Nøytralitet i vannkraftbeskatningen

Virker grunnrenteskatten i Norge nøytralt på investeringsbeslutninger?

Arild Hartveit og Miriam Hermansen

Veileder: Kurt Jörnsten

Masterutredning, Master i økonomi og administrasjon,
Energi, naturressurser og miljø,
Finansiell økonomi

NORGES HANDELSHØYSKOLE

Dette selvstendige arbeidet er gjennomført som ledd i masterstudiet i økonomi- og administrasjon ved Norges Handelshøyskole og godkjent som sådan. Godkjenningen innebærer ikke at Høyskolen eller sensorer innestår for de metoder som er anvendt, resultater som er fremkommet eller konklusjoner som er trukket i arbeidet.
Sammendrag

For å i størst mulig grad oppnå samfunnsøkonomisk optimal ressursallokering, er nøytralitet i bedriffsbeskatningen en ønskelig egenskap. Grunnrente er en renprofitt som har sitt opphav i bruk av en begrenset naturressurs som innsatsfaktor i produksjon av goder. Denne representerer et attraktivt skattegrunnlag, da det er mulig å utforme nøytrale skatter på bedrifters renprofitt.

Store andeler av dagens produksjonsanlegg i vannkraftsektoren nærmer seg slutten på teknisk og økonomisk levetid, og sektoren står ovenfor betydelige investeringsbehov. Til tross for stor enighet innad i myndighetsorganer om at grunnrenteskatten er nøytralt utformet, hevder kraftbransjekjøtører at sektoren er kraftig overbeskattet og at dette hindrer samfunnsøkonomisk lønnsomme investeringer i å bli gjennomført.

Forord

Denne masterutredningen er et selvstendig avsluttende arbeid i sammenheng med vår mastergrad i økonomi og administrasjon ved Norges Handelshøyskole. Utredningen tilsvarer ett semesters fulltidsstudier innen våre respektive hovedprofiler: *Finansiell økonomi* og *Energi, naturressurser og miljø*.

Gjennom arbeidet med denne utredningen, har vi fått muligheten til å fordype oss i et tema som er både tidsrelevant, interessant og et viktig element i norsk klimavennlig elektrisitetsproduksjon. Vår nysgjerrighet omkring grunnrenteskatten ble trigget av debatten mellom Energi Norge og Finansdepartementet som har pågått i nyhetsmedia og i Stortingshøringer de siste par år. Vårt håp er at denne utredningen kan være et objektivt bidrag til denne debatten.

Vi ønsker å rette en stor takk til Skatteetaten, Finansdepartementet, Øystein Gjerde, Ragnar Nesdal, Ingvar Solberg, Øyvind Rustad, Diderik Lund, og ikke minst Maria Sidelnikova og hennes kollegaer i NVE. Deres råd og innspill har vært uvurderlige i vårt arbeid med denne utredningen. Til slutt vil vi takke vår veileder, Kurt Jörnsten.

Arild Hartveit

Miriam Hermansen
Innholdsfortegnelse

SAMMENDRAG .. 2
FORORD ... 3
LISTE OVER FIGURER ... 7

1. INTRODUKSJON ... 8
 1.1 ET ØYEBLIKKSILDE PÅ VANNKRAFTNÆRINGEN ... 8
 1.2 PROBLEMSTILLING .. 10
 1.3 UTREDNINGENS VIDERE OPPBYGGING .. 11

2. KORT OM VANNKRAFTSEKTOREN ... 12
 2.1 VANNKRAFTENS Plass I NORSK ØKONOMI ... 12
 2.2 KRAFTMARKEDET ... 12
 2.3 EIERSKAP OG MARKEDSANDELER ... 14
 2.4 TYPER AV VANNKRAFTVERK .. 15
 2.5 KOSTNADER VED VANNKRAFTPRODUKSJON .. 15
 2.6 SÆRREGLER VED INVESTERING I VANNKRAFTPRODUKSJON 16
 2.6.1 Konsesjonsplikt .. 16
 2.6.2 Hjemfall ... 17
 2.7 KAPITTELOPPSUMMERING ... 17

3. NØYTRAL BESKATNING - TEORETISK RAMMEVERK .. 18
 3.1 SAMFUNNSØKONOMISK EFFEKTVITET ... 18
 3.2 GENERELLE PRINSIPPER FOR UTFORMING AV ET SKATTESYSTEM 19
 3.2.1 Vridende skatter .. 19
 3.2.2 Nøytrale skatter .. 20
 3.2.3 Effektivitetsfremmende skatter ... 21
 3.2.4 Teoretiske retningslinjer for valg av skatteform ... 21
 3.3 GRUNNLAGET FOR BESKATNING AV VANNKRAFTVIRKSOMHET 22
 3.3.1 Grunnrente i vannkraftsektoren ... 22
 3.3.2 Grunnrente som et attraktivt skattegrunnlag ... 23
 3.4 OM NØYTRAL SKATTELEGGING AV GRUNNRENTE ... 24
 3.4.1 Kontantstrømsskatte – Et sammenlikningsgrunnlag ... 24
 3.4.2 Identifikasjon av grunnrenten og skjerming av normalavkastning 24
 3.5 KOMBINASJONEN AV ORDINÆR SELSKAPSSKATT OG GRUNNRENTESKATT 28
3.5.1 Ordinærselskapsskatt ...28
3.5.2 Grunnrenteskatt (særskatt) og nøytralitet ..29
3.6 Normalavkastningen på bundet kapital – Hvilken rente er representativ? ………………31
3.7 Ytterligere nøytralitetshensyn ..31
3.8 Kapitelloppsummering ...32

4. GJELDENDE SKATTEREGLER FOR GRUNNRENTESKATTEN34
4.1 Skattegrundlag og skattesats for grunnrenteskatten34
4.2 Nærermere om fastsetting av grunnrenteinnntekten35
4.3 Kapitelloppsummering ...40

5. METODE FOR BEREGNING AV MARGINALE REALAVKASTNINGSKRAV42
5.1 Marginale realavkastningskrav ..42
5.2 Utledning av metode for beregning av marginale realavkastningskrav43
5.3 Forutsetninger og antakelser ..46
5.4 Tilpasning av modellen til kraftskettesystemet ..49
5.4.1 Avskrivninger ..50
5.4.2 Friinntekt ...51
5.4.3 Konsesjonsavgift og eiendomsskatt ..52
5.5 Nøytralitetstekenen - Marginalt realavkastningskrav og nåverdi av redusert skatt i et nøytralt skettesystem ...53
5.6 Kapitelloppsummering ...54

6. ANALYSE OG RESULTATER ..56
6.1 Basis tilfellet – Standard NNV ..56
6.2 Delkontantstrømsdiskontering ..57
6.3 Sensitivitetsanalyse ..58
6.3.1 Økonomisk depresiering ..59
6.3.2 Eiendomsskatt ..61
6.3.3 Normrente for friinntekt og diskonteringsrente for sikre skatteredusjoner63
6.4 Kapitelloppsummering ...65

7. DISKUSJON ...67
7.1 Diskusjon av resultatene fra beregning av marginale realavkastningskrav67
7.2 Paralleller til principipl-agentproblemet ..69
7.3 Skattefradragenes risikoprofil ..70
7.4 Rentefastsettelse for skattefradrag ..70
7.5 Kapittelopssummering ... 72

8. Konklusjon ... 73

9. Vedlegg ... 75
 Vedlegg A ... 76
 Vedlegg B ... 85
 Vedlegg C ... 87
 Vedlegg D ... 89
 Vedlegg E ... 91
 Vedlegg F ... 94

10. Litteraturliste ... 101
Liste over figurer

FIGUR 2.1 - SPOTMARKEDSPRIS PÅ KRAFT I Norge ... 14
FIGUR 6.1 - RESULTATER FOR BASISSTILFELLET VED BRUK AV STANDARD NNV ... 57
FIGUR 6.2 - RESULTATER VED BRUK AV DELKONTANTSTRØMDSKONKERING ... 58
FIGUR 6.3 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE δ (STANDARD NNV) ... 60
FIGUR 6.4 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE δ (DELKONTANTSTRØMDSKONKERING) ... 61
FIGUR 6.5 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV ε (STANDARD NNV) ... 62
FIGUR 6.6 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV ε (DELKONTANTSTRØMDSKONKERING) ... 63
FIGUR 6.7 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER FOR τ f (STANDARD NNV) ... 64
FIGUR 6.8 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER FOR τ f (DELKONTANTSTRØMDSKONKERING) ... 65
FIGUR A.1 - DEPRESIERINGSPROFILE VID GEOMETRISK (4 PROSENT) OG LINEÆR (2 PROSENT) AVSKRIVNING ... 80
FIGUR E.1 - RESULTATER VED BRUK AV STANDARD NNV INKLUSIVE GJELDSFRADRAG ... 92
FIGUR F.1 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV ρ (STANDARD NNV) ... 95
FIGUR F.2 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV ρ (DELKONTANTSTRØMDSKONKERING) ... 96
FIGUR F.3 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV π (STANDARD NNV) ... 97
FIGUR F.4 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV π (DELKONTANTSTRØMDSKONKERING) ... 98
FIGUR F.5 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV τS OG τ (STANDARD NNV) ... 99
FIGUR F.6 - MARGINALE REALAVKASTNINGSKRAV VED ULIKE VERDIER AV τS OG τ (DELKONTANTSTRØMDSKONKERING) ... 100

Liste over tabeller

TABELL 2.1 - GRUPPEINNDELING AV KRAFTVERK ETTER INSTALLERT KAPASITET (I MW) ... 15
TABELL 2.2 - LANGSIKTIG MARGINALKOSTNAD (LCOE) FOR VANNKRAFTVERK OG FORDELING AV DENNE PÅ ULIKE KOSTNADSKLASSER (I PROSENT AV LCOE) ... 16
TABELL 4.1 - BEREGNING AV ÅRLIG SKATTEPLIKTIG GRUNNRENTENISSEKTEK ... 34
TABELL 5.1 - AVSKRIVNINGSSGJUPPER MED TILHØRENDE AVSKRIVNINGSSATSER OG ANDEL AV INVESTERINGSKOSTNAD ... 48
TABELL 5.2 - NOMINELL OG REELL KAPITALKOSTNAD (AVSKRIVNINGSSKRAV) FØR OG ETTER SKATT ... 49
TABELL 5.3 - PRAKSI OG TILNÆRMINGSMÅTE FOR BEREGNING AV KONSENSJONSAVGIFT ... 52
TABELL 5.4 - PRAKSI OG TILNÆRMINGSMÅTE FOR BEREGNING AV EJENOMMSSKATT ... 53
TABELL 5.5 - VERDIER AV MARGINALT REALAVKASTNINGSKRAV OG NÅVERDI AV REDUSERT SKATT I ET NØYTRALT SKATTESYSTEM (NØYTRALITETSTERSKELEN) ... 55
TABELL 6.1 - DEFINISJON AV SENSITIVITETSGRADER ... 59
TABELL A.1 - FORDELING AV INVESTERINGSKOSTNADER PÅ DRIFTSMIDDELGRUPPER FOR ULIKE TYPER VANNKRAFTVERK (TALL I PROSENT AV INVESTERINGSKOSTNAD) ... 78
TABELL A.2 - NULLKUPONGRENSEKURVE ... 81
1. Introduksjon

1.1 Et øyeblikksbilde på vannkraftnæringen

I et normalår produseres det omlag 130 TWh norsk vannkraft. Dette utgjør i overkant av 96 prosent av total elektrisitetsproduksjon i Norge (Statistisk Sentralbyrå, 2017a). I Energimeldingen (Meld. St. 25 (2015-2016), 2016, s. 188) omtales vannkraftsektoren som ryggraden i det norske energisystemet. Norsk vannkraft har en sentral rolle i å opprettholde fleksibilitet og forsyningssikkerhet for kraft i Norden.

Det er vanskelig å spå fremtidig teknologiutvikling i kraftbransjen. Muligheten for utvikling av fusjonsreaktorer, eller utvikling av storskala energilagring i batterier eller i hydrogen, representerer teknologier som vil kunne ha stor innvirkning på fremtidig kraftpris. I en næring som vannkraftsektoren, hvor investeringer gjøres med en tidshorisont på mellom 40 og 100 år, kan det være svært utfordrende å utarbeide de nødvendige lønnsomhetsberegningene.

Når næringslivet generelt får redusert selskapsskatt, er det oppsiktsvekkende at regjeringen i forslaget til statsbudsjett for 2017 foreslår en netto skatteskjerpelse for vannkraft ved at grunnrenteskatten økes mer enn selskapsskatten reduseres. … Investeringer i fornybar energi er konkurranseutsatt som annet næringsliv. Premisset for en provenynøytral omlegging er derfor feilaktig. Dette kan observeres ved at det i
de siste årene har vært vesentlig større investeringer i fornybar energi i Sverige enn i Norge. … Utformingen av grunnrenteskatten for vannkraft bidrar til at flere samfunnsøkonomisk lønnsomme prosjekter blir utsatt eller skrinlagt. En viktig årsak til dette er den svært lave skjeringsrenten (friinntektsrenten).

Finansdepartementet stiller seg uforstående til kritikken fra Energi Norge. Statssekretær Jørgen Næsje (FrP) uttaler i Dagens Næringsliv i mars 2017 at:

Kjernen i uenigheten mellom kraftbransjeaktørene og Finansdepartementet, synes å være behandlingen og verdsettelsen av skattefradrag. I utformingen av grunnrenteskatten, forutsetter Finansdepartementet at kraftbransjeaktørene benytter delkontantstrømsdiskontering i sin verdsettelse av investeringer, og at sikre skattefradrag diskonteres med risikofri rente. Kraftbransjeaktørene uttaler på den annen side at de benytter standard nettonåverdimetode, og at alle kontantstrømmer, inkludert skattefradrag, diskonteres med et felles risikojustert avkastningskrav til totalkapitalen. Dette kan medføre at Finansdepartementet og kraftbransjeaktørene tillegger skattefradragene ulik verdi, og at de dermed har ulik oppfattelse av kraftskatteregimets nøytralitet.

1.2 Problemstilling

Denne utredningen vil analysere nøytraliteten i det gjeldende kraftskatteregimet, og vil gi svar på følgende problemstilling:

Virker grunnrenteskatten nøytralt på investeringsbeslutninger i vannkraftsektoren, og på hvilken måte påvirker valg av verdsettelsesmetode i investeringskalkyler grunnrenteskattens opplevde nøytralitet?

Utredningen vil gi en kvalitativ analyse av skattereglene i grunnrenteskatten i lys av litteratur på nøytral beskatning av renprofitt. Det vil deretter gjøres en analyse av en
investeringsbeslutning for et modellkraftverk gjennom av beregning av marginale realavkastningskrav. Til slutt vil grunnlaget for uenigheten mellom kraftbransjeaktører og Finansdepartementet diskuteres. Det er ikke tidligere gjennomført en tilsvarende analyse i vannkraftsektoren. Modellen for beregning av marginale realavkastningskrav for vurdering av kraftskatteregimets nøytralitet er derfor basert på en modell fra Norges offentlige utredninger, nr. 18, om skattlegging av petroleumsvirksomhet, og tilpasset de særlige hensyn som finnes i kraftskatteregimet

1.3 Utredningens videre oppbygging

2. Kort om vannkraftsektoren

Dette kapittelet vil gi en kort oversikt over vannkraftsektoren, samt dagens rammevilkår og markedsituasjon. 2.1 beskriver vannkraftens plass i norsk økonomi. 2.2 tar for seg organisering og prissetting i kraftmarkedet. 2.3 beskriver de største aktørene i kraftproduksjon. 2.4 presenterer ulike kraftverkstyper og deres egenskaper. 2.5 tar for seg hvilke kostnader som er de mest gjeldende i kraftproduksjon. 2.6 forklarer enkelte særregler i vannkraftsektoren. 2.7 gir en kort oppsummering av kapittelet.

2.1 Vannkraftens plass i norsk økonomi

2.2 Kraftmarkedet

\(^1\) Merk at i statistikken omfatter definisjonen av kraftnæringen også gass- og varmtvannsforførsyn i tillegg til vannkraft.
konkurranseutsettelser av kraftproduksjonen, og en mer markedsbasert tilnærmning til prisfastsettelse i kraftmarkedet. Norge er i dag en del av et felles nordisk engrosmarked for elektrisk kraft. Markedspllassen, Nord Pool, er en nordisk kraftbørs der kraftprodusentene selger- og kraftleverandører kjøper kraft.

2.3 Eierskap og markedsandeler

Av totalt 183 vannkraftproduserende selskaper, driver 54 selskaper med kraftproduksjon alene. Historisk sett har majoriteten av selskaper i vannkraftsektoren i Norge hatt statlige, fylkeskommunale eller kommunale eiere. Også i dag er det norske kraftmarkedet i stor grad dominert av offentlig eierskap. 90 prosent av produksjonskapasiteten i sektoren er offentlig eid. Statseide Statkraft Energi AS/Statkraft SF er den største aktøren, med en markedsandel (målt i installert effekt) på 36 prosent. E-CO Energi AS, eid av Oslo kommune, er nest største aktør med en markedsandel på 9 prosent. Tredje største aktør er Norsk Hydro ASA, med en markedsandel på 6 prosent (Olje- og energidepartementet, 2015, s. 19). Sistnevnte er en privateid aktør, som hovedsakelig produserer vannkraft til bruk i egen industrivareproduksjon.\(^2\) Resterende markedsandeler er fordelt på et større antall lokalt

\(^2\) Det skal likevel nevnes at staten gjennom Nærings- og fiskeridepartementet eier en større aksjeandel på 34,26 prosent i Norsk Hydro ASA (2017).
forankrede kraftprodusenter, som er karakterisert ved kommunale eller fylkeskommunale eierinteresser på 50 prosent eller høyere.

2.4 Typer av vannkraftverk

Med utgangspunkt i fallhøyde, kan vannkraftverk generelt sett deles inn i to typer: Høytrykkskraftverk og lavtrykkskraftverk. Høytrykkskraftverk utnytter høytliggende vannmagasiner i fjellområder, som er forbundet med tunneler eller rørledninger med en lavere liggende kraftstasjon. Vannføringen i høytrykkskraftverk kan til dels reguleres, og vannmagasinene gir mulighet for lagring av overskuddsenergi i perioder med lave kraftpriser. Lavtrykkskraftverk er ofte elvekraftverk, der store mengder vann med forholdsvis liten fallhøyde utnyttes. Vannføringen ved slike kraftverk kan vanskelig reguleres, og kraft produseres gjennomgående ettersom vannet flommer til (Fornybar.no, 2016).

I reguleringsøyemed deles vannkraftverk inn i grupper etter installert kapasitet (i MW) eller installert effekt (i kVA) (NVE, 2015d). Inndelingen vises i tabell 2.1.

Tabell 2.1 - Gruppeinndeling av kraftverk etter installert kapasitet (i MW)

<table>
<thead>
<tr>
<th>Installert kapasitet</th>
<th>Benevnelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10 MW</td>
<td>Storkraftverk</td>
</tr>
<tr>
<td>1-10 MW</td>
<td>Småkraftverk</td>
</tr>
<tr>
<td>0,1-1 MW</td>
<td>Minikraftverk</td>
</tr>
<tr>
<td><0,1 MW</td>
<td>Mikrokraftverk</td>
</tr>
</tbody>
</table>

2.5 Kostnader ved vannkraftproduksjon

Kostnader ved kraftproduksjon måles ofte i langsiktig marginalkostnad, også kjent som levelized cost of energy (LCOE). Narbel (2014, s. 177) oppgir LCOE for vannkraft til å være i intervallet 180-730 kr/MWh³ for storkraftverk, og i intervallet 360-2430 kr/MWh for småkraft. En oversikt over LCOE for vannkraft, og hvordan denne fordeler seg over ulike

kostnadsklasser vises i tabell 2.2. Majoriteten av kostnaden ved kraftproduksjon er byggekostnader relatert til konstruksjon av demning og anlegg. Etter at kraftverket er ferdigbygget, vil det være svært lave vedlikeholdskostnader. Vannet og tilhørende naturressurser (nedbør, tilsig etc.) er gratis. Det skal likevel nevnes at vannet periodevis kan ha stor alternativkostnad for et kraftverk som benytter vannmagasiner. Vannkraftprodusenten vil da stå ovenfor utfordringen ved å maksimere selskapets profitt ved å i størst mulig grad bruke det lagrede vannet til å produsere kraft i perioder med høye kraftpriser, gitt vannmagasinets kapasitetsbegrensninger og usikkert tilsig av nytt vann.

Tabell 2.2 - Langsiktig marginalkostnad (LCOE) for vannkraftverk og fordeling av denne på ulike kostnadsklasser (i prosent av LCOE)

<table>
<thead>
<tr>
<th></th>
<th>Storkraftverk</th>
<th>Småkraftverk</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCOE</td>
<td>180 - 730 kr/MWh</td>
<td>360 - 2 430 kr/MWh</td>
</tr>
<tr>
<td>Investeringskostnad</td>
<td>87 - 92 %</td>
<td>60 - 98 %</td>
</tr>
<tr>
<td>Operasjon- og vedlikehold</td>
<td>8 - 13 %</td>
<td>2 - 40 %</td>
</tr>
<tr>
<td>Drivstoff</td>
<td>0 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

2.6 Særregler ved investering i vannkraftproduksjon

2.6.1 Konsesjonsplikt

Mini- og mikrokraftverk er sjelden konsesjonspliktige. For småkraftverk, vil NVE kunne fatte vedtak på bakgrunn av retningslinjer fra OED. Storkraftverk må imidlertid gjennom en mer tidkrevende prosess. Konsesjonsøknaden må først sendes til NVE, som etter en saksbehandlingsprosess vedtar om søknaden skal sendes videre til OED. OED har så endelig vedtaksmyndighet.

2.6.2 Hjemfall

2.7 Kapitteloppsummering
Vannkraft er en viktig næring i Fastlands-Norge, særlig som kilde til billig kraft i energiintensiv industri, og som inntektskilde for det offentlige. Priser og produksjonsvolum vil påvirkes av kapasitetsbegrensninger i overføringsnettet og usikre momenter som nedbør og tilsig. Kraftprisene i markedet er i dag forholdsvis lave. Vannkraft er en kapitalintensiv næring, og majoriteten av kostnader knyttet til kraftproduksjon er knyttet til bygging eller anskaffelse av produksjonsfasilitetene. Ved investering i vannkraft er det også visse særhensyn som må tas i betraktning, som konsesjon, hjemfall og særbeskatning.
3. Nøytral beskatning - teoretisk rammeverk

Dette kapittelet vil ta for seg sentrale teoretiske prinsipper for utforming av en overskuddsskatt på bedrifters renprofit. Bakgrunnen for at nøytralitet er et ønskelig trekk ved bedrifts- og kapitalbeskatningen, og hvordan man oppnår nøytralitet, vil bli drøftet med utgangspunkt i økonomisk teori.

