad agreement in the literature that price

setting is heterogeneous across sectors, firms and products (Álvarez et al., 2006; Na-

kamura and Steinsson, 2008; Dhyne et al., 2011; Fougère et al., 2007; Dias et al.,

2015)). Instead of controlling for such heterogeneity by introducing product- or firm

specific friction parameters, we will estimate the model for different product groups

and therefore allowing all parameters to take different values when checking the ro-

bustness of our model.

[Figure 4: Illustration of Price Change Process - about here]

In Figure 4 we illustrate how our model is working. Starting with the evolvement

of the frictionless price, p∗, we see clearly the upward trend, but an interim period

with sudden price decreases. The thresholds have a constant distance relative to the

actual price (bold line). We see in period t = tA, the frictionless price has evolved

such that is larger than the upper threshold U , and consequently is the target price

and the actual price both changed. We see however, that the actual price is moving

slowly towards the new target price. This is caused by the inertia parameter(s) θ.

In period t = tB a sudden negative shock comes, pushing the target price below the

lower threshold L. Subsequently the price is reaching this new target price. Thus,

we see that price changes can be caused by accumulated small shocks, or one large

shock to the underlying frictionless price. We also see intermittence, and small price

changes consistent with the descriptive statistics. Finally, the figure shows that the

thresholds change across time.

Finally, the numbers from the descriptive statistics shows that the incidence of

11Dhyne et al. (2011) have such a model, but with asymmetries. To be able to incorporate the
existence of small price changes, they let the threshold be stochastic.
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price changes is 31% in January, while the average over the other eleven months is

19%. To control for this seasonal effect, we include a January specific parameter,

defined as 0 ≤ y ≤ 1, which is multiplied with the threshold parameters U and L

if the current month is January. This enables the model to lower the thresholds in

the beginning of each year and thereby increase the probability of a price change.

Furthermore, this might also reflect the potential existence of staggered contracts

starting in January and with 12 months duration.12

This leaves us with the following parameters to be estimated:

Standard deviation of idiosyncratic shocks: σε

Upper threshold: U

Lower threshold: L

Inertia upwards: θup

Inertia downwards: θdown

January specific scalar: y

In our main estimates, we set α =0.0025, which gives an annual inflation equal

to 0.03, close to the average annual inflation rate of the producer price index (PPI)

between the years 2004 and 2009.

3.2 Estimation Method

Given that the empirical model does include the thresholds, the model does not have

an analytical closed form solution. This again prevent us from using “standard”

regression techniques. Therefore, we estimate our specification using a Simulated

Method of Moments (SMM). This estimation technique allows some of the paramet-

ers to be estimated, in our case σ2
ε , U, L, θup, θdown, and y. Other parameters are

12Nilsen et al. (2016) show, using the same rawdata as used in this paper, a flat price change
hazard with a peak after 12 months.
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predefined to reduce the computational burden. In short, SMM seeks to minimize

the distance between two sets of moments, the moment vector generated conditional

on a vector of parameters to be estimated β, and the corresponding moment vector

in the actual data, i.e. to find the vector of unknown parameters β that minimizes

the following quadratic form J(β):

J(β) = [ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (9)

where ΦA and ΦS(β) denote the vector of m actual moments and the vector of m

simulated counterparts respectively. W denotes an optimal weighting matrix, while

κ denotes the number of panels with the same size as the actual data. The measure

of the distance between two sets of moments, J(β), has a χ2 distribution with m− l

degrees of freedom, where l is the number of unknown parameters.13

When searching for values of β that minimize the criterion function, an annealing

cooling algorithm is used. On the basis of starting values for the estimated parameters,

this routine takes random jumps in a predefined parameter space. The routine accepts

worse solutions with a decreasing probability, which ensures that the global optimum

is found. As the final solution is somewhat sensitive to the initial values, we do several

computations with different starting values.

3.3 Selection of moments

The model should explain both inaction and small price changes (defined as less than

5 percent in absolute value and strictly positive) at the same time, the proportion of

13See the appendix for more details about the Simulated Method of Moments approach.
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observations within the following intervals are included14:

−0.050 ≤ pit − pit−1 < −0.025

−0.025 ≤ pit − pit−1 < −0.005

−0.005 ≤ pit − pit−1 ≤ 0.005 (10)

0.005 < pit − pit−1 ≤ 0.025

0.025 < pit − pit−1 ≤ 0.050

These moments should contribute in identifying all the parameters, especially the

threshold parameters and inertia parameters: Non-zero U and L will cause zero-

inflated price changes, and positive θup and θdown will cause small price changes.

Larger inertia parameters, θup and θdown, will make plants smooth their adjust-

ments over time, which implicates that there will be several consecutive periods of

small price changes. A consequence of this gradual adjustment is increased serial

correlation in price changes. To identify θup and θdown, we therefore choose to include

the following correlation coefficient moments:

Corr[pit − pit−1, pit−1 − pit−2] if pit − pit−1 > 0.005 (11)

Corr[pit − pit−1, pit−1 − pit−2] if pit − pit−1 < −0.005 (12)

On the other hand, the threshold parameters U and L will also be affected by these

moments, as larger |U | and larger |L| will lead to more inaction and lower serial

correlation. The asymmetry is such that the moment in (11) should identify θup,

while the moment in (12) should identify θdown.

