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1. Introduction

| use meta-data from google search trends to either explain or better understand real
economic phenomena. Primarily | create indicators based on search trends intended to
correlate with economic factors. First, 1 determine unemployment as a strong candidate
explained variable, as the link between internet searches and unemployment seems
intuitively strong. | develop indicators from related searches that track unemployment levels

qualitatively.

Finding some success with unemployment, | use the same approach to explain consumption
patterns. While the indicator | create is less accurate than the previous one, it also shows
features that indicate a relationship between search patterns and consumption. Next, | look at
the relationship between market returns, specifically the S&P 500, and market sentiment
derived from search trends. This is a field with considerable interest already. | look at work
done previously, and lessen the burden of finding search terms with good fits, by copying the
work done by creating the FEARS index (Zhi Da, 2013). | use my own method to create a

reverse market sentiment indicator, and observe a leading trend.

Another area of interest is how search trends can reveal underlying predispositions and
intentions. Specifically, | want to see if there is a link between the relative emigration
intensity of a state and certain search patterns. The way | determine emigration intensity is to
use reports by United Van Lines on export shipments from each state (United Van Lines,
2016). | use research done by the US Census to develop an indicator to capture emigration
propensity (US Census, 2017). Consistent with this research | find that searches for “new
job” and “divorce lawyer” correlate positively with emigration intensity. | also find that

searches for “suicide” correlate positively, and that “surgery” correlates negatively.

Finally, I look at a potential link between volatility of search interest for a firm, and the
implied probability distribution of future stock prices derived from options on that firm’s
stock. | theorize that increased search interest for financially related terms about a firm
means that uncertainty about future returns has increased. | find daily historical implied
volatility data, and try to square this with an indicator. The results are lacking, as stronger

numerical methods and data crunching capacity is needed.



2. Theory

2.1 Previous Applications

2.1.1 Predicting Influenza Outbreaks

One of the first instances where internet search trends were used to help explain or predict
real world events was the Google Flu Project (Dugas, et al., 2012). In this project researchers
used meta-data regarding search behaviors to predict outbreaks of influenza. They link
increased activity for specific search terms to likelyhood of an incrase in visits to the doctor
with influenza related symptoms. The model they create is able to predict geographically
outbreaks of flu accurately within the certain paramaters. While further scrutiny of the model
laid bare shortcomings, especially when dealing with unforseen events such as the H1Z1 flu
(Butler, 2013). However the idea of linking search behavior with real life events still seems

to have merit.

2.1.2 Predicting Stock Market Returns

The “Elephant in the Room” in terms of application of data potentially specifying the
sentiment of people on a macro level is to try to predict stock market returns. An early
instance of this is research where they found the search term that most negatively correlates
with the weekly return of the Dow Jones (Preis, Moat, & Stanley, 2013). This term turns out
to be “debt.” The researchers then built a simple trading strategy around this where when
searches for “debt” was increasing, they would sell their portfolio, and when searches were
going down they would go long the index. They then backtested this strategy from 2004
(when google trends start), to 2011. The resulting portfolio had a 325 point gain over the

period, which is fairly decent for such a simple idea.

Google Trends Strategy _—
Buy and Hold Strategy e L - L
300 - u+0, 1, u—-oofRandom Strategy - - -

‘debt’

Profit and Loss [%)]

Time, t [Years]

Figure 1: Google Trends Trading Strategy



2.2 How Information is leaked

The primary mode | imagine information can be captured through search trends is by
individuals observing the real world around them, and querying the internet for help or
information. The search trends can either be leading, coinciding or lagging in terms of the

actual event.

Pre-Emptively

ﬂ Searching for "job listings"

Reactivelv
> Searching for "job listings"

Real Events

e.g. "sensing layoffs
looming"

Actually getting laid off

Figure 2: How events may affect search patterns

2.3 Ordinary Least Squares Regression

In order to find the best fit for data, the ordinary least squares method, or OLS, is a common
method used (Wooldridge, 2014). I utilize this method in order to find the best weighting on
search terms, so that the sum of square residuals between the indicators | create and the
factor | am trying to explain is the lowest possible. I also utilize OLS regression to determine
which indicators best explain certain phenomena. | also use r-squared in this context to

measure the explanatory power of my indicators.