3.1 tar for seg samfunnsøkonomisk effektivitet, og hvorfor dette er en ønskelig egenskap når det kommer til allokering av ressurser. 3.2 diskuterer ulike skattearter, og hvilke kombinasjoner av dem som optimaliserer samfunnsøkonomisk effektiv ressursallokering. 3.3 forklarer hva grunnrente er, hvordan grunnrente manifesterer seg i vannkraftsektoren, og bakgrunnen for at grunnrente er et attraktivt skattegrunnlag. 3.4 tar for seg prinsipper for utforming av et nøytralt skattegrunnlag. 3.5 diskuterer hvordan en kombinasjon av ordinar selvkapsskatt og grunnrenteskatt kan utformes mest mulig nøytralt. 3.6 diskuterer skjerming av normalavkastningen. 3.7 beskriver ytterligere nøytralitetshensyn som ble tatt opp under utarbeidelsen av kraftskatteregimet. 3.8 gir en kort oppsummering av kapittelet.

3.1 Samfunnsøkonomisk effektivitet

Et sentralt hensyn ved utformingen av et skattesystem er at det bør bidra til, eller i minst mulig grad stå i veien for, en effektiv bruk av ressursene samfunnet har til rådighet. For å oppnå effektiv ressursallokering, må følgende tre kriterier være oppfylt (Sandmo, 1989, s. 6):

- Effektivitet i produksjonen av goder
- Effektivitet i konsumet av goder
- Effektivitet i tilpasning av produksjon til konsumentenes preferanser

Normativ skatteanalyse er basert på generell økonomisk velferdsteori. Velferdsteorien har sitt grunnlag i prinsipper for samfunnsøkonomisk effektiv ressursallokering. I denne litteraturen er Pareto-kriteriet et mye brukt begrep. En Pareto-forbedring er en endring som fører til at

3.2 Generelle prinsipper for utforming av et skattesystem

3.2.1 Vridende skatter

De fleste skatter kan betegnes som vridende. Vridende skatter fører til at produsenter og konsumenter velger en annen tilpasning enn de ville gjort i en situasjon uten skatt. Vridende skatter har to former for effekt:

- **Inntektseffekten:** Skatten reduserer skatteyterens disponibile inntekt. Skatteyteren vil dermed etterspørre et lavere nivå av konsum eller investering.

- **Substitusjonseffekten:** Skatten vil føre til vridninger i de relative prisene som møter produsenter og konsumenter i markedet. Dette vil gi endringer i tilpasningen til produsentene og konsumentene ved at de i større eller mindre grad vil ønske å substituere seg bort fra den skattlagte virksomheten til fordel for andre virksomheter.

Samlet sett vil vridende skatter gi tilpasninger som til en viss grad er motivert av skattemessige hensyn, heller enn av realøkonomiske forhold. Dette kan blant annet vise seg som over- eller
underinvestering i virksomheten som skattlegges, sammenliknet med det investeringsnivået som er samfunnsøkonomisk optimalt. Skattemessig motiverte tilpasninger som konsekvens av vridende skatter kan medføre samfunnsøkonomisk effektivitetstap og sub-optimal ressursallokering.

3.2.2 Nøytrale skatter

En nøytral skatt fører til at de samme tilpasningene som maksimerer overskuddet før skatt, også maksimerer overskuddet etter skatt (NOU 1992:34, 1992, s. 38), og gir dermed ikke vridninger i produsenter og konsumenters tilpasninger. Dette kan illustreres ved bruk av elementær mikroøkonomisk teori: Vi antar at en bedrift er overskuddsmaksimerende, og at overskudd er definert som salgsinntekter minus produksjonskostnader. I teorien vil bedriften maksimere sin profitt ved en tilpasning som innebærer å sette pris lik grensekostnad. Dersom bedriften pålegges en overskuddsskatt med skattesats på 20 %, får den selv beholde 80 % av overskudd før skatt. Bedriften ønsker da å maksimere den andelen den selv får beholde, som vil si overskuddet etter skatt. Å maksimere 80 % av overskudd før skatt er åpenbart det samme som å maksimere 100 % av overskudd før skatt (Sandmo, 1989). Bedriften vil dermed ønske å investere samme mengde i de samme innsatsfaktorene i scenarioet med skatt som scenarioet
uten skatt. Som illustrert, vil en nøytral skatt dermed ikke endre bedrifters tilpasninger. Dette resultatet er gjeldende også for konsumenters tilpasninger. Nøytrale skatter medfører på denne måten ikke samfunnsøkonomisk effektivitetstap på samme måte som vridende skatter. Dette er et argument for å så langt som mulig bruke nøytrale skatter i inndrivelsen av skatteproveny til staten. Om bruk av nøytrale skatter kan redusere behovet for bruk av vridende skatter, vil dette gi mindre samfunnsøkonomisk effektivitetstap i økonomien samlet sett.

Når det kommer til investeringsbeslutninger, er det særlig to hensyn som må ivaretas for å sikre at en skatt virker nøytralt. For det første, bør alle investeringsprosjekter som er lønnsomme før skatt, også være lønnsomme etter skatt. For det andre bør ikke skatten endre rangeringen av lønnsomme investeringsprosjekter (NOU 1992:34, 1992, s. 39), og rent skattemessige motiver skal ikke påvirke hvilke investeringsobjekter som velges først. Dersom ett eller begge av disse hensynene ikke er ivaretatt, kan ikke skatten defineres som fullstendig nøytral.

3.2.3 Effektivitetsfremmende skatter

Enkelte former for skatt og avgift forbedrer samfunnsøkonomisk effektivitet ved at de korrigerer for markedssvikt. Slike skatter betegnes som effektivitetsfremmende eller markedskorrigerende. En markedssvikt er en eksternalitet som, dersom den ikke adresseres, vil føre til at produsenter og konsumenters tilpasning avviker fra samfunnsøkonomisk optimalitet. Effektivitetsfremmende skatter internaliserer eksternaliteten i markedsprisen på godet som beskattes, påvirker produsent- og konsumentatferd, og reduserer dermed det samfunnsøkonomiske effektivitetstapet sammenliknet med et scenario uten skatten. Effektivitetsfremmende skatter er på denne måten også en form for vridende skatt, men vridende i en retning som gagner samfunnet. Merk at ved eksistens av eksternaliteter i et marked, er det ikke lenger noen klar begrunnelse for at skattesystemet bør være nøytralt, uavhengig av om eksternalitetene er positive eller negative. I slike tilfeller kan det være legitimitet for å benytte skatter som er vridende i effektivitetsfremmende form.

3.2.4 Teoretiske retningslinjer for valg av skatteform

Et effektivt skattesystem bør først og fremst benytte alle muligheter til å bruke effektivitetsfremmende skatter. Deretter bør alle muligheter for bruk av nøytrale skatter uttømmes. Bare helt til slutt bør det benyttes vridende skatter. For å oppnå tilstrekkelig skatteproveny til staten, er det i praksis nødvendig å også bruke vridende skatter i betydelig
omfang. Det er dermed avgjørende at de vridende skattene i sin tur utformes slik at det samlede effektivitetstapet i økonomien blir minst mulig (NOU 2000:18, 2000, s. 31).

3.3 Grunnlaget for beskatning av vannkraftvirksomhet

3.3.1 Grunnrente i vannkraftsektoren

Naturressursens produksjonsevne, og dermed verdien på grunnrenten, vil variere fra kraftverk til kraftverk. Dette kan illustreres på følgende måte: Utbyggingskostnadene for et kraftverk avhenger av naturgitte forhold. De naturgitte forholdene er unike for hver enkelt lokasjon, så

noen vassdrag vil være dyrere å utvikle enn andre. Dersom vi antar at rasjonelle produsenter vil utvikle vassdragene med de laveste utbyggingskostnadene først, kan vi si at eldre kraftverk har lavere naturgitte kostnader enn nyere kraftverk. Vi antar også at kraftprodusenter anser det som lønnsomt å utvikle alle vassdrag som har en grensekostnad som er lik eller lavere enn markedsprisen på kraft. Når etterspørselen etter kraft øker, vil markedsprisen stige, og flere vassdrag blir lønnsomme å utvikle. I et velfungerende marked vil dermed markedsprisen på kraft teoretisk sett reflektere grensekostnaden til det minst lønnsomme kraftverket. Prisstigningen vil gjelde all kraft i markedet, også kraft fra eldre kraftverk med lavere naturgitte kostnader. Etter prisstigningen, vil eierne av eldre kraftverk få høyere inntekter, mens kostnadene deres forblir uendret (NOU 1992:34, 1992, s. 17). Etter at alle innsatsfaktorer utenom naturressursen er avlønnet (lønn til arbeidskraften, kapitalleie til realkapitalen etc.), vil eierne av kraftverkene sitte igjen med en avkastning som er større enn avkastningen i andre næringer med tilsvarende systematisk risiko (normalavkastningen). Årsaken til dette er tilgangen til en ”gratis innsatsfaktor” i form av naturressursen. Jo lavere de naturgitte utbyggingskostnadene ved et kraftverk er, jo høyere avkastning vil naturressursen tilhørende dette kraftverket produsere til en gitt markedspris på kraft.

3.3.2 Grunnrente som et attraktivt skattegrunnlag

3.4 Om nøytral skattlegging av grunnrente

I det følgende diskuteres hvordan skattegrunnlaget kan utformes på en slik måte at grunnrenteskatten vil virke nøytralt på investeringsbeslutninger.

3.4.1 Kontantstrømskatt – Et sammenlikningsgrunnlag

3.4.2 Identifikasjon av grunnrenten og skjerming av normalavkastning

For å kunne utforme en nøytral skatt på bedrifters renproftitt, forutsettes det at skattemyndighetenes definisjon av overskudd er den samme som det virkelige bedriftsøkonomiske overskuddet (Sandmo, 1989, s. 15), dette for å sikre at skattegrunnlaget er sammenfallende med det overskuddsbegrepet bedriftene faktisk maksimerer. Jo bedre samsvar det er mellom skattemessig og bedriftsøkonomisk overskudd, jo mer nøytralt vil skattesystemet virke på bedrifters atferd. De attraktive nøytrale egenskapene ved grunnrenteskatten er avhengige av at det er mulig å presist tallfeste størrelsen på grunnrenten i praksis. Når størrelsen på grunnrenten ikke manifesteres eksplisitt som en leiepris man betaler for å benytte naturressursen, kan det i praksis være svært utfordrende å skille mellom grunnrente og avkastning på de andre innsatsfaktorene som benyttes (NOU 1992:34, 1992, s. 42). For å løse dette, må naturressursens markedsverdi være korrekt beregnet, og alle relevante

\(^5\) Det vil si kontantstrøm før finansielle strømmer som gjeldsopptak, avdrag, renteutgifter og renteinntekter.

Grunnrenteskatten i vannkraftsektoren er i dag utformet som en periodisert overskuddsskatt. De nøytrale egenskapene til nå verdibeskattningen kan overføres til en periodisert overskuddsskatt under visse forutsetninger. Ved periodisert overskuddsskattning vil bruk av innsatsfaktorer som har en økonomisk levetid lengre enn én periode, kreve periodisering av

6 Det vil si avkastningskravet til bedriften. Denne vil ikke være påvirket av grunnrenteskatten.
7 Internrenten er den diskonteringsrenten som gir nåverdi av kontantstrømmen lik null.
sin brukskostnad. Denne periodiseringen gjøres i form av skattemessige avskrivninger. Dersom skattegrunnlaget kan defineres på en slik måte at nåverdien av skattefradrag fra de periodiserte brukskostnadene er lik initial investeringsutgift, vil en periodisert overskuddsskatt være skattemessig ekvivalent med nåverdibeskatning (NOU 2000:18, 2000, s. 375). Det vil si at nøytralitet krever at:

\[\text{Nåverdi av investeringsbaserte skattefradrag} = \text{investeringskostnad} \]

, som også kan skrives som:

\[\text{Nåverdi av skatteverdien av fradrag} = \text{Skattesats} \times \text{investeringskostnad}. \]

Gitt at positive og negative overskudd behandles symmetrisk i skatteregimet, og at skattesatsen er konstant over tid, kan dette oppnås i den periodiserte overskuddsskatten ved inklusjon av:

- Vilkårlige skattemessige avskrivninger i den enkelte periode.
- Et tillegg ved realisasjonstidspunkt for kapitalobjektet (driftsmiddelet) som tilsvarer realisasjonsverdi minus skattemessig nedskrevet verdi.
- En kompensasjon til investor for at det ikke gis umiddelbart fradrag for hele investeringsutgiften når den påløper, som i nåverdiskatten.

Sistnevnte punkt kan forklares på følgende måte: Ved periodisert overskuddsskatt, flyttes deler av avskrivningsfradragene fremover i tid. For at investor skal være indifferent mellom umiddelbart fradrag og periodiserte fradrag i fremtiden, må han kompenseres med en rente som tilsvarer alternativavkastningen på den kapitalen som til enhver tid er bundet opp i bedriften. Kapitalen som er bundet opp i bedriften beregnes som skattemessig nedskrevet verdi av driftsmidlene (NOU 2000:18, 2000, s. 375).

Ved bruk av et eksempel, kan vi illustrere at et skattegrunnlag som er utformet på overnevnte måte vil tilfredsstille kravet til nøytralitet:

\[B_t = \text{Skattegrunnlag tidspunkt } t \]
\[R_t = \text{Netto kontantoverskudd (eksl. finansielle kontantstrømmer) tidspunkt } t \]
\[a_t = \text{Skattemessig avskrivning tidspunkt } t \]
\[I = \text{Initial investeringsutgift} \]
\[r = \text{Alternativavkastning på bundet kapital per periode (konstant)} \]
\[K_T = \text{Realisasjonsverdi av driftsmiddel tidspunkt } T \text{ (realisasjonstidspunktet)} \]
Skattegrunnlaget B_t på tidspunkt $t = 0, ..., T$ er:

$$
B_0 = -a_0
$$

$$
B_1 = R_1 - a_1 - r \cdot (I - a_0)
$$

$$
B_{T-1} = R_{T-1} - a_{T-1} - r \cdot \left(I - \sum_{t=0}^{T-2} a_t \right)
$$

$$
B_T = R_T - a_T - r \cdot \left(I - \sum_{t=0}^{T-1} a_t \right) + K_T - \left(I - \sum_{t=0}^{T} a_t \right)
$$

Rekursiv løsning av likningssettet med hensyn på B_t gir:

$$
\sum_{t=0}^{T} \frac{B_t}{(1+r)^t} = \sum_{t=0}^{T-1} \frac{R_t}{(1+r)^t} + \frac{R_T + K_T}{(1+r)^T} - I
$$

3.5 Kombinasjonen av ordinær selskapsskatt og grunnrenteskatt

Som nevnt i avsnitt 3.3, blir grunnrenten i praksis beskattet av både grunnrenteskatt og ordinær selskapsskatt\(^8\), der sistnevnte er en vridende skatt. En kombinasjon av én nøytral og én vridende skatt vil ikke kunne bli helt nøytral. Målet blir da at de to skattene ikke til sammen fører til større vridninger enn det ordinær selskapsskatt ville medført alene Diskusjonen i dette avsnittet er inspirert av Norges offentlige utredninger, nr. 18, om skattlegging av petroleumsvirksomhet (s. 377-380). Avsnittet omhandler hvordan en nøytral grunnrenteskatt kan utformes under usikkerhet, og når det i tillegg er ordinær selskapsskatt i grunnrentesektoren og alle andre sektorer i økonomien.

3.5.1 Ordinær selskapsskatt

En økonomisk korrekt definisjon av skattegrunnlaget for ordinær selskapsskatt, som er en overskuddsskatt, vil kunne medføre nøytralitet ovenfor investeringstilpasninger også i sektorer som ikke er gjenstand for grunnrenteskatt. Det korrekte overskuddsbegrepet for disse sektorene vil omfåne løpende overskudd minus økonomisk korrekte avskrivninger. Økonomisk korrekte avskrivninger er definert som fysisk kapitalslit minus eventuelle realprisøkninger på driftsmidlene. Dette kan illustreres ved et eksempel:

\[
\begin{align*}
I &= \text{antall enheter realkapital investert i ved tidspunkt } 0 \\
R_t &= \text{den konstante avkastningen på den depresierte kapitalbasen til enhver tid} \\
\delta &= \text{økonomisk korrekt depresieringsrate} \\
\rho &= \text{diskonteringsrenten etter skatt (bedriften avkastningskrav)} \\
\tau &= \text{skattesats} \\
A &= \text{nåverdien av spart skatt som følge av skattemessige avskrivninger}
\end{align*}
\]

Vi forutsetter kontinuerlig tid. En bedrift investerer i \(I\) enheter realkapital på tidspunkt 0. Hver kapitalenhet koster 1 kr, har evigvarende økonomisk levetid, og gir en konstant avkastning \(R_t\) på den depresierte kapitalbasen til enhver tid. Økonomisk korrekt depresieringsrate, \(\delta\), er konstant over tid, og vi ser bort fra inflasjon og realprisstigning på kapitalen. Avkastningskravet til bedriften er \(\rho\). Før skatt, vil den investeringstilpasningen som

\[^8\] Grunnrenten beskattes også av eiendomsskatt og konsesjonsavgift, men vi ser her bort fra disse da de gis fradrags for i skattegrunnlaget for grunnrenteskatten.
maksimerer bedriftens overskudd være gitt ved \(R_i = \rho + \delta \). Dette kan også uttrykkes som \(R_i - \delta = \rho \), der \(R_i - \delta \) er kapitalens grenseproduktivitet (marginale realavkastning). Vi antar videre at overskuddet skattlegges med skattesats \(\tau \). Samtidig får bedriften fradrag for gjeldsrenter og økonomisk korrekte avskrivninger. Etter skatt, vil den investeringstilpasningen som maksimerer bedriftens overskudd være gitt ved \((1 - \tau) \cdot R_i = (1 - A) \cdot (\rho + \delta) \). Kapitalens grenseproduktivitet (marginale realavkastning) er da gitt ved:

\[
(1) \quad R_i - \delta = \frac{1}{1 - \tau} \cdot (1 - A) \cdot (\rho + \delta) - \delta
\]

Nåverdien av spart skatt som følge av avskrivningene (per krone investert) blir da:

\[
\tau \cdot \int_0^\infty e^{-(\delta + \rho)t} \, dt = \frac{\tau \cdot \delta}{\rho + \delta}
\]

Ved innsetting av dette i (1), ser vi at ved en overskuddsmaksimerende investeringstilpasning, vil marginalavkastningen før skatt være \(R_i - \delta = \rho/(1 - \tau) \). \(\rho \) er som nevnt et etter-skatt avkastningskrav for bedriften. Ved å kalle før-skatt diskonteringsrenten \(r \), kan vi uttrykke \(\rho \) som \(\rho = r \cdot (1 - \tau) \). Den optimale overskuddsmaksimerende investeringstilpasningen etter skatt kan da skrives som \(R_i - \delta = r \). Dette innebærer at bedriften vil velge samme investeringstilpasning som før skatten ble innført, og overskuddskatten virker dermed nøytralt.\(^10\)

3.5.2 Grunnrenteskatt (særskatt) og nøytralitet

Ved å vise tilbake til diskusjonen i avsnitt 3.4.2 om at skatt på nåverdi er en skatt som treffer grunnrenten, kan vi overføre denne intuisjonen til en situasjon der grunnrentesektoren også er gjenstand for ordinær selskapsskatt. En nøytral grunnrenteskatt kan da utformes slik at skattegrunnlaget for grunnrenteskatten fremkommer av alle kontantstrømmer etter ordinær selskapsbeskatning.

\(^9\) For utledning av dette resultatet, se Sandmo (1989).

\(^{10}\) Merk at fra diskusjonen ovenfor, kan det se ut til at ordinær selskapsskatt kan utformes på en slik måte at den ikke medfører effektivitetstap. Det er imidlertid ikke riktig. I realiteten vil selskapskatten skape en kile mellom avkastningen investeringen gir før skatt, og avkastningen investor mottar etter skatt, noe som vil medføre effektivitetstap. I eksempelene er det implisitt forutsett at renten før skatt er uendret, som vil si at effektivitetstapet vil gi utslag i sparebeslutninger, men ikke i investeringsbeslutninger i økonomien.
Vi lar \(R^* \) betegne netto kontantstrøm fra bedriften etter ordinær selskapsskatt. En særskatt på et skattegrunnlag definert som \(R^* \) minus økonomisk korrekte avskrivninger, vil da være en nøytral grunnrenteskatt. En nøytral ordinær selskapsskatt vil skjerne normalavkastning etter skatt mot videre beskatning. Ved implementering av en særskatt i en sektor der normalavkastningen allerede blir beskattet av ordinær selskapsskattesats \(\tau \), må en sørge for at normalavkastningen ikke dobbeltbeskattes. Jf. avsnitt 3.4.2, gjøres dette ved å legge til et skattefradrag for normalavkastning (finansiell alternativavkastning) på realkapital som er bundet opp i bedriften. Dersom vi kaller særskattesatsen \(\tau_s \), vil nåverdien av skatteeffekten av dette fradraget (per krone investert) være \(\tau_s \cdot r / (\rho + \delta) \), hvor \(\rho = r \cdot (1 - \tau) \), og \(\tau \) er ordinær selskapsskattesats. Siden det gis fradrag for avskrivninger i både ordinær selskapsskatt og i særskatten, vil nåverdien av spart skatt som følge av avskrivninger, \(A \), nå ha to komponenter: \(A = A_1 + A_2 \). \(A_1 \) er nåverdi av skattereduksjon fra økonomisk korrekte avskrivninger i ordinær selskapsskatt, gitt ved

\[
A_1 = \frac{\tau \cdot \delta}{\rho + \delta}
\]

\(A_2 \) er nåverdi av skattereduksjoner fra økonomisk korrekte avskrivninger i særskatten, gitt ved

\[
A_2 = \frac{\tau \cdot \delta}{\rho + \delta} + \frac{\tau \cdot r}{\rho + \delta}
\]

Ved innsetting i (1) av \(\rho = r \cdot (1 - \tau) \), \(A = A_1 + A_2 \) og en kombinert skattesats lik \(\tau + \tau_s \), ser vi at den kombinerte selskaps- og grunnrenteskatten virker nøytralt på investeringstilpasningen. Særskattens nøytralitet avhenger i dette tilfellet av at nåverdien av samlede fradrag i særskattegrunnlaget er lik

\[
\frac{A_2}{\tau_s} = \frac{\delta + r}{\rho + \delta} = 1 + \frac{\tau \cdot r}{r \cdot (1 - \tau) + \delta}
\]

Ut fra dette kan vi se at med tanke på særskatten, vil ikke direkte utgiftsføring av investeringsutgifter være tilstrekkelig for nøytralitet. For å forhindre at særskatten belaster normalavkastningen, må det også gis fradrag i særskattegrunnlaget for ordinær selskapsbeskatning av normalavkastningen.
3.6 Normalavkastningen på bundet kapital – Hvilken rente er representativ?