The standard deviation of the shocks to frictionless price, σε, is likely to be directly

related to the standard deviation of price changes, sd(pit − pit−1). We therefore

choose to include the standard deviation of price changes as a moment. The standard

14Our definition of small price changes (less than five percent) is consistent with the assumptions
of Klenow and Kryvtsov (2008) and Eichenbaum et al. (2014).
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deviation or variance of price changes is also likely to be affected by the friction

parameters: As already pointed out, larger |U | and |L| leads to more inaction and

thereby lower variance of the observed price changes. The aforementioned equation

(5) shows that larger values of θ leads to price changes of more similar size which

again will reduce the variance of price changes. Thus, the standard deviation of price

changes will not only identify σε, but it will also contribute to the identification of

U, L, θup and θdown.

The January specific scalar, y, is supposed to capture the abnormally high adjust-

ment frequency in the beginning of the year. As a primary identifier, the following

moment is therefore included:

Number of price quotations with |pit − pit−1| > 0.005 in January
Total number of price quotations in January

In order to replicate the initial high share of price changes observed in the data, the

model will therefore select a value of y such that the thresholds in January are lower

than in the rest of the year.

As previously mentioned, ranked price changes can be a good indicator of lumpy

adjustment behaviour. Four of the ranks presented are therefore used as moments.

More specifically, we include the two first and the two last ranks. These are meant

to be the primary identifiers of the threshold parameters U and L. The ranks are

likely to be affected by σε and the inertia parameters as well: More variation in the

frictionless price will cause more variation in the ranks and higher inertia parameters

will bring the ranks closer to each other. Hence, the rank moments will also affect

θup, θdown and σε.

One might think that the use of ranks is just another way of describing the sea-

sonal effects, and thus that there is not much gain in adding ranks for identification.

When holding for each month the share of the highest ranked price changes (rank 1

observations), the evolvement of these shares mimic very much the pattern of price
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changes by months. Formal testing shows a corr. coeff. of 0.99 (and z-value = 21.7).

That means that within each plant (and year), the pattern of largest price changes

follows to a large extent the same pattern as the frequencies of price changes seen in

Figure 1. On the other hand, the correlation of the share of the lowest ranked price

changes, and the frequency of price changes by month, is small (0.11) and statistic-

ally insignificant. Thus, there are likely benefits with regard to identification from

including both the Jan-effect, and information about the highest and lowest ranks.

4 Results

Table 1 shows the parameter estimates for the various model specifications by columns.

Standard errors are presented in parentheses. The parameter estimates and standard

errors are presented in the upper part of the table. The corresponding moments of the

various model specifications are presented in the lower part of the table. We estimate

all specifications against the 13 moments already described, i.e. distribution of 4p/p,

Jan-effect, serial correlations, st.error of 4p/p, and rank-moments.15

[Table 1 "Parameter Estimates and Moments" about here]

Starting with a broad look at this table, we see that all the estimated parameters

are statistically significant (with the exception of the ones in Column (5)). In Column

(1), we report the results of the full model which include both thresholds and partial

adjustment parameters, and that their magnitude depends on whether prices are

increasing/decreasing relative to previous month.

The U = 0.1398 states that the distance between the frictionless price and the

existing target price, p∗it−p
#
it−1, has to be almost 14 percent before a price-adjustment

process is initiated. Then the actual price changes are decided by the partial adjust-

ment model. The value of θup = 0.3698 is to be interpreted as the producer will close
15All the estimation results are robust to initiating the estimation algorithm from different sets

of starting values. Thus, the parameter estimates reported seem to correspond to global maxima.
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63 percent (= 1−0.3698) of its desired price change, p#
it − pit−1(= p∗it − pit−1), in the

same period as it decides to reset the target price and start a price increase process.

The parameter estimates of U = 0.1398 and θup = 0.3698 together state that the ini-

tial price increase will be at least 0.0881 of the current price.16 Thus, the new prices

are reached quite quickly. The lower threshold, L = −0.1669 states that the (abso-

lute) distance between the frictionless price and the existing target price,
∣∣∣p∗it − p#

it−1

∣∣∣,
has to be almost 17 percent before a price decrease process takes place. And the

producer will again quite quickly adjust to the new lower price, seen from the θdown

= 0.4094.17 The values of θup = 0.3694 and θdown = 0.3964 state that the producers

put more weight on
(
pit − p#

it

)
than the (pit − pit−1) in the out-of-equilibrium costs

function (eq. (4)). Said differently, it seems to be more important to close the gap

relative to the new target price than reducing the implied convex adjustment costs

associated with the period to period adjustment. Furthermore, the findings suggest

that adjustments are faced with two different forms of frictions. Firstly, the effect of

the threshold is that it must be desired to change the price by at least the size of the

threshold before the firm decides to adjust. Secondly, the effect of the inertia is that

the initial price change will be equal to (1−θ) of the target price gap p∗it−pit−1, while

subsequent adjustments will be smaller. The January effect, meant to capture the

fact that the incidence of price changes is higher in January compared to the other

months, states that the thresholds U and L are two thirds in January compared to

the other months. This is consistent with theories focusing on the costs of inform-

ation acquisition and processing but might also be consistent with the existence of

staggered contracts with duration of one year.