2.4 Kurtosis

An important concept in finance is kurtosis. Kurtosis is a descriptor from statistics that tells
us the relative spread of a probability distribution (Hull, 2011). This is important, as an
assumption often made in finance is that stock market returns are normally distributed, and
models are built with this in mind. So when we are looking forward, and making predictions,

we may think of the probability of future events as normally distributed. However, it is key



that we understand that not all normal distributions are created equally. Some have a
relatively high probability of extreme events “fat tails,” while some are the opposite and

feature more of a peak around the centre.

Implied volatility of an option is a measure of the markets belief surrounding future prices of
the underlying. High implied volatility means that the market prices in a high likelihood of
extreme values of the underlying in the future. Such as an uncertain stock, like a start-up
company or a firm that is changing its corporate strategy around. Meanwhile blue-chip firms
like Microsoft are unlikely to take on extreme values in the future, and feature
commensurately a very low implied volatility in their options. When trying to use google
trends to predict future events it can be important to see it in the light of other ways to

measure market predictions.



3. Methodology

3.1 Approaching the Google trends data

3.1.1 The data itself

Google has a continuously updating database of search trends worldwide accessible by
anyone. They likely limit how easily these data can be extracted, and | am left having to
manually download each time series meticulously. The data itself is given in relative search
volume, indexed from 0-100. The peak in any given period is given a value of 100, and all
other points are given numbers relative to that. The actual volume of searches is not
available. However, knowing changes over time is sufficient for the arguments this paper
tries to make.

3.1.2 Search Term Selection

Initially I want to find sets of terms that intuitively will all correlate in the same way to the
macroeconomic factor I am trying to explain. While | attempt to find an elegant way to
gather large quantities of relevant search terms, | ultimately resort to simple economic
intuition. While this presents a weakness, it also makes any successful results stronger as a

relatively speaking “barebones” approach was able to get results.

3.1.3 Seasonality

A common feature of time series data is seasonality. However, it is important to understand
why this seasonality occurs in search data before we start treating it. When individuals make
google searches, they are revealing an interest for a topic. The nature of this interest is not
directly disclosed, however, and we must infer it through other means. Take for instance
searches containing the words “going back to school.” Either searches are likely to mean the
end of summer break, or someone might be uncertain of their job security. | utilize a simple

method to remove seasonality where each month gets an index calculated by:

i, amonths searches
n
average of all months

Index; =
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In the adjusted time series, | divide the search value of each month by the index for that
month. Months with values consistently above average are deflated, and months with
consistently below average values are inflated (appendix i & ii). The intention is for the
adjusted series to reveal more clearly any underlying pattern that the seasonality could

obscure. Take for instance searches including the terms “going back to school.”
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Figure 3: raw "going back to school" searches

This figure clearly illustrates the seasonality of these search terms. While it appears to have
increased around the year 2009, the overall trend and peak of the series remains somewhat
ambiguous. However when we look at the adjusted time series below.
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Figure 4: adjusted "going back to school" searches
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The data much more clearly displays the peak and continued increase in interest since the
recession of 2008 hit.

Another feature of removing seasonality is increasing the visibility of outlier months, where

search interest was unduly high. I present one such example below, where the time series’
for “NFL” searches are displayed.

Raw
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Figure 6: adjusted "NFL" searches
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What becomes evident with the adjusted series is a clear spike in the month of May 2014.
The reason for this spike is the draft of that year featured the first openly gay football player,
Michael Sam (Kang, 2014). The media overexposure of this event turned it in to a “big

deal,” however it is only in the adjusted series this is evident.

3.1.4 Trend

Many of the time-series of search interest also display a clear upward trend. As internet
usage increases over time, so do googles searches. | made several different attempts to
correct for this, but was ultimately unsuccessful in finding a comprehensive solution. My
first approach was to find the aggregate number of google searches in the period 2004-2016,
and then use this to deflate the data to a common standard. However, the issue with this is
that it does not account for heterogeneity in the trends across various search terms. For
example, the convention of posing search queries as questions, such as “how to write a cv,”
likely has a higher underlying trend than “job listings” as finding job listing online was
commonly known even in 2004. While | attempted to de-trend the data using overall search

volume increases, none of these attempts were ultimately fruitful.