For at selskapene med full sikkerhet skal være sikret skattefradrag, må følgende være oppfylt:

- Staten må enten utbetale skatteverdien av negativ grunnrenteinntekt, tillate samordning av negativ grunnrenteinntekt i foretaket, tillate salg av negativ grunnrenteinntekt eller åpne for framføring av negativ grunnrenteinntekt med rente.
- Ved framføring med rente må selskapet i tillegg være sikker på å få utbetalt skatteverdien av eventuelt gjenstående negativ grunnrenteinntekt når virksomheten opphører. Alternativt må det åpnes for at et foretak som har akkumulert negativ grunnrenteinntekt og avvikler virksomheten, kan overføre skattefradragene ved salg/fusjon med et annet kraftforetak.

(St.prp. nr. 1 (2007-2008), 2007, s. 38)

3.7 Ytterligere nøytralitetshensyn

I Norges offentlige utredninger, nr. 34, om skatt på kraftselskap, diskuterer Rødseth-utvalget ytterligere hensyn som bør ivaretas i skattegrunnlaget for grunnrenteskatt for å sikre nøytralitet. For det første, bør grunnrenteskatten prinsipielt være en skatt på grunnrenteinntekt

11 Dette kan også beskrives som å ha gitt et lån til staten, eller å ha kjøpt et statspapir.
det enkelte året, altså det året inntekten er opptjent. For det andre, bør grunnrente skattlegges ved det kraftverket den oppstår, dette for å følge prinsippet om at grunnrenteskatten skal være en form for skatt på ”leieverdien” av en naturressurs. Skattegrunnlaget for grunnrenteskatten bør ikke kunne samordnes med andre skattegrunnlag, heller ikke med skattegrunnlaget i andre kraftverk. For det tredje, bør ikke skattegrunnlaget i et kraftverk påvirkes av omorganiseringer eller salg av verket. For det fjerde, bør det også legges vekt på at det skal være minst mulig rom for skattemessig motiverte tilpasninger. Da grunnrenteskatten innebærer at kraftsektoren møter en høyere marginal skattesats enn andre næringer, kan det oppstå incentiver til å flytte kostnader inn i kraftsektoren for å kunne skrive av disse på skatten, og flytte inntekter ut av kraftsektoren (NOU 1992:34, 1992, s. 70). I utformingen av grunnrenteskatten bør det altså legges inn mekanismer for å unngå dette.

3.8 Kapitteloppsummering

Nøytral beskatning er ønskelig for å oppnå høyest mulig grad av samfunnsøkonomisk optimal ressursallokering. Grunnrente er en renprofitt som har sitt opphav i bruk av en begrenset naturressurs som innsatsfaktor i produksjon av goder. Grunnrente er et attraktivt skattegrunnlag, da det er mulig å utforme en nøytral beskatning av denne.

I lys av teorien som har blitt diskutert i dette kapitlet, kan vi liste følgende kriterier som bør være oppfylt for at en modell for grunnrentebeskatning i form av periodisert overskuddsskatt skal virke nøytralt på kraftproduserende bedrifters investeringsbeslutninger:

- Positive og negative overskudd bør behandles symmetrisk. Dette kan oppnås enten ved at staten gir direkte utbetalinger av skatteverdi av underskudd, eller at underskudd kan fremføres med renter. Ved fremføring må skatteyteren kunne være sikker på å få utbetalt skatteverdien av eventuelle gjenstående underskudd ved opphør av virksomheten.
- Skattesatsen bør være konstant over tid.
- Realiserte kapitalgevinster (eller –tap) bør inngå i skattegrunnlaget, og beskattes (gis fradrag for) med samme sats som grunnrenteskatten.
- Periodiserte avskrivninger på realkapitalen bør gis fradrag for.
- Det bør gis fradrag for den finansielle alternativkostnaden på kapital som er bundet opp i driftsmidlene (normalavkastning), for å kompensere for utsatt utgiftsføring av investeringsutgiften. Den finansielle alternativkostnaden skal settes til risikofri rente
før skatt, gitt at bedrifter med full sikkerhet vil få utnyttet den fulle skatterverdien av alle fradrag.

- Skattegrunnlaget for grunnrenteskatten bør ikke kunne samordnes med andre skattegrunnlag.

- Skattemessig kontinuitet ved omorganisering eller salg av kraftverket bør være ivaretatt.

- Det bør innføres sjablonmessige kostnader for å unngå strategisk føring av irrelevante kostnader til grunnrentevirksomheten.
4. Gjeldende skatteregler for grunnrenteskatten

Dette kapittelet vil ta for seg gjeldende regler for grunnrentebeskatning i vannkraftsektoren, og diskutere disse i lys av teorien om nøytral beskatning presentert i kapittel 3. Skattereglene er hentet fra Lov om skatt av formue og inntekt (skatteloven), Kapittel 18. Særregler ved skattlegging av kraftforetak. Avsnitt 4.1 forklarer hvordan skattegrunnlaget for grunnrenteskatten beregnes. Avsnitt 4.2 går nærmere inn på bakgrunnen til de ulike tilleggene og fradragene i skattegrunnlaget. 4.3 gir en kort oppsummering av kapittelet.

4.1 Skattegrunnlag og skattesats for grunnrenteskatten

Tabell 4.1 - Beregning av årlig skattepliktig grunnrenteinntekt

<table>
<thead>
<tr>
<th>Beregnet brutto salgsinntekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Gevinst ved realisasjon av driftsmidler som benyttes i kraftproduksjon</td>
</tr>
<tr>
<td>+ Driftsstøtte til produksjon av ny kraft</td>
</tr>
<tr>
<td>+ Inntekt fra utstedte el-sertifikater</td>
</tr>
<tr>
<td>= Brutto salgsinntekter</td>
</tr>
<tr>
<td>- Driftskostnader som regulært følger av kraftproduksjonen</td>
</tr>
<tr>
<td>- Eiendomsskatt</td>
</tr>
<tr>
<td>- Konsesjonsavgift</td>
</tr>
<tr>
<td>- Skattemessige avskrivninger av driftsmidler tilknyttet kraftproduksjonen</td>
</tr>
<tr>
<td>- Tap ved realisasjon av driftsmidler</td>
</tr>
<tr>
<td>- Beregnet friinntekt</td>
</tr>
<tr>
<td>= Årets grunnrenteinntekt for det særskilte kraftverk</td>
</tr>
<tr>
<td>- Eventuell fremført negativ grunnrenteinntekt oppstått før inntektsåret 2007</td>
</tr>
<tr>
<td>- Eventuell negativ grunnrenteinntekt fra andre kraftverk tilhørende samme skattekonsern</td>
</tr>
<tr>
<td>= Årets skattepliktige grunnrenteinntekt for skattekonsernet</td>
</tr>
</tbody>
</table>
Skattesatsen for grunnrenteskatten vedtas av Stortinget hvert år. Den gjeldende satsen (for 2017) er 34,3 prosent (Finansdepartementet, 2016). Kraftverk med påstemplet merkeytelse under 10 000 kVA\(^\text{12}\) er unntatt fra grunnrenteskatt (Skatteloven, 1999, § 18-3).

4.2 Nærmere om fastsetting av grunnrenteinntekten

Brutto salgsinntekter

Årlige brutto salgsinntekter settes til summen av årets spotmarkedspris per time multiplisert med faktisk produksjon (i kWh) ved kraftverket i tilhørende tidsperiode. Det er tre unntak fra dette:

- Kraft som leveres i henhold til vilkår for konsesjon, verdsettes til oppnådd konsesjonspris.
- Kraft som leveres i henhold til visse langsiktige kontrakter, verdsettes til kontraktspris.
- Kraft som bruks som innsatsfaktor i den skatteytende bedriftens egen produksjonsvirksomhet, verdsettes til markedspris.

For å ta hensyn til lønnsomheten i et kraftverk på best mulig måte, bør faktisk oppnådde kraftpriser brukes i beregningen av salgsinntekt. Spotmarkedsprisen er verdien av en marginal enhet kraft, og kan dermed brukes som normpris ved verdsetting av kraft uten å bryte med dette prinsippet. At kraft som er låst til levering i henhold til bestemte kontraktsvilkår verdsettes til sin kontraktsfestede pris, samsvarer også med dette. Kraft som brukes internt i skattekonsernet verdsettes derimot til markedspriser, ikke til internprisen. Dette kan være for å unngå at det oppstår skattemessige motiver til å sette strategiske internpriser for å unndra seg grunnrenteskatt.

Gevinst ved realisasjon av driftsmidler

Gevinst (eller tap) ved salg av et driftsmiddel som benyttes i kraftproduksjon periodiseres etter reglene i saldosystemet, og tillegges i brutto salgsinntekter (eller i driftskostnader ved tap). Ved samlet realisasjon av kraftverk og fallrettigheter, skal derimot gevinsten (eller tapet) inntektsføres i realisasjonsåret. Dette avspeiler symmetrisk behandling av gevinst og tap ved realisasjon av realkapital, jf. avsnitt 3.8.

\(^{12}\) 10 000 kVA (kilovolt ampere) påstemplet merkeytelse tilsvarer omtrent 10 MW (megawatt) installert kapasitet.
Driftstøtte til produksjon av ny vannkraft og inntekt fra el-sertifikater

Fra 2008 skal ny vannkraft etter skatteloven (1999, § 18-3) motta driftsstøtte fra staten (i tillegg til salgsprisen på elektrisiteten) per produserte kWh\(^{13}\). I tillegg mottar produsenter av fornybar energi i Norge, vannkraft inkludert, et påslag i salgsprisen (betalt av konsumentene) på elektrisiteten i form av el-sertifikater\(^{14}\). For at skattegrunnlaget skal tilsvare det reelle bedriftsøkonomiske resultatet, må alle relevante inntekter inkluderes. Tillegg av disse to inntektskildene i grunnrenteinntekten bidrar dermed til nøytral utforming av skattegrunnlaget (St.prp. nr. 1 (2007-2008), 2007, s. 38).

Driftskostnader

Jf. diskusjonen i avsnitt 3.7, kan en kraftproduserende bedrift som også bedriver annen virksomhet ha insentiver til å strategisk henføre kostnader (utover de kostnadene som er direkte knyttet til kraftproduksjon) til kraftvirksomheten. Motivet kan være å unndra seg grunnrenteskatt. Den overnevnte reguleringen av hvilke kostnader som er fradragsberettiget i grunnrenteinntekten har som hensikt å motvirke dette, og bidrar til at skattegrunnlaget på en bedre måte treffer grunnrenten. Dette er avgjørende for grunnrenteskattens nøytralitet\(^{15}\).

\(^{13}\)Støtteordningen ble imidlertid ikke etablert slik som forutsatt da bestemmelsen ble gjitt. Det foreligger per dato derfor ingen slik ordning.

\(^{14}\)El-sertifikatorordningen har som formål å bidra til økt produksjon av elektrisitet fra fornybare kilder, og å dermed internalisere positive eksternaliteter ved fornybar kraftproduksjon (eller negative eksternaliteter ved ikke-fornybar kraftproduksjon). En diskusjon omkring el-sertifikater som energipolitiske virkemiddel er utenfor rammen av denne utredningen.

\(^{15}\)Det kan ikke utelukkes at enkelte kostnader relatert til bruk av naturressursen ikke er tatt hensyn til i fradragene i grunnrenteskatten, men en diskusjon omkring dette er utenfor rammen av denne utredningen.
At det ikke gis fradrag for gjeldsrenter i skattegrunnlaget for grunnrenteskatten, har spilt en betydelig rolle i ordskiftet mellom kraftbransjeaktørene og Finansdepartementet. Jf. avsnitt 3.4.1 og 3.4.2, er grunnrenteskatten bygget på en modell for periodisert overskuddsbeskatning, som igjen har sitt opphav i en per definisjon nøytral nåverdiskatt. I nåverdiskatten, skal kun ikke-finansielle kontantstrømmer inngå i beregning av skattegrunnlaget. Det vil derfor ikke være riktig å gi fradrag for gjeldsrenter i grunnrenteskatten.\[16\]

Konsesjonsavgift og eiendomsskatt

Konsesjonsavgift er en årlig inntektsuavhengig avgift betalt av kraftverkseiere. Provenyet fra konsesjonsavgiften fordeles mellom staten og kraftverkets vertkommune(r). I tillegg til å være en måte å la distriktene ta direkte del i verdiskapningen fra vannkraftvirksomheten, er konsesjonsavgiften ment som en kompensasjon for skader og miljømessige inngrep reguleringen og utbyggingen av vassdraget måtte medfore (NVE, 2004, s. 1). På denne måten fungerer konsesjonsavgiften som en korreksjon for en negativ eksternalitet ved vannkraftproduksjon, og kan i denne sammenhengen jf. diskusjonen i avsnitt 3.2.3 sees på som en effektivitetsfremmende skatt. Om vi antar at konsesjonsavgiften korrekt internaliserer den samfunnøkonomiske kostnaden ved eksternaliteten, bør denne avgiften holdes uendret ved eventuelle behov for å gjøre endringer i skattesystemet.

I tillegg til å motta deler av konsesjonsavgiften, har kommuner muligheten til å skrive ut eiendomsskatt på kraftverk. Dette er i dag en skatt de fleste kraftkommuner i Norge benytter seg av (LVK, 2016, s. 13). Både konsesjonsavgift og eiendomsskatt innehører elementer av betaling for bruk av naturressursen, og beskatter på denne måten grunnrenten. De er derfor fradragsberettiget i grunnrenteinnntekten.

Avskrivninger

Alle driftsmidler som skjønnsmessig vurderes som ’knyttet til kraftproduksjon” fører til avskrivningsfradrag i grunnrenteinnntekten (Finansdepartementet, 2017, s. 10-11). Driftsmidler som er særskilde for kraftproduksjon, avskrives i henhold til skatteloven (1999, § 18-6) med lineære avskrivninger. Å velge den avskrivningsmetoden som gir minst avvik mellom skattemessige avskrivninger og reell bedriftsøkonomisk depresiering bidrar til korrekt

\[16\] Dersom kraftskattregimet, i likhet med petroleumskattregimet, hadde tillatt fradrag for gjeldsrenter også i skattegrunnlaget for grunnrenteskatten, ville dette representert en gjeildssubsidie. Selskapet ville i dette tilfellet fått fradrag for rentekostnader med en samlet skattesats på 58,3 prosent (selskapsskatt og grunnrenteskatt), mens investor (långiver) kun ville måtte skatte for 24 prosent (selskapsskatt) av den tilhørende renteinnntekten.

\[17\] Med depresiering menes her både fysisk kapitalslit og økonomisk verdifall.

Driftsmidler som er særskilte for kraftproduksjon, er i skatteloven delt inn i to klasser. De to klassene har ulike avskrivningssatser og skattemessige levetider. Dammer, tunneler, rørgater (unntatt rør) og kraftstasjoner (inkludert atkomsttunneler) avskrives med 1,5 prosent årlig over 67 år. Maskinteknisk utrustning i kraftstasjon, generator, rør, foring i sjakt/tunnel, luker, rister etc. avskrives med 2,5 prosent årlig over 40 år\(^\text{18}\). Øvrige driftsmidler i kraftproduksjonen vil avskrives etter de ordinære saldoavskrivningsreglene. En spørreundersøkelse i rapport fra Statistisk Sentralbyrå (Barth, Cappelen, Skjerpen, Todsen, & Åbyholm, 2015, s. 40) viser at de skattemessige levetidene til de to førstnevnte driftsmiddelklassene treffer svært godt på respondentenes oppfattelse av reelt teknisk kapitalslit og økonomisk verdifall. Merk at andre utredninger\(^\text{19}\) beskriver enkelte driftsmidler i kraftsektoren som potensielt kan ha tilnærmet konstant produktivitet over store deler av sin levetid. Dette gjelder særlig dammer og tunneler. Den økonomiske markedsverdien til disse driftsmidlene vil vise lite endring for deres levetid nærmer seg slutten. Dette skulle tale for progressive avskrivninger\(^\text{20}\). Det skal likevel nevnes at lineære avskrivninger er en bedre tilnærmning til depresieringsprofilen til disse driftsmidlene enn saldoavskrivninger.

\textit{Friinntekt}

Friinntekt er i henhold til skatteloven (1999, § 18-3) et fradrag i grunnrenteinntekten som er inkludert for å skjerme normalavkastning\(^\text{21}\) fra grunnrentebeskattning. Friinntekten beregnes på grunnlag av en normert normalavkastning (friinntektsrente) på realkapitalen, multiplisert med den gjenværende skattemessig bokførte realkapitalen. Verdien på den skattemessig bokførte realkapitalen beregnes som årsavgjennomsnittet av de skattemessige verdier av driftsmidlene, og alle driftsmidler som skjønnsmessig vurderes som ”knyttet til kraftproduksjonen” inn går i dette beregningsgrunnlaget.

\(^{18}\) Et unntak er ved hjemfall av kraftverket til staten etter et bestemt antall år. Driftsmidlene avskrives fortsatt lineært, men avskrivningssatsene skal være tilstrekkelig høye til at driftsmidlene er ferdig avskrevet før hjemfallet.

\(^{19}\) Norges offentlige utredninger, nr. 34, om skatt på kraftselskap og Norges offentlige utredninger, nr. 13, om kapitalbeskatning i en internasjonal økonomi.

\(^{20}\) Det vil si avskrivninger som øker over driftsmiddelets levetid.

\(^{21}\) Se avsnitt 3.4.2 for en forklaring på hva normalavkastning og skjerming av sådan er.
Hvorvidt normrenten som benyttes til å beregne friinntekten er et godt mål på investorenes alternative kapitalavkastning (normalavkastningen), er avgjørende for om grunnrenteskatten oppfyller kravet til nøytral skattlegging. Jf. avsnitt 3.6, er risikofri rente den relevante normalavkastningen, gitt at skattesystemet er utformet i tråd med teorien diskutert i avsnitt 3.4 og 3.5, at positive og negative overskudd behandles symmetrisk, og at skatteyter med sikkerhet får utnyttet den fulle verdien av alle skattefradrag i grunnrenteskatten før eller senere.

Friinntektsrenten bestemmes årlig i henhold til FSFIN § 18-8-3 første punktum som års gjennomsnittet av renten på statskassesevksler med 12 måneders gjenstående løpetid. For inntektsåret 2016, var denne renten i henhold til Vedtak om renter for kraftforetak 2016 (2017) på 0,5 prosent. Rasjonalet bak bruk av renten på 12 måneders statskassesevksler til fastsetting av friinntektsrenten er det følgende: For at grunnrenteskatten skal beholde sine gunstige nøytrale egenskaper, må friinntektsrenten til enhver tid reflektere markedets vurdering av den alternative avkastningen av å binde kapital risikofritt (Dokument nr. 15: 1132 (2015-2016)). Friinntektsrenten må altså være en observerbar markedsbasert størrelse uten noen form for risikopåslag. Statspapirer med løpetid lenger enn ett år, inneholder en viss grad av kompensasjon for risiko knyttet til usikkerhet omkring fremtidig inflasjon (THEMA, 2013). Friinntektsrenten skal i henhold til teorien ikke inneholde noen form for risikokompensasjon. Markedsbasert friinntektsrente og (teoretisk riktig) diskonteringsrente for skattefradrag i utformingen av kraftskatteregimet er derfor basert på 12 måneders statskassesevksler.

Fastsetting av friinntektsrenten har vært et kontroversielt tema i ordskiftet mellom kraftbransjeaktører og Finansdepartementet. Merk at det overnevnte rasjonalet bak bruk av renten på 12 måneders statskassesevksler impliserer at man, i følge teorien, også antar at investorer i vannkraftsektoren vil legge denne kortsiktige renten til grunn for diskontering av sikre kontantstrømmer. I vannkraftinvesteringer kan disse kontantstrømmene være så mye som 50-80 år frem i tid. En diskusjon omkring hvorvidt en investor i vannkraftsektoren vil benytte denne risikofrie renten til diskontering av skattefradrag i realiteten, følger i avsnitt 7.3 og 7.4.

Fremført negativ grunnrenteinntekt oppstått før 2007

I 2007 ble det vedtatt en endring i behandlingen av negativ grunnrenteinntekt. Før 2007 var regelen at dersom grunnrenteinntekten skulle bli en negativ verdi, kunne denne fremføres med renter, og trekkes fra i positive skattegrunnlag i påfølgende år. Finansminister Siv Jensen uttalte seg i 2016 om friinntekten i kraftsektoren. Hun mener at det på grunn av regelen for

Negativ grunnrenteinnntekt fra andre kraftverk

4.3 Kapitteloppsummering

Kapittel 4 har vurdert hvorvidt dagens skatteregler i kraftskatteregimet samsvarer med teoretiske retningslinjer for nøytral beskatning diskutert i kapittel 3. Oppsummeringsvis henvises det til kriteriene for en nøytralt utformet grunnrenteskatt listet i avsnitt 3.8. Følgende kriterier er oppfylt i dagens kraftskatteregler:

22 For en oversikt over endringer i skattereglene for vannkraft, henvises det til Vedlegg C.
- Positive og negative overskudd behandles symmetrisk, og det gis direkte utbetalinger av skatteverdien av (verksamordnet) negativ grunnrenteinntekt.

- Realiserte kapitalgevinster (eller –tap) inngår i skattegrunnlaget.

- Avskrivninger er utformet for å samsvare godt med reell økonomisk depresiering.

- Det gis fradrag for finansiell alternativkostnad på bundet kapital gjennom en friinntekt. Friinntektsrenten er en risikofri rente før skatt (uten noen form for risikopåslag), og beregningsgrunnlaget for friinntekt er skattemessig nedskrevet verdi av driftsmidlene. Skattemessig nedskrevet verdi av driftsmidlene antas å samsvare godt med reell bedriftsøkonomisk verdi av driftsmidlene, jf. forrige punkt om avskrivninger.

- Skattegrunnlaget for grunnrenteinntekten kan ikke samordnes med skattegrunnlag fra andre virksomheter enn vannkraftvirksomhet.

- Hvilke kostnader som er fradragsberettiget i grunnrenteinntekten, er regulert ved lov.