The model performs relatively well, as seen from the J-statistic in the last row.

16The initial price increase is found by multiplying U with (1−θup): 0.1398×(1−0.3698)≈ 0.0881.
17The initial price decrease will be at least 0.0986 of the current price, and there will subsequently

be several smaller adjustments downwards until the firm reaches the target price or decides to set
a new one. Thus one may think that price changes of 8.5% and 10.0% (initial price changes for
positive and negative price adjustments, respectively) are definitely not ignorable.
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This reflects that the empirical moments, reported in the lower part of the table,

are matched quite well with the empirical ones reported in last column of the table,

Column (8).18

In Column (1) are the magnitude of the parameter estimates for the pairs U and

L, and θup and θdown, very similar, even though their significance clearly states that

they are statistically different (|L| 6= U , and θup 6= θdown). Still, when forcing the

parameters within each pair to be the same (in absolute values), reported in Column

(2), the J-statistic states a worse model fit.19

We have also tested a frictionless model, reported in Column (3). What we see is a

very bad model fit, both measured by the J-statistic, and by comparing the individual

moments of the simulated model with the empirical ones. Thus, a model without

any price adjustment frictions is inferior compared to the two former models. The

frictionless model in Column (3) states that the estimated standard error σ̂frictionlessε =

0.0012 and that the frequency of zero price changes is 0.9814. In our model we have

4p∗it = p∗it − p∗it−1 = 0.0025 + εit where εit ∼ N(0, σ2
ε). Note also, in a frictionless

model will pit = p∗it, i.e. the new price is equal to the frictionless price. Simple

calculation shows that σε = 0.0029 is necessary in a frictionless model to get 80% of

the observations of 4p∗it (and therefore also 4pit) within the interval [-0.005, 0.005],

the “zero price changes”-interval moment. When our frictionless model gives the best

fit with a frequency of zero price changes of 0.9814, it is due to the other moments

which force the standard error σ̂frictionlessε = 0.0012 for best possible weighted match

with all of the empirical moments.20 We have also tested specifications where only

18The J-statistic has a χ2distribution where the degrees of freedom are determined by the number
of moments being matched minus the number of parameters estimated. Though compared to similar
studies, the J-statistics reported in Table 1 are low and thus satisfactory, the numbers imply that
all specifications are rejected.

19Clearly, the difference in J-statistic = 59.7 (=235.5-175.8), df = 2, indicates that this restriction
largely distorts the performance of the model.

20The J-statistic is 2546.3 for the estimated frictionless model, while it is J = 16805.0 when we
set σε = 0.0029. It turns out that when we force the magnitude of σε going from the σ̂frictionless

ε =
0.0012 up to σε = 0.0029, we get too many small positive price adjustments 〈0.5%, 2.5%] very
quickly. This indicates that the moments describing the distribution is good for identification of the
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parts of the friction parameters are present. In Column (4) we include only the

threshold parameters U and L, while in Column (5) we have estimated a pure partial

adjustment model. The results of the latter one is identical to the ones reported in

Column (3).21 The overall finding based on the results reported in Columns (1)-(5),

is that a full model with both asymmetric price thresholds and asymmetric partial

adjustment process, is the preferred specification.

As an additional way to show the model fit, in addition to the J statistics and the

individual moments compared to their empirical counterpart, we report the whole

distribution of price changes, the share of price changes in given month, and the

mean price-change for all ranks. Going back to Figures 1-3, we have there reported

the simulated moments for the full model (grey bars) reported in Table 1, Column (1).

Starting with the predictions of monthly changes (Figure 1), show that the seasonal

pattern is reasonably good. Especially for the share of price changes, and the ranks

(Figure 2, and Figure 3, respectively) the fit is also very good for the moments not

used when estimating the model. We interpret this as supporting evidence for our

model formulation.

4.1 Robustness checks and discussion

In our underlying frictionless price, modelled as a random walk with a deterministic

trend, the predetermined trend parameter α = 0.0025 which corresponds to an annual

price increase of 3 percent. Two alternative simulations are done where α is set equal

to 0.0016 and 0.0035. These denoted αlow and αhigh, corresponds to an underlying

annual price increase of 2% and 4%. The results of these two alternative trends, and

using the full specification, are reported in Table 1, Columns (6)-(7). The model fit,
variance of the underlying process of the frictionless nominal prices.