3.2 Work With the Search Trends

3.2.1 Creating Macro Indicators

The thesis of this paper is that search interest on the internet leaks non-trivial information
that can potentially precede actual events of economic significance. The first way | try to
concretize this is by creating indicators. | create these indicators initially by using a simple
weighted average of search terms that | deem likely to correlate in some way to the factor |
am trying to explain. The most pressing weakness to this approach is the way | select search
terms. One method | considered was to select terms by doing a large volume of regressions
of individual terms and select based on individual correlation with the thing | am trying to
explain, similar to the approach used in developing the FEARS index, an indicator created to
gauge market sentiment (Zhi Da, 2013). However, two problems arose when considering this
approach. First, finding an exhaustive list of candidate search terms that all related to the
factor | was trying to explain proved very difficult. Secondly, it is somewhat beyond the

technical scope of the author to parse thousands of search terms directly from google, having
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to rely on manually downloading the time series. It therefore became necessary to find a
different approach.

Ultimately, what proved most successful was to put together the around 20 of the most
intuitively relevant search terms in a weighted average, and then performing OLS with the
factor I am working with. What constituted good intuition in this case would for instance be
saying that it is likely that a person sensing he might get laid off work would search for

“how to collect unemployment,” this either signalling or confirming the layoff.

Y, Search Interest;;

Indicator; = Equation (2)

n

The goal is to find the indicator with the lowest R-squared, which signals a good degree of
explanatory power. However, trying to maximize this metric simply through trial-and-error
with different search terms proves slow and inefficient. | determine that one way to improve
the quality of the indicator was to maximize the R-squared by allowing for different weights
on the search terms. | accomplish this in Excel by creating a cell where | write the sum of all
squared deviations (Appendix iii), and then using the solver function to minimize the value

of that cell by changing the weights given to each search term in the indicator.
min },7_, (predicted variable, — indicator, * normalizing factor)? s.t. 3 ;w; = 1
Wi
Equation (3)

This yielded improvements in the indicators fit with the predicted variables. Ultimately, the

indicators derived from the aforementioned process are the ones used in the next step.

3.2.2 Working with the Macro Indicators

Now that the indicators are developed, the next step is to test their explanatory, and
potentially predictive, power over the explained factors, namely unemployment,
consumption, and market return. The method to do this is by simple OLS regression. | use

the indicators in various ways to test their aptitude.
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3.3 Predicting Inter-State Moving Patterns

The next idea to test the underlying thesis is to see if I am able to create an indicator for each
state in the US, which in some way relate to state-to-state migration patterns. | base this on
research done to find the root causes of inter-state migration (US Census, 2017). | therefore
first create state specific indicators that are based on search terms that | theorize indicate a
propensity to move, such as “divorce,” “depression,” and “lawsuit.” The idea is then to find
ways to see if there is a correlation between this indicator and moving patterns across states,
in particular changes in relative emigration from each state. However, this presents a
problem, as the US only release statistics on net migration, and | need to isolate only the
state specific emigration. One way around this is to use data from moving companies, as you
can use their outbound shipment numbers to have an approximation for relative outflow

from a state.

My approach is then to create an instrument describing relative intensity of outflow from a

state by dividing outbound shipments from a state on the state’s population.

Outbound shipments from state

State Emigration Intensity = P lati 7 stat
opulation of state

Equation (4)
| then try to find confirmation for the idea that a high level of certain searches in a given
state correlates with a high level of emigration intensity. Moreover, | also try to see if the
index has more explanatory power over changes in emigration intensity, rather than the

intensity itself.

3.4 News and Implied Volatility

The next idea | try to substantiate is whether there is a link between spikes in search interest
for a specific firms financially related factors and the implied volatility of the firm’s options.
What | imagine to be the channel for this is that as investors and the public become aware of
potentially critical information regarding a firms future prospects, search interest for terms
important to a firms valuation spike. Examples of these kinds of searches are “buy Netflix,”

“Netflix undervalued,” “Netflix merger,” “Netflix buyout,” and “Reed Hastings health.”
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The primary issue with resolving this question is the difficulty in finding appropriate
volatility data that fits the necessary characteristics of coming from options with the same
duration and delta even as time progresses. It turns out to be quite a demanding task, ending
up with me reading off the daily volatility from a graph. This naturally constrained my
research in this area to a shorter period of only six months, only using call-options, and only
looking at one firm.