Merk at kriteriet om at skattesatser skal være konstante over tid ikke er oppfylt. Skattesatsene for ordinær selskapsskatt og grunnrenteskatt er endret årlig de siste to år, og ytterligere endringer er i henhold til Scheel-utvalgets arbeid forventet de neste par årene (NOU 2014:13, 2014). Det er også gjennomført flere endringer i definisjonen av friinntekten de siste 20 årene. For en oversikt over endringer i skattesatser, friinntekten og øvrige elementer i grunnrenteskatten, henvises det til Vedlegg C.
5. Metode for beregning av marginale realavkastningskrav

Et nøytralt skattesystem tilsier at alle investeringer som er lønnsomme (ulønnsomme) før skatt, også skal være lønnsomme (ulønnsomme) etter skatt. For å kunne si noe om hvordan skattesystemet påvirker investeringsinsentiver, må vi undersøke hvordan skattesystemet påvirker investeringer som er lønnsomme på marginen.

5.1 forklarer hva marginale realavkastningskrav kan fortelle oss om et skatteregimes grad av nøytralitet. 5.2 vil vise utledningen av modellen. 5.3 tar for seg de forutsetninger og antakelser som legges til grunn for videre bruk av modellen. 5.4 vil vise hvordan modellen kan tilpasses til de særlige regler og hensyn som finnes i vannkraftsektoren. 5.5 finner beslutningsgrunnlaget vi behøver for å kunne si om kraftskatteregimet virker nøytralt på investeringsbeslutninger. 5.6 gir en kort oppsummering av kapittelet.

5.1 Marginale realavkastningskrav

Med utgangspunkt i det marginale realavkastningskravet, kan man ikke si noe om gjennomsnittlig avkastning i næringsutviklingen. Den samfunnsøkonomiske lønnsomheten ved vannkraftproduksjon kan være høy selv om marginalt realavkastningskrav er lavt. Lavt marginale realavkastningskrav forteller oss imidlertid at den samfunnsøkonomiske lønnsomheten ikke nødvendigvis behøver å være høy for at en vannkraftinvestering skal være bedriftsøkonomisk lønnsom.

5.2 Utledning av metode for beregning av marginale realavkastningskrav

Utledningen av modellen for beregning av marginale realavkastningskrav er inspirert av Vedlegg 4 i Norges offentlige utredninger, nr. 18, om skattlegging av petroleum. Vi tar utgangspunkt i en skatteytende investor som investerer i et driftsmiddel. Dersom driftsmiddelet gir en avkastning etter skatt som er lik hans kapitalkostnad, vil det anses som en *marginal investering* i den forstand at den akkurat tilfredsstiller hans lønnsomhetskriterier etter skatt. En slik investering vil investor ønske å gjennomføre. Dersom driftsmiddelet gir en lavere
avkastning, vil investeringen ikke bli gjennomført. I det følgende, vil driftsmiddelet omtales som realkapital.

\[\Omega = \text{reell årlig tjenestestrøm fra realkapitale} \text{n minus løpende driftskostnader} \]
\[\delta = \text{årlig geometrisk depresieringsrate på realkapitalen} \]
\[\pi = \text{årlig inflasjonsrate} \]
\[\tau = \text{ordinær selskapsskattesats} \]
\[V = \text{nåverdi i år 0 av investeringen} \]
\[\rho = \text{investors nominelle avkastningkrav til totalkapitalen etter skatt} \]
\[T = \text{investeringens løpetid} \]
\[U = \text{nåverdi i år 0 av redusert skatt} \]

Pris per realkapitalehelgen er 1 kr. Ved begynnelsen av år 0 (slutten av år -1) investeres det altså 1 kr. Ved utgangen av hvert år, første gang i år 0, mottar investor en konstant årlig bruttoavkastning per kapitalenhet, \(\Omega \). \(\Omega \) er den reelle tjenestestrømmen fra realkapitalen etter fradrag for løpende driftskostnader, men før fradrag for finanskostnader og depresiering. Realkapitalen utsettes for årlig depresiering i form av kapitalslit, og tjenestestrømmen vil dermed reduseres over tid. Depresieringsprofilen antas å være geometrisk, slik at tjenestestrømmen i slutten av hvert år faller med en konstant rate \(\delta \). Vi antar at depresieringen starter umiddelbart etter at produksjon fra realkapitalen er materialisert. Realverdien av bruttoavkastningen i år \(t \) er da \(\Omega \times (1 - \delta)^t \). Videre antar vi at kraftprisen stiger i takt med generell inflasjonsrate \(\pi \). Den nominelle verdien av bruttoavkastningen i år \(t \) er da \(\Omega \times (1 - \delta)^t \times (1 + \pi)^{t+1} \).

Den vannkraftproduserende bedriften er gjenstand for ordinær selskapsbeskatning med skattesats \(\tau \). I skattepliktig overskudd inngår den nominelle bruttoavkastningen, finansielle inntekter og utgifter, skattemessige avskrivninger, og gevinst (eller tap) ved realisasjon av driftsmidlet. I tillegg kan skattesystemet inneholde inntektsuavhengige skatter eller tilskudd.

23 Dette er en antakelse som kan kritisieres, men en diskusjon omkring en realistisk vekstrate i kraft pris er utenfor rammene av denne utredningen.
Nåverdien av investeringen beregnes ved å summere de diskonterte kontantstrømmene fra realkapitalen over vannkraftprosjektets løpetid (år 0 til år T):

(1) \[V = (1 - \tau) \sum_{t=0}^{T-1} \frac{\Omega (1 - \delta)^t (1 + \pi)^{t+1}}{(1 + \rho)^{t+1}} + U \]

\[= (1 - \tau) \Omega \frac{1 + \pi}{1 + \rho} \sum_{t=0}^{T-1} \left(\frac{(1 - \delta) (1 + \pi)^t}{(1 + \rho)^t} \right) + U \]

\[= (1 - \tau) \Omega \frac{1 + \pi}{\rho - \pi + \delta (1 + \pi)} \left\{ 1 - \left(\frac{(1 - \delta) (1 + \pi)^T}{(1 + \rho)^T} \right) \right\} + U \]

I uttrykket ovenfor, er det første leddet nåverdien i år 0 av bruttoavkastningen fra år 0 til T, uttrykt som en endelig voksende annuitet. Det andre leddet, U, er nåverdien i år 0 av redusert skatt som følge av fradrag i (eller tillegg til) skattepliktig overskudd, i tillegg til inntektsuavhengige skatter (eller tilskudd) som følger av investeringen.

Bedriftens mål er å maksimere sin markedsverdi, og den vil tilpasse sin investeringsadferd deretter. Bedriften vil derfor gjennomføre investeringer i et slikt omfang at nåverdien av kontantstrømmen etter skatt som følge av siste investerte krone er lik investeringskostnaden på én krone, det vil si inntil $V = 1$. Dette medfører at bedriften vil gjennomføre alle marginalt (og inframarginalt) lønnsomme investeringer. Vi setter inn $V = 1$ i (1), og løser for Ω. Vi får da følgende uttrykk for det marginale realavkastningskravet m, definert som differansen mellom bruttoavkastningen før skatt Ω og depresieringsraten δ:

(2) \[m \equiv \Omega - \delta \]

\[= \frac{(1 - U) [\rho - \pi + \delta (1 + \pi)]}{(1 - \tau) (1 + \pi)} \left\{ \frac{(1 + \rho)^T}{(1 + \rho)^T - [(1 - \delta) (1 + \pi)^T]} \right\} - \delta \]

Hvis realrente før skatt er positiv, vil uttrykket i klammeparentesen i (2) gå mot én når T går mot uendelig\(^{24}\). Det vil si når driftsmidlet beholdes til det er nedslitt, vil m gå mot

(2') \[m \equiv \Omega - \delta = \frac{(1 - U) [\rho - \pi + \delta (1 + \pi)]}{(1 - \tau) (1 + \pi)} - \delta \]

\(^{24}\) Konvergens krever at $\pi < \delta * (1 + \pi)$. En tilstrekkelig, men ikke nødvendig, betingelse for for dette er at den reelle diskonteringsrenten etter skatt $(\rho - \pi)/(1 + \pi)$ er positiv.
I et scenario med fravær av skatter, er både τ og U i (2') lik null. ρ ville da representert en nominell (før-skatt) rente. Det marginale realavkastningskravet m (før skatt) ville da simpelt hen være lik realrenten $(\rho - \pi)/(1 + \pi)$, det vil si ρ justert for inflasjon.

For de fleste næringer i Norge, vil de vanligste elementene i U være nåverdi av redusert skatt som følge av skattemessige avskrivninger, renteutgifter mv. Vi kan se fra uttrykket i (2') at jo høyere verdi U har, desto lavere vil det marginale realavkastningskravet før skatt bli. Størrelsen $(1 - U)$ kan tolkes som brukerprisen eller kjøpsprisen per realkapitalenhet etter skatt. Dersom skattesystemet gir subsidier som er høyere enn den gitte markedsprisen på realkapitalen, vil U bli større enn 1. Brukerprisen på realkapital $(1 - U)$ blir da negativ, og det marginale realavkastningskravet før skatt blir negativ. Dette kan tolkes som om at investeringen kan ha negativ lønnsomhet (være ulønnsom) før skatt, men fortsatt være marginalt lønnsom etter skatt. Dette bryter med kriterier for nøytral beskatning.

5.3 Forutsetninger og antakelser

I beregningene må det gjøres en rekke forutsetninger knyttet til verdiene på parameterne som inngår i modellen, samt om metoden som benyttes i analysen. Bakgrunnen for valg av disse diskuteres nærmere i Vedlegg A. Under presenteres forutsetningene som er valgt for det vi kaller basistilfellet. Basistilfellet beskriver et scenario som ligger nært opp til den atferd kraftproduserende selskaper viser i virkeligheten, der de i sine investeringskalkyler diskonterer alle kontantstrømmer fra en investering med et felles avkastningskrav til totalkapitalen. Endringer i forutsetningene vil bli presentert fortløpende etter hvert som de benyttes. Alle parametre oppgis i årlige størrelser, og forutsettes å være konstante over kraftprosjektets levetid med mindre annet er spesifisert.

Investeringsprosjektet er representert ved et modellkraftverk. I utgangspunktet vil investeringsprosjektet betraktes fra en kraftinvestors perspektiv. Vi vurderer dermed ulike skattemessige mekanismers *totaleffekt på investor*, og ikke på kraftselskapet som isolert enhet. Dette impliserer at verdsettelsen av prosjektet ikke vil påvirkes av hvordan det er finansiert. Gjeldsrenter er fradragsberettiget i skattegrunnlaget for ordinær selskapsskatt, og representerer dermed et skatteskjold for selskapet. Dette rentefradraget har imidlertid et motstykke ved
beskatning av renteinntekten hos långiver (investor).25 Virkningen av rentefradraget i selskapsskatten vil av denne grunn ikke inkluderes i beregningen av marginale realavkastningskrav. Denne antakelsen blir utfordret i Vedlegg E, der vi undersøker effekten av å betrakte investeringen fra kraftselskapets perspektiv som isolert enhet. I det følgende vil betegnelsen kraftinvestor og kraftselskap benyttes om hverandre.

\textit{Forutsetninger}

i. Investeringsobjektet er et storskala kraftverk, dvs. et kraftverk med påstemplet merkeytelse over 10 000 kVA.

ii. Investeringskostnaden \((I)\) er normalisert til 1 kr.

iii. Hele investeringen foretas i starten av år 0.

iv. Investeringsprosjektet har en økonomisk løpetid \((T)\) på 67 år.

v. Kraftverket vil generere inntekter fra og med starten av år 1.

vi. Kraftinvestor vil være i skatteposisjon fra år 1 og ut prosjektets løpetid, og får utnyttet den fulle verdien av skattefradragene i hver periode.

viii. Investeringen består utelukkende av byggeteknisk utstyr (dammer, tunneler, rørgater og kraftstasjoner), maskinteknisk utstyr (generatorer, rør etc.) og elektroteknisk utstyr. Disse tilhører henholdsvis kraftspesifikk lineær avskrivningsgruppe med skattemessig levetid på 67 år (heretter kalt lineær gruppe a), kraftspesifikk lineær avskrivningsgruppe med skattemessig levetid på 40 år (heretter kalt lineær gruppe b) og saldoavskrivningsgruppe g. En oversikt over hvordan investeringskostnaden fordeler seg på disse gruppen, og deres respektive avskrivningssatser finnes i tabell 5.1.

ix. Alle driftsmidler holdes ut sin økonomiske levetid, og vi antar at ingen reinvestering i driftsmidler i løpet av prosjektets løpetid vil finne sted.

x. Kraftverkets produksjon vil falle med samme rate som bedriftsøkonomisk depresiering \((\delta)\). Formuesverdien til kraftverket antas å følge samme profil.

xi. Ser bort fra alle andre aktiviteter kraftprodusenten måtte ha utenfor dette prosjektet.

25 Virkningen av fradrag for gjeldsrenter i grunnrenteinntekten er diskutert i avsnitt 4.2. En eventuell gjeldssubsidie ville representert et tilskudd til selskapet som følge av investeringen, og ville inngått som et element i \(U\) i likning \((2^\ast)\).
xii. Ser bort fra muligheten for hjemfall før slutten av prosjektets løpetid.
xiii. Ser bort fra alle transaksjonskostnader, kostnader ved opphør av prosjektet, og realisasjonsverdien av driftsmidlene ved slutten av prosjektets løpetid.
xiv. Ser bort fra naturressursskatten\(^{26}\).
xv. Satsene for ordinær selskapsskatt og grunnrenteskatt holdes konstante over prosjektets levetid.

Tabell 5.1 - Avskrivningsgrupper med tilhørende avskrivningssatser og andel av investeringskostnad

<table>
<thead>
<tr>
<th>Avskrivningssats</th>
<th>Fordeling av investeringskostnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineært over 67 år</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Lineært over 40 år</td>
<td>2,5 %</td>
</tr>
<tr>
<td>Saldogruppe g</td>
<td>5 %</td>
</tr>
</tbody>
</table>

Parametere

i. Sats for ordinær selskapsskatt \((\tau)\) er 24 prosent.

ii. Sats for grunnrenteskatten \((\tau_s)\) er 34,3 prosent.

iii. Inflasjon \((\pi)\) er 2 prosent per år.

iv. Depresieringsraten \((\delta)\) representerer reelt bedriftsøkonomisk verdifall og kapitalslit, og settes til 4 prosent.

v. Risikofri rente \((r_f)\) representeres ved renten på statskasseveksler med 12 måneders gjenstående løpetid, og settes til 0,5 prosent nominelt før skatt i år 0. Påfølgende år følger den renteutviklingen i tabell A.2 i Vedlegg A.

vi. Friinntektsrenten \((f)\) tilsvarer renten på statskasseveksler med 12 måneders gjenstående løpetid, og settes til 0,5 prosent i år 0. Påfølgende år følger den nullkupongrentekurven i tabell A.2 i Vedlegg A.

vii. Årlig konsesjonsavgift \((k)\) tilsvarer 0,02 prosent av investeringskostnaden \((I)\) i år 0.

viii. Eiendomsskatten \((e)\) tilsvarer 0,3 prosent av investeringskostnaden \((I)\) i år 0.

\(^{26}\) Naturressursskatten er fradragsberettiget krone for krone i ordinær selskapsskatt, og fungerer isolert sett dermed kun som en overføring av skatteproveny fra stat til kommune.
ix. Kraftinvestors nominelle avkastningskrav til totalkapitalen etter skatt \((\rho)\) er 6,8 prosent. Denne forutsettes å være konstant over prosjektets løpetid, uavhengig av endringer i risikofri rente.

Tabell 5.2 - Nominell og reell kapitalkostnad (avkastningskrav) før og etter skatt

<table>
<thead>
<tr>
<th></th>
<th>Nominelt</th>
<th>Reelt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Før skatt</td>
<td>(\rho_{NF} = 8,95%)^27</td>
<td>(\rho_{RF} = 6,81%)^28</td>
</tr>
<tr>
<td>Etter skatt</td>
<td>(\rho = 6,80%)</td>
<td>(\rho_{RE} = 4,71%)^29</td>
</tr>
</tbody>
</table>

5.4 Tilpasning av modellen til kraftskattesystemet

I dette avsnittet presenteres hvordan modellen for beregning av marginale realkostningskrav kan tilpasses særreglene i kraftskatteregimet. Særreglene vil ha innvirkning på verdien av \(U\) i likning \((2')\). De særreglene som vil være av betydning, er de særskilte avskrivningsreglene for kraftspesifikke driftsmidler, fradraget for friinntekt, konsesjonsavgiften og eiendomsskatten. Vi beregner effekten av hver av disse som delelementer i den totale \(U\). Jf. basistilfellet beskrevet i avsnitt 5.3, gjentar vi antakelsen om at kraftinvestor diskonterer alle kontantsstrømmer, inkludert skattefradrag, med selskapets nominelle avkastningskrav til totalkapitalen etter skatt \(\rho\). Da vi diskonterer med et nominelt avkastningskrav, skal også kontantsstrømmer uttrykkes i nominelle termer.

27 Formelen for beregning av denne er \(\rho_{NF} = \rho/(1 - \tau)\).
28 Formelen for beregning av denne er \(\rho_{RF} = (\rho_{NF} - \pi)/(1 + \pi)\).
29 Formelen for beregning av denne er \(\rho_{RE} = (\rho - \pi)/(1 + \pi)\).
Med utgangspunkt i likning (2'), sier vi nå at den samlede skattesatsen består av ordinær selskapsskattesats τ og grunnrenteskattesats τ_s. Gitt at driftsmidlene holdes ut levetiden, kan vi da skrive formelen for beregning av marginale realavkastningskrav i kraftskatteregimet som:

\[
(3) \quad m = \frac{(1 - U) \cdot [\rho - \pi + \delta \cdot (1 + \pi)]}{(1 - \tau - \tau_s) \cdot (1 + \pi)} - \delta
\]

hvor U er summen av alle delelementene som vil bli presentert i likning (4)-(11).

5.4.1 Avskrivninger

De tre klassene av driftsmidler som er relevante for kraftprosjektet ble presentert i tabell 5.1. Avskrivningene er fradragsberettiget i skattegrunnlaget for både ordinær selskapsskatt og grunnrenteskatt. Merk at avskrivninger er basert på historisk kostpris på driftsmidlene, og forblir upåvirket av inflasjon. Avskrivningene behøver derfor ikke inflasjonsjusteres, da de er uttrykt i nominelle termer.

I det følgende er U_{Ai}, hvor $i = a, b, g$, nåverdien av redusert skatt som følge av fradrag for avskrivninger av gruppe i. A_{it} er avskrivning i år t.

Kraftspesifikke lineære avskrivninger av gruppe a:

\[
(4) \quad U_{Aa} = \sum_{t=1}^{67} \frac{(\tau + \tau_s) \cdot A_{at}}{(1 + \rho)^t}, \quad \text{hvor } A_{at} = I \cdot 0,55 \cdot 0,015
\]

Driftsmidlene i denne gruppen vil være ferdig avskrevet samme år som prosjektslutt.

Kraftspesifikke lineære avskrivninger av gruppe b:

\[
(5) \quad U_{Ab} = \sum_{t=1}^{40} \frac{(\tau + \tau_s) \cdot A_{bt}}{(1 + \rho)^t}, \quad \text{hvor } A_{bt} = I \cdot 0,35 \cdot 0,025
\]

Driftsmidlene i denne gruppen vil være ferdig avskrevet etter 40 år. For enkelhets skyld, antas det likevel at de fortsatt vil holdes i selskapet frem til prosjektslutt, og at de ikke selges eller skiftes ut selv om de passerer sin skattemessige levetid.
Saldoavskrivninger av saldogruppe g:

\[U_{Ag} = \sum_{t=1}^{67} \frac{(\tau + \tau_s) * A_{gt}}{(1 + \rho)^t}, \]

hvor \(A_{gt} = I * 0,1 * (1 - 0,05)^{t-1} * 0,05 \)

Driftsmidler i denne gruppen avskrives geometrisk over uendelig tid, men vil i praksis ha en svært lav restverdi ved prosjektslutt. Vi antar dermed at de simpelthen skrotes ved prosjektslutt.

5.4.2 Friinntekt

Friinntekten er fradragsserettet kun i grunnrenteskatten. Jf. avsnitt 4.2, beregnes årlig friinntekt som skattemessig nedskrevet verdi av driftsmidlene multiplisert med årets friinntektsrente. Skattemessig nedskrevet verdi av driftsmidlene beregnes som gjennomsnittet av verdi 1.januar og 31.desember i inntektsåret. Da driftsmidlene er delt i grupper med ulike avskrivningsprofiler, deler vi beregningen av friinntekten i de samme tre gruppene. På samme måte som avskrivningene, er friinntekten basert på historisk kostpris for driftsmidlene. Det er derfor ikke nødvendig å inflasjonsjustere friinntekten.

I det følgende er \(U_{Fi} \), hvor \(i = a, b, g \), er nåverdien av redusert skatt som følge av fradrag for avskrivninger av gruppe \(i \). \(F_{it} \) er friinntekt i år \(t \).

Friinntekt relatert til driftsmidler av lineær gruppe a:

\[U_{Fa} = \sum_{t=1}^{67} \frac{\tau_s * F_{at}}{(1 + \rho)^t}, \]

hvor \(F_{at} = I * 0,55 * \frac{[1 - 0,015 * (t - 1)] + (1 - 0,015 * t)}{2} * f \)

Friinntekt relatert til driftsmidler av lineær gruppe b:

\[U_{Fb} = \sum_{t=1}^{40} \frac{\tau_s * F_{bt}}{(1 + \rho)^t}, \]

hvor \(F_{bt} = I * 0,35 * \frac{[1 - 0,025 * (t - 1)] + (1 - 0,025 * t)}{2} * f \)

Friinntekt relatert til driftsmidler av saldogruppe g:

\[U_{Fg} = \sum_{t=1}^{67} \frac{\tau_s * F_{gt}}{(1 + \rho)^t}, \]

hvor \(F_{gt} = I * 0,1 * \frac{(1 - 0,05)^{t-1} + (1 - 0,05)^{t}}{2} * f \)
5.4.3 Konsesjonsavgift og eiendomsskatt

Konsesjonsavgift og eiendomsskatt skal inngå i den totale U, da de er henholdsvis en inntektsuavhengig avgift og en tilleggsskatt basert på kraftverkets formuesverdi. Nettoeffekten av konsesjonsavgift og eiendomsskatt på den totale U vil være negativ. Kraftselskaper må betale konsesjonsavgift og eiendomsskatt, i tillegg til å få fradrag for dem i skattegrunnlaget for både ordinær selskapsskatt og grunnrenteskatt. Parentesen $(1 - \tau - \tau_s)$ i likning (10) og (11) representerer dette.

I modellen for beregning av marginale realavkastningskrav, unngår vi å gjøre antakelser om kraftprosjektets inntektsprofil eller kraftgrunnlag. Da disse danner utgangspunkt for beregning av skattegrunnlaget for konsesjonsavgiften og eiendomsskatten, er det nødvendig å gjøre noen forenklinger for å kunne inkludere disse som elementer i U. Korrekt beregningsmåte i henhold til Skatteloven, og forenklet mål på skatten eller avgiften i hensikt denne utredningens analyse, vises i tabell 5.3 og tabell 5.4. Nærmere forklaring av tilnæringsmåten finnes i Vedlegg A.

