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Abstract

This paper analyzes all-pay auctions where the bidders have affiliated values for
the object for sale and where the signals take binary values. Since signals are corre-
lated, high signals indicate a high degree of competition in the auction and since even
losing bidders must pay their bid, non-monotonic equilibria arise.

We show that the game has a unique symmetric equilibrium, and that whenever
the equilibrium is non-monotonic the contestants earn no rents. All-pay auctions
result in low expected rents to the bidders, but also induce inefficient allocations in
models with affiliated private values. With two bidders, the effect on rent extraction
dominates, and all-pay auction outperforms standard auctions in terms of expected
revenue. With many bidders, this revenue ranking is reversed for some parameter
values and the inefficient allocations persist even in large auctions.

JEL CLASSIFICATION: D44, D82
KEYWORDS: All-pay auctions, common values, affiliated signals

1. Introduction

In an all-pay auction, bidders compete for a fixed prize by submitting simultaneous bids
under the rule that the highest bidder wins and all the bidders must pay their bid re-
gardless of whether they win or not. Even though all-pay auctions are seldom conducted
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in the real world, the format has been extensively studied because of its theoretical con-
nection to winner-takes-all contests where bidders take the role of contestants expending
resources to win a fixed prize.1

Very little is known about the all-pay auction and contest models when the bidders’
valuations are correlated, even though such correlation is often quite natural. For exam-
ple, when lobbying for a policy with uncertain economic effects, when undertaking R&D
to obtain a patent, or when competing for a rent-generating position, it is natural that
players’ estimated values from winning are correlated.2 The key implication of correla-
tion is that a higher valuation implies high valuations for other contestants and hence a
higher perceived probability of losing at a fixed bid if bidders with high signals submit
higher bids. Hence a high signal carries two different messages: the value of the object
and the level of competition are both likely to be high. With all-pay rules, the importance
of competition is highlighted since also losing bids (or sunk efforts in the contest model)
must be paid. When added competition is more important than the good news on the
value of the object, the monotonicity of bidding strategies (i.e. the requirement that bid-
ders with high valuations always win over bidders with low valuations) may fail. We
show that the failure of monotonicity results in qualitative changes in the outcomes.

In this paper, we consider the simplest possible informational model with affiliated
binary signals and interdependent valuations, and thereby tackle the potential non-
monotonicity of bidding strategies. Each participant has one of two possible signals
(high or low) on the value of the object, and her payoff depends on the entire vector
of signals. Since all the bids are forfeited, the all-pay auction cannot have symmetric
equilibria with a positive probability of ties for highest bids, or in other words, symmetric
equilibria must be in atomless mixed strategies. Our framework is general enough to
accommodate the mineral rights model, the model with affiliated private values, and
cases in between. We show that the correlation in the signals calls for a re-evaluation of
the previous results on rent dissipation and the efficiency of symmetric equilibria.

Our main findings are twofold. First, all-pay auctions are effective in dissipating the
bidders’ information rents. The unique symmetric equilibrium of the model features full
rent dissipation whenever the equilibrium is non-monotonic. In other words, optimistic
contestants are held to the same expected payoff as the pessimistic ones. Second, unless
we are in the case of pure common values (where the identity of the winner does not

1The early literature of all-pay auctions has generally focused on environment where bidders have com-
plete information about each bidder’s value of the object and cost of bidding. Examples of such papers
include Hillman and Riley (1989), Baye et al. (1993) and Che and Gale (1998). Siegel (2009) provides a
definitive treatment of this model by allowing heterogeneity on the bidder’s characteristics. The recent sur-
vey paper by Kaplan and Zamir (2015) gives a comprehensive picture of recent developments in the all-pay
auction and contest theory.

2The same effects arise if the private effort costs of the contestants are correlated.
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matter for efficiency), all-pay auctions feature allocative inefficiencies. We show that these
inefficiencies remain significant even when the number of players increases.

To appreciate the role of correlation, consider two alternative information structures:
complete information and independent types. With common values and complete infor-
mation, the payoffs from winning are the same for all bidders, and as a result, all bidders
have the same symmetric equilibrium strategies. With private values and complete in-
formation, only the high-type bidders submit positive bids as long as there are at least
two high-type bidders. With independent types, our results in this paper imply that the
symmetric equilibria are monotone. In all of these cases, bidders of both types agree on
the distribution of competing bids. With correlation, this is no longer the case. Bidders
with a high signal perceive the correlation differently from those with a low signal. This
asymmetric information on the degree of competition gives rise to our new insights.

These results have implications for less structured contest settings as well. When-
ever a single leading candidate is picked in a field of contestants and the selection stage
is preceded by a sunk investment (or prior effort) by the contestants, the issues that we
highlight in this paper arise. While the rents are (at least approximately) dissipated in
contests with large numbers of potential participants as expected, it may come as a sur-
prise that the allocation may be inefficient. We show that the associated efficiency losses
may be quite large in comparison to the total surplus generated.3

To grasp a better idea why full rent dissipation might hold in equilibrium, suppose for
starters that bidding is in monotone strategies and therefore bidders with a high signal
always win against bidders with a low signal. By affiliation, the high-type bidders believe
that they are more likely to face a competitor who observed a high signal. Hence there are
two counteracting effects of having a high signal: a valuation effect (the high type is more
optimistic about the value of the object) and a competition effect (the high type expects to
face a more aggressive competition than the low type).

Up to this point in the discussion, we have not considered the auction format at all
and hence the reasoning above applies to standard auction formats as well. To under-
stand why monotonicity fails under all-pay rules but not under standard rules, consider
a standard first-price auction. As explained in Wang (1991), the low-type bidders bid the
value of the object conditional on all bidders having low signals. In this case, a bidder
makes a payment only if she wins the auction. As a result, the high-type bidders can
safely outbid the low-type bidders without a fear of losses and this leads to an equilib-
rium where bidders with high valuations bid above bidders with low valuations. With

3It is also worth mentioning that the same method of analysis allows us to compute the equilibria for
contests where success requires an effort above a given threshold (or equivalently in auctions with a min-
imal bid). With this modification, the symmetric equilibria of the model display a random number of
participants in the sense of supplying a level of effort that exceeds the minimum required.
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all-pay rules, any bid winning all low signal bids but losing to high signal bids results
in a loss if another high valuation bidder exists. The losses are particularly likely for a
high signal bidder if the signals are strongly correlated. In this case, it is better to avoid
those losses by submitting a bid of zero and as a result, zero is in the support of the bid
distribution of the high signal bidders. Since zero is also in the support of the low signal
bidders, this implies that equilibrium rents are fully dissipated. Such an equilibrium is
non-monotonic in the sense that a low valuation bidder wins against a high valuation
bidder with a positive probability.

Since different auction formats result in different allocations in symmetric equilibrium,
the revenue across auction formats cannot be compared based on the linkage principle.
By constructing the symmetric equilibria in the different cases, we can directly compare
the total surplus generated and its division between seller’s and buyers’ rents by inves-
tigating carefully the supports of the equilibrium bid functions. We show that whenever
a monotone strategy equilibrium exists in the all-pay auction, the expected revenue in
the all-pay auction exceeds the revenue in standard auction formats as in Krishna and
Morgan (1997). When equilibria are non-monotonic, the revenue comparison is more
subtle. All-pay auctions induce two countervailing effects on the revenue, which are ab-
sent from standard auctions. First, rents to bidders are diminished and often completely
eliminated, which increases revenue. Second, inefficient allocation may reduce the total
surplus, which results in lower revenue.

We show that the information rent received by the high valuation bidders is always
smaller in the all-pay auction than in standard auction formats (first-price and second-
price auctions). In the case of pure common values the total surplus is independent of
the allocation decision (i.e. whether a high signal bidder or a low signal bidder gets
the object), and hence in that case the expected revenue in the all-pay auction is always
weakly higher than in standard auctions.

With affiliated private values, the revenue comparison is more interesting. In contrast
to the common values model, non-monotonic equilibria introduce allocational inefficien-
cies. In order to obtain a revenue comparison between the different auction formats, we
must therefore compare the rent reduction with the inefficiency. This equilibrium trade-
off between rent extraction and efficiency has not been shown in the prior literature.

We show that with two bidders, rent reduction dominates inefficiency and all-pay auc-
tions result in higher expected revenues than standard auctions. With more bidders, this
result may be reversed. Not surprisingly, rent reduction is not important as the number of
players increase since the increased competition drives down the bidders’ rents regardless
of the auction format. More surprisingly, even large all-pay auctions may have inefficient
allocations, and hence the revenue comparison tilts to the favor of the standard auctions.
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In order to exposit this trade-off in the clearest manner, we analyze a two-state special
case of the model and show that even in the limit where the number of bidders increases
towards infinity, the surplus loss due to inefficient allocation may remain significant. One
may find it surprising that a bidder with a low private valuation ends up winning the auc-
tion with a non-negligible probability even though it is commonly understood that there
is a large number of high valuation bidders in both states of the world.

Previous work on all-pay auctions has concentrated on models with monotone equi-
libria. An early contribution by Krishna and Morgan (1997) derives sufficient conditions
for the existence of a symmetric pure strategy equilibrium in monotone strategies. Un-
fortunately, the conditions are very strong and furthermore not easily verified in terms of
the primitives of the model. More recently Siegel (2014) analyzes a model with a finite
set of possible signals on the value of the prize, and derives conditions for the existence
of a monotonic mixed strategy equilibrium. Another recent paper Rentschler and Turocy
(2016) goes beyond monotonic equilibria in an affiliated all pay auction with a general
discrete signal structure (but only two bidders) and provides an algorithm for finding
symmetric non-monotonic equilibria.4 In contrast to that paper, we provide a full char-
acterization of the symmetric equilibria for a subclass of models assuming binary signal
structure, and analyze this subclass for an arbitrary number of bidders.

Our paper is also related to auctions with entry costs. A recent paper by Murto and
Välimäki (2017) compares the expected revenue in first- and second-price common value
auctions when prior to the auction stage, the bidders make a costly entry decision. The
connection to the current non-standard auction forms comes from the observation that
the total payment by losing bidders is positive even in these standard auction formats
once we account for the entry cost.

2. The Model

A single indivisible object is sold in an all-pay auction to one of N potential risk-neutral
bidders. We assume that each bidder i observes privately a binary signal (or type) ti ∈
{L, H}. We order the signals H > L with the idea that H is good news about the value of
the object for sale. The signals are assumed to be affiliated with another random variable
θ ∈ Θ = {θ0, θ1, · · · , θM−1}, which we call the state of the world and order with θm−1 <

θm. Denoting by p (θ, t) the joint probability distribution of the state and the signal vector
t = (t1, · · · , tN), we require p to be symmetric over t and log-supermodular in (θ, t). This
implies the monotone likelihood ratio property for all bidders’ signals, and each signal

4Subsequent to our working paper (Chi et al. (2015)), Liu and Chen (2016) extends the analysis of non-
monotonic equilibria in the model with two players to cover the case of negatively correlated signals.

5



and state separately.
The prior on the state is denoted by q (θ) ∈ ∆ (Θ) . We assume that the signals are

identically and independently distributed given θ. Due to its binary structure, the dis-
tribution of ti can be represented by αm := Pr (ti = H |θ = θm ) for m ∈ {0, · · · , M− 1}.
Our assumption of log-supermodular p (θ, t) then translates into the requirement that
αm−1 ≤ αm. We denote by p (θ |t ) the posterior distribution of the state given a vector of
signals.