A very important aspect to consider in this case is how the search terms are loaded, in the
sense are they representing news likely to increase the probability of upward movement in
the future, or the opposite. | circumvent this issue by allowing for negative weights on the
terms in the optimization of the indicator.
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4. The Results

4.1 Job Security Indicator
4.1.1 Background

| theorize the macro-economic variable with the highest chance of correlating with search
trends is unemployment. This is because | suspect there exists a strong relationship between
worrying about losing your job, or actually losing it, and information seeking online to fix
the problem. I will post the actual unemployment rate in the US over the period spanned by

this research, which will serve as a visual aid and point of comparison for results that follow
(United States Department of Labor, 2017).

Unemployment Rate
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Figure 7: Unemployment rate in the US (%)

4.1.2 Creating a Raw Indicator

Initially 1 choose search terms thought to correlate with employment. These include, but are
not limited to, terms related to seeking re-employment and looking up information regarding
government benefits (appendix iv). | then develop an indicator with equal weights for each
of the candidate search terms, as described in equation (2). The resulting time series,
pictured on the next page, shows some of the tendencies present in the unemployment rate.

Most notably the peak of the series falls much later than in the actual unemployment.
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Job Sentiment Indicator (weighted average)
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Figure 8: Raw job sentiment indicator

4.1.3 Refining the Indicator

Next on the agenda is to use numerical methods to find a better fit with the data. | now allow
different weighting on the search terms, including negative, to see if there exists a better
connection between search data and unemployment. Allowing for negative weights is
crucial, as some of the search terms likely correlate negatively with unemployment. | now
deploy equation (3) by way of Excel’s Solver™ function. This results in a new weighting of
the search terms composing the indicator (appendix iv). Assessing whether it makes intuitive
sense how all the search terms contribute to the indicator is open to scrutiny. However, it
seems reasonable that terms such as “career” and “interview questions” contribute negatively
to the unemployment indicator, and terms like “unemployment” and “how to find a job”

contribute positively. The time series now reads like this:

Job Sentiment Indicator (optimized)
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Figure 9: Optimized job sentiment indicator
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Compared to actual unemployment this new optimized indicator seems to reveal there could
potentially exist a very strong link between patterns in search metadata and real world
events, considering the use of relatively few search terms. However, while I submit that
finding this link to a certain degree strengthen the underlying argument that this thesis tries
to make, using a similar methodology to also “predict” future events is needed. I use the
word “predict” in the sense that | want to uncover a proper weighting of the search terms
using training data, which | define as the period january 2004 to june 2007. | then use the
weights developed by the training data with search data as time progresses. | accomplish this
by using equation (3) again, however this time | only sum the deviations from years in the

“training data.” The weighting is then used on the search data, and produces this time series:

Job Sentiment Indicator (predictive since june

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00
= 9 w0 N 9 v M~ o 0w O o o = = o &N Mo oemn o S5 N 90
? e e e o g g 9 G A "9 A g dddogodos
c oGy L O £ 0 o % 2 o£c o£coB o= = 4 £ o o = =
m:ng&E‘maD—C!jﬁl:m‘-':m_j‘:_.mo—D
- 2 O 5 0 oo LTz S5 =S a3 05 0 w o I =

Figure 10: Predictively weighted search terms job sentiment indicator
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Figure 11: Unemployment and predictively weighted indicator
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The key aspects of the indicator time series are retained, even with this limiting factor.
Crucially that spike in unemployment caused by the recession, and subesquent tapering off,
is covered here. However, the amplitude of the unemployment is less well described. An
important note is that data from beyond june 2007 is used in removing seasonality from the
search trends. However, I consider this not to be of serious enough consequence to ruin the
logic of the exercise. The reason this paper will not cover predictive weights with predictive
seasonality adjustment is a matter of the limited improvement that would cause, compared to
the sizeable effort it would require. Crucially, however, this does provide evidence that the

relationship between the search term and the macro economic variable remains over time.

4.1.4 Concluding Remarks on Unemployment Indicator

| present the summary statistics for the three indicators used as the explanatory variable for

unemployment in the following table.