21The similarity of the two sets of results is as expected. The two serial correlation moments
meant to capture inertia are based on the autocovariance of 4p∗

it = p∗
it − p∗

it−1. When the process
of p∗

it is a random walk with a drift, the two autocovariances - upwards and downwards - should
both be zero. Thus, when U = L = 0, there is neither anything in the model nor moments that help
identifying the frictionless model and the partial adjustment model from each other. The results
should therefore be the same for the two model specifications, as we do get.
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measured by the J-statistic, is worse when using the alpha low. Still comparing the

individual coefficients, U and L are both somewhat lower compared to the full model

when α = 0.0025. The largest difference, moderate though, is for the θup (0.3698 and

0.2979, Column (6) and Column (1) respectively). Turning to the αhigh results, we

see to overall picture is that the J statistic is very close to the initial one reported

in Column (1). Again the overall picture is that the coefficients are more or less the

same. The conclusion we draw from this robustness check, is that the initial guess of

α = 0.0025 is not too wrong, and if any changes should be made, the α should be

set somewhat higher rather than lower compared to 0.0025.22 Admittedly, we have

considered to estimate α, instead of pre-determining it as now. Nevertheless, the

small deviation between the estimates based on different values of α tells us that the

gain from doing this is limited.

[Table 2: Estimation Results by Product Groups - about here]

As already mentioned, earlier research has shown that there is significant hetero-

geneity in pricing patterns, both between firms and between products. To address

this in our study, we estimate the model for five different product groups. These

results are reported in Table 2. What we see is a very good model fit, seen from the

low J statistics, much better than the J statistics found when estimating the model

with the sample of all product types (Table 1, Column 1). This shows that also in

our data there is difference in the pricing patterns between products, and that these

differences should be taken into account. Starting with “Capital goods”, we see much

larger thresholds compared to our previous results. Furthermore, the difference in

thresholds in January and the other months is substantial. The product “Durables”,

“Intermediate goods”, and “Non-durables, food”, seem to have a quite similar pri-

cing pattern with an upper threshold U in the interval 0.12-0.15, and with the lower
22A regression model where the dependent variable is log-transformed product prices, and where

a time trend together with product-specific dummies, month-specific dummies and year-specific
dummies are included, gives a time-trend α = 0.0029, which corresponds to a 3.5% annual increase.

21



threshold L significantly larger (in absolute terms). The reduction of the threshold

in January is smaller for these three product groups than for the other two. For the

last group, “Non-durables, non-food”, we also find the two thresholds U and L to be

very similar as for “Durables”, “Intermediate goods”, and “Non-durables, food”. We

notice, however that the two θs for “Non-durables, non-food” are close to zero, indic-

ating that the gap between the old and new price is closed momentarily. It should

be mentioned, though, that this latter group of goods, “Non-durables, non-food”, is

quite heterogeneous with production of textiles and footwear, pharmaceuticals, and

sports goods. Nevertheless, the results shown in Table 2 state clearly that there is

huge difference in price change patterns across product groups.

[Table 3: Counterfactual Analyses Results - about here]

An interesting question is the importance of the respective price adjustment para-

meters in explaining the main characteristics of observed price changes. To shed some

more light over this, we simulate the preferred asymmetric model under exactly the

same circumstances as the estimated model, but setting different price adjustment

cost parameters to zero, and measure the impact on the set of moments used for

identification. Table 3 shows the result of this exercise. The first thing to notice for

all of three sets of results, is the huge increase in the J-statistic, meaning that overall

model fit is much worse when some of the friction parameters are ignored. A more

detailed look, starting with Column (1) where the two θs are set equal to zero, we see

an increased share of zero price changes, no small price changes and therefore also an

increase in the observations outside the [-5%, 5%] interval. The two inertia paramet-

ers, θs, are therefore very important for creating small price changes. Omitting them

from a model would lead to a conclusion that the dynamics of price changes described

as zeros and lumps driven by a fixed costs model. Turning to Column (2) where the

thresholds are ignored, the model with is extremely bad, especially in producing a
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large enough share of inaction. Thus, both sets of friction parameters, inertia and

thresholds, are important for understanding the dynamics of price changes.23, 24

As already mentioned, each plant may produce one or several products.25 In our

model we have treated each product independent from each other. That means we

have ignored the strategic complementarity in the adjustments of multiple products

and assume that the various products are sufficiently differentiated in order to abstract

from substitution within the plant’s portfolio of products.26 We have analysed the

various components of the prices in the dataset by using a multi-level mixed effects

linear regression model (see Baltagi et al., 2001). (Log-) prices are regressed on

time effects (a linear time trend, month- and year dummies) with random intercepts

at both the plant and the product-within-plant level such that products are nested

within plants. The analysis shows that the price variation is mainly driven by variance

in plant specific effects, and to a smaller degree variance in product specific effects.