Konsesjonsavgift

Tabell 5.3 - Praksis og tilnæringsmåte for beregning av konsesjonsavgift

<table>
<thead>
<tr>
<th>Praksis i henhold til Skatteloven</th>
<th>Konsesjonsavgiften beregnes som $Kraft\text{grunnlag} \times avgiftssats$.(^{30})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellens tilnæringsmåte</td>
<td>Årlig konsesjonsavgift tilsvarer 0,02 % av investeringskostnaden. Denne justeres for inflasjon hvert 5.år.</td>
</tr>
</tbody>
</table>

\[
(10) \quad U_K = -(1 - \tau - \tau_s) \cdot k \cdot \left(\sum_{t=1}^{5} \frac{1}{(1 + \rho)^t} + \sum_{t=6}^{10} \frac{(1 + \pi)^6}{(1 + \rho)^t} + \cdots + \sum_{t=66}^{67} \frac{(1 + \pi)^{56}}{(1 + \rho)^t} \right),
\]

hvor $k = I \times 0,0002$

\(^{30}\) Avgiftssatsen bestemmes av NVE, og indeksreguleres hvert 5. år. Kraftgrunnlaget for det enkelte kraftverk beregnes som $\text{naturhestekrefter} \times 13,33$, der 13,33 er en konstant. Naturhestekrefter er beregnet som $\text{regulert vannføring} \times \text{fallhøyde}$, der regulert vannføring er uttrykt i m^3 per sekund.
53

Eiendomsskatt

Tabell 5.4 - Praksis og tilnærtingsmåte for beregning av eiendomsskatt

<table>
<thead>
<tr>
<th>Praksis i henhold til Skatteloven</th>
<th>Eiendomsskatten beregnes som $Kraftverkets\ formuesverdi \times skattesats$.(^{31})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellens tilnærningsmåte</td>
<td>Årlig eiendomsskatt tilsvarer 0,3 % av investeringskostnaden. Da formuesverdi antas å være fallende over tid(^{32}), nedjusteres eiendomsskatten årlig med depresieringsraten. Det inflasjonsjusteres også årlig for å uttrykke skattebelastningen i nominelle termer.</td>
</tr>
</tbody>
</table>

\[
U_E = - \sum_{t=1}^{67} \frac{(1 - \tau - \tau_c) \times e \times (1 - \delta)^t \times (1 + \pi)^t}{(1 + \rho)^t}, \quad \text{hvor } e = I \times 0,003
\]

5.5 Nøytralitetsterskelen - Marginalt realavkastningskrav og nåverdi av redusert skatt i et nøytralt skattesystem

I dette avsnittet, vil vi beregne hva nåverdien av redusert skatt U og marginalt realavkastningskrav før skatt m vil være i et nøytralt skattesystem. Formelen for beregning av marginale realavkastningskrav er, som tidligere nevnt, gitt ved:

\[
m = \frac{(1 - U) \times [\rho - \pi + \delta \times (1 + \pi)]}{(1 - \tau - \tau_c) \times (1 + \pi)} - \delta
\]

La ** betegne verdier i et skattesystem som er nøytralt i streng forstand, som vil si at skattebelastning ikke reduserer investorers avkastning i det hele tatt. U^{**} vil være lik den samlede skattesatsen (det vil si 58,3 prosent av I, som er lik 0,583). Ved innsetting av $U^{**} =$

\(^{31}\) Skattesats for eiendomsskatten bestemmes av vertskommunen, men må ligge i intervalliet 0,2-0,7 prosent. Kraftverkets formuesverdi beregnes som nåverdien over uendelig tid av et rullende gjennomsnitt av de siste 5 års (inkludert inntektsåret) normerte salgsinntekter fratrukket driftskostnader, eiendomsskatt og grunnrenteskatt, samt nåverdien av fremtidige kostnader til utskifting av driftsmidler. Produksjonen verdsettes til spotmarkedspriser, med unntak av konsesjonskraft som verdsettes til konsesjonskraftpris. I beregning av formuesverdien, benyttes en diskonteringsrente bestemt av NVE på 4,5 prosent. Dividert på kraftverkets gjennomsnittlige produksjon over de siste sju år (inkludert inntektsåret), skal imidlertid formuesverdien til kraftverket falle innenfor intervallet 0,95-2,74 kr/kWh. Dersom formuesverdi per kWh faller utenfor dette intervallet, er det minimums- eller maksimumsverdi i intervallet som er gjeldende som skattegrunnlag.

\(^{32}\) Jf. forutsetning x. i avsnitt 5.3.
\[0,583, \tau = 24 \text{ prosent og } \tau_s = 34,3 \text{ prosent i (3), reduseres likningen til:}\]

\[(3') \quad m^{**} = \frac{\rho - \pi}{1 + \pi}\]

Høyresiden av likningen er simpelthen formelen for omgjøring av en nominell rente til en reell rente. Det vil si at i et skattesystem som er nøytralt i streng forstand, vil marginalt realavkastningskrav før skatt \(m\) være lik investors reelle avkastningskrav før skatt \(\rho_{RE} = 4,71\) prosent.

Jf. avsnitt 5.3, skal investors avkastningskrav reflektere den avkastning pengeplasseringen alternativt kunne oppnådd i en annen næring med samme systematiske risiko som vannkraft. I realiteten vil avkastningen i alternative næringer bli beskattet med ordinær selskapsskatt. Vi kaller et skattesystem der alle næringer ilegges ordinær selskapsskatt, og som har nøytral grunnrentebeskatning, for nøytralt. La * betegne verdier i et slikt skattesystem. Det marginale realavkastningskravet før skatt \(m^*\) må da tils bare investors reelle avkastningskrav før skatt for at kraftprosjektet fortsatt skal være marginalt lønnsomt. Det vil si at \(m^* = \rho_{RE} = 6,81\) prosent.

Ut fra dette, kan vi ved hjelp av forutsetningene i avsnitt 5.3, utlede av (3) at \(U^*\) må være omtrent lik 0,483 i et nøytralt skattesystem.

I videre beregninger, vil \(m^* = 6,81\) prosent og \(U^* = 0,483\) bli betegnet som \textit{nøytralitetsterskelen}. Dersom våre beregninger gir oss \(m < m^*\) og \(U > U^*\), er skattesystemet subsidierende. Det vil si at investeringer som er ulønnsomme før skatt, kan bli lønnsomme etter skatt. Dersom vi får \(m > m^*\) og \(U < U^*\), er skattesystemet overbeskattende, og investeringer som er lønnsomme før skatt kan bli lønnsomme etter skatt. \(m = m^*\) og \(U = U^*\) indikerer at skattesystemet er nøytralt ovenfor investeringsbeslutninger.

5.6 Kapitteloppsummering

I dette kapittelet, har vi utledet en modell for beregning av marginale realavkastningskrav, og tilpasset denne til de særlige hensyn som finnes i kraftskatteregimet. Det marginale realavkastningskrav er den minste årlige avkastningen en investering må gi før skatt, for at investeringen fortsatt skal være marginalt lønnsomt etter skatt. Det kan derfor gi oss informasjon om hvor innbringende en vannkraftinvestering må være før at en investor skal velge å plassere sine penger i vannkraft, heller enn å velge bort vannkraft til fordel for andre virksomheter med tilsvarende systematisk risiko.
Videre i utredningen, vil marginalt realavkastningskrav m og nåverdi av redusert skatt U beregnes for et modellkraftverk som er underlagt dagens kraftskatteregegl. Vi behøver da et sammenlikningsgrunnlag for å kunne avgjøre hvorvidt skattereglene virker nøytralt på investeringsbeslutninger. Dette er gjort i avsnitt 5.5, der verdier for marginalt realavkastningskrav m^* og nåverdi av redusert skatt U^* i et nøytralt skattesystem er funnet. Vi kaller disse verdiene for nøytralitetsterskelen, og vil benytte disse som sammenlikningsgrunnlag i det følgende. Verdiene for nøytralitetsterskelen er oppsummert i tabell 5.5.

Tabell 5.5 - Verdier av marginalt realavkastningskrav og nåverdi av redusert skatt i et nøytralt skattesystem (nøytralitetsterskelen)

<table>
<thead>
<tr>
<th>Nøytralitetsterskel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m^*</td>
<td>6,81 % reelt før skatt</td>
</tr>
<tr>
<td>U^*</td>
<td>0,483</td>
</tr>
</tbody>
</table>
6. Analyse og resultater

6.1 vil vise resultatene fra beregninger ved bruk av standard NNV. 6.2 vil vise resultatene fra beregninger ved bruk av delkontantstrømsdiskontering. 6.3 viser en sensitivitetsanalyse på de forutsetningene som anses som mest usikre. 6.4 gir en kort oppsummering av kapittelet.

6.1 Basistilfellet – Standard NNV

Vi kaller beregnet marginalt realavkastningskrav og nåverdi av redusert skatt ved bruk av standard NNV for \(m_n \) og \(U_n \). Disse reflekterer en kraftinvestors perspektiv på investeringsbeslutningen. \(U_n \) beregnes ved hjelp av likning (4)-(11), samt forutsetningene og

\[\text{Se Vedlegg B for en nærmere forklaring på verdiaadditivitet.} \]

\[\text{Se blant annet Brealey m.fl. (2011, s. 901), Lund (2013) og Sørensen (2005).} \]
verdier for parametere vist i avsnitt 5.3. \(m_r \) er beregnet ved innsetting av \(U_r \) og verdier for resterende parametere fra avsnitt 5.3 i likning (3). Resultatene er illustrert i figur 6.1.

Figur 6.1 - Resultater for basistilfellet ved bruk av standard NNV

\(U_n \) er beregnet til 0,201. Dette er betraktelig lavere enn nøytralitetst terskelen på \(U^* = 0,483 \). Modellen indikerer da at kraftinvestor opplever kraftskatteregimet som overbeskattende. Dette reflekteres i at det beregnede marginale realavkastningskravet \(m_n = 12,68 \) prosent er høyere enn et nøytralt skattesystem skulle tilsi. Tolkningen av dette er at, gitt dagens kraftskatteregler, vil en vannkraftinvestering i investors øyne måtte gi en høyere konstant årlig realavkastning enn en alternativ investering med samme systematiske risiko for å fortsatt være marginalt lønnsom. Dette kan tilsi at vannkraft ses på som en mindre attraktiv næring å investere i enn andre næringer.

6.2 Delkontantstrømsdiskontering

Vi kaller beregnet marginalt realavkastningskrav og nåverdi av redusert skatt ved bruk av delkontantstrømsdiskontering for \(m_d \) og \(U_d \). Dette reflekterer myndighetenes perspektiv på investeringsbeslutningen, eller det perspektivet myndighetene mener at kraftbransjeaktørene (teoretisk sett) *burde* ha på investeringsbeslutningen. Ved bruk av delkontantstrømsdiskontering, skal skattefradragene skilles ut fra resterende kontantstrømmer fra prosjektet. Skattefradragene skal behandles som en sikker kontantstrøm, og diskonteres med risikofri rente etter skatt. Restkontantstrømmen er en risikoutsatt strøm, og etter at sikre skattefradrag er trukket ut, vil restkontantstrømmen være mer risikabel enn før. For at verdiadditivitet skal holde, det vil si at nåverdien av investeringen skal være den samme uavhengig av om - og hvordan kontaktstrømmene deles opp og diskonteres, må diskonteringsrenten for restkontantstrømmen oppjusteres relativt til \(\rho \). Metode for risikojustering av diskonteringsrenten for den usikre restkontantstrømmen vises i Vedlegg D.
Kontantstrømoppsplittingen og justering av diskonteringsrenten for de usikre restkontantstrømmene gir $\bar{\rho} = 6,81$ prosent. U_d beregnes ved hjelp av likning (4)-(11), der diskonteringsrenten ρ byttes ut med sin teoretisk korrekte motpart, r_f^*. m_d er beregnet ved insetting av U_d og $\bar{\rho}$ i likning (3‴) fra Vedlegg D. Resultatene er illustrert i figur 6.2.

Figur 6.2 - Resultater ved bruk av delkontantstrømsdiskontering

U_d er beregnet til 0,479. Dette er marginalt lavere enn nøytralitetsterskelen. Verdien på U_d indikerer at kraftskatteregimet er tilnærmet nøytralt, men at investeringer i vannkraftsektoren er svakt overbeskattet. Dette reflekteres i det marginale realavkastningskravet $m_d = 6,90$ prosent, som er marginalt høyere enn nøytralitetsterskelen.

6.3 Sensitivitetsanalyse

Resultatene presentert i avsnitt 6.1 og 6.2 avhenger av en rekke forutsetninger og antakelser. Disse er vist og forklart i avsnitt 5.3 og i Vedlegg A. I dette avsnittet, vil det undersøkes hvor følsomme resultatene er for de forutsetningene som er lagt til grunn. Kun de forutsetningene som anses som mest usikre vil bli presentert. Disse inkluderer økonomisk depresieringsrate (δ), størrelsen på eiendomsskatten i prosent av investeringskostnad (e), samt verdien på- og utviklingen over tid i risikofri rente (r_f). Ytterligere sensitivitetsanalyser vises i Vedlegg F.

For hver sensitivitetsanalyse, vil utslag i modellens resultater bli presentert for begge verdsettelsesmetoder. Merk at ved delkontantstrømsdiskontering viser resultatene i avsnitt 6.2 at kraftskatteregimet ligger svært nær nøytralitetsterskelen. Mindre endring i forutsetningene vil derfor kunne endre konklusjoner som trekkes på bakgrunn av resultatene. Gitt at utslag i resultatene er forholdsvis små, velger vi å ikke la dette ha store konsevenser for videre diskusjon i kapittel 7 og kapittel 8.
Sensitivitetsanalysen vil gi ulik størrelse på verdiintervallet til forutsetningene som undersøkes. Verdi er valgt innenfor et intervall som anses som realistisk. Hver sensitivitetsanalyse vil illustreres med en figur, hvor initial verdi jf. avsnitt 5.3 er markert med en grå stiplet linje. Sensitiviteten til resultatene vil defineres ut fra skalaen vist i tabell 6.1.

Tabell 6.1 - Definisjon av sensitivitetsgrader

<table>
<thead>
<tr>
<th>Sensitivitetsgrad</th>
<th>Antall prosentpoengs endring i beregnet U eller m som følge av ett prosentpoengs endring i verdi på forutsetningen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikke sensitiv</td>
<td>0</td>
</tr>
<tr>
<td>Lav sensitivitet</td>
<td>$<0-0,5]$</td>
</tr>
<tr>
<td>Moderat sensitivitet</td>
<td>$<0,5-2]$</td>
</tr>
<tr>
<td>Høy sensitivitet</td>
<td>>2</td>
</tr>
</tbody>
</table>

6.3.1 Økonomisk depresiering

I analysen i avsnitt 6.1 og 6.2, er reell økonomisk depresieringsrate δ satt til 4 prosent årlig. Verdier i intervallet 1-10 prosent inngår i sensitivitetsanalysen. Depresieringsraten representerer fysisk kapitalslit og økonomisk verdifall på driftsmidlene som benyttes i kraftproduksjonen. En økning (reduksjon) i depresieringsrate vil si at produksjonsevnen til realkapitalen faller raskere (saktere) over tid. Dette vil medføre at det kreves en høyere (lavere) årlig tjenestestrøm for at kraftprosjektet fortsatt skal være marginalet lønnsomt. For lave skattefradrag vil av kraftinvestor kunne oppleves som ekvivalent med en avgift på bruk av realkapital. Avgifter er en ulempe, og ulempen blir større jo mer kapital som forbrukes. Forbruket av kapital vil øke ved høyere depresieringsrater, da levetiden til driftsmidlene blir kortere. Som følge av dette, vil det marginale realavkastningskravet m være høyere ved høyere depresieringsrater.

Standard NNV

Nåverdien av skattereduksjonene U_n viser lav sensitivitet for endringer i depresieringsrate δ. Det marginale realavkastningskravet m_n viser derimot moderat sensitivitet. En illustrasjon på dette gis i figur 6.3. Konklusjoner som trekkes på bakgrunn av resultatene vil imidlertid ikke endre seg for de verdier av δ som er valgt for denne sensitivitetsanalysen. Ved bruk av standard...
NNV som verdsettelsesmetode, ser det ut til at kraftinvestor opplever kraftskatteregimet som overbeskattende, uavhengig av nivået på økonomisk depresieringsrate.

Figur 6.3 - Marginale realavkastningskrav ved ulike δ (standard NNV)

Delkontantstrømsdiskontering

Kurvene for nåverdien av skattereduksjonene U_d og marginalt realavkastningskravet m_d ved delkontantstrømsdiskontering er ikke-lineære. Som en tilnærmning, kan vi likevel si at U_d og m_d utviser begge lav sensitivitet til endring er i depresieringsrate $δ$. Ved $δ \approx 3,10$ prosent vil nøytralitetsterskelen krysses. Resultatene fra modellen går da fra å initialt indikere at kraftskatteregimet oppleves som svakt overbeskattende til å oppleves som svakt subsidierende. En illustrasjon av dette er vist i figur 6.4.
Oppsummert

Valg av verdi på depresieringsraten δ vil i svært liten grad være utslagsgivende for resultatene ved bruk av standard NNV. Ved bruk av delkontantstrømsdiskontering, vil derimot valget av depresieringsrate δ være av moderat viktighet, da en mindre reduksjon i antatt verdi på δ vil kunne endre de kvalitative konklusjoner som trekkes på bakgrunn av modellens resultater.

6.3.2 Eiendomsskatt

Jf. avsnitt 5.4.3 er beregning av eiendomsskattens bidrag U_E til den samlede nåverdi av skattereduksjoner U basert på en forutsetning om at man kan uttrykke årlig betaling av eiendomsskatt som en fast andel av initial investeringsutgift. Dette kan sies å være en forholdsvis sterk antakelse. Verdier for e i intervallet 0,1-0,6 prosent inngår i sensitivitetsanalysen. Når e økes (reduceres), vil den negative størrelsen U_E bli høyere (lavere). Som følge av dette, vil nåverdien av skattereduksjoner U bli lavere (høyere), og det marginale realavkastningskravet m vil måtte være høyere (lavere) for at investeringen fortsatt skal være marginalt lønnsom. Nøytralitetstersklene m^* og U^* er uavhengige av e, og vil derfor være konstante i det følgende.
Standard NNV

U_n og m_n utviser henholdsvis høy og moderat sensitivitet for endringer i e. Konklusjonen endrer seg imidlertid ikke. Modellen indikerer overbeskatning i investors øyne for alle verdier av e som er inkludert i sensitivitetsanalysen. Figur 6.5 illustrerer dette.

Figur 6.5 - Marginale realavkastningskrav ved ulike verdier av e (standard NNV)

\[\text{Eiendomsskatt som prosent av investeringskostnad (e)} \]

Delkontantstrømsdiskontering

U_d og m_d utviser begge høy sensitivitet for endringer i e. Ved $e \approx 0,26$ prosent vil nøytralitetsterskelen passeres, og modellen går fra å indikere svak overbeskatning til å indikere svak subsidiering av vannkraftsektoren. Figur 6.6 illustrerer dette.
Oppsummert
Antakelser om størrelsen på e vil kunne være utslagsgivende for de kvalitative konklusjoner som trekkes på bakgrunn av resultatene ved bruk av delkontantstrømsdiskontering. Det kan derfor være avgjørende at antakelser om e gjøres så korrekt som mulig.

6.3.3 Normrente for friinntekt og diskonteringsrenterente for sikre skattereduksjoner
I analysen i avsnitt 6.1 og 6.2, forutsettes det at risikofri rente r_p som benyttes både i fastsettelsen av den årlig oppdaterte friinntektsrenten f og i diskontering av sikre skattereduksjoner ved bruk av delkontantstrømsdiskontering følger rentekurven vist i Vedlegg A i tabell A.2. Vi forutsetter nå at risikofri rente vil være konstant over hele investeringsprosjektets løpetid. Verdier for risikofri rente i intervallet 1-7 prosent nominelt nominelt før skatt inngår i sensitivitetsanalysen.

Standard NNV
Ved bruk av standard NNV, inngår r_p utelukkende i skattereduksjoner for friinntekt vist i likning (7)-(9) i form av f. Høyere r_p vil si høyere skattefradrag, høyere U_n, og dermed at investeringen kan være marginalt lønnsomt med en lavere årlig tjenestestrøm fra realkapitalen.
Det vil si at det marginale realavkastningskravet m_r er lavere for høyere r_f. U_r og m_r viser henholdsvis høy og moderat sensitivitet for endringer i r_f. Merk likevel at selv ved verdier av risikofri rente på 7 prosent, vil ikke nøytralitetsterskelen nås. Dette er illustrert i figur 6.7. Ved $r_f = 9,36$ prosent vil nøytralitetsterskelen passeres.

Figur 6.7 - Marginale realavkastningskrav ved ulike verdier for r_f (standard NNV)

![Diagram som illustrerer marginale realavkastningskrav ved ulike verdier for r_f.]

Delkontantstrømsdiskontering

Ved bruk av delkontantstrømsdiskontering, vil endringer i risikofri rente r_f gi implikasjoner for både nivået på friinntekstrenten f og diskonteringsrenten for nåverdi av skattereduksjoner U_d. U_d og m_d som funksjon av r_f gir ikke-lineære kurver, men som en tilnærming kan vi si at de henholdsvis viser moderat og lav sensitivitet for endringer i r_f. Nøytralitetsterskelen krysses ved $r_f \approx 4,62$ prosent. Dette er illustrert i figur 6.8. Resultatene fra modellen går fra å indikere svak overbeskatning initialt til å indikere svak subsidiering. $r_f \approx 4,62$ er merkbart høyere enn dagens risikofrie rentenivå på 0,5 prosent, men er ikke et direkte urealistisk nivå i historisk perspektiv.
Figur 6.8 - Marginale realavkastningskrav ved ulike verdier for r_f
(delkontantstrømsdiskontering)

Oppsummert

Resultatene ser ut til å utvise sensitivitet for endringer i r_f. Det skal forholdsvis store endringer i r_f til for å gi utslag i de kvalitative konklusjoner som trekkes på bakgrunn av resultatene.