Bidder i’s value of the object is given by vi (θ, t) > 0. We assume further that the
players are symmetric, and that the bidder i′s valuation depends only on θ and ti. With
this assumption, we can write each bidder’s valuation as

vi (θ, t) = v (θ, ti) .

The environment is therefore a binary signal version of the general symmetric affiliated
model formulated in Milgrom and Weber (1982). The most important special cases of
our model are the mineral rights model where v (θ, ti) = v (θ) , and the affiliated private
values model where v (θ, ti) = vti . Finally, we assume that v (θ, ti) is log-supermodular and
increasing in each argument.5

In this framework, the payoff-relevant information to bidder i is contained in the
statistic (ti, Yi) , where Yi indicates the number of other bidders j 6= i observing the high
signal. By the symmetry of the model, we can write the expected value of the object
conditional on bidder i’s information as

Vk (n) := Eθ[v (θ, ti) |Yi = n, ti = k ],

which is increasing in k and n by the monotonicity of v and the log-supermodularity of p.
Also, we denote by pk(n) the probability of the event Yi = n conditional on ti = k.

In the all-pay auction, all bidders submit nonnegative bids simultaneously and the
highest bidder receives the object while all bidders pay their bid. In case of multiple
highest bidders, any arbitrary tie-breaking rule can be adopted to allocate the object be-
tween them. We represent the (mixed) strategy of bidder i by Fi =

(
FL

i , FH
i
)

, where Fk
i for

each k = L, H is a distribution function on nonnegative real numbers. We use supp[Fk
i ] to

denote the support of Fk
i for each type. In line with the symmetry assumptions that we

have imposed, we concentrate on equilibria in symmetric strategies, i.e. Fi = F∗ for all i.
Suppose that bidder i observes ti = k and makes a nonnegative bid b, and that his

opponents employ a symmetric strategy F∗ = (FL
∗ , FH
∗ ). Suppressing the index i, the

5Our results remain valid as long as v(θ, H)− v(θ, L)h(θ) satisfies the single-crossing property in θ for
all h : Θ→ <+ decreasing in θ.
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expected equilibrium payoff u (b, k|F∗) to the bidder can be written as

u (b, k|F∗) := −b +
N−1

∑
n=0

Vk(n)pk(n)
(

FH
∗ (b−)

)n (
FL
∗ (b−)

)N−n−1
+ π (b, k|F∗) , (1)

where the second term π (b, k|F∗) denotes the expected value of the object conditional on
tying with (at least) one highest bidder, and Fk

∗(b−) indicates the limit from the left at b
of Fk

∗ . We show in the beginning of the next section that all symmetric equilibria are in
atomless strategies and as a result, the second term π vanishes in the equilibrium analysis
and Fk

∗(b−) = Fk
∗(b).

To interpret the payoff formula, Vk(n) represents the expected value of the object con-
ditional on winning when there are n high types among bidder i’s opponents, and the
term

[
FH
∗ (b−)

]n [FL
∗ (b−)

]N−n−1 indicates the corresponding winning probability when
bidding b and facing n opponents with high signals.

A symmetric Bayes-Nash equilibrium of the all-pay auction is a pair of distributions
F∗ = (FL

∗ , FH
∗ ) such that for each k = L, H,

if b ∈ supp[Fk
∗ ], then u (b, k|F∗) ≥ u

(
b′, k|F∗

)
for all b′ ≥ 0.

3. Existence and Uniqueness of Symmetric Equilibria

We begin our analysis by establishing some basic facts for symmetric equilibria. Our first
lemma shows that in every symmetric equilibrium, bidders employ an atomless bidding
strategy and the union of the supports is a connected interval. As a consequence of
this lemma, the expected payoff u(b, k|F∗) in (1) is continuous in b for all F∗ and the
tie-breaking term π in the expression is redundant. Furthermore, the continuity of the
equilibrium payoff function in bids implies that any two distinctive bids in supp[Fk

∗ ] must
yield the same expected payoff to a type-k bidder. This indifference condition serves as a
key analytic tool in what follows.

Lemma 1. In every symmetric equilibrium of the all-pay auction the following properties hold:

1. For each k, Fk
∗ is continuous, i.e., neither distribution has mass points.

2. The union of two supports, supp[FL
∗ ] ∪ supp[FH

∗ ], is a connected interval that includes
zero.

Proof. See Appendix A.1.
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In games of incomplete information, monotone strategies play a prominent role in
characterizations and existence proofs of Bayes-Nash equilibria (see Athey (2001)). Since
our equilibrium is not in pure strategies, the definition of monotonicity is not obvious.
We call a symmetric equilibrium monotonic if no bidder with a high signal ever loses to
another bidder with a low signal: for every bH and bL with bH ∈ supp[FH

∗ ] and bL ∈
supp[FL

∗ ], we have bH ≥ bL. In the light of Lemma 1, an equilibrium is monotonic only if
the bid supports of the two types are connected non-overlapping intervals.

The existing analysis of all-pay auctions has mostly concentrated on monotonic equi-
libria where the high signal is unambiguously a good news to bidders compared to the
low signal. Our main goal in this section is to establish existence and uniqueness of sym-
metric equilibrium and to provide a necessary and sufficient condition under which the
equilibrium is in monotone strategies. For this purpose, we define the following function
for n ∈ {0, · · · , N − 1} :

ψ(n) := VH(n)pH(n)−VL(n)pL(n).

We will show that under our assumptions on the model, the function ψ(n) changes its
sign at most once from negative to positive. This single-crossing property is important for
our equilibrium characterization. As we show formally in the proof of Proposition 1, this
property will guarantee that the equilibrium bidding support for each of the two types
must be a connected interval.

The sign of the function ψ(n) at n = 0 is the key determinant of whether the equilib-
rium is monotonic. To understand why this is the case, consider a hypothetical mono-
tonic equilibrium, where the low type bidding support supp[FL

∗ ] is a connected inter-
val containing zero. For this to be an equilibrium, the high type must make a non-
negative profit by bidding at max

(
supp[FL

∗ ]
)
. To see when this can hold, let us first

derive max
(
supp[FL

∗ ]
)

by utilizing the indifference of the low-type within her bidding
support. By bidding zero, she never wins and hence her expected payoff is zero. By
bidding max

(
supp[FL

∗ ]
)
, she wins with probability pL(0) (that is, when all of her oppo-

nents are of low type) and receives a payoff VL(0) so that her expected gain is VL(0)pL(0).
Equating this gain with her bid so as to guarantee expected payoff of zero gives

max
(

supp[FL
∗ ]
)
= VL(0)pL(0).

Consider next a high-type bidder, who bids max
(
supp[FL

∗ ]
)
= VL(0)pL(0). By making

this bid, she wins with probability pH(0) and receives a payoff VH(0). Therefore, this bid
gives a non-negative payoff if VH(0)pH(0) ≥ VL(0)pL(0). This shows that ψ(0) ≥ 0 is a
necessary condition for a monotonic equilibrium. Proposition 1 below states that it is also
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a sufficient condition.
To examine how the sign of ψ(·) varies over n, recall that Vk(n) is increasing in each

variable and thus VH(n) ≥ VL(n) for every n. Affiliation (or the monotone likelihood
ratio property) guarantees that pH(N − 1) > pL(N − 1), and as a result, ψ takes on a
positive value at n = N − 1 at least. In case of two bidders, therefore, the function ψ

is single-crossing automatically.6 For an arbitrary number of bidders, because the likeli-
hood ratio pH(n)/pL(n) increases with n, the function ψ would be single-crossing un-
less VH(n)/VL(n) decreases too rapidly over n.7 Our assumption that v (θ, ti) is log-
supermodular in fact guarantees that the ratio VH(n)/VL(n) is increasing in n and so
the desired property follows. We record this in the following lemma:

Lemma 2. If the valuation function v (θ, ti) is log-supermodular, then ψ(n) is single-crossing.

Proof. See Appendix A.1.

We are now ready to state our main characterization result.

Proposition 1. The all-pay auction has a unique symmetric equilibrium, which is monotonic if
and only if ψ(0) ≥ 0. Specifically,

• If ψ(0) ≥ 0, then supp[FL
∗ ] = [0, VL(0)pL(0)] and supp[FH

∗ ] = [VL(0)pL(0), BH] for
some BH > VL(0)pL(0).

• If ψ(0) < 0, then supp[FL
∗ ] = [0, BL] and supp[FH

∗ ] = [0, BH] for some 0 < BL < BH.

The low-type bidders earn a zero expected rent, whereas the high-type bidders earn a rent of
max {0, ψ (0)}.

Proof. See Appendix A.2.

Proposition 1 shows that all the bidders’ rents are fully dissipated in the non-
monotonic equilibrium. This is in sharp contrast with the standard result in allocation
problems under asymmetric information that due to informational advantages (and
privacy), the arrival of good news leaves a positive rent to an agent.

6For the analysis of two-bidder case, we can dispense with the assumption of conditionally i.i.d. types
and the log-supermodularity of v(θ, ti).

7To see one example where ψ does not satisfy the single-crossing property, consider Vk(n) = α1{k=H} +

(1− α)n + ε, where ε > 0 is a sufficiently small constant and α ≥ 1
2 and 1{k=H} is the indicator function

of the event that ti = k. Then the ratio VH(n)/VL(n) drops drastically when n increases from 0 to 1. As
a result, if pH(0)/pL(0) > ε/(α + ε) but pH(1)/pL(1) < (1− α + ε)/(1 + ε), then we have ψ(0) > 0 but
ψ(1) < 0.
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Figure 1 illustrates the different types of equilibria for the case of two bidders. The
left panel displays the monotonic equilibrium which is qualitatively similar to the equi-
librium in an all-pay auction with independent private values. In this equilibrium, each
bidder competes against bidders of her own type and a bid of zero is in the support of the
low type. As a result, the low type makes no rent but the high type may earn a positive
rent. Since the cost of increasing a bid by db is constant within the support, the benefit
(i.e. the increased probability of winning) must also be constant. Hence the symmetric
bid distributions must be uniform on the support of each type of bidder.

The right panel displays a non-monotonic equilibrium where the density of the high
type equilibrium bid distribution must be constant on the part of the support that does
not overlap with the low type bid support by the same logic as for monotonic equilibria.
In the interior of the overlapping part of the supports, both types must be indifferent
between increasing their bid by db and remaining at the current bid. Since winning has
a different value for the two types, the constant densities (denoted f L

∗ and f H
∗ ) for the

equilibrium bid distributions in this region solve the following pair of equations that
equalize the gains and losses from a higher bid for each type:

VH(0)pH(0) f L
∗ db + VH(1)pH(1) f H

∗ db = db,

VL(0)pL(0) f L
∗ db + VL(1)pL(1) f H

∗ db = db.