Table 1: Unemployment Indicator Regression

Regression Results Unemployment

Intercept Coef. on Indicator Std. Err. t-value H2
Simple Average -3.775862 0.0E24586 0.0051433 20 66 0.7386
Optimized 0.0188484 0.9378212 0.01593712 E2.40 0.9627
Predictive -0.9858045 1570951 0.2174803 .22 02568

It is cause for some concern that the significance level, and r-squared, of the much less well-
designed simple average indicator outperform the predictive one. However, | stand by my
assessment of the predictive variable as a success, as it clearly tracks the same overall pattern
that unemployment actually did. The main reason the predictive weights yielded less
“explanatory power” in terms of r-squared was the amplitude of the unemployment spike
was quantitatively larger than the indicator, but not qualitatively in the wrong direction. My
final thoughts are still that my work is merely a proof of concept, of the idea that search
trend metadata contain information about peoples employment prospects and job security.
What is needed to make this data useful in a consequential way is more sophisticated
numerical methods. By employing machine-learning techniques to handle much larger
quantities of data, and allowing for continuous updating of the weighting of search terms, it
is certain patterns will emerge more clearly. The focus in the future should be to develop

algorithms that predict month-to-month changes in unemployment. Another source of
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information that can give indications about future short-term levels of unemployment could
have significant implications across many fields.

4.2 Consumption Indicator

4.2.1 Background

There existing a link between people’s consumption patterns, and the searches they are likely
to put into google seems intuitive. With the advent of the internet consumers look for
information about purchases, as well as ordering goods and services online. | therefore
consider this a strong candidate macro variable for this project. Again, | put as a reference

point data on consumption by American consumers at the start of this chapter (Federal
Reserve Bank of St. Louis, 2017).
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Figure 12: Consumption in the US in billions

4.2.2 Creation of the Indicator

Again, | use economic intuition to determine search terms that | hypothesize correlate with
consumption patterns. | focus on searches where individuals might be looking for deals,
attempting to free up cash, or are looking for an excuse to make a frivolous purchase
(appendix v). Originally, I want to create an indicator where all the terms correlate in the
same direction with the underlying pattern. However, this becomes difficult, and allowing
for negative weights when optimizing the indicator becomes necessary.
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4.2.3 The Raw Weighted Average Indicator
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Figure 13: Unmodified average consumption indicator

Initially the indicator shows promise in that it picks up a disturbance in consumption patterns
around the 2008 recession. However, it seems to remain flat outside of this period of distress,
which distinguishes the raw consumption indicator from the unemployment indicator. | now

use equation (3) to optimize the weights on each search term to find the best fit between the
indicator and consumption.
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Figure 14: Consumer intent with optimized weighting on terms

The weights that lead to this time series can be seen in appendix (v). The optimized indicator
does not track consumption as clearly as in the case with unemployment. But it does provide

a reasonable link between search patterns and consumption. What will again be of key
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interest is to optimize the weights of the indicator using training data. | again define training
data as everything up to, and including, june 2007. This allows us to see how well the
indicator picks up the drop in consumption during this period.
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Figure 15: Consumer intent with term weights from training data

This particular weighting leads to a much more volatile time series outside of the training
data. It becomes clear how a stronger numerical approach is needed. However, from a less
strict perspective, this indicator contains some of the important aspects | am looking for. The
recession period Q3-2008 to Q2-2009 (highlighted) is trending toward flat for the indicator,
and then upwards since then. While the quantity of search terms, and quality of the
numerical approach could be improved, I still consider this an indication in the direction of

the hypothesis of the paper, that useful information leaks through search metadata.
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Figure 16: Predictively weighted indicator and actual consumption
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Looking at the predictive weigthed indicator superimposed on consumption also reveals the

trends of the two series seem very similar.

4.2.4 Regression Data

Table 2: Regression results consumption indicator

Regression Results
Intercept Coef.on Indicator Std.Err. t-value R2

Simple Average 4819.623 100.4184 5.578535 18.00 0.6778
Optimized 290.9493 143.3024 2.408948 59.49 0.9583
Predictive 3735.798 87.7752 2.973656 29.52 0.8498

This time the predictive indicator seems to fare better than the in the case of unemployment.
| attribute this to the failure of the unemployment indicator to properly account for the
amplitude of the unemployment increase. The consumption indicator performed much more
erratically. Relying on one metric to determine quality is insufficient, as it is clear

consumption is a more problemtatic relationship for me to pin down.