6.4 Kapitteloppsummering

Dette kapittelet har vist resultatene av beregning av marginale realavkastningskrav m og nåverdi av redusert skatt U ved bruk av to ulike verdsettelsesmetoder: Standard NNV og delkontantstrømsdiskontering. Disse representerer henholdsvis metoden kraftaktører rapporterer at de benytter i sine investeringskalkyler i virkeligheten og metoden Finansdepartementet har lagt til grunn at kraftaktører skal benytte ved utformingen av kraftskatteregimet. Resultatene indikerer at ved bruk av standard NNV, kan kraftskatteregimet oppleves som overbeskattende. Ved bruk av delkontantstrømsdiskontering, indikerer modellen derimot at kraftskatteregimet er svakt overbeskattende. Da kraftskatteregimet ligger svært nært nøytralitet ved delkontantstrømsdiskontering, vil konklusjoner som trekkes på bakgrunn av resultatene fra delkontantstrømsdiskonteringen være følsom for mindre endringer i forutsetningene som legges til grunn. Konklusjoner som trekkes på bakgrunn av resultatene fra standard NNV er ikke følsomme for endringer i forutsetningene. En sensitivitetsanalyse
viser at forutsetningen som ligger til grunn for beregning av eiendomsskattens bidrag til skatteregimets nøytralitet gir særlig utslag i resultatene. Det er derfor avgjørende at denne forutsetningen settes så korrekt som mulig.
7. Diskusjon

I dette kapittelet diskuteres underliggende årsaker til at kraftbransjeaktører og myndighetene opplever kraftskatteregimets nøytralitet ulikt. 7.1 tar for seg resultatene fra analysen av marginale realavkastningskrav. 7.2 peker på prinsipal-agentproblematikken som kan sees i relasjonen mellom kraftbransjeaktører og myndighetene. 7.3 diskuterer risiko knyttet til skattefradragene. 7.4 diskuterer rentefastsettelse for beregning av skattefradrag. 7.5 gir en kort oppsummering av kapittelet.

7.1 Diskusjon av resultatene fra beregning av marginale realavkastningskrav

Resultatene presentert i avsnitt 6.1 indikerer at en kraft investor som benytter standard nettonåverdimetode for verdsettelse av investeringer vil kunne oppleve kraftskatteregimet som betydelig overbeskattende. Sett fra en investors perspektiv kan dette medføre at vannkraftvirksomhet anses som mindre attraktivt å investere i enn annen virksomhet med samme systematiske risiko. I kontrast indikerer resultatene presentert i avsnitt 6.2 at kraftskatteregimet virker tilnærmet nøytralt på investeringsbeslutninger i vannkraftsektoren, gitt at den aktøren som verdsetter investeringen benytter delkontantstrømsdiskontering. Sett fra myndighetenes perspektiv ville dermed ytterligere skattelettelser eller fradrag vært en subsidiering av vannkraftvirksomhet.

behandler skattefradragene som en sikker kontantstrøm. Fra kraftinvestors perspektiv, gis derimot for lave skattefradrag til at nåverdien av skattereduksjoner når nøytralitetsterskelen.

Når all kommunikasjon i media og andre kanaler tyder på at kraftbransjeaktører i realiteten benytter standard nettonåverdimetode i sine investeringskalkyler, kan resultatene i denne utredningen indikere at det er en nevneverdig fare for at samfunnsøkonomisk lønnsomme investeringer i vannkraftproduksjon blir forbigått. Dette kan gjelde både marginale og inframarginale investeringer, da vi ser fra resultatene i avsnitt 6.1 at nåverdien av redusert skatt som følge av skattefradrag er betydelig lavere enn den skulle vært i et nøytralt skattesystem, sett fra kraftinvestors perspektiv\(^{35}\).

Ved bruk av delkontantstrømsdiskontering skal hver delkontantstrøm diskonteres med et avkastningskrav som representerer den respektive kontantstrøms risiko. Dette er en fremgangsmåte som i stor grad vil gi en nøyaktig verdsettelse av en investering, men som også vil medføre enkelte utfordringer. Ikke alle kontantstrømmer har observerbare transaksjoner i markedet som kan benyttes til å vurdere deres risiko. I tillegg er det ikke gitt at verdioutviklingen til kontantstrømmene er konstante over tid. Av denne grunn kan det i noen tilfeller være tilnærmert umulig å fastsette korrekt risiko for alle kontantstrømmene. For en investor eller en bedrift, vil det i tillegg kunne være en tid- og kapitalkrevende prosess å kartlegge dette. Gitt at kraftinvestorer og kraftproduserende selskaper er rasjonelle og verdimaksimerende aktører, vil de gjennomføre en kost-nytte-analyse på verdien av å innhente og analysere informasjonen som behøves for å gjøre en nøyaktig delkontantstrømsdiskontering. Dersom administrative kostnader, beregningsproblemer og mangel på relevant markedsinformasjon dominerer ekstraverdien ved en mer nøyaktig verdsettelse, er det mulig at implementeringsproblemer ved delkontantstrømsdiskontering fører til at kraftbransjeaktører velger den minst kompliserte verdsettelsesmetoden: Standard NNV.

Det er verd å nevne at det ikke nødvendigvis er i Finansdepartementets mandat å ta hensyn til bransjeaktørs implementeringsproblemer ved delkontantstrømsdiskontering. Departementets oppgave er å utforme et skattesystem som gir en nåverdi av skattereduksjoner som er av en slik størrelse at skattesystemet virker nøytralt på investorenes

\(^{35}\) En diskusjon omkring inframarginale prosjekter og eventuell materialitet (finansielt volum) som kreves for at en investering vil bli gjennomført under de gitte forutsetninger er utenfor rammene av denne utredningen.
investeringsbeslutninger. Departementets fokus er dermed på \(U \) i modellen for beregning av marginale realavkastningskrav i kapittel 5 og 6. Om man utelukkende betrakter skattefradrag og deres nåverdi, og ser bort fra utfordringer ved verdsettelse av øvrige kontantstrømmer, fungerer delkontantstømsdiskontering og diskontering av sikre skattefradrag med risikofri rente til dette formål.

7.2 Paralleller til prinsipal-agentproblemet

De tilsynelatende forskjellene mellom kraftbransjeaktørenes og myndighetenes opplevelse av kraftskatteregimets nøytralitet, kan sees i lys av prinsipal-agentteori. Wright, Mukherji og Kroll (2001, s. 413-414) beskriver prinsipal-agentteorien som en situasjon der en aktør (prinsipalen) gir en annen aktør (agenten) adgang til å handle på vegne av seg. Prinsipalens velferd vil dermed bli direkte berørt av agentens beslutninger. Kjernen i teorien er at det ikke nødvendigvis er gitt at prinsipalens velferd vil bli maksimert ved agentens adferd. Dette er et resultat av at prinsipal og agent kan ha ulike mål og disposisjoner ovenfor risiko.

I vannkraftsektoren er det slik at myndighetene (prinsipalen) gir vannkraftproduserende selskaper (agenter) konsesjon til å benytte en begrenset naturressurs som innsatsfaktor i sin produksjon, mot at myndighetene får ta del i verdiskapningen gjennom beskatning. Forenklet kan vi si at myndighetenes mål er å maksimere skatteproveny fra sektoren, samt å oppnå en samfunnsøkonomisk optimal ressursallokering. Kraftinvestorers (og kraftproduserende selskapers) mål er å maksimere overskuddet fra produksjonen. De to partenes mål kan samsvarere eller ikke, avhengig av utformingen til skattesystemet. Dersom kraftbransjeaktørene benytter en verdsettelsesmetode for investeringer som, gitt skattesystemets utforming, fører til at samfunnsøkonomisk marginal og inframarginal investeringer forbigås, vil dette direkte påvirke myndighetenes skatteproveny fra sektoren, samt at det kan medføre samfunnsøkonomisk effektivitetstap. I følge prinsipal-agentteorien er løsningen på problemet at prinsipalen tilrettelegger for at den agentadferd som er verdimaksimerende for begge parter finner sted. Om myndighetenes mål er å unngå vridninger i investeringsbeslutninger gjennom utforming av et nøytralt skattesystem, bør faktisk investor- og selskapsadferd tas til etterretning. Det er faktisk adferd som vil avgjøre effekten utformingen av skattesystemet har på samfunnsøkonomisk effektivitet i vannkraftsektoren.
7.3 Skattefradrages risikoprofil

For at det skal være hensiktsmessig å diskontere redusert skatt som følge av skattefradrag med risikofri rente, fordrer dette at skattefradragese faktisk er en sikker kontantstrøm. Bakgrunnen for å betrakte fremtidige skattefradrag som en risikofri fordring på staten er diskutert i avsnitt 3.6, og krever at staten garan-terer direkte utbetalings av negativ grunnrenteinnntekt og skatteverdi av eventuell gjenstående negativ grunnrenteinnntekt ved opphør av virksomheten. Dette er tilfellet i dagens kraftskatteregime, og er ekvivalent med at staten er en passiv medeier i vannkraftprosjektet.

Full sikkerhet i skattefradragese krever imidlertid også at verdien på de fremtidige fradragene er sikker. Det vil si at verdien på de fremtidige skattefradragese i grunnrenteinnntekten må være robuste for endringer i skattereglene over prosjektets løpetid. Fremtidige regjeringers politikk kan ikke bindes av valgene til gjeldende regjering, som påpekt av Emhjellen og Osmundsen, referert i Lund (2013, s. 14). Innenfor det til enhver tid gjeldende kraftskatteregimet kan trolig skattefradragese ses på som sikre. Likevel har kraftbransjeaktørene ingen garanti for at det ikke vil forekomme endringer i skettesatsene eller beregningsmodeller for enkelte av elementene i skattereglene som medfører at verdien på fradragene faller. Kraftbransjeaktørene vil kunne oppfattede dette som om at det er regulatorisk risiko knyttet til fradragene. Regulatorisk risiko vil være særlig gjeldende for prosjekter med lang løpetid, noe som er typisk for vannkraftinvesteringer. Av denne grunn er det sannsynlig at investorer og bedrifter aldri vil betrakte skattefradrag som en helt sikker kontantstrøm, og dermed heller ikke vil diskontere skattefradrag med en rente uten noen form for risikopåslag.

7.4 Rentefastsettelse for skattefradrag

Enkelte skattefradrag beregnes på basis av en markedsbasert risikofri normrente uten noen form for risikopåslag. Diskusjonen ovenfor tyder på at disse i realiteten sannsynligvis diskonteres med en rente som er høyere enn risikofri normrente. En implikasjon av dette er at det kan være fare for at samfunnsøkonomisk lønnsomme investeringer ikke gjennomføres. Som diskutert i avsnitt 4.2, har bestemmelsen for hvilken rente som skal representere normrenten for fastsettelse av årlig friinntektsrente vært en sentral del av ordskiftet i media mellom kraftbransjeaktører og Finansdepartementet. Kraftbransjeaktørene mener at dagens rentenivå på 12 måneders statskasseveksler er urepresentativt lavt, ikke skjermer normalavkastningen på en tilfredsstillende måte, og ikke egner seg til bruk i

Energi Norge uttaler i et brev til Stortingets finanskomité i oktober 2015 at normert risikofri rente bør fastsettes i samsvar med NVEs referanserente for fastsettelse av inntektsrammene for norske nettselskaper og Finansdepartementets anbefaling om diskonteringsrente i samfunnsøkonomiske analyser av offentlige investeringer: En langsiktig nøytral realrente på 2,5 prosent justert for løpende inflasjon. I tillegg ønsker Energi Norge et risikopåslag for regulatorisk risiko på 3 prosentpoeng (Ulseth, 2015). Finansminister Siv Jensen uttaler at det ikke er grunnlag for å ta høyde for regulatorisk risiko i friinntekten i kraftskattereglene (Dokument nr. 15:1132 (2015-2016, 2016). Tar vi hensyn til dette, kan vi likevel betrakte forslaget om langsiktig nøytral realrente på 2,5 prosent som grunnlag for normrenten i kraftbeskatningen.

Dagens markedsbaserte normrente knyttet til renten på 12 måneders statskasseveksler samsværer med teorien om nøytral beskatning av renprofit, og er en god representasjon av investors alternativavkastning på bundet kapital fra år til år. Likevel kan det være utfordrende å benytte en slik størrelse i langsiktige investeringskalkyler. Kortsiktige statsrenter er en volatil størrelse, og mye tyder på at kraftbransjeaktører vil anse fremtidige nivåer av skjermingsfradrag beregnet ved en markedsbasert normrente som risikoutsatt. Langsiktig nøytral realrente er det nivået på realrenten som innebærer at pengepolitikken verken er ekspansiv eller kontraktiv (Bernhardsen og Gerdrup, 2006). Bruk av langsiktig nøytral realrente som normrente for friinntekt og som rettesnor for diskonteringsrente for skattefradrag vil redusere usikkerheten i den fremtidige realprisutviklingen for grunnrentefradragene, gitt at modellen skattesystemet bygger på ikke endres (THEMA, 2013). Om vi betrakter figur 6.8 i avsnitt 6.3.3, kan vi se at ved bruk av delkontantstrømsdiskontering, vil nøytralitetstekstasen nås ved konstant nominell risikofri rente før skatt på \(r_f \approx 4,62 \) prosent. Dette vil fortsatt ikke virke nøytralt ved bruk av standard NNV, som vist i figur 6.7, men differansen mellom det marginale realavkastningskravet og nøytralitetstekstasen vil være merkbart mindre ved på \(r_f \approx 4,62 \) enn ved dagens nivå på risikofri rente (0,5 prosent).
Tolkningen av dette er at flere inframarginale prosjekter vil anses som lønnsomme. Langsiktig nøytral realrente på 2,5 prosent justert for inflasjon på 2 prosent gir en normrente som er svært nær dette nivået, på 4,55 prosent. Vi skal være forsiktige med å trekke konklusjoner på bakgrunn av dette. Likevel kan det gi en illustrasjon på at det er mulig at konstant langsiktig nøytral realrente ville egnet seg bedre til bruk i investeringskalkyler enn en markedsbasert risikofri rente knyttet til 12 måneders statskasseveksler.

7.5 Kapittelopsummering

Vår analyse viser at valg av metode påvirker verdsettelsen av skattefradrag, og at dette er en av de underliggende årsakene til forskjellen mellom måten kraftbransjeaktører og myndighetene opplever kraftskatteregimets nøytralitet. I lys av prinsipal-agentteori, kan vi si at myndighetene bør ta faktisk investor- og selskapsadferd til etterretning i utformingen av skattesystemet. Dette inkluderer investors valg av verdsettelsesmetode, risikovurdering av skattefradrag og vurdering av friinntektsfradrag for investeringskalkyleformål.
8. Konklusjon

Denne utredningen har hatt mål om å besvare følgende problemstilling: **Virker grunnrenteskatten nøytralt på investeringsbeslutninger i vannkraftsektoren, og hvordan påvirker valg av verdsettelsesmetode i investeringskalkyler grunnrenteskattens opplevde nøytralitet?**

Denne utredningen har tatt utgangspunkt i en modell for analyse av skatters nøytralitet ovenfor investeringsbeslutninger i petroleumssektoren, og tilpasset denne til de særlige hensyn som finnes i kraftskatteregimet. Vi har analysert dagens skatteregler i kraftskatteregimet i lys av teoretiske prinsipper for utforming av en nøytral skatt på renprofitt i form av grunnrente. Deretter har vi beregnet marginalt realavkastning for et modellkraftverk, for å undersøke hvilken årlig minsteavkastning en kraftinvestor vil kreve for å være villig til å investere i vannkraftproduksjon. Marginalt realavkastningskrav ble beregnet ved bruk av to ulike verdsettelsesmetoder: Standard nettonåverdimetode (som er kraftbransjeaktørers foretrukne metode) og delkontantstrømsdiskontering (som er den metoden Finansdepartementet legger til grunn ved utforming av skattesystemet). Resultatene fra analysen bygger på en rekke forutsetninger. Det er derfor også gjennomført et utvalg sensitivitetsanalyser.

Våre undersøkelser viser at grunnrenteskatten samsvarer godt med teori om nøytral beskatning. Grunnrenteskatten virker å være teoretisk korrekt utformet, og kan definieres som en nøytral skatt. I litteraturen på nøytral beskatning forutsettes det imidlertid at den samlede skattesatsen vil holdes konstant over investeringers levetid. Dette er ikke tilfellet i praksis.

Beregningen av marginale realavkastningskrav viser at en kraftbransjeaktør opplever kraftskatteregimet som betydelig overbeskattende, mens myndighetene opplever det som tilnærmet nøytralt. Hovedårsaken til denne forskjellen er ulik verdsettelse av skattefradragene. Grunnrenteskatten er utformet med grunnlag i teori om nøytral beskatning som forutsetter at skattefradrag vil anses som en sikker kontantstrøm. Ved bruk av delkontantstrømsdiskontering, diskonteres redusert skatt som følge av skattefradrag ved risikofri rente, og verdsettes da til sin teoretisk korrekte nøytrale nåverdi. Når kraftbransjeaktører i realiteten benytter standard nettonåverdimetode, diskonteres skatteredusjoner med investors avkastningskrav til totalkapitalen, som er høyere enn risikofri rente. Nåverdi av skatteredusjonene verdsettes da lavere enn sin teoretisk korrekte nøytrale verdi, og kraftbransjeaktørene opplever å få for lave skattefradrag. Da det er
Kraftbransjeaktørene som tar investeringsbeslutningene, kan en konsekvens av dette være at samfunnsøkonomisk marginale og inframarginale vannkraftinvesteringer blir utsatt eller skrinlagt ved dagens markedsforhold.

Ordsifret mellom kraftbransjeaktører og Finansdepartementet i nyhetsmedia det siste året kan vitne om til dels manglende bevissthet omkring konsekvensen av at investeringsbeslutninger blir tatt på grunnlag av en verdsettelsesmetode som ikke samsvarer med bakgrunnen for kraftskatteregimets utforming. Denne utredningen bidrar dermed til å synliggjøre en av de underliggende årsakene til uenigheten mellom de to partene. Vannkraftsektoren står ovenfor store behov for investeringer i O/U om dagens produksjonskapasitet skal opprettholdes. I tillegg finnes et betydelig potensiale for ny vannkraft som kan bidra til det ”grønne skiftet” i Norge. Investeringsbeslutningene disse representerer er i stor grad tidssensitive. I tillegg gir dagens lave kraftpriser, lave nivåer på friinntektsrenten og lave lønnsomhet i sektoren et mindre gunstig investeringsklima. I lys av prinsipal-agentteori, har denne utredningen pekt på at faktisk investor- og selskapsadferd i større grad bør tas i betraktning ved utforming av skattereglene. Om man ønsker et skattesystem som forutsetter at kraftbransjeaktører i praksis benytter delkontantstrømsdiskontering i sine investeringskalkyler, kan det være verdifullt å tilrettelegge for at dette kan gjennomføres på en økonomisk effektiv måte på investornivå. Videre anbefaler vi ytterligere utredning av alternative metoder for fastsettelse av friinntektsrenten for investeringskalkyleformål, samt vurdering av skattefradragenes opplevde risikoprofil.
9. Vedlegg
Vedlegg A

Bakgrunn for forutsetninger og bestemmelse av parameter

I modellen for beregning av marginale realavkastningskrav presentert og benyttet i henholdsvis kapittel 5 og 6, har det vært nødvendig å legge en rekke forutsetninger og antakelser om størrelsen på ulike parametere til grunn. Dette vedlegget vil vise hvordan disse er utviklet. Forutsetningene og parameterne er nummererte i avsnitt 5.3. Det vil her henvises til nummereringen av de elementene som kommenteres.

Enkelte av forutsetningene er utviklet i samarbeid med fagfolk med lengre erfaring fra vannkraftnæringen. Vi presenterer disse kort, og refererer til dem fortøynende i det følgende.

- **Ingvar Solberg** er næringspolitisk rådgiver for Energi Norge. Han jobber med næringspolitiske saker innen fagfeltet skatt og økonomi, samt konsesjonsbaserte ordninger. Vi har hatt korrespondanse per e-post med Solberg i perioden 23.01.2017-09.06.2017.