Admittedly, this interrelation between the products within each plant is ignored in

our analysis. One modification to control for this effect would be to introduce two

variance components in our idiosyncratic shocks σ2
ε , such that σ2

ε = σ2
p + σ2

u where

σ2
p denotes variance of product-specific shocks, and σ2

u denotes idiosyncratic product

shocks. One could also consider to model frictions at the level of the plant, not at

the level of products. Our simplification of the shock process is likely to overestimate

the importance of the threshold parameters, since they will pick up the effect of both

23A more complicated shock process of the frictionless prices has been considered. Indeed, ignored
persistency in the shock process is likely to bias the θ parameters. However, our random walk is
of course highly persistent. Furthermore, our estimation results show that the distance between
existing prices and target prices is closed quit quickly. Thus it is not clear, though, what one would
gain from a modification of the shock process of the frictionless prices.

24We have also estimated a model where we look at annual data, i.e. the price changes from
June one year to June the subsequent year, and of course estimated with a different moment vector.
Unsurprisingly, these results indicate much smaller thresholds, asymmetric but still statistically sig-
nificant. The downward inertia parameter θdown is significant, while θup = 0. Thus, time aggregation
blurs the price changing picture compared to using a model that are able to take advantage of the
monthly frequency. These results are not reported, but available from the authors on request.

25The mean number of products per producer is 5, while the maximum is 20.
26See also Woodford (2003) and Gertler and Leahy (2008) for discussions about strategic com-

plementarity and “real rigidity” but then in relation to firms’ competitors.
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price change costs, and to some degree shocks that are common to all products of a

producer. The sketched changes would be interesting extensions of our model. Again

it is a matter of identification and tractability of the model. Note however, there

are no other variables than prices in the data with monthly frequency. Neither is

there anything about product specific quantities and costs, only plant level (annual)

information. Thus, we leave these potential extensions for a later paper.

Our estimates show that price adjustment frictions are important for understand-

ing the intermittent price adjustment pattern seen in the data, and that ignoring

frictions bias our results. Furthermore, our findings of both thresholds and inertia to-

gether, indicate that different forms of rigidities exist in the data, which is only partly

consistent with the assumptions of macroeconomic pricing models. Some menu cost

models include thresholds with (S, s) pricing rules, while others incorporate inertia

by assuming partial adjustments. However, none of the models incorporates both

thresholds and inertia in price setting. In general, macro models therefore fail to

include all the evidence provided in this paper. Moreover, our findings imply the

occurrence of both large and small price changes. While the threshold parameters en-

able inaction, the inertia parameters implicate a large initial price change followed by

smaller adjustments. Accordingly, the results imply that our model is able to account

for periods of inaction, as well as both large and small price changes. In contrast,

models such as in Golosov and Lucas (2007) and Gertler and Leahy (2008), explain

patterns of inaction followed by large price changes by assuming thresholds, but these

models seem to neglect small price adjustments. Our findings indicate that prices are

similarly flexible upwards and downwards.27 The seasonal effect, picked up by our

January parameter, y, may come from uneven staggering of nominal contracts and

could have implications for the effectiveness of monetary policy interventions taking

27The literature is not conclusive when it comes to whether nominal price rigidities are symmetric
or not. For studies finding asymmetry, see for instance Dias et al. (2015); Laxton et al. (1995, 1999);
Dolado et al. (2005); Dobrynskaya (2008).
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place in different months of the year (for related findings, see Olivei and Tenreyro

(2007)).

5 Concluding Remarks

In this paper we specify and estimate a model that describes production plants’ price

adjustment behaviour. The model includes thresholds which are lower in January

than in the other months, together with a quadratic loss–function associated with

the distance from a target price. The simplistic reduced form model is tested on a

sample based on repeated monthly plant- and product-specific survey data from the

Norwegian manufacturing industry. The model is meant to reproduce the following

features of the data. First, plants adjust prices infrequently as only 20 percent of

the price observations change from one month to another. Secondly, the is a seasonal

pattern in the incidence of price changes, with most price changes taking place in

January. Thirdly, there is also a lot small price changes.

The simulated method-of-moment estimates reveal thresholds that are such that

prices are only changed if the deviation from the target price to the underlying fric-

tionless price is larger than approximately 15 percent. However, if the shocks are such

that the prices should be changed, the gap between the current price and the new

target price is reduced quite quickly and only 10 percent of the initial gap exists after

three months. There are statistically significant cost differences whether the prices

should move upwards or downwards. However, the magnitude of these differences

are very moderate. Furthermore, the January-effect, indicating that the thresholds

are only two third this month, is consistent with theories focusing on the costs of

information acquisition and processing, and/or on staggered contracts.

Several checks are applied to test the robustness of the model and findings. First,

the preferred specification outperforms a frictionless model, or models with only some

parts of the price adjustment friction parameters present. A counterfactual analysis
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where some of the friction parameters are set equal to zero, shows that the moment

fit becomes much worse compared to the preferred model specification. Furthermore,

the model seems to be fairly robust to changes in the underlying deterministic trend,

as our approximation of the trend gives better fit than alternative approximations.

While our evidence implies both large and small price changes, many model contri-

butions in the literature are only able to account for one of these two characteristics.