With multiple bidders, the qualitative picture remains the same but each bid distri-
bution is no longer uniform over the support since the relevant endogenous variable for
determining the expected gains is the highest order statistic amongst competing bidders.
If the equilibrium remains monotonic even when a large number of bidders compete,
which is the case e.g. with independent signals, we see from the first part of Proposition
1 that the bidding support of the low type would shrink to zero length as the number of
bidders is increased (since pL (0) approaches zero), and thus in the limit only a high-type
bidder may submit a strictly positive bid. However, it turns out that this is not the case if
the equilibrium morphs into a non-monotonic one as N increases. In Section 5, we return
to this issue and discuss the bid distributions in a large all-pay auction in more detail.

We end this section by discussing in more detail the conditions under which we should
expect a monotonic or a non-monotonic equilibrium. For this purpose, rewrite the condi-
tion ψ(0) ≥ 0 as

VH (0)
VL (0)

≥ pL (0)
pH (0)

. (2)

Observe first that the ratio on the right-hand side of (2) increases as the correlation
between signals increases. With independent signals, we see immediately that the ratio
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1

BH0 VL(0)pL(0)

FL
∗ (b)

FH
∗ (b)

(a) Monotonic Equilibrium when ψ(0) ≥ 0

1

BH0 BL

FL
∗ (b)

FH
∗ (b)

(b) Non-monotonic Equilibrium when ψ(0) < 0

Figure 1: Symmetric Equilibrium in Case of Two Bidders

is equal to unity and hence the unique equilibrium is always monotonic. On the other
hand, if the payoff difference between the types is small enough so that the left-hand side
is close to one, only a slight degree of positive correlation is needed to kill the monotone
equilibria.

Finally, let us examine in more detail the nature of equilibrium as the number of play-
ers N increases. In the mineral rights model, the effect of an individual bidder’s signal
on the value of the object would naturally diminish as N grows, and hence the left-hand
side of (2) converges to one. On the other hand, the right-hand side of (2) converges to
p(θ0|ti=L )
p(θ0|ti=H )

, which represents the likelihood ratio of the lowest possible state across the two

signals. Intuitively, only the lowest state θ0 matters for the ratio pL(0)
pH(0) as N → ∞, since

the likelihood of Yi = 0 declines to zero at a higher rate in all the other states than in state
θ0. Moreover, because the likelihood ratio of θ0 is larger than one due to affiliation, we
conclude that the equilibrium must always be in non-monotone strategies for large N.

In the affiliated private value model, the left-hand side of (2) is constant at vH
vL

>

1 whereas the right-hand side is increasing in N as we formally show in the proof of
Proposition 2. Intuitively, the news that an additional bidder turns out to observe a low
signal comes as a great surprise to the high type rather than to the low type. Hence
the denominator pH (0) decreases at a higher rate than the nominator pL (0), as N is
increased. The ratio pL(0)

pH(0) therefore converges monotonically from below to p(θ0|ti=L )
p(θ0|ti=H )

> 1

as N increases. Consequently, if p(θ0|ti=L )
p(θ0|ti=H )

< vH
vL

, the equilibrium remains monotonic for
all N, while otherwise the equilibrium converts into a non-monotonic one at least for
large enough N. The following proposition summarizes our discussion.

Proposition 2. As the number of players N is increased, the symmetric equilibrium satisfies:

1. In the mineral rights model, there is a N < ∞ such that for all N > N, the symmetric
equilibrium of the model is non-monotonic.
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2. In the affiliated private value model, if vH
vL

> p(θ0|ti=L )
p(θ0|ti=H )

, then the equilibrium is monotonic for

all N. If vH
vL

< p(θ0|ti=L )
p(θ0|ti=H )

, then there exists a N such that the equilibrium is non-monotonic

for all N > N.

Proof. See Appendix A.3.

4. Revenue and Efficiency Properties

We now turn to the revenue and efficiency properties of the equilibrium. We want to con-
trast the allocation and expected total payment in the unique equilibrium of the all-pay
auction to those in the two standard auction formats, specifically the first- and second-
price auctions. To begin, we prove that like the all-pay auction, the standard auction
formats have a unique symmetric equilibrium in our framework, and that this equilib-
rium is always in monotone strategies. Furthermore, the two auction formats are payoff
equivalent.8

Proposition 3. Both standard auction formats, the first and second price auction, have a unique
symmetric equilibrium, which is monotonic. In both formats, the low-type bidders earn no rent
but the high-type bidders earn a positive rent of pH (0) (VH(0)−VL (0)).

Proof. See Appendix A.4.

Propositions 1 and 3 characterize the unique symmetric equilibrium in all-pay auc-
tions and standard auctions, respectively. We see that in both cases the low type bidders
get no rent, as expected. Since by affiliation pL (0) ≥ pH (0), we have

pH (0) (VH(0)−VL (0)) ≥ pH (0)VH (0)− pL (0)VL (0) = ψ (0) ,

which means that the high-type gets a higher rent in the standard auctions than in the all-
pay auction. We have therefore an unambiguous ranking of the auction formats according
to the bidders’ rents:

Remark 1. The expected rent of bidders is higher in the standard auction formats than in the
all-pay auction.

Let us next turn to the comparison of the allocation across the auction formats. Since
the equilibrium in the standard auctions is monotonic, a high type, whenever present,

8The payoff equivalence of the two standard auction formats is specific to the binary signal structure.
When we allow a richer signal space, we know from the linkage principle (Milgrom and Weber (1982)) that
the second-price auction is revenue-superior to the first-price auction.
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always wins against a low type and as a result the allocation is efficient. In contrast, in
the all-pay auction the equilibrium may be non-monotonic in the sense that the bidding
supports of the two types overlap. In such a case, there is a positive probability that a low
type wins even when high-type bidders are present, leading to an inefficient allocation.

Nevertheless, there are two situations where the all-pay auction achieves allocative
efficiency. First, when ψ(0) ≥ 0, the equilibrium is monotonic by Proposition 1. As seen
in (2), this is the case when VH(0)

VL(0)
is large in comparison to pL(0)

pH(0) , in other words, when the
effect of own signal on (estimated) value is large in comparison to the affiliation effect.
Second, when the identity of the winner does not matter for the efficiency, even a non-
monotonic equilibrium leads to efficient allocation. This is the case in the mineral-rights
model.

Whenever the equilibrium allocation is efficient, the revenue comparison across the
auctions is simple. The revenue is the total surplus minus the bidders’ rents, and therefore
the revenue increases whenever bidders’ rent share decreases. Remark 1 leads directly to
the following result:

Proposition 4. If the allocation is efficient in the all-pay auction, then the revenue to the seller is
higher in the all-pay auction than in the standard auctions. This is the case if, either:

• v (θ, ti) = v (θ) (Mineral rights model), or if

• ψ (0) ≥ 0 (Monotonic equilibrium).

Note that the second case in the proposition corresponds to the result obtained in
Krishna and Morgan (1997), which analyzes the corresponding model under a continuum
signal space but under a parameter restriction that rules out non-monotonic cases.9

The revenue comparison is more interesting when the all-pay auction features alloca-
tive inefficiency. This is the case when v (θ, ti) depends on ti and ψ (0) < 0. We see from
Proposition 1 that whenever ψ (0) < 0, the bidders’ rents are fully dissipated. In this
case, therefore, the revenue comparison boils down to comparing the revenue loss due to
inefficient allocation in the all-pay auction and the revenue loss due to bidders’ rents in
the standard auctions.

To make sense of this comparison, consider first the special case where there are only
two bidders. To compute the revenue loss in the all-pay auction, note that an inefficient
allocation may occur only when there is one high type bidder and one low type bidder
present. Denote by P(1) the probability of this event. The inefficient allocation indeed

9More precisely, Krishna and Morgan (1997) compares the first-price auction with the all-pay auction in
terms of the expected revenue in the (unique) monotone symmetric equilibrium, and shows that the all-
pay auction outperforms. The revenue ranking between the all-pay auction and the second-price auction is
ambiguous.
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occurs when the low type outbids the high type, which takes place with some strictly pos-
itive probability Pr(bL > bH) in the non-monotonic equilibrium, resulting in a reduction
of the total surplus by VH(0)− VL(1). The expected revenue loss due to the inefficiency
in the all-pay auction can therefore be written as

P(1)
(
VH(0)−VL(1)

)
Pr(bL > bH).

On the other hand, it follows from Proposition 3 that the revenue loss in the standard
auctions arising from information rents given up to the high type amounts to

P(1)
(
VH(0)−VL(0)

)
.

This is clearly strictly larger than the revenue loss in the all-pay auction because VL(1) ≥
VL(0) and Pr(bL > bH) < 1. For this reason, the all-pay auction outperforms the standard
auctions even in the case when monotonicity fails. We summarize the above discussion
in the following proposition.

Proposition 5. With two bidders, the all pay auction generates a higher expected revenue than
the standard auction formats.

When there are more than two bidders, the revenue comparison is less straightfor-
ward. We will examine this in the next section in the context of a version of the model
where the number of bidders grows large. We will see that as N increases, information
rents vanish due to increased competition irrespective of the auction format, but the in-
efficiency loss of the all-pay auction survives and remains significant in some cases even
when N goes to infinity. This will reverse the revenue ranking result of Proposition 5.

5. Many Bidders and a Binary State

In this section, we let the number of bidders N increase. In order to get the sharpest re-
sults, we consider the special case of our model where the state of the world is also binary,
and study the limiting behavior of the model as N → ∞. We start with the affiliated pri-
vate values model and then consider the mineral rights model with common values. As
already pointed out in Proposition 2, the failure of monotonicity is typical for models with
large numbers of players. The main insight in this section is that with affiliated private
values, this implies that the probability of misallocating the object to a low type bidder
remains considerable even in the limit where the number of both types of bidders grows
without bound, irrespective of the true state.
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5.1. Affiliated Private Values

There are N bidders, two states θ ∈ {θ0, θ1}, and signals ti ∈ {L, H} are conditionally
i.i.d. given the state. Let q ∈ (0, 1) denote the prior belief on the event {θ = θ1} and
parameterize the distribution of signals by

α1 : = Pr (ti = H |θ1 ) ,

α0 : = Pr (ti = H |θ0 ) .

By Bayes’ rule, we can write the posterior beliefs on the state as

qH := Pr(θ1 |ti = H ) =
qα1

qα1 + (1− q) α0
,

qL := Pr(θ1 |ti = L ) =
q (1− α1)

q (1− α1) + (1− q) (1− α0)
.

(3)

For the analysis of the limiting behavior, it is useful to consider the objective probabil-
ities of winning given state θ at bid b, rather than those given the number of high-type
opponents. In state θ and the symmetric equilibrium F∗, the probability that an arbitrary
bidder submits a bid below b is given by

αθ FH
∗ (b) + (1− αθ) FL

∗ (b) .

Since there are N − 1 other bidders, the probability of winning at bid b given θ is then
given by

xm(b) := Pr (win by bidding b |θm ) =
[
αmFH

∗ (b) + (1− αm) FL
∗ (b)

]N−1
, m = 0, 1. (4)

Write each bidder’s private value as vti with vH > vL. We start the analysis by assum-
ing that we are in the case of non-monotonic equilibria, so that the bid b = 0 is in the
support of the symmetric equilibrium bid distribution for both types of bidders. Then for
every bid b in the overlapping region of the two supports of the bidding distributions, we
can write the indifference condition between bidding b and zero to each type as

qHx1 (b) vH + (1− qH) x0 (b) vH = b,

qLx1 (b) vL + (1− qL) x0 (b) vL = b.