A1 Forutsetninger

i. Investeringsobjektets størrelse

Det er forutsatt at kraftverkprosjektet er et storskala vannkraftverk med påtemplet merkeytelse over 10 000 kVA. Bakgrunnen for dette er at 10 000 kVA er innslagspunktet for grunnrenteskatten. Hadde investeringsobjektet vært et småskala kraftverk, ville det ikke utløst skatteposisjon for grunnrenteskatten, og det ville ikke vært mulig å diskutere nøytralitetseffektene til grunnrenteskatten.

iv og ix. Kraftprosjektets levetid og ingen reinvestering

Kraftprosjektets løpetid er satt til 67 år. Dette tilsvarer den skattemessige levetiden til den lineære driftsmiddelgruppen med lengst levetid. Da det ses bort fra reinvestering i driftsmidler i modellen, vil det være naturlig å sette prosjektslutt til slutten av levetiden til den største og mest kapitaltunge driftsmiddelgruppen. Dette er for å få full utnyttelse av friinntekt fra
driftsmiddelgruppe a og b, samt å etterkomme betingelsen for konvergens i fotnote i avsnitt 5.2. I henhold til Lyse (2016, s. 66), Econ Pöyry (2008, s. 3) og Abelsen (2012), er økonomisk levetid for et storskalavaannkraftprosjekt 50-70 år. Tekniske levetid er trolig enda lengre. En kritikk av disse forutsetningene er at det er urealistisk å anta at det ikke behøves noen form for reinvestering i driftsmiddelgruppe b mellom slutten av dens skattemessige levetid (40 år) og prosjektslutt. Det skal også nevnes at NVE regner med 40 års tidshorisont i sine kraftinvesteringsanalyser, grunnet usikkerhet vedrørende behov for reinvestering (NVE, 2003, s. 42).

iii, v og vi. **Investeringsprofil, første inntekt og kraftinvestors skatteposisjon**

Det er forutsatt at hele investeringen foretas i år 0, at kraftverket generer inntekter fra og med år 1, og at kraftinvestor vil være i skatteposisjon gjennom hele prosjektets løpetid. Dette er ikke en realistisk forutsetning for et ekte kraftprosjekt. Byggetiden vil variere mye etter de individuelle karakteristika ved prosjektet, men kan typisk være på 1-4 år. Vi legger likevel disse forutsetningene til grunn som rene forenklinger.

vii. **Kraftinvestor er en privat aktør**

Skatteloven inneholder flere særregler for kraftverk som er helt eller delvis eid av det offentlige. Inkludering av disse ville gjort våre beregninger betydelig mer kompliserte, og kunne ført til en mindre intuitiv modell. Det forutsettes derfor at kraftinvestor er en privat aktør. Vannfallskonsesjonsloven (1917, § 1) legger til dels sterke begrensninger på privat eierskap av storskalavaannkraftverk. Denne forutsetningen kan dermed kritiseres, men er likevel inkludert som en forenkling.

viii. **Fordeling av investeringskostnaden på ulike driftsmiddelgrupper**

Fordelingen av investeringskostnaden på ulike driftsmiddelgrupper vil variere med kraftverktype (høytrykk eller lavtrykk) og kraftverkstørrelse (installert effekt). Innholdet i tabell A.1 er hentet fra NVEs håndbok *Kostnader ved produksjon av kraft og varme* (2011, s. 36). Vi gjengir kun data for storskala vannkraft.
Tabell A.1 - Fordeling av investeringskostnader på driftsmiddelgrupper for ulike typer vannkraftverk (tall i prosent av investeringskostnad)

<table>
<thead>
<tr>
<th></th>
<th>Entreprenør - tjenester</th>
<th>Maskinteknisk utstyr</th>
<th>Elektroteknisk utstyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Høytrykksanlegg (fallhøyde > 300 m)</td>
<td>68</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Lavtrykksanlegg (elvehkraft)</td>
<td>42</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Andre kraftverk (> 10 000 kVA, fallhøyde 30-300 m)</td>
<td>59</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>56</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

I entreprenørtjenester ingår dammer, tunneler, rørgater, kraftstasjoner, bygg og anlegg, og omhandler dermed hovedsakelig byggeteknisk utstyr som avskrives lineært over 67 år (lineær gruppe a), men også driftsmidler som avskrives etter saldometoden. Maskinteknisk utstyr tilhører lineær avskrivningsgruppe b, som avskrives over 40 år. Elektroteknisk utstyr tilhører saldoavskrivningsgruppe g. Som tabell A.1 viser, antar også NVE at hele investeringskostnaden vil fordele seg på disse gruppene driftsmidler. Etter råd fra Ragnar Nesdal (Deloitte) og Ingvar Solberg (Energi Norge), justeres disse tallene noe. En fordeling på 90 prosent til kraftspesifikke driftsmidler (av lineær gruppe a og b) og 10 prosent til saldogruppe g anses som representativt i dag. Av andelen til kraftspesifikke driftsmidler, antas det at 60 prosent går til lineær gruppe a og 40 prosent til lineær gruppe b. Vi ender da opp med en fordeling av investeringskostnad på ulike avskrivningsgrupper som den vist i tabell 5.1 i avsnitt 5.3.

x. Kraftverkets produksjon vil falle med depresieringsraten (δ)

Det antas at ettersom realkapitalen utsettes for kapitalslit, vil produksjonen fra kraftverket falle. Dette er en standard antakelse i økonomiske analyser. Formuesverdien til kraftverket utgjør skattegrunnlaget for eiendomsskatten. Formuesverdien er, som nærmere forklart i fotnote 30 i avsnitt 5.4.3, beregnet med basis i blant annet kraftverkets gjennomsnittlige salgsinntekter. Om det antas at kraftprisen er konstant i reelle termer, vil salgsinntektene falle med depresieringsraten ettersom produksjonsvolum faller. Dette er bakgrunnen for forutsetningen om at formuesverdien årlig vil falle med depresieringsraten.
xi. Kraftinvestors andre virksomheter

Forutsetningen om at vi ser bort fra andre aktiviteter kraftinvestor måtte være involvert i, har lite påvirkning på analysen og resultatene i denne utredningen. Kraftvirksomhet beskattes isolert fra andre aktiviteter. Hadde kraftinvestor vært eier i andre kraftverk i samme skattekonsern, kunne eventuelt en interessant betraktning omhandlet effekten av å ha et eller flere kraftverk innenfor skattekonsern som stadig har fremførbar negativ grunnrenteinntekt opptjent før inntektsåret 2007, da friinntektsrenten fortsatt inneholdt et risikopåslag.

xii. Hjemfall

Dersom kraftverket skulle vært bestemt for hjemfall til staten etter et gitt antall år, ville dette påvirket de lineære avskrivningene. Driftsmidler skal være ferdig avskrevet før hjemfall. Vi ser dermed bort fra hjemfall for å analysere effektene av de gjeldende avskrivningsreglene gitt at driftsmidlene holdes ut sin skattemessige levetid.

xii. Ekskluderte kostnader og realisasjonsverdi av driftsmidlene

xiv. Naturressursskatten

Naturressursskatten er fradragsberettiget krone for krone i ordinær selskapsskatt, og fungerer isolert sett dermed kun som en overføring av skatteproveny fra stat til kommune. Vi velger derfor å ikke inkludere denne i vår analyse.

A2 Parametere

i og ii. Skattesatser

Skattesatsene er satt til de gjeldende satsene for inntektsåret 2017. Ordinær selskapsskattesats er forslått satt ned til 22 prosent i 2018 (Finansdepartementet, 2015a, s. 1). Grunnrenteskatten vil som motsvar oppjusteres tilstrekkelig til å opprettholde skatteprovenyet på samme nivå som i dag, men det er per dags dato ikke kommet noen uttalelser om størrelsen på oppjusteringen i grunnrenteskatten. Vi velger derfor å legge til grunn en antakelse om at de respektive skattesatsene vil være konstante over prosjektets løpetid.
iii. Inflasjonsrate

iv. Depresieringsrate

Figur A.1 - Depresieringsprofil ved geometrisk (4 prosent) og lineær (2 prosent) avskrivning
Friinntektsrenten bestemmes årlig av Finansdepartementet, og skal tilsvare risikofri rente representert ved renten på statskasseveksler med 12 måneders gjenstående løpetid. For inntektsåret 2016 var denne 0,5 prosent. Friinntektsrenten for 2017 foreligger ikke per dato. Risikofri rente, og dermed friinntektsrenten, settes derfor i til 0,5 prosent i år null. Påfølgende år antas det at risikofri rente og friinntektsrenten vil følge nullkupongrentekurven presentert i tabell A.2.

Tabell A.2 - Nullkupongrentekurve

<table>
<thead>
<tr>
<th>År</th>
<th>Nullkupong-rente</th>
<th>År</th>
<th>Nullkupong-rente</th>
<th>År</th>
<th>Nullkupong-rente</th>
<th>År</th>
<th>Nullkupong-rente</th>
<th>År</th>
<th>Nullkupong-rente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,78 %</td>
<td>17</td>
<td>1,92 %</td>
<td>33</td>
<td>2,05 %</td>
<td>49</td>
<td>2,08 %</td>
<td>65</td>
<td>2,09 %</td>
</tr>
<tr>
<td>2</td>
<td>0,76 %</td>
<td>18</td>
<td>1,93 %</td>
<td>34</td>
<td>2,06 %</td>
<td>50</td>
<td>2,08 %</td>
<td>66</td>
<td>2,09 %</td>
</tr>
<tr>
<td>3</td>
<td>0,87 %</td>
<td>19</td>
<td>1,95 %</td>
<td>35</td>
<td>2,06 %</td>
<td>51</td>
<td>2,08 %</td>
<td>67</td>
<td>2,09 %</td>
</tr>
<tr>
<td>4</td>
<td>1,06 %</td>
<td>20</td>
<td>1,96 %</td>
<td>36</td>
<td>2,06 %</td>
<td>52</td>
<td>2,08 %</td>
<td>68</td>
<td>2,09 %</td>
</tr>
<tr>
<td>5</td>
<td>1,22 %</td>
<td>21</td>
<td>1,98 %</td>
<td>37</td>
<td>2,06 %</td>
<td>53</td>
<td>2,08 %</td>
<td>69</td>
<td>2,09 %</td>
</tr>
<tr>
<td>6</td>
<td>1,37 %</td>
<td>22</td>
<td>1,99 %</td>
<td>38</td>
<td>2,06 %</td>
<td>54</td>
<td>2,08 %</td>
<td>70</td>
<td>2,09 %</td>
</tr>
<tr>
<td>7</td>
<td>1,52 %</td>
<td>23</td>
<td>2,01 %</td>
<td>39</td>
<td>2,06 %</td>
<td>55</td>
<td>2,08 %</td>
<td>71</td>
<td>2,09 %</td>
</tr>
<tr>
<td>8</td>
<td>1,62 %</td>
<td>24</td>
<td>2,02 %</td>
<td>40</td>
<td>2,07 %</td>
<td>56</td>
<td>2,08 %</td>
<td>72</td>
<td>2,09 %</td>
</tr>
<tr>
<td>9</td>
<td>1,69 %</td>
<td>25</td>
<td>2,03 %</td>
<td>41</td>
<td>2,07 %</td>
<td>57</td>
<td>2,08 %</td>
<td>73</td>
<td>2,09 %</td>
</tr>
<tr>
<td>10</td>
<td>1,74 %</td>
<td>26</td>
<td>2,04 %</td>
<td>42</td>
<td>2,07 %</td>
<td>58</td>
<td>2,08 %</td>
<td>74</td>
<td>2,09 %</td>
</tr>
<tr>
<td>11</td>
<td>1,79 %</td>
<td>27</td>
<td>2,04 %</td>
<td>43</td>
<td>2,07 %</td>
<td>59</td>
<td>2,09 %</td>
<td>75</td>
<td>2,09 %</td>
</tr>
<tr>
<td>12</td>
<td>1,83 %</td>
<td>28</td>
<td>2,04 %</td>
<td>44</td>
<td>2,07 %</td>
<td>60</td>
<td>2,09 %</td>
<td>76</td>
<td>2,09 %</td>
</tr>
<tr>
<td>13</td>
<td>1,85 %</td>
<td>29</td>
<td>2,04 %</td>
<td>45</td>
<td>2,07 %</td>
<td>61</td>
<td>2,09 %</td>
<td>77</td>
<td>2,09 %</td>
</tr>
<tr>
<td>14</td>
<td>1,87 %</td>
<td>30</td>
<td>2,05 %</td>
<td>46</td>
<td>2,07 %</td>
<td>62</td>
<td>2,09 %</td>
<td>78</td>
<td>2,09 %</td>
</tr>
<tr>
<td>15</td>
<td>1,89 %</td>
<td>31</td>
<td>2,05 %</td>
<td>47</td>
<td>2,07 %</td>
<td>63</td>
<td>2,09 %</td>
<td>79</td>
<td>2,10 %</td>
</tr>
<tr>
<td>16</td>
<td>1,91 %</td>
<td>32</td>
<td>2,05 %</td>
<td>48</td>
<td>2,08 %</td>
<td>64</td>
<td>2,09 %</td>
<td>80</td>
<td>2,10 %</td>
</tr>
</tbody>
</table>

Kilde: Norsk Regnskapsstiftelse (2017, s. 19)

vii. Konsesjonsavgift

Konsesjonsavgiften beregnes i henhold til Skatteloven som *Kraftgrunnlag * avgiftssats. Avgiftssatsen bestemmes av NVE, og indeksreguleres hvert 5. år. Kraftgrunnlaget for det enkelte kraftverk beregnes som *Naturhestekrøftet * avgiftssats. Kraftgrunnlaget for det enkelte kraftverk beregnes som *Regulert vannføring * fallhøyde, der regulert vannføring er uttrykt i m³ per sekund.

For å uttrykke årlig konsesjonsavgift i prosent av investeringskostnad, har vi tatt utgangspunkt i konsesjonssøknader for 15 kraftverk i NVEs konsesjonsdatabase. For disse kraftverkene beregnes forventet årlig konsesjonsavgift (i kr) ved bruk av formlene i tabell 5.3 og fotnote 29 i avsnitt 5.4.3. Årlig konsesjonsavgift uttrykkes deretter som prosent av investeringskostnad. Gjennomsnitt (og median) for årlig konsesjonsavgift i prosent av investeringskostnad over de 15 kraftverkene, er omtrent 0,02 prosent. Vi benytter dette i våre analyser.

Data på samlet proveny til staten fra konsesjonsavgift og samlet investeringskostnad for alle kraftverk i Norge, gir et estimat på årlig konsesjonsavgift på 0,04 prosent av investeringskostnad. Merk at dette er basert på kraftverk som kan være mange tiår gamle, og som trolig inkluderer kraftverk som er større og mer lønnsomme enn potensielle kraftprosjekter en investor står ovenfor i dag. Da estimatet på 0,02 prosent er beregnet på basis av nyere konsesjonssøknader, mener vi at dette trolig er mer representativt enn 0,04 prosent.

viii. Eiendomsskatten

Eiendomsskatten beregnes som *Kraftverkets formuesverdi * skattesats. Skattesats for eiendomsskatten bestemmes av vertskommunen, men må ligge i intervallet 0,2-0,7 prosent. Kraftverkets formuesverdi beregnes som nåverdien over uendelig tid av et rullende gjennomsnitt av de siste 5 års (inkludert inntektsåret) normerte salgsinntekter fratrukket driftskostnader, eiendomsskatt og grunnrenteskatt, samt nåverdien av fremtidige kostnader til utskifting av driftsmidler. Produksjonen verdsettes til spotmarkedspriser, med unntak av konsesjonskraft som verdsettes til konsesjonskraftpris. I beregning av formuesverdien, benyttes en diskonteringsrente bestemt av NVE på 4,5 prosent. Dividert på kraftverkets gjennomsnittlige produksjon over de siste sju år (inkludert inntektsåret), skal imidlertid formuesverdien til kraftverket falle innenfor intervallet 0,95-2,74 kr/kWh. Dersom formuesverdi per kWh faller utenfor dette intervallet, er det minimums- eller maksimumsverdi i intervallet som er gjeldende som skattegrunnlag.
For å uttrykke eiendomsskatten i en form som ville være mindre komplisert å inkludere i analysen uten å gjøre antakelser om fremtidige kraftprisbaner eller produksjonsvolum, utvikles et mål på eiendomsskatten som prosent av investeringskostnad. For å oppnå dette, må det gjøres en rekke beregninger og forenklinger: Vi antar at modellkraftverket befinner seg i midten av det lovbestemte intervallet for formuesverdi per produserte kWh, som vil si at det har en formuesverdi på 1,845 kr/kWh. Basert på de overnevnte 15 konsesjonssøknadene fra NVEs konsesjonsdatabase, finner vi et gjennomsnitt på forventet årlig produksjon på 96 GWh og et gjennomsnitt på investeringskostnad på 414 000 000 kr for ”ny vannkraft”. Antar vi at vertskommunen vil belaste kraftverket med maksimal eiendomsskattesats på 0,7 prosent, vil et slikt gjennomsnittlig kraftverk betale 1 239 840 kr i eiendomsskatt. Uttrykt som prosent av investeringskostnaden er dette omtrent 0,3 prosent. Dette er en kraftig forenkling av den virkelige beregningsmåten. Det vises derfor til sensitivitetsanalysen i avsnitt 6.3.2 for en diskusjon omkring hvor sensitive analysens resultater er for endringer i antakelsen om eiendomsskattens størrelse.

ix. Kraftinvestors avkastningskrav til totalkapitelen

Avkastningskravet til totalkapitelen skal reflektere den avkastningen investor alternativt kunne oppnådd i en annen næring med samme systematiske risiko som vannkraft, og beregnes som et veiet gjennomsnitt av egenkapitalkostnaden og gjeldskostnaden etter skatt. Vi har ikke tilgang til data for å nøyaktig tallfeste kraftselskapers avkastningskrav. Pöyry Management Consulting skriver i sin rapport Langsiktige konsekvenser av dagens vannkraftbeskatning (2016) at representanter for vannkraftbransjen indikerer at deres avkastningskrav ligger i området 5-6 prosent nominelt etter skatt. Ragnar Nesdal (Deloitte), uttaler at et nominelt avkastningskrav på totalkapitalen etter skatt på 6,5-7 prosent for kraftbransjen tidligere var vært en standard antakelse. I dag vil et avkastningskrav på 5,5-6,5 prosent nominelt etter skatt være mer representativt. Vi har valgt å legge til grunn et avkastningskrav på 6,8 prosent nominelt før skatt. Bakgrunnen for dette er at, gitt måten modellen er konstruert på, vil oppsplitting av kontantstrømmene i en risikofri kontantstrøm som diskonteres med risikofri rente og en usikker kontantstrøm som skal diskonteres med et risikojustert avkastningskrav som er høyere enn før, gi en negativ risikooppjustering av avkastningskravet for de usikre kontantstrømmene36 for ρ < 6,76 %. Dette kommer av at ρ (det oppjusterte avkastningskravet for restkontantstrømmen) i følge modellen skal settes lik ρ_{RF} (selskapets avkastningskrav reelt

36 Se Vedlegg D for metode for risikooppjustering ved delkontantstrømsdiskontering.
før skatt). Om \(\rho_{RF} \) er større eller mindre enn \(\rho \), avhenger av størrelsen på \(\rho \), \(\tau \) (ordinær selskapsskattesats) og \(\pi \) (inflasjon), da lik \(\rho_{RF} \) beregnes som

\[
\rho_{RF} = \frac{\rho}{1 - \tau} - \pi
\]

Dette er en svakhet ved modellen, men gir kun implikasjoner for det avkastningskrav til totalkapitalen vi kan legge til grunn når vi ønsker å benytte delkontantstrømsdiskontering. Vurderingen av nåverdi av skattereduksjoner ved delkontantstrømsdiskontering, \(U_d \), vil likevel ikke være påvirket av overnevnte svakhet ved modellen.
Vedlegg B
Verdiadditivitet

Dette vedlegget vil illustrere verdiadditivitetsprinsippet, og hvordan dette kan benyttes når man ønsker å verdsette en investering ved hjelp av delkontantstrømsdiskontering. Prinsippet om verdiadditivitet går ut på at markedsverdien til et gitt sett inntektsstrømmer tilsvarer summen av verdiene til de respektive inntektsstrømmene. Dette skal illustreres ved å betrakte en portefølje X, som består av to aktiva: Y og Z. Prisen på portefølje X må være lik prisen på aktivum Y pluss prisen på aktivum Z.

\[Pris (X) = Pris (Y + Z) = Pris (Y) + Pris (Z) \]

Dette prinsippet er kjent som

\[\text{loven om én pris} \]

Vi kan overføre dette prinsippet til verdsettelse av investeringer. Vi betrakter en investering som vil gi to kontantstrømmer A og B om nøyaktig ett år. Ved verdsettelse ved standard nettonåverdimetode, vil begge kontantstrømmene diskonteres med samme rente \(r \), og nåverdien av investeringen beregnes som

\[\text{Nåverdi} = \frac{A + B}{1 + r} \]

Videre vil vi anta at A er en risikofri kontantstrøm, mens B er en risikoutsatt kontantstrøm. Vi ønsker nå å diskontere hver av disse kontantstrømmene med en rente som korrekt avspeiler kontantstrømmens respektive risiko. Forutsatt at prinsippet om verdiadditivitet holder, skal nåverdien av kontantstrømmene samlet sett ikke bli påvirket av hvordan kontantstrømmene deles opp og diskonteres. Nåverdien av investeringen kan da skrives som:

\[r_1 = \text{risikofri rente} \]
\[r_2 = \text{rente med risikopåslag} \]
\[r = \text{kalkulasjonsrente ved standard nettonåverdimetode} \]

\[\text{Nåverdi} = \frac{A + B}{1 + r} \Rightarrow \text{Nåverdi} = \frac{A}{1 + r_1} + \frac{B}{1 + r_2} \quad \text{hvor} \quad r_1 < r < r_2 \]

Verdiadditivitet impliserer at når A diskonteres med en rente som er lavere enn før kontantstrømoppsplittingen, må B diskonteres med en rente som er høyere enn før for at
nåverdien av investeringen som helet skal være uendret. Dersom nåverdien, risikofri rente r_1, og den nominelle størrelsen på kontantstrøm A og B er kjent, kan ligningen løses med hensyn på r_2 for å finne den nye oppjusterte diskonteringsrenten for den risikoutsatte kontantstrømmen B.
Vedlegg C
Utvalgte endringer i reglene for beskatning av vannkraftsektoren 1997-2017

I dette vedlegget vises et utvalg av endringer som er skjedd i kraftskattereglene fra 1997 til 2017. Oversikten er ikke uttømmende, men har som formål å illustrere at kraftskatteregimet ikke har vært stabilt over tidsperioden. For å bedre lesbarheten velger vi å presentere kildehenvisningene for elementene i denne listen i fotnoter.

1997
- Normert risikofri rente for bruk i beskatning av vannkraft blir fastsatt som gjennomsnittet av renten på statsobligasjoner med 3 års løpetid, for inntektsåret og de 2 foregående år. 37
- Friinntektsrenten og renten for fremføring av negativ grunnrenteinnntekt gis et risikopåslag på 4 prosentpoeng nominelt før skatt. 37
- Kapitaliseringsrenten for formuesverdien til kraftverk beregnes som en realrente med grunnlag i nominell normert risikofri rente før skatt pluss et risikopåslag på 4 prosentpoeng. 38
- Grunnrenteskatt for kraftverk med påstemplet merkeytelse over 1 500 kVA. 39

2000
- Reduksjon i risikotillegget for kapitaliseringsrenten for formuesverdi fra 4 til 3 prosent. 40

2004
- Grenseverdien for utløsning av skatteplikt for grunnrenteskatt og naturressursskatt økes fra 1 500 kVA til 5 500 kVA påstemplet merkeytelse. 39

2005
- Renten for fremføring av negativ grunnrenteinnntekt endres til en rente etter skatt. 41

2007
- Beregningsmåte for normert risikofri rente endres til årgjennomsnittet av renten på statskasseveksler med 12 måneders gjenstående løpetid. 42
- Skattesatsen for grunnrenteskatt økes fra 27 til 30 prosent. 42
- Går over fra fremføring av negativ grunnrenteinnntekt til samordning av negativ grunnrenteinnntekt mot positiv grunnrenteinnntekt i annet kraftverk innen samme skattekonsern. 43
- Risikopåslaget på 4 prosentpoeng i friinntektsrenten fjernes. 44

37 (St.prp. nr. 1 (2004-2005), 2004, s. 44)
38 (Ot.prp. nr. 23 (1995-1996), 1996)
39 (Prop. 1 LS (2012-2013), 2012, s. 221)
40 (Ot.prp. nr. 47 (1999-2000), 2000, s. 46)
41 (Ot.prp. nr. 1 (2004-2005), 2004, s. 140)
42 (St.meld. nr. 2 (2007-2008), 2008, s. 64)
43 (Ot.prp. nr. 1 (2007-2008), 2007, s. 129)
44 (St.meld. nr. 2 (2007-2008), 2008, s. 81)
2010
- Fradragsretten i grunnrenteinntekten for leie av fallrettigheter og avskrivninger på tidsbegransede fallrettigheter fjernes. 45
- El-sertifikater for vannkraftverk over 5 500 kVA grunnrentebeskattes. 45

2012
- Kapitaliseringssrenten for beregning av kraftverks formuesverdi skal fastsettes direkte i forbindelse med statsbudsjettet hvert år. 46
- Maksimumsverdien for kraftverks formuesverdi per produserte kWh ved beregning av eiendomsskatt økes med 5 prosent. 47 48

2013
- Maksimumsverdien for kraftverks formuesverdi per produserte kWh ved beregning av eiendomsskatt økes med 11 prosent. 49

2014
- Skattesats for ordinær selskapsskatt reduseres fra 28 til 27 prosent. 50
- Skattesats for grunnrenteskatt økes fra 30 til 31 prosent. 50

2015
- Grenseverdien for utløsning av skatteplikt for grunnrenteskatt og naturressursskatt økes fra 5 500 kVA til 10 000 kVA påstemplet merkeytelse. 51 52

2016
- Skattesats for ordinær selskapsskatt reduseres fra 27 til 25 prosent. 53
- Skattesats for grunnrenteskatt økes fra 31 til 33 prosent. 53

2017
- Skattesats for ordinær selskapsskatt reduseres fra 25 til 24 prosent. 54
- Skattesats for grunnrenteskatt økes fra 33 til 34,3 prosent. 54

45 (Lovvedtak 17 (2010-2011), 2010)
46 (Prop. 1 LS (2011–2012), 2011, s. 164)
47 (Lovvedtak 9 (2011-2012), 2011)
48 (Besl. O. nr. 27 (2003-2004), 2003)
49 (Lovvedtak 85 (2011-2012), 2012)
50 (Prop. 1 LS (2013-2014), 2013, s. 21)
51 (Lovvedtak 27 (2014-2015), 2014)
53 (Finansdepartementet, 2015b)
54 (Finansdepartementet, 2016)
Vedlegg D
Risikojustering av diskonteringsrenten for den usikre restkontantstrømmen ved delkontantstrømsdiskontering

Som nevnt i avsnitt 6.2, skal skattefradragene skilles ut fra resterende kontantstrømm fra prosjektet ved bruk av delkontantstrømsdiskontering. Skattefradragene skal behandles som en sikker kontantstrøm, og diskonteres med risikofri rente etter skatt. Restkontantstrømmen er en risikoutsatt strøm. Etter at sikre skattefradrag er trukket ut, vil restkontantstrømmen være mer risikabel enn før. For at verdiadditivitet\(^{55}\) skal holde, det vil si at nåverdien av investeringen er den samme uavhengig av om - og hvordan kontantstrømmene deles opp og diskonteres, må diskonteringsrenten for restkontantstrømmen oppjusteres relativt til \(\rho\).