Having said this, there are a few of the models assuming thresholds in the price set-

ting are able to explain small price changes. These models assume either stochastic

thresholds or economies of scope in price setting, and represent an increasingly soph-

isticated group of pricing models in which more micro evidence is incorporated. How-

ever, our model is rather simple and transparent, and computationally easy.

There are a set of issues we have not addressed and that need to be explored

in future work. The model is admittedly a reduced form model. A more structural

model would be more informative. This would call for a full dynamic- specification

and optimisation. However, with the current dataset there is no information about

quantities, even though annual revenues and costs are available at plant level. Fur-

thermore, the only information available at product level with monthly frequency is

prices themselves. Thus, a structural model would partly require non-verifiable as-

sumptions about inputs and outputs. Still, our findings strongly indicate that such

a model needs to include both convex and non-convex price adjustment costs. Our

goods-specific estimates also point in the direction for taking into account and control

for product (and plant) specific heterogeneity. Note however, the mixed frequency of

price information, and other plant-or firm-specific information (monthly versus an-

nually), give some econometric challenges. Still, the evidence provided in this paper,

based on a simple and transparent simulation model, shows the importance and po-

tential fruitfulness of using model formulations and estimation techniques that able

to take into account the non-convexities in price adjustment costs function.
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Figures

Figure 1: Empirical and Simulated Distribution of Monthly Price Changes
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Figure 2: Empirical and Simulated Ranks
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Figure 3: Average Share of Price Changes, by month - empirical and simulated
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Figure 4: Illustration of the Price Changing Process
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Tables

Specifications: (1) (2) (3) (4) (5) (6) (7) (8)

σε 0.0417 0.0397 0.0012 0.0161 0.0012 0.0410 0.0412 -
(0.0007) (0.0007) (1.98E-05) (0.0010) (1.98E-05) (0.0006) (0.0007) -

U 0.1398 0.1439 - 0.0440 - 0.1182 0.1281 -
(0.0034) (0.0026) - (0.0004) - (0.0019) (0.0029) -

L -0.1669 -0.1439 - -0.1289 - -0.1799 -0.1624 -
(0.0035) (0.0026) - (0.0252) - (0.0033) (0.0044) -

θup 0.3698 0.3787 - - 0.0000 0.2979 0.3580 -
(0.0030) (0.0027) - - (0.0000) (0.0066) (0.0050) -

θdown 0.4094 0.3787 - - 0.0000 0.3720 0.3861 -
(0.0099) (0.0027) - - (0.0000) (0.0072) (0.0097) -

y 0.7120 0.7319 - 0.6346 - 0.6809 0.6928 -
(0.0166) (0.0161) - (0.0221) - (0.0148) (0.0167) -

Moments
[−5.0%,−2.5%〉 0.0188 0.0226 0.0000 0.0000 0.0000 0.0186 0.0193 0.0171
[−2.5%,−0.5%〉 0.0410 0.0387 0.0000 0.0000 0.0000 0.0384 0.0370 0.0331
[−0.5%, 0.5%] 0.7786 0.7745 0.9814 0.9387 0.9814 0.7900 0.7739 0.8000
〈0.5%, 2.5%] 0.0592 0.0648 0.0186 0.0000 0.0186 0.0504 0.0578 0.0470
〈2.5%, 5.0%] 0.0379 0.0371 0.0000 0.0278 0.0000 0.0349 0.0430 0.0362
Chgs in Jan 0.3325 0.3315 0.0185 0.2001 0.0185 0.3348 0.3478 0.3146
Serial corr (up) -0.3642 -0.3086 0.0106 -0.0590 0.0106 -0.4879 -0.4454 -0.1358
Serial corr(down) -0.2636 -0.3211 0.0000 0.0000 0.0000 -0.2916 -0.2909 -0.3851
sd(pit − pit−1) 0.0275 0.0267 0.0012 0.0142 0.0012 0.0283 0.0276 0.0413
Rank 12 -0.0263 -0.0260 0.0005 -0.0053 0.0005 -0.0302 -0.0257 -0.0286
Rank 11 -0.0108 -0.0102 0.0012 0.0000 0.0012 -0.0113 -0.0100 -0.0097
Rank 2 0.0218 0.0211 0.0039 0.0103 0.0039 0.0202 0.0237 0.0213
Rank 1 0.0429 0.0422 0.0045 0.0271 0.0045 0.0423 0.0460 0.0526

J : 175.8 235.5 2546.3 819.2 2546.3 347.7 188.8 -
The column numbers represents the following specifications: (1): Full model, (2): Full model with symmetric
friction parameters, (3): Frictionless, (4): No inertia parameters, (5): No threshold parameters, (6): Full model
with α = 0.0017, (7): Full model with α = 0.0033, (8): Empirical moments.