The left-hand side of the above equation makes use of equation (3) to express the expected
gain to the bidder of each type when she makes a bid of b, as a weighted average of
her private value by the winning probabilities given states. Observe from the form of
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the equations that both x0(b) and x1(b) must be linear in b. This is consistent with the
standard all-pay auction logic that due to the unconditional payment rule, the marginal
increase in the winning probability by an increment of bid should be constant across the
bidding supports.

Solving for the two winning probabilities gives

x1 (b) =
b

qH − qL

(
1− qL

vH
− 1− qH

vL

)
= bγ1,

x0 (b) =
b

qH − qL

(
qH

vL
− qL

vH

)
= bγ0,

(5)

where we have denoted

γ1 =

1−qL
vH
− 1−qH

vL

qH − qL
, γ0 =

qH
vL
− qL

vH

qH − qL
.

Since vH > vL and qH ≥ qL, we have γ0 > 0 and γ1 ≤ γ0 for all parameter values. On the
other hand, γ1 is nonnegative if and only if

1− qL

1− qH
≥ vH

vL
.

Note that with the binary state structure, the left-hand side is equal to p(θ0|ti=L )
p(θ0|ti=H )

, and
therefore this condition is in line with the result we established in Proposition 2.

Notice that the binary-state model enables us to derive the winning probabilities di-
rectly from the indifference conditions of the two types of bidders. This turns out to be
extremely useful, since we have an alternative way of expressing the winning probabili-
ties in terms of the bid distributions as is displayed in equation (4). Accordingly, we can
find the equilibrium bid distributions

(
FH
∗ , FL

∗
)

by solving the following pair of equations
obtained by combining (4) and (5):[

α1FH
∗ (b) + (1− α1) FL

∗ (b)
]N−1

= bγ1,[
α0FH
∗ (b) + (1− α0) FL

∗ (b)
]N−1

= bγ0.
(6)

Using this system of equations, we analyze the limiting behavior of the symmetric equi-
librium as the number of bidders N grows. The system looks very simple at first sight,
but note that the bid functions FH

∗ (b) and FL
∗ (b) themselves depend on the number of

bidders.
Clearly, both FH

∗ (b) and FL
∗ (b) must converge to one as N increases, otherwise the
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left-hand side of (6) would converge to zero. To understand the limit behavior of the
model, it is more useful to work with the limiting values of

[
FH
∗ (b)

]N−1 and
[
FL
∗ (b)

]N−1

as N grows. If there exists a solution to (6), it must be the case that for a fixed b, both[
FH
∗ (b)

]N−1 and
[
FL
∗ (b)

]N−1 converge to some values in (0, 1). Let us therefore denote
those limiting values by

GH
∗ (b) : = lim

N→∞

(
FH
∗ (b)

)N−1
,

GL
∗ (b) : = lim

N→∞

(
FL
∗ (b)

)N−1
.

Using this notation, it is straightforward to verify that10

[
αmFH

∗ (b) + (1− αm) FL
∗ (b)

]N−1
→
(

GH
∗ (b)

)αm
·
(

GL
∗ (b)

)1−αm
.

We can then write the indifference conditions for the two types in the limit N → ∞ as:(
GH
∗ (b)

)α1 ·
(

GL
∗ (b)

)1−α1
= bγ1,(

GH
∗ (b)

)α0
·
(

GL
∗ (b)

)1−α0
= bγ0,

(7)

where
(
GH
∗ (b)

)αm is the limit probability that the highest bid by a high-type is below b,

and
(
GL
∗ (b)

)1−α1 is the limit probability that the highest bid by a low-type is below b,
conditional on state θm. Solving (7) for GH

∗ (b) and GL
∗ (b), we get

GH
∗ (b) = b (γ1)

1−α0
α1−α0 (γ0)

α1−1
α1−α0 ,

GL
∗ (b) = b (γ1)

−α0
α1−α0 (γ0)

α1
α1−α0 .

We can then compute explicitly the probability distribution Γk (b; θ) for the highest bids
of each type k = H, L conditional on θm as:

ΓH (b; θm) = Pr (highest bid of type H below b |θm )

=
(

GH
∗ (b)

)αm
= bαm (γ1)

αm(1−α0)
α1−α0 (γ0)

αm(α1−1)
α1−α0 ,

10To see this, note that for any positive numbers γH and γL, we have(
αm (γH)

1
N + (1− αm) (γL)

1
N
)N
→ (γH)

αm (γL)
1−αm ,

which can be verified by taking the logarithm and using L’Hôpital’s rule. This limit argument is familiar
from the connection between CES and Cobb-Douglas functions.
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ΓL (b; θm) = Pr (highest bid of type L below b |θm )

=
(

GL
∗ (b)

)1−αm
= b1−αm (γ1)

−(1−αm)α0
α1−α0 (γ0)

(1−αm)α1
α1−α0 .

Let BL denote the highest bid where the two supports overlap, i.e. where GL
∗
(

BL
)
= 1:

BL = (γ1)
α0

α1−α0 (γ0)
−α1

α1−α0 . (8)

It is self-evident from the last formula that the common support [0, BL] does not shrink
even though we let the number of bidders grow in the auction. Together with the fact that
the winning probabilities are linear in b, this suggests that the probability of inefficient
allocation does not vanish even with a large number of bidders.

We can verify this result by computing the probability of inefficient allocation condi-
tional on state θm:

Pr (low type wins |θm ) =
∫ BL

0

∂ΓL (b; θm)

∂b
· ΓH (b; θm) db

= BL (1− αm) (γ1)
αm−α0
α1−α0 (γ0)

α1−αm
α1−α0

Substituting (8) into BL above, we can simplify the desired probability into

Pr (low type wins |θm ) = (1− αm)

(
γ1

γ0

) αm
α1−α0

.

The ex-ante probability of misallocation is therefore

Pr (low type wins) = q (1− α1)

(
γ1

γ0

) α1
α1−α0

+ (1− q) (1− α0)

(
γ1

γ0

) α0
α1−α0

.

This calculation confirms that the probability of misallocation is bounded away from
zero in the all-pay auction with a large number of bidders. In the limit as N → ∞, there
would be a large number of high-type bidders in both states. Nevertheless they do not
bid aggressively enough to win over the low-type bidders. To understand how this can
happen, recall that the high type is more likely to perceive the unknown state as high and
the number of high-type bidders is larger in the high state. As a consequence, the high
degree of competition forces the high-type bidders to bid relatively cautiously because all
bids are forfeited regardless of whether they win or not. The low types, on the other hand,
assign a lower probability to the high state by affiliation. Hence they would anticipate
less fierce competition compared to the high types, and this makes them bid relatively
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aggressively leading to the possibility of misallocation.
To appreciate this finding, contrast the situation to a slightly modified version of our

model, where only the high-type bidders exist and their number depends on the state.
In that version of the model, the high types compete only against each other, and the
allocation is always efficient. When the number of bidders is increased, all the rents are
eliminated in this version as well, and hence the equilibrium revenue and total social
surplus is higher than in the original model. In other words, if one could prevent the low-
type bidders from participating, the total surplus and the revenue accruing to the seller
would increase.

It should be pointed out that in the limit as N → ∞, the standard auctions are both effi-
cient and result in a very low rent to the high type. Hence the expected payment received
by the auctioneer is smaller in the all-pay auction than in standard auction formats, in
contrast to the result with only two bidders (Proposition 5).

It is perhaps also worthwhile to interpret the model in terms of total effort expended
in a contest model. The affiliated private values case with a large number of potential
bidders can be taken to reflect heterogeneity in the valuation of the prize or idiosyncratic
(but correlated) differences in the cost of effort across contestants. One might guess that
a competitive model such as this will result in efficient allocations in the sense that the
contestants with a high valuation or low cost of effort will dissipate the entire rent. Our
analysis shows that the intuition concerning the rent dissipation is indeed correct: in the
limit as N → ∞, no participant earns a strictly positive rent. Importantly, however, the
correlation in the contestants’ valuations or costs often makes it impossible to achieve
efficient allocation. The inefficiency in the context of contest means that the total effort
is inefficiently low, or looking from a different perspective, the total cost of achieving a
given equilibrium effort level is inefficiently high.

We end this subsection with some numerical comparative statics. The results demon-
strate that the magnitude of the surplus loss due to misallocation can be substantial.
Adopting the auction interpretation of the model, the measure of efficiency is the total
surplus generated, which we denote by Π:

Π = Pr (high type wins) · vH + Pr ( low type wins) · vL.

We normalize vH = 1 so that the total surplus under efficient allocation in a large auction
is Π = 1. Letting α := α1 = 1− α0 ≥ 0.5, Figure 2 plots the total surplus as a function
of two key parameters, α and vL (the only remaining parameter is q, the prior on state
θ = θ1, which we fix here as q = 0.5).

We see that for low values of vL and/or α, the allocation is efficient as Π = 1. This is
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Figure 2: Total Surplus Π in a large all-pay auction as a function of α and vL. The other parameters are
q = 0.5 and vH = 1.

the region in the parameter space where equilibrium is monotonic, i.e.

1− qL

1− qH
<

vH

vL
.

Increasing α and/or vL the non-monotonic equilibria emerge as indicated by surplus re-
ducing below 1. The higher the correlation in the signals, the more pronounced the effect
on misallocation becomes, as seen by Π decreasing monotonically in α. The effect of vL

is more subtle. After passing the threshold of non-monotonic equilibrium, an increase
in vL reduces surplus sharply. But as vL further increases towards vH = 1, the effect of
misallocation on total surplus weakens despite its increasing probability with vL, and as
a result the total surplus is U-shaped as a function of vL. To understand better the driv-
ing force behind this observation, note that when vL is sufficiently low, the low valuation
bidders have little incentive to win the auction. This results in a monotonic equilibrium.
As vL is increased, however, the auction becomes more attractive to low-type bidders and
they start bidding more aggressively. When the competition effect starts dominating the
valuation effect, the equilibrium becomes non-monotonic and incurs the misallocation. It
is quite striking how steeply the total surplus reduces, once vL crosses the threshold of
monotonicity.

It is also interesting to note how the prior q = Pr(θ = θ1) affects the total surplus.
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Figure 3: Total Surplus Π in a large all-pay auction as a function of α and q. The other parameters are
vL = 0.5 and vH = 1.

Figure 3 plots Π as a function of q and α. It may come as a surprise that an increase in
q impairs the efficiency in some parts of the parameter space. To understand this, fix the
correlation parameter α and start with a low value of q. As seen in the figure, the equi-
librium is monotonic and the allocation is efficient. When q is increased, it becomes more
likely that there are a lot of high-type bidders. This induces them to bid more cautiously,
which in turn renders the auction more attractive to the low types (who perceive it less
likely that there are many high-type bidders). At some point the equilibrium becomes
non-monotonic, and the possibility of inefficient allocation sharply reduces the total sur-
plus. As q is increased towards 1, the uncertainty about the number of bidders vanishes
and thus the equilibrium becomes efficient again.