4.3 Market Return Indicator

4.3.1 Background

The next relationship | try to determine is between aggregate economic sentiment leaked
through search terms, and stock market returns. There already exists work on this subject
matter; specifically | find the development of the FEARS index by Da, Engelberg, and Gao
interesting (Zhi Da, 2013). The FEARS index is a construction of negatively loaded
economic terms, as decided by the Harvard IV-4 Dictionary, which are chosen by
significance degree in terms of t-value. They find that negative terms are most useful in

identifying sentiment.

For the scope of this paper, I will construct my own reverse market sentiment indicator based
on the search terms used in the FEARS index, and make a determination as to whether there

is inherent leading, lagging or coinciding bias in the indicator | create (appendix vi).

4.3.2 Creating a Reverse Market Sentiment Indicator

Because work with market sentiment has incredible value if it can be shown to correctly

predict future returns, I start by working towards maximizing my indicator with this in mind.
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First, | try creating an IF function in Excel to give a numerical value of “1” to a correct
prediction by the indicator, and then set the weights in the indicator by maximizing the
number of correct predictions. However, | was not able to do this, as Solver™ s
incompatible with non-continuous functions. This limitation greatly hinders my work in this

area.

My second attempt to optimize the predictive power of my indicator is to create a value for
each month where if the indicator and the S&P 500 moved in the opposite direction you
would get a negative value, and if they moved in the same direction, you would get a
positive value. The goal is then to minimize the value of this as the indicator tracks negative
sentiment by construction.
n
Irblvi'nZ(indicatorHl — indicator;) * (s&p 500, — s&p 500,)
t=0
However, this approach sadly did not yield any useful results. Most likely, this is because
Excel will not value marginally correct predictions with this optimization, and only focus on

maximizing the value of already big correct predictions. Therefore, | must move to yet

another attempt.

My third foray into this problem is less elegant, but retains the key characteristics of this
paper’s main argument, that information leaks through search habits. I now use a simple
weighted average of the search terms in the FEARS index to create the indicator for market
sentiment. Next, | inflate the value of the indicator by multiplying it by 45 for graphing
purposes. Finally, I “invert” the time series by subtracting this value from 4500, a value that
I arbitrarily decide to make the series end at approximately the same value as the S&P 500,
defining it as:

30

. Y. searches,
indicator, = 4500 — | ——— | * 45

By graphing the indicator along with the S&P 500, we can more clearly see if this method

appears to have any merit.
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Reverse Market Indicator and S&P 500

Jan-04
Jul-04
Jan-05
Jul-05
Jan-0&
Jul-06
Jul-07
Jan-08
Jul-08
Jan-09
Jul-05
Jul-10
Jul-12
Jul-13
lan-14
Jul-14
Jul-15
lan-16
Jul-16

Jan-07
Jan-10
Jan-11

Jul-11
Jan-12
lan-13
Jlan-15

e idicator  ss—<gp 500

Figure 17: Reverse market indicator and S&P 500

The more straightforward method of averaging search volume of negative sentiment, and
giving the two time series the most intuitive economic fit, features little room for forcing the
data to fit my conclusion. I consider this successful at illustrating the case for a relationship

between search habits and real economic factors.

4.3.3 Testing for Temporal Fit

Next, | use linear regression between the two series, in a bid to determine whether the
indicator is inherently predictive in nature. The reason | do not look more deeply into the
day-to-day, week-to-week returns is a consequence of limited ability of the author to parse
the bigger quantity of data that would require. However, I still consider comparing the
econometric fit of my relatively simple indicator to be of value.

Table 3: Regression Results Market Sentiment

Regression Results Market Sentiment

Intercept Coef. on Indicator Std. Err. t-value R2

sentiment lagging 1 month -399.23 0.8282 0.1309 6.33 0.2073
sentiment coinciding -573.52 0.9091 0.1292 7.04 0.2432
sentiment leading 1 month -704.4 0.9667 0.1244 7.77 0.2845

sentiment leading 2 months -708.59 0.9692 0.1243 7.80 0.2869
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What the results seem to indicate is that the sentiment indicator fits the S&P 500 index better
when it is a leading indicator. Both the t-value and the r-squared improve as | regress the
sentiment with a lead on the S&P 500. While the need for stronger numerical methods
become ever more pressing, | take solace in still finding results that imply a relationship

between searches and real trends.