Table 1: Estimation Results and Empirical Counterparts

36



(1) (2) (3) (4) (5)

Specifications:
Capital
goods Durables

Intermediate
goods

Non-durables,
food

Non-durables,
non-food

σe 0.0297 0.0413 0.0512 0.0484 0.0188
(0.0018) (0.0035) (0.0015) (0.0020) (0.0044)

U 0.2820 0.1193 0.1561 0.1527 0.1700
(0.0608 ) (0.0058) (0.0038) (0.0042) (0.0149)

L -0.2647 -0.2397 -0.2119 -0.1621 -0.2061
(0.0699) (0.0314) (0.0081) (0.0056) (0.1609)

θup 0.3050 0.2994 0.3555 0.4068 0.0262
(0.0226) (0.0254) (0.0039) (0.0177) (0.0024)

θdown 0.2520 0.4433 0.4778 0.3755 0.0026
(0.0337) (0.0201) (0.0138) (0.0171) (0.1714)

y 0.4184 0.8198 0.7116 0.8834 0.6161
(0.0861) (0.0870) (0.0258) (0.0389) (0.0645)

Moments
[−5.0%,−2.5%〉 0.0053 0.0107 0.0218 0.0236 0.0000
[−2.5%,−0.5%〉 0.0108 0.0232 0.0432 0.0516 0.0000
[−0.5%, 0.5%] 0.9133 0.8257 0.7498 0.7305 0.9814
〈0.5%, 2.5%] 0.0240 0.0414 0.0621 0.0791 0.0005
〈2.5%, 5.0%] 0.0172 0.0361 0.0375 0.0361 0.0000
Chgs in Jan 0.3399 0.2300 0.3539 0.3071 0.1776
Serial corr(up) -0.3581 -0.5031 -0.3398 -0.2587 0.0000
Serial corr(down) -0.4010 -0.1192 -0.1057 -0.2772 0.0000
sd(pit − pit−1) 0.0222 0.0270 0.0325 0.0319 0.0200
Rank 12 -0.0108 -0.0214 -0.0314 -0.0360 -0.0030
Rank 11 -0.0027 -0.0089 -0.0147 -0.0143 0.0000
Rank 2 0.0103 0.0192 0.0257 0.0258 0.0029
Rank1 0.0329 0.0395 0.0504 0.0481 0.0317

N 243 134 807 359 133
J 93.7 75.9 85.7 40.5 75.7
Note: standard errors in parentheses, N denotes number of products, J denotes the
criterion value.

Table 2: Estimation Results by Product Groups
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(1) (2) (3)

Specifications: No inertia No thresholds
No friction
parameters

σε 0.0417 0.0417 0.0417
(0.0005) (0.0009) (0.0001)

U 0.1398 - -
(0.0033) - -

L -0.1669 - -
(0.0064) - -

θup - 0.3698 -
- (0.0199) -

θdown - 0.4094 -
- (0.0185) -

y 0.7120 - -
(0.0143) - -

[−5%,−2.5%) 0.0000 0.1327 0.1508
[−2.5%,−0.5%) 0.0000 0.2406 0.1733
[−0.5%, 0.5%] 0.9396 0.1434 0.0958
(0.5%, 2.5%] 0.0000 0.2484 0.1811
(2.5%, 5.0%] 0.0000 0.1625 0.1678
Chgs in Jan 0.1891 0.8571 0.9046
Serial corr (up) -0.0193 0.2326 0.0006
Serial corr (down) 0.0000 0.2344 0.0008
sd(pit − pit−1) 0.0413 0.0277 0.0417
Rank 12 -0.0421 -0.0388 -0.0653
Rank 11 -0.0025 -0.0264 -0.0437
Rank 2 0.0175 0.0342 0.0523
Rank 1 0.0659 0.0455 0.0705

J 3 213.8 28 850.6 27 037.6

Table 3: Counterfactual Analysis
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A Appendices

Coef. Std. Error Z-value 95% Conf. Interval

[−5%,−2.5%) 0.0171 0.0009 19.0000 0.0154 0.0189
[−2.5%,−0.5%) 0.0331 0.0017 19.0400 0.0297 0.0365
[−0.5%, 0.5%] 0.8000 0.0062 128.6700 0.7878 0.8122
(0.5%, 2.5%] 0.0470 0.0022 21.8100 0.0428 0.0512
(2.5%, 5.0%] 0.0362 0.0010 36.0400 0.0343 0.0382

Chgs in Jan 0.3146 0.0094 33.3700 0.2961 0.3330

Serial corr (up) -0.1358 0.0284 -4.7700 -0.1915 -0.0800
Serial corr (down) -0.3851 0.1341 -2.8700 -0.6479 -0.1222

sd(pit − pit−1) 0.0413 0.0027 15.0200 0.0359 0.0466

Rank 12 -0.0286 0.0012 -22.9100 -0.0310 -0.0261
Rank 11 -0.0097 0.0006 -16.7200 -0.0108 -0.0085
Rank 2 0.0213 0.0007 28.6900 0.0199 0.0228
Rank 1 0.0526 0.0014 38.0200 0.0499 0.0553

Note: The first five rows represents the total shares of observations within the
given intervals and the following row represents the share of price changes in
January.