Lastly, we examine the effect of the number of bidders on the total surplus by refor-
mulating Π as a function of N < ∞. We show in Appendix A.5 that the probability of an
inefficient allocation given state θm and a fixed number of bidders can be written as:

Pr (low type wins |θm )

=
N

∑
n=0

(
N
n

)
(αm)

n (1− αm)
N−n N − n

N

[
(1− α0) (γ1)

1
N−1 − (1− α1) (γ0)

1
N−1

α1 (γ0)
1

N−1 − α0 (γ1)
1

N−1

]n

.
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Figure 4: Total Surplus Π in an all-pay auction with N bidders. Blue: q = 0.4. Yellow: q = 0.2. The other
parameters are α = 0.8 and vL = 0.5.

Accordingly, we can explicitly compute the ex-ante probability of misallocation as

Pr (low type wins) = q Pr (low type wins |θ1 ) + (1− q)Pr (low type wins |θ0 ) .

Figure 4 displays the total surplus as a function of N under two different prior prob-
abilities, q = 0.4 and q = 0.2 (the other parameters are α = 0.8 and vL = 0.5). We can
see that in both cases the surplus increases in N as expected. For small N, the total sur-
plus is higher when q = 0.4. This is simply because the probability that (at least) one
high type exists in the first place is substantially higher under that prior. However, the
ranking is reversed for large N. The reason can be found in Figure 3, which shows that
the two different priors lead to different equilibrium configurations for large N. With
q = 0.2, equilibrium remains monotonic for all N, while with q = 0.4, equilibrium is
non-monotonic for large N (in fact, the equilibrium is monotonic only for N = 2 but non-
monotonic for all N ≥ 3 in this case). This means that there is a substantial surplus loss
from inefficiency even for large N, which appears in Figure 4 as a much weaker effect of
the number of bidders on total surplus.

5.2. Mineral Rights

Here the setting is otherwise identical to the previous subsection, but we assume now
that v (θ, t) = v (θ) . The analysis is now somewhat easier since the solution to the system

qHxH (b) v(θ1) + (1− qH) xL (b) v(θ0) = b,

qLxH (b) v(θ1) + (1− qL) xL (b) v(θ0) = b
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is easily seen to be

xH (b) =
b

v(θ1)
, xL (b) =

b
v(θ0)

.

Hence we see that a positive solution for winning probabilities resulting in indifference to
both types exists for all parameter values, as expected in the light of Proposition 2. This
is the key difference from the model with affiliated private values, where the equilibrium
remains monotonic even for large N if p(θ0|ti=L )

p(θ0|ti=H )
< vH

vL
.

Obviously the economic consequences of the failure of monotonicity are less dramatic
in the model with common values, since the allocation is always efficient. At any rate, it
can be shown that all-pay auctions yield a high expected revenue to the seller, since all
the rents are dissipated in the non-monotonic equilibrium.

We can again solve the symmetric equilibrium distributions for the limit N → ∞ as in
the affiliated private values case. Since the analysis is analogous to the previous case, we
omit the details here.

6. Conclusion

Correlation in signals causes problems for the existence of monotone equilibria in all-
pay auctions. This limits seriously the scope of the traditional analysis based on auction
theoretic arguments. In a simple model with two types of bidders, we show that the
non-existence of monotone equilibria has significant implications for the efficiency of al-
locations. We show that even if we let the number of players be arbitrarily large, the
allocation may be inefficient when the bidders have affiliated private values.

We hope our findings in this simple setting inspires further work in related models.
In addition to exploring richer informational models, further research should address
contests with multiple prizes as well as contests with less extreme outcome functions and
study efficiency and information aggregation in such environments.

A. Appendix

A.1. Proof of Lemmas

PROOF OF LEMMA 1: To see that there cannot be any atoms, assume to the contrary that
b is an atom for Fk

∗ . If all bidders have signal tj = k , then a bid of b ties for the highest bid
with a positive probability. Since we have assumed that v (θ, ti) > 0, bidding b + ε for ε

small enough is a profitable deviation.
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Consider any nonnegative bid b /∈ supp[FL
∗ ] ∪ supp[FH

∗ ] such that there is a b′ > b
with b′ ∈ supp[FL

∗ ] ∪ supp[FH
∗ ]. Since the union of supports is a closed set, we can take

b′ to be the minimal such bid. By the first part of the proof, no distributions has an atom
at b′. Then the winning probabilities at b and b′ are identical, and thus b is a profitable
deviation from b′. This shows that the union of the supports is a connected set that
includes zero. �

PROOF OF LEMMA 2: To show that ψ(n) = VH(n)pH(n)−VL(n)pL(n) is single-crossing,
it is sufficient to establish the log-supermodularity of Vk(n)pk(n) in k and n. We know
that pk(n) is log-supermodular by the monotone likelihood ratio proerty. Hence we need
to show only that Vk(n) is log-supermodular. Since

Vk (n) = Eθ

[
v (θ, ti)

∣∣∣Yi = n, ti = k
]
,

and since we have assumed the log-supermodularity of both v (θ, ti) and p (θ, t) , the
result follows from the fact that log-supermodularity is preserved by integration and
multiplication (See Karlin and Rinott (1980)). �

A.2. Proof of Proposition 1

We shall prove this result through a series of lemmas. The first lemma shows that in any
equilibrium, the low-type bidder earns zero expected payoff, which results from the fact
that the function ψ takes a positive value at N − 1.

Lemma A.1. In any equilibrium F∗, 0 ∈ supp[FL
∗ ] and as a consequence the low type bidders

earn a zero expected rent.

Proof. Suppose to the contrary that BL ≡ min
(
supp[FL

∗ ]
)
> 0. Then by Lemma 1, it

follows that FH
∗ (BL) > 0, and that zero and BL must belong to supp[FH

∗ ]. Noticing that a
zero bid yields a payoff of zero, indifference between these bids gives:

u(BL, H|F∗) = 0 ⇒ BL = VH(N − 1)pH(N − 1)
(

FH
∗ (BL)

)N−1
,

where we used FL
∗ (BL) = 0 and the fact that by bidding BL the high type wins only if

there is no low-type bidder. Using the above alternative expression of BL, we compute
the expected payoff from bidding BL to the low type, to obtain

u(BL, L|F∗) = −BL + VL(N − 1)pL(N − 1)
(

FH
∗ (BL)

)N−1
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= −ψ(N − 1)
(

FH
∗ (BL)

)N−1
,

which is strictly negative because ψ(N− 1) > 0 and FH
∗ (BL) > 0. Therefore, the low type

has a profitable deviation to bidding zero.

The next lemma presents a sufficient condition for the existence of a monotone strategy
equilibrium.

Lemma A.2. If ψ(0) ≥ 0, then the all-pay auction has a unique symmetric BNE in monotone
strategies.

Proof. Since ψ(n) satisfies the single-crossing property, ψ(0) ≥ 0 implies ψ(n) > 0 for all
n = 1, · · · , N − 1. This implies that the effect of a marginal increase in b is increasing in
the signal:

∂

∂b
u(b, H|F∗)−

∂

∂b
u(b, L|F∗) =

∂

∂b

N−1

∑
n=0

ψ(n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
> 0.

This implies that the bidder’s expected payoff function is supermodular in (b; ti), so any
symmetric equilibrium must be in monotone strategies: for every bL ∈ supp[FL

∗ ] and
bH ∈ supp[FH

∗ ], we must have bL ≤ bH.11 Since 0 ∈ supp[FL
∗ ] by the previous lemma,

and since the low type has a chance to win only if his opponents are all high types in
this monotonic equilibrium, we have supp[FL

∗ ] = [0, BL] where BL := max
(
supp[FL

∗ ]
)
=

BH := min
(
supp[FH

∗ ]
)
= VL (0) pL (0). Furthermore, we can characterize FL

∗ from the
indifference condition between bidding zero and every b ∈ supp[FL

∗ ] to the low type:

b = VL (0) pL(0)
(

FL
∗ (b)

)N−1
,

for each b ∈ [0, VL (0) pL (0)]. As its right-hand side is strictly increasing in FL
∗ (b), the

equilibrium bid distribution function of the low type is unique.
For the high type bidders, indifference at all b ∈ supp[FH

∗ ] holds if and only if

N−1

∑
n=0

pH (n)VH (n)
(

FH
∗ (b)

)n
− b = VH (0) pH (0)−VL (0) pL (0) > 0,

11As u(b, k|F∗) is supermodular, we have supp[FL
∗ ] ≤ supp[FH

∗ ] in the strong set order (See Milgrom
and Shannon (1994)). This has two implications on the equilibrium support. First, each support must
be a connected interval, for otherwise there exists a pair of bids bH < bL such that bL ∈ supp[FL

∗ ] and
bH ∈ supp[FH

∗ ]. Second, the supports must be disjoint, because the strict supermodularity implies that if
two bids, say b1 and b2 > b1, are indifferent to the low type, then b2 must be strictly preferred to b1 by the
high type.
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where the expression on the right-hand side indicates the expected payoff of the high
type from bidding BH, namely the information rent. From the last equation, we see the
uniqueness of FH

∗ (b) for b ∈ supp[FH
∗ ], and using FH

∗ (BH) = 1, we get

BH := max
(

supp[FH
∗ ]
)
=

N−1

∑
n=0

pH (n)VH (n)−VL (0) pL (0) .

We examine next the other case of ψ(0) < 0. The next lemma shows that in this case
the high type bidders also earn zero rent in equilibrium. Together with Lemma A.1 and
A.2, the lemma tells us that there is full rent dissipation if and only if ψ(0) < 0.

Lemma A.3. If ψ(0) < 0, then 0 ∈ supp[FH
∗ ] in every equilibrium F∗, and as a result, the

expected payoff to the high type bidder is zero.

Proof. Suppose min
(
supp[FH

∗ ]
)
= BH > 0. Since the union of the supports is a connected

interval by Lemma 1, we must have FL
∗ (BH) > 0 in this case. Also, since bidding BH

gives the same payoff as bidding zero for the low type by Lemma A.1, we have BH =

VL(0)pL(0)
(

FL
∗ (BH)

)N−1. The expected payoff to high-type bidders from bidding BH is
then

u(BH, H|F∗) = −BH + VH(0)pH(0)
(

FL
∗ (BH)

)N−1
= ψ(0)

(
FL
∗ (BH)

)N−1
< 0.

Because every bidder has an option of bidding zero, any bids in the support must result
in a nonnegative expected payoff. As a result, we conclude that BH > 0

To fully characterize the equilibrium supports, we show in next lemma that each sup-
port is a connected interval and that supp[FL

∗ ] ⊂ supp[FH
∗ ].

Lemma A.4. Suppose ψ(0) < 0. In any symmetric BNE F∗, both supp[FL
∗ ] and supp[FH

∗ ] are
connected intervals.

Proof. Suppose to the contrary that there is an open interval (b′1, b′2) ⊂ [0, BL] such that
supp[FL

∗ ] ∩ (b′1, b′2) = ∅. Let (b1, b2) be the maximal (in the sense of set inclusion) open
interval such that

(b′1, b′2) ⊂ (b1, b2) and supp[FL
∗ ] ∩ (b1, b2) = ∅

Then b1 and b2 must belong to supp[FL
∗ ] ∩ supp[FH

∗ ], and FH
∗ (b2) > FH

∗ (b1) by Lemma 1.
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Using Lemma A.1, we first obtain an alternative expression for b1 and b2:

b1 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n

b2 =
N−1

∑
n=0

VL(n)pL(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n
,

where we used FL
∗ (b1) = FL

∗ (b2) to derive the expression of b2. Also, it follows from
Lemma 1 and A.3 that b1 ∈ supp[FH

∗ ] and the expected payoff from making b1 must be
zero to the high type, namely

u(b1, H|F∗) = −b1 +
N−1

∑
n=0

VH(n)pH(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
= 0.