Oppjusteringen av diskonteringsrenten for den usikre restkontantstrømmen kan ikke gjøres med utgangspunkt i verdien av investeringsprosjektet under dagens gjeldende skatteregler. Størrelsen på oppjusteringen vil da kunne bli påvirket av eksisterende skjevheter i kraftskatteregimet (dersom slike finnes). Vi må ta utgangspunkt i et \textit{tenkt} nøytralt kraftskatteregime, og forutsette at det nominelle avkastningskravet til totalkapitalen etter skatt \((\rho)\) vi benytter korrekt avspeiler avkastningskravet i et slikt nøytralt kraftskatteregime\(^{56}\). Verdier av \(U\) og \(m\) i et nøytralt skattesystem er allerede utledet i avsnitt 5.5, og er \(U^* = 0,483\) og \(m^* = 6,81\) prosent.

Vi tar utgangspunkt i likning (3). Toppskrift * betegner fortsatt verdier i et nøytralt skattesystem. \(r_f\) er risikofri rente etter skatt, og er beregnet som \(r_f = r_f(1 - \tau)\). Denne benyttes til å diskontere sikre kontantstrømmer, som indikert ved betegnelsen \(U^*(r_f)\). \(r_f\) følger fortsatt utviklingen i nullkupongskurven, som beskrevet i parameter v. i avsnitt 5.3. I det tenkte nøytrale skattesystemet gis skatteredskjoner i et slikt omfang at nåverdien av deres sum blir \(U^* = 0,483\) når diskontert med \(r_f\). Vi skriver da likning (3) som:

\[
(3'') \quad m^* = \frac{(1 - U^*(r_f)) \cdot (\rho - \pi + \delta \cdot (1 + \pi))}{(1 - \tau - \tau_s) \cdot (1 + \pi)} - \delta
\]

Vi ønsker nå å fastsette et risikojustert avkastningskrav for den risikoutsatte restkontantstrømmen slik at det marginale realavkastningskravet til investeringen som hele \(m^*\) ikke endrer seg som følge av kontantstrømoppsplittelsen. Hvis \(m^*\) er kjent, kan vi løse \((3'')\) for \(\rho\), og får da:

\[\text{Se Vedlegg B for en nærmere forklaring på verdiadditivitet og kontantstrømoppsplittelse.}\]

\[\text{Dette argumentet ble fremmet av Finansdepartementet i forbindelse med arbeidet med Prop. 150 LS (2012-2013) (Finansdepartementet, 2013).}\]
\[\rho = (m^* + \delta) \frac{(1 - \tau - \tau_s) * (1 + \pi)}{(1 - U^*(r_f))} + \pi - \delta * (1 + \pi) \]

\(\rho \) er nå den risikojusterte diskonteringsrenten nominelt etter skatt for den usikre delkontantstrømmen etter skatt. Vi forutsetter at \(\rho \) vil holdes konstant, uavhengig av eventuelle endringer i avskrivninger, friinntekt eller andre sikre fradrag som medfører redusert skatt. Ved å erstatte \(\rho \) med \(\rho \) i likning (3''), kan vi for vilkårlige verdier av \(U \) finne et korresponderende marginalt realavkastningskrav \(m \) ved bruk av likning (3''):

\[m = \frac{(1 - U(r_f)) * (\rho - \pi + \delta * (1 + \pi))}{(1 - \tau - \tau_s) * (1 + \pi)} - \delta \]

Merk at metoden ikke teoretisk sett er helt korrekt. Marginalt realavkastningskrav etter skatt vil i prinsippet endres når skatteregler endres. Denne metoden representerer en tilnærming til beregning av den nødvendige oppjusteringen i avkastningskravet til den risikoutsatte restkontantstrømmen når sikre skattefradrag trekkes ut og diskonteres separat. Metoden tillater oss likevel å illustrere effekten av å benytte delkontantstrømsdiskontering som verdsettelsesmetode.
Vedlegg E
Kraftskatteregimets nøytralitet for et vannkraftproduserende selskap som isolert enhet – Effekten av gjeldsfradrag

I dette vedlegget vises beregningsmåten for nåverdi av redusert skatt som følge av fradrag for gjeldsrenter. Jf. avsnitt 5.3, har øvrige analyser betraktet investeringsprosjektet fra kraftinvestors perspektiv. Kraftskatteregimet er utformet med den hensikt å ha en nøytral totaleffekt på investors beslutningsadferd. Fradrag for gjeldsrenger har av denne grunn blitt ekskludert. I det følgende betraktes investeringsprosjektet fra kraftselskapets perspektiv som isolert enhet. Det vil si at skattefradrag for gjeldsrenter skal inkluderes som et element i den samlede \(U \). I kraftskatteregimet, gis det fradrag for gjeldsrenter i skattegrunnlaget for ordinær selskapsskatt, men ikke i skattegrunnlaget for grunnrenteskatten. For å kunne legge til fradrag for gjeldsrenter som et element i den samlede nåverdi av redusert skatt \(U \), benytter vi forutsetninger beskrevet i avsnitt 5.3, og legger til de følgende forutsetningene:

Forutsetninger:

xvi. Vannkraftinvesteringen er finansiert med 60 prosent rentebærende gjeld og 40 prosent egenkapital.

xvii. Kraftselskapet vil holde gjelden gjennom hele prosjektets løpetid.

xviii. Renter betales årlig, første gang i starten av år 1.

Parametere:

x. Kraftselskapets gjeldskostnad \((r_G) \) er 4,15 % nominelt før skatt per annum.

\[
U_G = \sum_{t=1}^{67} \frac{\tau \cdot (I \cdot 0,6 \cdot r_G)}{(1 + \rho)^t}
\]

(13)

Bakgrunn for forutsetningene og valg av gjeldskostnad

Andelen gjeldsfinansiering på 60 prosent er kommet frem til i samarbeid med Ragnar Nesdal (Deloitte)\(^{57}\) og i samsvar med Poýry (2016). Denne gjeldsandelen ses som representativt for en vannkraftprodusent. For langsiktig lånekostnad, anses 10 års NIBOR (hentet fra DnBs Morgenrapport 30.05.2017, mottatt per e-post fra Øyvind Rustad) pluss en kredittmargin på 2-2,5 prosentpoeng som representativt i dagens marked for en kraftinvestor og et

\(^{57}\) Se Vedlegg A for en presentasjon av Ragnar Nesdal.
investeringsprosjekt av den typen som modellen beskriver. Anslaget er kommet frem til i samarbeid med Øyvind Rustad, banksjef/senior kundeanvarlig i Energi, kraft og fornybar energi i DnB Bank ASA. Vi har hatt korrespondanse per e-post med Rustad i perioden 26.05.2017-30.05.2017.

Standard NNV

U_n beregnes ved hjelp av likning (4)-(11) og (13). m_n er beregnet på samme måte som før. Resultatene er illustrert i figur E.1.

Figur E.1 - Resultater ved bruk av standard NNV inklusive gjeldsfradrag

U_n er beregnet til 0,288. Dette er nærmere nøytralitetsterskelen enn nåverdi av skattereduksjoner for basistilfellet i avsnitt 6.1. Det er likevel fortsatt betraktelig lavere enn U^*. Dette reflekteres i at det beregnede marginale realavkastningskravet $m_n = 10,87$ prosent, er høyere enn et nøytralt skattesystem skulle tilsi. Tolkningen av dette er at, gitt dagens kraftskatteregler, vil en vannkraftinvestering i kraftselskapets øyne måtte gi en høyere konstant årlig realavkastning enn en alternativ investering med samme systematiske risiko for å fortsatt være marginalt lønnsom. Modellen indikerer at kraftselskapet som isolert enhet vil oppleve kraftskatteregimet som overbeskattende.

58 Dette er høyere enn kredittmarginen for flere store kraftaktører i Norge i dag. Grunnen til valg av høyere kredittmargin, er at flere av de store aktørene, som Hafslund og BKK, bedriver mye annen virksomhet enn vannkraftproduksjon. Nettvirkosmhet anses eksempelvis til å ha vesentlig lavere risiko enn vannkraftproduksjon. Statkraft vil heller ikke være et representativt sammenlikningsgrunnlag, da selskapet anses som svært lite risikabelt.
Delkontantstrømsdiskontering

U_d beregnes ved hjelp av likning (4)-(11) og (13), der diskonteringsrenten ρ byttes ut med sin teoretisk korrekte motpart, r_{fr}. m_d er beregnet ved innsatt av U_d, $\bar{\rho}$ og verdier for resterende parametere som vist i avsnitt 5.3 i likning (3’’’). Resultatene er illustrert i figur E.2.

Figur E.2 - Resultater ved bruk av delkontantstrømsdiskontering inklusive gjeldsfradrag

Nåverdien av skattereduksjoner $U_d = 0,727$ blir betraktelig høyere ved delkontantstrømsdiskontering når fradrag for gjeldsrenter legges til. Dette avspeiles i det svært lave marginale realavkastningskravet $m_d = 1,70$ procent. Modellen indikerer betydelig subsidiering av vannkraftsektoren om investeringsbeslutningen skal betraktes for kraftselskapet som isolert enhet.

Oppsummert

Om vi betrakter investeringen fra perspektivet til et kraftselskap som isolert enhet, vil nåverdien av redusert skatt som følge av fradrag for gjeldsrenter gi merkbart utslag i resultatene fra modellen. For standard NNV vil oppfattelsen av kraftskatteregimet gå fra å indikere betydelig overbeskatning til noe mildere overbeskatning. For delkontantstrømsdiskontering vil oppfattelsen av kraftskatteregimet gå fra å indikere tilnærmet nøytralitet til å indikere betydelig subsidiering av vannkraftsektoren.
Vedlegg F
Sensitivitetsanalyser

Dette vedlegget er en utvidelse av avsnitt 6.3, og viser sensitivitetsanalyser på utvalgte forutsetninger for modellen som kan være usikre. Disse inkluderer investors nominelle avkastningskrav etter skatt (ρ), inflasjonsrate (π), og skattesatsene (τ og τ_c). Enkelte av parameterne er valgt for sensitivitetsanalyse på bakgrunn av at svakheter ved modellen vil kunne medføre utfordringer ved endringer på verdien på disse. Dette vil bli kommentert fortløpende.

F1 Investors avkastningskrav til totalkapitalen

I analysen i avsnitt 6.1 og 6.2, er investors krav til totalkapitalen ρ satt til 6,80 prosent nominelt før skatt. Verdi for ρ i intervallet 5-10 prosent inngår i sensitivitetsanalysen. Avkastningskravet til totalkapitalen representerer den avkastningen kapitalen som er bundet opp i kraftprosjektet kunne oppnådd i en alternativ virksomhet med samme systematiske risiko. I sensitivitetsanalysen er inflasjonsrate og risikofri rente holdt konstant. Det vil si at kun risikotillegget i det nominelle avkastningskravet endres. I et skatteregime som ikke er nøytralt, eller som kun har beregnet nøytralitet, vil forutsetningene som legges til grunn for investors avkastningskrav gi implikasjoner for det marginale realavkastningskravet m.

Når nominelt avkastningskrav til totalkapitalen ρ for kraftprosjektet endres, impliserer dette at avkastningen på en alternativ plassering av kapitalen som er bundet opp i kraftprosjektet endres simultant. Vi kan se ut fra likningen (3) og intuitjonen i avsnitt 5.5 at endringer i ρ dermed vil gi utslag i nøytralitetsterskelen U^*. Nøytralitetsterskelen m^* og det beregnede marginale realavkastningskravet m vil også øke (falle) ved økt (redusert) nominelt avkastningskrav ρ. Vi undersøker her derfor hvilken variabel som øker (faller) med høyest rate.

Standard NNV

Ved bruk av standard NNV som verdsettelsesmetode vil nåverdien av skattereduksjonene U_n diskonteres med investors avkastningskrav til totalkapitalen ρ. Nåverdien av

skattereduksjonene U_n vil derfor bli lavere jo høyere vi setter diskonteringsrenten. Vi gjentar at nøytalitetsterskelen U^* er svakt økende ved økende avkastningskrav til totalkapitalen ρ. Implikasjonen av dette er at det beregnede marginale realavkastningskravet m_n vil øke raskere enn nøytalitetsterskelen m^*. Dette indikerer at jo høyere investors avkastningskrav til totalkapitalen er, jo mindre attraktivt vil det være å investere i vannkraft sammenliknet med andre virksomheter med samme systematiske risiko. Både nåverdien av skattereduksjonene U_n og det beregnede marginal realavkastningskravet m_n kan sies å vise moderat sensitivitet for endringer i investors avkastningskrav til totalkapitalen ρ, men endringer i resultatene vil ikke endre konklusjonen. Modellen indikerer at kraftskatteregimet oppfattes som overbeskattende både ved høyere og lavere verdier for investors avkastningskrav til totalkapitalen ρ. Dette er illustrert i figur F.1.

Figur F.1 – Marginale realavkastningskrav ved ulike verdier av ρ (standard NNV)

![Figur F.1 – Marginale realavkastningskrav ved ulike verdier av ρ (standard NNV)](image)

Delkontantstrømsdiskontering

Ved delkontantstrømsdiskontering vil nåverdien av skattereduksjonene U_d ikke påvirkes av endringer i investors avkastningskrav til totalkapitalen ρ, ettersom skattereduksjonene diskonteres med risikofri rente og ikke totalkapitalkravet. Avstanden mellom U_d og U^* er økende for økende ρ. For økende ρ, ser vi også at avstanden mellom m_n og m^* øker. Det vil
si at selv ved delkontantstrømsdiskontering kan investeringer i vannkraftsektoren bli relativt mindre attraktive for høyere avkastningskrav til totalkapitalen. Se figur F.2 for illustrasjon.

Figur F.2 - Marginale realavkastningskrav ved ulike verdier av ρ (delkontantstrømsdiskontering)

Oppsummert

Resultatene viser lav til moderat sensitivitet for valg av verdi på investors avkastningskrav. Merk at reduksjoner i ρ ikke er kommentert ovenfor. Dette kommer av at ved bruk av delkontantstrømsdiskontering, vil kontantstrømoppdelingen og risikojusteringen av avkastningskravet til den usikre restkontantstrømmen\(^60\) ikke gi meningsfulle resultater for verdier av ρ lavere enn 6,76 prosent. Dette er en svakhet ved modellen. Risikojusteringen av ρ vil da gi $\bar{\rho} < \rho$. Dette strider mot prinsippet om verdiadditivitet\(^61\). Roten til bruddet med verdiadditivitet er måten avkastningskrav justeres for skatt og inflasjon i tabell 5.2.

F2 Inflasjonsrate

Vi undersøker resultatenes sensitivitet for endringer i inflasjonsrate π, da dette er en parameter som inngår i både U, m, U^* og m^*. Intuisjonen bak endringer i inflasjonsrate er, overordnet

\(^60\) Se Vedlegg D.
\(^61\) Se Vedlegg B.
sett, som følger: Jo høyere inflasjonsrate, desto raskere vil tjenestestrommen fra realkapitalen vokse i nominell verdi. Marginal realavkastning \(m \) vil derfor kunne være lavere for høyere inflasjonsrater. Verdier av \(\pi \) i intervallet 2-3 prosent inngår i sensitivitetsanalysen.

Standard NNV

\(U_n \) og \(m_n \) har henholdsvis høy og moderat sensitivitet til endringer i inflasjonsrate. Konklusjoner om skatteregimets nøytralitet vil imidlertid ikke endre seg for de verdier av inflasjonsrate \(\pi \) som er inkludert i sensitivitetsanalysen. Dette er illustrert i figur F.3.

Figur F.3 - Marginale realavkastningskrav ved ulike verdier av \(\pi \) (standard NNV)

![Diagram](image)

Delkontantstømmediskontering

Verdier av inflasjonsrate høyere enn \(\pi \approx 2,06 \) prosent gir ikke meningsfulle resultater. Forklaringen på dette er den samme som beskrevet i avsnitt F1. Dette er en svakhet ved modellen. Se figur F.4 for illustrasjon.
Oppsummert

Valg av inflasjonsrate vil være av betydning for resultatene ved bruk av standard NNV. Ved bruk av delkontantstrømsdiskontering hindrer svakheter ved modellen oss å trekke ytterligere konklusjoner. Hadde investors nominelle avkastningskrav til totalkapitalen etter skatt ρ vært betydelig høyere enn valgte verdi jf. avsnitt 5.3, ville modellen ha tillat oss å også benytte inflasjonsrater høyere enn 2,06 prosent. En inflasjonsrate lik Norges Banks inflasjonsmål på 2,5 prosent ville vært ønskelig å benytte.

F3 Endring i skattesatsene

I analysen i avsnitt 6.1 og 6.2, forutsettes det at skattesatsene τ og τ_s er henholdsvis 24 og 34,3 prosent, og at disse holdes konstant over prosjektets løpetid. I realiteten, vil skattesatsene bli videre justert relativt til dagens nivå i henhold til Scheel-utvalgets anbefalinger (NOU 2014:13, 2014). Verdier for skattesatsene i intervaller på henholdsvis 28-20 prosent for ordinær selskapsskattesats og 30-38 prosent for grunnrenteskattesats inngår i sensitivitetsanalyse. Grensene til venstre i figur F.5 og F.6 er valgt ut fra skattesatsene som var gjeldende før iverksettelsen av nedjusteringen av selskapsskatten og oppjusteringen av grunnrenteskatten fra og med 2014. Grensene til høyre i figur F.5 og F.6 er valgt ut fra...
selskapsskattesatsen som er planlagt å gjelde i fremtiden (NOU 2014:13, 2014, s. 21). Vi forutsetter at en ett prosentpoengs reduksjon i selskapsskattesatsen vil svares med en ett prosentpoengs økning i grunnrenteskatten, med unntak av første endringssteg ut fra dagens skattesatser.

Nettoeffekten på resultatene modellen gir ved justeringene i skattesatsene vil bero på nettoeffekten på nåverdi av skatteredusjonene U jf. likning (4)-(11), nettoeffekten på det marginale realavkastningskravet m jf. likning (3), nettoeffekten på m^* jf. avsnitt 5.5 og tabell 5.2 og nettoeffekten på U^* jf. avsnitt 5.5 og likning (3).

Standard NNV

U_n og m_n utviser begge lav sensitivitet til endringer i skattesatsene. Ved bruk av standard NNV, vil m_n falle ved lavere selskapsskattesats og samtidig høyere grunnrenteskattesats, men m_n vil falle med en lavere rate enn m^*. Differansen mellom m_n og m^* er økende for bevegelser til høyre i figur F.5, noe som kan tolkes som at vannkraftinvesteringer blir relativt mindre attraktive sammenliknet med andre næringer. For alle verdier av skattesatsene som inngår i sensitivitetsanalysen, vil imidlertid modellen indikere at kraftinvestor opplever kraftskatteregimet som overbeskattende.

Figur F.5 - Marginale realavkastningskrav ved ulike verdier av τ_s og τ (standard NNV)

![Figur F.5 - Marginale realavkastningskrav ved ulike verdier av τ_s og τ (standard NNV)](image)
Delkontantstrømsdiskontering

U_d og m_d utviser begge lav sensitivitet til endringer i skattesatsene. Differansen mellom m_d og m^* er fallende for bevegelser til høyre i figur F.6, noe som kan tolkes som at vannkraftinvesteringer blir relativt mer attraktive sammenliknet med andre næringer.

Figur F.6 - Marginale realavkastningskrav ved ulike verdier av τ_s og τ (delkontantstrømsdiskontering)

<table>
<thead>
<tr>
<th>Grunnrente- og selskapsskattesats</th>
<th>Beregnet marginalt realavkastningskrav (md)</th>
<th>Marginalt realavkastningskrav i et nøytralt kraftskatteregime (m*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34,3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oppsummert

Merk at for justeringer i de respektive skattesatsene til høyre for $\tau \approx 23,91$ prosent, vil ikke modellen gi meningsfulle resultater. Dette er en svakhet i modellen. Årsaken til dette er den samme som beskrevet i avsnitt F1.
10. Litteraturliste

Finansdepartementet. (2015a). Faktaark - Endringer i selskapsskatten. Hentet fra https://www.regjeringen.no/contentassets/0e41c00a921245f2822a5781c1ad812f/faktaark_selskapsskatten.pdf

Samfunnsøkonomisk Analyse. (2016). Økonometriske prognoser for makroøkonomiske pensjonsforutsetninger 2016-2035. (num. 51)

Skatteloven. *Lov 26. mars 1999 nr. 14 om skatt av formue og inntekt*

Vannfallskonsesjonsloven. Lov 14. desember 1917 nr. 16 om erverv av vannfall mv.

Vedtak om renter for kraftforetak 2016. Lov 18. januar 2017 nr. 43 om fastsettelse av renter for beskatning av kraftforetak for inntektsåret 2016