Table A1: Bootstrapped Moments with Std. Errors
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A.1 A Simple Model for Frictionless Price
Assume a Cobb-Douglas production technology with a flexible input factor, K. The
costs of this factor is exogenous to the plant and denoted r. Assume also that the
plants have some market power and demand is given by an iso-elastic function. Also
assume that goods are sufficiently differentiated in order to abstract from substitution
within a multi-product-firm’s portfolio of products. We abstract from sub-indices for
the plant, product and time for notational convenience. Then production is determ-
ined by QS(K) = A · Ka where 0 < a < 1 and the iso-elastic demand function is
given by QD(P ) = B ·

(
P/PC

)−ε
where ε > 1. The price of a plant’s product is given

by P , and PC denotes the general price level in the industry. The price level PC is
exogenous to the plant which implies that we employ a partial equilibrium model.
Abstracting from inventory, profit for a single product is then given by

π(A,B, PC , r) = P ·B ·
(
P/PC

)−ε
− r ·

(
B

A

)1/a
·
(
P/PC

)−ε/a
,

where A captures supply shocks, and B captures demand shocks. With these assump-
tions the first order derivative of profit π(.) with respect to price P can be expressed
as follows;

P ∗ =
[

ε

a(ε− 1) B
1−a
a A−

1
a

] a
ε(1−γ)

︸ ︷︷ ︸
(1)

×r
a

ε(1−γ)︸ ︷︷ ︸
(2)

× (PC)
1−a
ε(1−γ)︸ ︷︷ ︸

(3)

, where γ = a(1− 1
ε
)

This expression is a non-linear function of the state of supply A, the state of
demand B, the input costs r, and the general price in the industry PC . Given that
a < 1, we see that a positive supply shock, A ↑, will implicate a lower price, as
expression (1) will get a lower value. This could, for example, be that the producer
obtains better technology that increases productivity. We also see that a positive
demand shock, B ↑, will implicate a higher price, as the net effect on expression (1)
will be positive. Furthermore, if producers are faced with a positive cost shock, r ↑,
the frictionless equilibrium price will increase, as expression (2) will be more positive.
Note however that the degree of pass-through, the share of the cost increase that
will be borne by costumers, depends on the parameter values. Higher competitor’s
prices, PC ↑, induce also a price increase. In our model setup presented in the main
text, part of this latter effect - that the general price level increases - is picked up by
the trend parameter α. The remaining supply-, demand-, and cost- shocks, together
with the non-deterministic part of the competitor’s prices, will all be picked up by
the idiosyncratic shocks, εit, in the model presented in the main text. Finally, we see
that the marginal effects of the various shocks affect the price differently.
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A.2 Simulated Method of Moments
In the Simulated Method of Moments (SMM) approach, κ simulated datasets are
generated for N panels and 96 + T time periods. N and T are set equal to the
number of panels and time periods in the empirical data.28 In order to limit the
impact of initial conditions, the first 96 time periods (8 years) are discarded when
calculating the simulated moments, leaving only T time periods.29

If we let the vector of l unknown parameters be denoted by the vector β, the
optimal vector of unknown parameters, β̂, is given by:

β̂ = argmin
β

[ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (13)

where W denotes the optimal weighting matrix, and ΦA and ΦS(β) denote the vector
of m actual moments and the vector of m simulated counterparts respectively. The
weighting matrixW is given by the inverse of the variance-covariance matrix of [ΦA−
1
κ

∑κ
j=1 ΦS(β)], which is best estimated using the following matrix (see Lee and Ingram

(1991)):
W = [(1 + 1

κ
)Ω]−1 (14)

Here, Ω denotes the variance-covariance matrix of the empirical moments, ΦA. Ω is
obtained by a block bootstrap with replacement on empirical data. An implication
of using this weighting matrix is that moments with a large variation are given less
weight than moments with a small variation.

The standard errors of the parameters are given by the square roots of the diag-
onals of the variance-covariance matrix for β̂, which is given by:

Qs(W ) = (1 + 1
κ

)[∂ΦS(β̂)
∂β

′

W
∂ΦS(β̂)
∂β

]−1 (15)

Here, ∂ΦS(β̂)
∂β

is the Jacobian m × l matrix of the moment vector with respect to the
parameter vector β evaluated at β̂. In lack of an analytical solution of the components
of this matrix, numerical derivatives are used. More specifically, we use the symmetric
difference quotient which is given by:

f ′(x) ≈ f(x+ h)− f(x− h)
2h (16)

In expression (16), x denotes the components of β̂, f(x) denotes the components of
ΦS(β̂) and h is a small positive number. A problem with this approach is that the
approximate depends on the size of h. We therefore follow Bloom (2009) and calculate
four values of the numerical derivative with steps of 0.1%, 1%, 2.5% and 5% from β̂,
and use the median value of these numerical derivatives.

28See for instance McFadden (1989); Pakes and Pollard (1989) for more details regarding the
approach.

29In our estimation we use κ = 10, and have N = 1676 and T = 60.
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