Observe that the expression ψ(n)
(

FL
∗ (b1)

)N−1−n (FH
∗ (b1)

)n also satisfies the single-
crossing property in n. This implies that

u(b2, H|F∗) =
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b2)

)n

=
N−1

∑
n=0

ψ(n)
(

FL
∗ (b1)

)N−1−n (
FH
∗ (b1)

)n
·
(

FH
∗ (b2)

FH
∗ (b1)

)n

> 0,

where the inequality comes from the (discrete version) Folk single-crossing lemma and

the fact that
(

FH
∗ (b2)

FH∗ (b1)

)n
is a strictly increasing function in n.12 Therefore, the high type is

strictly better off by bidding b2 rather than b1, which contradicts with the proposition that
the two bids are indifferent. A similar argument can be used to establish that supp[FH

∗ ] is
also connected.

The proof of existence and uniqueness for the case ψ(0) < 0 is based on following
lemma:

12For a discrete domain N, the single-crossing lemma states that if f : N → < satisfies the (strict) single-
crossing property and ∑ n∈N f (n) = 0, then ∑ n∈N f (n)g(n) ≥ (>) 0 for an (strictly) increasing function
g : N → <. Note that the given properties of f imply ∑ n≥k f (n) ≥ 0 for every k. Hence the lemma follows
from the fact that every increasing function can be approximated by ∑ i γi1{n≥ki}.
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Lemma A.5. Define a function G : [0, 1]× [0, 1]→ < as

G (x, y) =
N−1

∑
n=0

g (n) xn yN−n−1,

where the function g : {0, 1, · · · , N − 1} → < is single-crossing, g (0) < 0, and ∑N−1
n=0 g (n) >

0. Then there exists a unique mapping ξ : (0, 1] → (0, 1) such that G (ξ (y) , y) = 0 for every
y ∈ (0, 1]. Furthermore, the mapping ξ is continuous, strictly increasing, and

lim
y↓0

ξ (y) = 0.

Proof. We start with some properties of function G. First, G is clearly continuous, and
it is easy to check that for any x > 0 there is some δx > 0 such that G (x, y) > 0 for
y ∈ (0, δx), and for any y > 0 there is some δy > 0 such that G (x, y) < 0 for x ∈

(
0, δy

)
. In

particular, G (1, y) > 0 for every y ∈ (0, 1). This follows from the fact that g (n) is single
crossing in n, that ∑N−1

n=1 g (n) > 0, and that yN−n−1 is strictly increasing in n for y ∈ (0, 1).
Consequently, there exists a pair of (x, y) ∈ (0, 1)× (0, 1) at which G(x, y) = 0.

The following pairwise strict single-crossing property of G is the key to the Lemma: if
G (x, y) = 0 for some (x, y), then

G
(
x′, y

) { > 0 for x′ ∈ (x, 1)
< 0 for x′ ∈ (0, x)

(A.1)

G
(
x, y′

) { < 0 for y′ ∈ (y, 1)
> 0 for y′ ∈ (0, y)

(A.2)

To prove (A.1), fix x ∈ (0, 1) and y ∈ (0, 1) such that G (x, y) = ∑N−1
n=0 g (n) xn yN−n−1 = 0.

Then for any x′ 6= x, we have

G
(
x′, y

)
=

N−1

∑
n=0

g (n)
(
x′
)n yN−n−1 =

N−1

∑
n=0

g (n) xnyN−n−1
(

x′

x

)n

.

Since g (n) is assumed to satisfy the single-crossing property in n, so does g (n) yN−n−1xn

because both yN−n−1 and xn are positive (i.e., sign-preserving) functions of n. For x′ >

(<) x, the fraction
(

x′
x

)n
is strictly increasing (decreasing) in n, and thus we have

N−1

∑
n=0

g (n) xn yN−n−1
(

x′

x

)n

> (<) 0.
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The proof for (A.2) is completely analogous so is omitted.
Using the properties of G just established, we can now prove the lemma. Fix y ∈ (0, 1].

Since G (x, y) < 0 for x sufficiently small and G (1, y) > 0, there is some x such that
G (x, y) = 0 by continuity of G. Because G(x, y) as a function of x satisfies the single-
crossing property by (A.1), this sign-changing point is unique, and hence defines a unique
ξ (y) for which G (ξ (y) , y) = 0.

To see that limy↓0 ξ (y) = 0, recall that for every x > 0, there exists a δx > 0 such that
G (x, y) > 0 for all y ∈ (0, δx). This means that for all y < δx, we have ξ (y) < x. Since
x can be chosen arbitrarily low, it follows that limy↓0 ξ (y) = 0. Finally, continuity and
strict monotonicity of ξ (y) follow in a straightforward manner from the continuity and
pairwise strict single-crossing property of G(x, y). The proof is now complete.

The existence and the uniqueness of equilibrium can be established as follows.

Proof. By Lemmas A.1, A.3 and A.4, when ψ(0) < 0, in any equilibrium we must have
0 ∈ supp[FL

∗ ] ∩ supp[FH
∗ ] and both supports are connected intervals. Consequently, there

must be some interval
[
0, BL

]
where the two supports overlap. Note that every bid b ∈

[0, BL] must yield zero expected payoff (i.e., the same payoff) to both types. Below we
demonstrate that there exists only one pair of (FL

∗ , FH
∗ ) satisfying this property.

For each y ∈ (0, 1], we define ξ : (0, 1]→ (0, 1) as the solution to the equation:

N−1

∑
n=0

[
VH(n)pH(n)−VL(n)pL(n)︸ ︷︷ ︸

=ψ(n)

]
(ξ (y))n yN−n−1 = 0. (A.3)

As the function ψ(n) satisfies all the given properties for function g in Lemma A.5, we
know from that lemma that there exists a unique continuous and strictly increasing map-
ping satisfying (A.3) and limy→0 ξ(y) = 0.

Given this function ξ, we define BL as

N−1

∑
n=0

VH (n) pH (n) (ξ (1))n = BL.

For each b < BL, let FL
∗ (b) ∈ [0, 1) denote the unique value of y that solves the equation

N−1

∑
n=0

VH (n) pH (n) (ξ (y))n yN−n−1 = b.

As the expression on the left-hand side of the equation is strictly increasing in y and
b < BL, the solution FL

∗ (b) exists and is unique. Furthermore, it is easy to check that the
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solution FL
∗ (b) retains all the necessary properties of a distribution function: it is strictly

increasing and continuous in b, FL
∗ (0) = 0, and FL

∗ (BL) = 1 (by definition of BL). Label
ξ(FL
∗ (b)) = FH

∗ (b). Then FH
∗ (b) is strictly increasing in b and FH

∗ (0) = 0. This process
characterizes the symmetric equilibrium on supp[FL

∗ ] ∩ supp[FH
∗ ].

To characterize the equilibrium on supp[FH
∗ ] ∩ {supp[FL

∗ ]}c, let

BH =
N−1

∑
n=1

VH (n) pH (n) .

For each b ∈
(

BL, BH
)
, set FL

∗ (b) = 1 and define FH
∗ (b) as the solution to the equation

N−1

∑
n=0

VH (n) pH (n) xn = b.

Since the left-hand side is strictly increasing in x, FH
∗ (b) is uniquely determined.

A.3. Proof of Proposition 2

The result we established in Proposition 1 tells us that the unique symmetric equilibrium
is monotonic if and only if

VH (0)
VL (0)

≥ pL (0)
pH (0)

. (A.4)

For the proof of Proposition 2, we need therefore investigate the limiting behavior of each
side of (A.4) as the number of bidders N increases.

Part 1 - Mineral Rights Model

We first show that the ratio VH(0)
VL(0)

on the left-hand side converges to one as N → ∞. To
keep our notations simple, let t = (L, L, · · · , L) denote the vector of signal realizations
with ti = L for all i and t′ = (H, L, · · · , L) the vector with ti = L for all i 6= 1 and t1 = H.
Then the ratio can be written as

VH (0)
VL (0)

=
E[v (θ) |t′ ]
E[v (θ) |t ] =

M−1
∑

m=0
p (θm |t′ ) v (θm)

M−1
∑

m=0
p (θm |t ) v (θm)

,
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where the posterior belief on θ given t can be calculated with the Bayes rule: for each
θ = θm,

p
(
θm
∣∣t′ ) =

q (θm) p (t′ |θm )
M−1
∑

x=0
q (θx) p ( t′ |θx )

=
q (θm) αm (1− αm)

N−1

M−1
∑

x=0
q (θx) αx (1− αx)

N−1
,

and

p (θm |t ) =
q (θm) p (t |θm )

M−1
∑

x=0
q (θx) p (t |θx )

=
q (θm) (1− αm)

N

M−1
∑

x=0
q (θx) (1− αx)

N
.

Since we have αm < αm+1 for each m, both posterior beliefs assign a unit mass to θ = θ0

as N → ∞. Consequently,

lim
N→∞

VH (0)
VL (0)

=
v(θ0)

v(θ0)
= 1.

We next investigate the right-hand side of (A.4), i.e. likelihood ratio pL(0)
pH(0) as N → ∞.

We can write this as

pL (0)
pH (0)

=
p (θ0 |ti = L ) (1− α0)

N−1 + · · ·+ p (θM−1 |ti = L ) (1− αM−1)
N−1

p (θ0 |ti = H ) (1− α0)
N−1 + · · ·+ p (θM−1 |ti = H ) (1− αM−1)

N−1 , (A.5)

where

p (θm |ti = L ) =
q (θm) (1− αm)

M−1
∑

x=0
q (θx) (1− αx)

and p (θm |ti = H ) =
q (θm) αm

M−1
∑

x=0
q (θx) αx

are the posteriors of state θm after observing signal L and H, respectively, and (1− αm)
N−1

is the probability that all the other N − 1 players have a low signal, conditional on state.
Dividing the top and bottom by (1− α0)

N−1, we have

pL (0)
pH (0)

=
p (θ0 |ti = L ) + p (θ1 |ti = L )

(
1−α1
1−α0

)N−1
+ · · ·+ p (θM−1 |ti = L )

(
1−αM−1

1−α0

)N−1

p (θ0 |ti = H ) + p (θ1 |ti = H )
(

1−α1
1−α0

)N−1
+ · · ·+ p (θM−1 |ti = H )

(
1−αM−1

1−α0

)N−1 .

Since
(

1−αm
1−α0

)N−1
→ 0 for all m = 1, · · · , M− 1 as N → ∞, we have

lim
N→∞

pL (0)
pH (0)

=
p (θ0 |ti = L )
p (θ0 |ti = H )

> 1. (A.6)
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The first claim in Proposition 2 is then immediate from Proposition 1.

Part 2: Affiliated Private Value Model

In the private value model, the left-hand side of (A.4) is simply vH
vL

which is constant over
the number of bidders. The likelihood ratio on the other side is as in the mineral rights
model, and its limit as N → ∞ is given by (A.6) above. To complete the proof, we prove
below that the ratio pL(0)

pH(0) is increasing in N. To emphasize its dependence on N, we
rewrite (A.5) as

pL (0; N)

pH (0; N)
=

M−1
∑

m=0
ξL (m)

M−1
∑

m=0
ξH (m)

,

where
ξk (m) = p (θm |ti = k ) (1− αm)

N−1 , t = L, H. (A.7)

Note that the ratio

ξL (m)

ξH (m)
=

p (θm |ti = L )
p (θm |ti = H )

=
1− αm

αm
·

M−1
∑

x=0
q (θx) αx

M−1
∑

x=0
q (θx) (1− αx)

is decreasing in m by affiliation.
To see how it varies over N, consider next the ratio for N + 1:

pL (0; N + 1)
pH (0; N + 1)

=
p (θ0 |ti = L ) (1− α0)

N + · · ·+ p (θM−1 |ti = L ) (1− αM−1)
N

p (θ0 |ti = H ) (1− α0)
N + · · ·+ p (θM−1 |ti = H ) (1− αM−1)

N ,

or with ξk(m) defined in (A.7), we can simplify it further into

pL (0; N + 1)
pH (0; N + 1)

=

M−1
∑

m=0
ξL (m) (1− αm)

M−1
∑

m=0
ξH (m) (1− αm)

.

The proof is done if we can show that

pL (0; N + 1)
pH (0; N + 1)

>
pL (0; N)

pH (0; N)
,
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that is,
M−1
∑

m=0
ξL (m) (1− αm)

M−1
∑

m=0
ξH (m) (1− αm)

>

M−1
∑

m=0
ξL (m)

M−1
∑

m=0
ξH (m)

. (A.8)

The key here is that both ξL(m)
ξH(m)

and (1− αm) are decreasing in m. The following lemma
establishes (A.8) and hence completes the proof.

Lemma A.6. Let M be a positive integer and {δm}M−1
m=0 , {xm}M−1

m=0 , and {ym}M−1
m=0 denote se-

quences with all strictly positive terms (i.e., δm, xm, ym > 0 ∀ m) such that δm−1 > δm and
xm−1
ym−1

> xm
ym

for all m = 1, · · · , M− 1. Then we have

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

>

M−1
∑

m=0
xm

M−1
∑

m=0
ym

. (A.9)

Proof. In what follows, we will repeatedly use the fact that whenever A, B, a, b > 0 and
A/a > B/b, we have

Aq + B
aq + b

>
A + B
a + b

(A.10)

for q > 1 (this is easy to prove by differentiating the left-hand side with respect to q).
We prove Lemma A.6 using induction. First, (A.9) is clearly true if M = 2: If δ0 > δ1

and x0
y0

> x1
y1

, we have

δ0x0 + δ1x0

δ0y0 + δ1y0
=

δ0
δ1

x0 + x1
δ0
δ1

y0 + y1
>

x0 + x1

y0 + y1
,

where the inequality uses (A.10).
Fix an integer M > 2. As an induction hypothesis, suppose that (A.9) holds when the

summation is taken from m = 1 to m = M− 1:

M−1
∑

m=1
δmxm

M−1
∑

m=1
δmym

>

M−1
∑

m=1
xm

M−1
∑

m=1
ym

,

whenever δm−1 > δm and xm−1
ym−1

> xm
ym

for all m = 0, · · · , M− 2. Then, taking the summa-
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tion from m = 0, we can write

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

=
δ0x0 + δ1

(
x1 +

δ2
δ1

x2 + · · ·+ δM−1
δ1

xM−1

)
δ0y0 + δ1

(
y1 +

δ2
δ1

y2 + · · ·+ δM−1
δ1

yM−1

) . (A.11)

Let
χ :=

x1 + x2 + · · ·+ xM−1

x1 +
δ2
δ1

x2 + · · ·+ δM−1
δ1

xM−1
. (A.12)

Since δk
δ1

< 1 for all k = 2, ..., M− 1, we have χ > 1. Using this defitition, we can write the
term in the parantesis in the nominator of (A.11) as:

x1 +
δ2

δ1
x2 + · · ·+

δM−1

δ1
xM−1 =

1
χ
(x1 + x2 + · · ·+ xM−1) . (A.13)

Since
(

1, δ2
δ1

, δ3
δ1

, · · · , δM−1
δ1

)
is a decreasing sequence, the induction hypothesis gives:

x1 +
δ2
δ1

x2 + · · ·+ δM−1
δ1

xM−1

y1 +
δ2
δ1

y2 + · · ·+ δM−1
δ1

yM−1
>

x1 + x2 + · · ·+ xM−1

y1 + y2 + · · ·+ yM−1
,

which we can rearrange as

y1 +
δ2

δ1
y2 + · · ·+

δM−1

δ1
yM−1 <

x1 +
δ2
δ1

x2 + · · ·+ δM−1
δ1

xM−1

x1 + x2 + · · ·+ xM−1
y1 + y2 + · · ·+ yM−1

=
1
χ
(y1 + y2 + · · ·+ yM−1) , (A.14)

where the last equality uses (A.12). Plugging equality (A.13) and inequality (A.14) in
(A.11) gives

M−1
∑

m=0
δmxm

M−1
∑

m=0
δmym

>
δ0x0 +

δ1
χ (x1 + x2 + · · ·+ xM−1)

δ0y0 +
δ1
χ (y1 + y2 + · · ·+ yM−1)

=

δ0χ
δ1

x0 + x1 + · · ·+ xM−1
δ0χ
δ1

y0 + y1 + · · ·+ yM−1
>

M−1
∑

m=0
xm

M−1
∑

m=0
ym

,
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where the last inequality uses (A.10) and the facts that δ0χ
δ1

> 1 (since δ0 > δ1 and χ > 1)

and that x0
y0

> x1+···+xM−1
y1+···+yM−1

(since x0
y0

> xm
ym

for all m = 1, · · · , M− 1).

A.4. Proof of Proposition 3

For this proof, we introduce some additional notation. Throughout the main body of the
proof we assume that v (θ, ti) depends non-trivially on θ. The other case, the affiliated
private values case, is easier and dealt with at the end. When v (θ, ti) depends on θ, it is
important to calculate the expected payoff conditional on winning. If there is an atom at b̂
in the bid distribution, a bidder submitting b̂ ties with positive probability for the highest
bid, in which case the winner is determined by uniform rationing. Since the probability
of winning the rationing depends on the number of bidders that tie, we must take into
account the information that winning conveys about θ. Let T(n, θ ; b̂) denote the event
that the state is θ, and n (with 0 ≤ n ≤ N− 1) bidders amongst N− 1 bidders submit bid
b̂ and N− 1− n bidders submit a bid strictly below b̂. Define P(n, θ ; b̂) as the probability
of the event T(n, θ ; b̂). The following lemma below determines when a large number of
bidders that tie at b̂ is good news and when it is bad news about θ. Denote the probability
distribution of Θ conditional on n other bidders tying at b̂ by

pb̂ (θ |n ) :=
P(k, θ; b̂)

∑
θ∈Θ

P(k, θ; b̂)
.

The lemma gives a simple criterion whether pb̂ (θ |k ) is first-order stochastically increas-
ing or decreasing in k. To express this condition, let Fk

∗(b̂−) = limb↑b̂ Fk
∗(b) denote the

left-hand limit of Fk
∗ at b̂ for each type k = L, H so that the probability that type k bids at

the atom is ∆k(b̂) = Fk
∗(b̂)− Fk

∗(b̂−).

Lemma A.7. Probability distribution pb̂ (θ |n ) is

• strictly first-order stochastically increasing in n if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) >

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂).

• strictly first-order stochastically decreasing in n if(
∆H(b̂)− ∆L(b̂

)
)FL
∗ (b̂−) <

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂).
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• independent of n if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) =

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂).

Proof. The proof is by noting that when P(n, θ ; b̂) is log-supermodular (log-submodular)
in (n, θ), then pb̂ (θ |n ) is first-order stochastically increasing (decreasing) in n. We hence
investigate the properties of P(n, θ ; b̂):

P(n, θ ; b̂) = p (θ)

(
N − 1

n

)(
αθ∆H(b̂) + (1− αθ)∆L(b̂)

)n

×
(

αθ FH
∗ (b̂−) + (1− αθ) FL

∗ (b̂−)
)N−n−1

.

Taking logarithms, and collecting into η (n) terms that do not depend on θ and into ν (θ)

terms that do not depend on n, we have:

ln P(n, θ ; b̂) = η (n) + ν (θ) + n
[
ln
(

αθ

(
∆H(b̂)− ∆L(b̂)

)
+ ∆L(b̂)

)
− ln

(
αθ

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)
+ FL
∗ (b̂−)

)]

= η (n) + ν (θ) + n ln

 αθ

(
∆H(b̂)− ∆L(b̂)

)
+ ∆L(b̂)

αθ

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)
+ FL
∗ (b̂−)

 .

Since the expression in the bracket on the bottom line above is strictly increasing (decreas-
ing) in αθ if (

∆H(b̂)− ∆L(b̂)
)

FL
∗ (b̂−) > (<)

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂)

and since αθ is increasing in θ by affiliation, the claim follows.

Since winning a rationing event is more likely when n is small, winning is good news
on θ whenever pb̂ (θ |n ) is stochastically decreasing in n, and vice versa. Following this
reasoning, the next lemma determines whether a small over- or underbidding from an
atom increases or decreases the payoff conditional on winning. Let Wk (b) denote the
expected value of the object conditional on winning with bid b and with signal k = L, H.
We have:

Lemma A.8. Let b̂ be atom of at least one of the bidding distributions. Then:

• If (
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) >

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),
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we have:
lim
b↓b̂

Wk (b) > Wk(b̂) > lim
b↑b̂

Wk (b) .

• If (
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) <

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

we have
lim
b↓b̂

Wk (b) < Wk(b̂) < lim
b↑b̂

Wk (b) .

• If (
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) =

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

we have
lim
b↓b̂

Wk (b) = Wk(b̂) = lim
b↑b̂

Wk (b) .

Proof. Denote by V̂b (n; k) the expected value of the object conditional on n other bidders
bidding b̂:

V̂b (n; k) = ∑
θ∈Θ

pb̂ (θ |n ) v (θ, k) .

By bidding b = b̂, a bidder wins with probability 1
n+1 if there is a tie with n other bidders.

Therefore, conditional on winning, the probability of tying with n other bidders is given
by:

1
n+1 pb̂ (n)

N−1
∑

n=0

1
n+1 pb̂ (n)

, n = 0, · · · , N − 1,

where pb̂ (n) is the marginal probability of tying with n others at bid b̂. Hence

Wk(b̂) =
N−1

∑
n=0

1
n+1 pb̂ (n)

N−1
∑

n=0

1
n+1 pb̂ (n)

V̂b (n; k) .

By bidding slightly above b̂, a bidder wins against all bidders who pool at b̂, so that
winning conveys no additional information on n. Conditional on winning, the probability
of n bidders bidding b̂ is hence given by

pb̂ (n) , n = 0, · · · , N − 1
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and therefore

lim
b↓b̂

Wk (b) =
N−1

∑
n=0

pb̂ (n) V̂b (n; k) .

By bidding slightly below b̂, a bidder wins only if there is no bidder who bids b̂, and
hence

lim
b↑b̂

Wk (b) = V̂b (0; k) .

Since the probability distribution
(

pb̂ (0) , ..., pb̂ (N − 1)
)

first-order stochastically

dominates (strictly) the distribution

 pb̂(0)
N−1
∑

n=0

1
n+1 pb̂(n)

, ...,
1
N pb̂(N−1)

N−1
∑

n=0

1
n+1 pb̂(n)

, which in turn strictly

dominates the distribution (1, 0, ..., 0), we have

lim
b↓b̂

Wk (b) > (<)Wk(b̂) > (<) lim
b↑b̂

W (b)

if V̂b (n; k) is strictly increasing (decreasing) in n, and

lim
b↓b̂

Wk (b) = Wk(b̂) = lim
b↑b̂

Wk (b)

if V̂b (n; k) does not depend on n. By Lemma A.7, V̂b (n; k) is strictly increasing (decreas-
ing) in n if (

∆H(b̂)− ∆L(b̂)
)

FL
∗ (b̂−) > (<)

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂)

and independent of n if the above holds as equality, and hence the result follows.

The next lemma shows that the lowest bid in the support of the bids is made by the
low-type bidders only and that it results in a zero payoff.

Lemma A.9. The lowest symmetric equilibrium bid is VL (0) and it is in the support of the low-
type bidders. High-type bidders do not have an atom at VL (0). As an implication, equilibrium
payoff is zero for the low type.

Proof. Suppose first that there is no mass point at the lowest bid b. Then the probability
of winning at b is zero and hence the expected payoff is also zero. It is not possible that
b < VL (0), since a slight overbidding would lead to strictly positive payoffs. It is also not
possible that b is in the support of H but not L and that b < VH (N − 1) since winning
at any bid b + ε would imply that all the bidders are of type H and there would be a
profitable deviation for H. A bidder of type L never bids above VL (N − 1) < VH (N − 1)
in equilibrium. To see that it is not possible that b is in both supports, it is enough to
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observe that the value of the object conditional on winning is strictly higher to H than to
L. Hence they cannot both earn zero expected profit.

The same argument shows that both players cannot have a mass point at b. The lowest
bid b cannot have a mass point for low-type bidders with b > VL (0) since that would lead
to an expected loss. Hence the claim of the lemma follows.

Lemma A.10. Mass points are possible only at VL (0) .

Proof. Suppose that there is a mass point at some b̂ > VL (0). If(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) >

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

then by Lemma A.8 the value of the object conditional on winning jumps upwards by
bidding slightly above b̂. Since also the probability of winning increases by overbidding,
this is a strictly profitable deviation for any bidder bidding b̂.

If (
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) <

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

then ∆L(b̂) > 0 so that a low type must be bidding b̂ with a positive probability. By
Lemma A.9, the payoff for the low type is zero, and hence the value of the object condi-
tional on winning at b̂ must be zero for the low type. By Lemma A.8 a slight underbid-
ding would increase the value conditional on winning above zero, which would then be
a profitable deviation for the low type bidder.

The only case left is if(
∆H(b̂)− ∆L(b̂)

)
FL
∗ (b̂−) =

(
FH
∗ (b̂−)− FL

∗ (b̂−)
)

∆L(b̂),

so that the expected value of the object does not depend on the number of tying bidders.
Since the low type has a zero expected profit, the high type makes a strictly positive ex-
pected profit at b̂. But overbidding increases discretely the probability of winning without
affecting the value conditional on winning, and so bidding b̂ + ε for ε small enough is a
profitable deviation for the high type.

Obviously there cannot be a mass point at some b̂ < VL (0) since overbidding would
be strictly optimal for both types.

Lemma A.11. The support of the low-type bidders cannot have connected components of positive
length.

Proof. Suppose to the contrary that there is such a component and suppose that it is not
in the support of the high-type bidder. Then winning at a higher bid implies a lower
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expected value and this is not compatible with the zero profit requirement in either a
first-price or a second price auction.

Consider next the possibility of overlapping connected components for the two types.
In the second-price auction, the bid in a symmetric equilibrium must be the value of the
object conditional on tying for the winning bid (otherwise a deviation either up or down
would be strictly optimal). This cannot be the same for the two types of bidders.

In the first-price auction, write the payoff of type k = L, H who bids b as

Uk (b) =
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(Vk (n)− b) .

If the bidding supports overlap, then we must have

∂Uk (b)
∂b

= 0

for k = H, L. We can write the derivative of the payoff function as:

∂Uk (b)
∂b

=
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1

×
[(

n
f H
∗ (b)

FH
∗ (b)

+ (N − n− 1)
f L
∗ (b)

FL
∗ (b)

)
(Vk (n)− b)− 1

]
. (A.15)

As a first step towards showing that the supports cannot overlap, we show that there
cannot be an interval immediately above VL (0), where both types have a positive density.
Let b := VL (0), and note that by the previous Lemmas we have FL

∗ (b) > 0 and FH
∗ (b) = 0.

Then, evaluating (A.15) at b, we see that all of the terms with n ≥ 2 vanish, and we are
left with

∂Uk (b)
∂b

= pk (0)
(

FL
∗ (b)

)N−1
[
(N − 1)

f L
∗ (b)

FL
∗ (b)

(Vk (0)− b)− 1
]

+pk (1)
(

FL
∗ (b)

)N−2
f H
∗ (b) (Vk (1)− b)

=
(

FL
∗ (b)

)N−2
pk (0)

[
(N − 1) f L

∗ (b) (Vk (0)− b)− FL
∗ (b)

]
+
(

FL
∗ (b)

)N−2
pk (1) f H

∗ (b) (Vk (1)− b) .
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Noting that Vk (1) > Vk (0), VH (0) > VL (0) and pH(1)
pH(0) >

pL(1)
pL(0)

, we have

∂UL (b)
∂b

= 0 =⇒ ∂UH (b)
∂b

> 0,

so it is not possible to have a connected component (VL (0) , VL (0) + ε) where both types
are indifferent.

As a second step, we will rule out overlapping components strictly above VL (0). By
usual arguments, the union of the two supports must be a connected set. Therefore, if the
low type is active for b′ > VL (0), there must be a region between VL (0) and b′, where
only the high type has a positive density. We will now show that if the high type has a
positive density, the value of the low type is strictly decreasing. Since we already know
that UL (VL (0)) = 0, this rules out the possibility that the low type is active for any
b′ > VL (0).

Suppose that only the high type has a positive density at b, i.e., f H
∗ (b) > 0 and f L

∗ (b) =
0. Then

∂Uk (b)
∂b

=
N−1

∑
n=0

pk (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(Vk (n)− b)− 1
)

.

If the high-type has a positive density, we must have

∂UH (b)
∂b

=
N−1

∑
n=0

pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
= 0.

Noting that n f H
∗ (b)

FH∗ (b)
(VH (n)− b) is increasing in n, we see that

pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)

is single crossing in n. Since pL(n)
pH(n) is strictly decreasing in n, the single-crossing lemma

implies that

N−1

∑
n=0

pL (n)
pH (n)

· pH (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VH (n)− b)− 1
)
< 0.

Moreover, since VL (n) < VH (n) for all n, this implies that

∂UH (b)
∂b

=
N−1

∑
n=0

pL (n)
(

FH
∗ (b)

)n (
FL
∗ (b)

)N−n−1
(

n f H
∗ (b)

FH
∗ (b)

(VL (n)− b)− 1
)
< 0,
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and hence the value of the low type must be negative for any b > VL (0).

Lemma A.12. In a symmetric equilibrium of the standard second-price auction, low-type
bidders all bid VL (0) and the high-type bidders randomize using an atomless distribution on
[VH (0) , E[v (θ, ti) |ti = H, Yi ≥ 1 ]]. In a symmetric equilibrium of the first-price auction, low-
type bidders all bid VL (0) and the high-type bidders randomize using an atomless distribution on
[VL (0) , E[v (θ, H) |t = H ]− pH (0) (VH(0)−VL (0))].

Proof. Lemmas A.7 ∼ A.11 imply that the low bidders must have a degenerate distribu-
tion at the lowest point and that the high-type bidders must play according to an atom-
less mixed strategy. The support of the high-type bidders distribution is uniquely pinned
down by the constant profit condition in both cases.

Lemma A.12 establishes the uniqueness of a symmetric equilibrium under the as-
sumption, maintained up to this point, that v (θ, t) depends non-trivially on θ. The case
of affiliated private values, where v (θ, t) = v (t), is easier since no pay-off relevant infor-
mation can be obtained by the outcome of a rationing event at a mass point. Lemma A.8
does not hold since with private valuations we must have

lim
b↓b̂

Wk (b) = Wk(b̂) = lim
b↑b̂

Wk (b)

for any atom b̂. This affects the statement of Lemma A.10, according to which no atoms
above VL (0) can exist. It is easy to show that with private valuations, the unique equi-
librium in the case of second-price auction involves two atoms: both types bid their own
value with probability 1. The nature of the unique equilibrium in the first-price auction is
unchanged.

A.5. Probability of misallocation for finite number of bidders

Rewrite equation (6) as:[
α1FH
∗ (b) + (1− α1) FL

∗ (b)
]N−1

= bγ1,[
α0FH
∗ (b) + (1− α0) FL

∗ (b)
]N−1

= bγ0,

or

α1FH
∗ (b) + (1− α1) FL

∗ (b) = (bγ1)
1/(N−1) ,

α0FH
∗ (b) + (1− α0) FL

∗ (b) = (bγ0)
1/(N−1) .
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Solving for the distribution functions, we have

FH
∗ (b) = b

1
N−1

[
(1− α0) (γ1)

1
N−1 − (1− α1) (γ0)

1
N−1

α1 − α0

]
= Γ̂Hb

1
N−1

FL
∗ (b) = b

1
N−1

[
α1 (γ0)

1
N−1 − α0 (γ1)

1
N−1

α1 − α0

]
= Γ̂Lb

1
N−1 ,

where Γ̂H and Γ̂L represent the bracketed terms. By setting FL
∗
(

BL
)
= 1, we can find the

upper bound of the overlapping support BL: BL = (Γ̂L)
−N+1.

Let n = {0, 1, · · · , N} denote the realized number of high type bidders. Then for each
n, we can derive the distribution function of the highest bid among high types and among
low types as follows:

ΓH (b; n) = Pr (highest bid of type H below b |n ) =
(

FH
∗ (b)

)n
=

(
Γ̂H

)n
b

n
N−1

and

ΓL (b; n) = Pr (highest bid of type L below b |n ) =
(

FL
∗ (b)

)N−n
=

(
Γ̂L

)N−n
b

N−n
N−1 .

With these two distributions, we can compute the probability of inefficient allocation
conditional on n as

Pr (low type wins |n ) =
∫ BL

0
Γ′L (b; n) ΓH (b; n) db

=
N − n
N − 1

∫ BL

0
b−

n−1
N−1 (Γ̂L)

N−n · b
n

N−1 (Γ̂H)
ndb

=
N − n

N

(
Γ̂H

Γ̂L

)n

,

where the bottom line follows from BL = (Γ̂L)
−N+1. The probability of misallocation

conditional on state is then

Pr (low type wins |θ ) =
N

∑
n=0

(
N
n

)
(αθ)

n (1− αθ)
N−n N − n

N

(
Γ̂H

Γ̂L

)n

.
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