4.4 Inter-state Moving Patterns

4.4.1 Background

As internet search meta-data can seemingly capture the sentiment of people by indirectly
capturing their current preoccupations, the questions regarding what use this information has
continues to intrigue me. | want to see if there is a link between the search derived sentiment

is specific geographic areas, and relative levels of emigration.

4.4.2 Linking Emigration with Search Data

First, I find a metric to describe how emigration intensity develops over time. | accomplish
this by first finding the population level of all 50 states, plus The District of Columbia
(appendix vii). The US Census Bureau reports these numbers easily accessible online (US
Census, 2017). However, as it pertains to migration across states they only report net
numbers. For my research interest, it is important to filter out only the emigration
experienced by a state. The way | accomplish this is by using data reported by the United
Van Lines Movers Study. While the full dataset is not reported in full, I am able to get
consistent data from 2006 to 2011 (United Van Lines, 2016).

The data | have been able to procure details the number of outbound package shipments per
state (appendix viii). If we first assume even representation by United Van Lines across
America. Furthermore, if we also assume that no activity variation in any state happens for
reasons other than aggregate changes in emigration in that state, we can use this data to
describe emigration intensity. | accomplish this by first adding the population data from each
state from the year 2006 to 2011 into excel (appendix vii). | then make a similar sheet with
the outbound shipments from each state (appendix viii). Finally, 1 divide outbound

shipments by population over all the years covered, as described in Equation (4). In addition,
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I multiply this number by a common factor to inflate it to a number I can more readily

interpret (appendix ix).

This quickly becomes an overwhelming amount of information and the need to pare back on
the sheer numerical workload becomes unavoidable. | decide to look for states with
distinctly different moving patterns, to see if 1 can use those to find consistent trends in
search data. If searches are stable in a state with stable emigration, and volatile in a state
with volatile emigration, an argument can be made in favour of a link between the two. |
take the two states with the most volatile emigration intensity, and the two least volatile.
These are Arizona and North Dakota (most volatile), and lowa and West Virginia (least

volatile).

Relative Emigration Intensity Over Time

2006 2007 2008 2009 2010 2011

lowa Nest Virginia North Dakota Arizona

Figure 18: Emigration intensity

No state experienced a rise in relative emigration intensity in the period | cover.

4.4.3 Explaining Inter State Emigration

Next, | look at research regarding why people move, and specifically why Americans move
across states. The US Census in 2014 produced an article specifying reasons people gave for
moving across state lines (lhrke, 2014). The primary findings are that within state moves are
usually precipitated by housing reasons, while across state moves are job related. Other
reasons listed are changes in marital status, retirement, wanting neighbourhood with less

crime, natural disaster, change of climate, health reasons, or to attend college.
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| again create indicators as described in equation (2) for what | suspect may be causes related
to moving. | specifically leave out searches that specifically indicate a move may be
imminent, such as “rent moving van” or “hire moving company.” I do this because I am
more interested in what may be underlying reasons why people make big moves, rather than
try to make an accurate predictive indicator for it. | put the yearly search volumes for terms |
think could be related, and arrange them in Excel (appendix x). I dub this the “Moving Inter
State Explained by Relative Rates of Yearning Index,” or “MISERY Index” for short.

With the data on board, my first approach is to try using the same weighting on each search
term for the indicator to all four states while minimizing the squared residuals of the

regression

Emigration Intensity; = MISERY Index; + u;

However, the results from this are unsatisfactory. Most likely the limitation of relatively few
search terms, with 23, and having to limit myself to 6 years due to data constraints, make it
very difficult to find a sensible weighting that uniformly apply to all four states. | should also
add that ideas such as using the last 6 months of the previous year and first 6 months of the
current year to explain moves were not tested, but might produce better results, as logically
not all search increases and moves would coincide in the same year. Also having some of

terms lagging and some coinciding is also not tested, but is an idea with merit.

The next best idea | have that is feasible is to take optimize the weights of the search terms
for all four states individually using equation (3) (appendix xi & xii). The product of this can
be seen in appendix (x). | now simply scan to see which terms contribute in the same
direction with the indicator in all four states (either positively or negatively). It makes sense
that terms consistently pushing in phase across various different states are likely correlated
with across state moves. Four terms among my candidate search terms all had the same sign

in the optimized indicator, and these were:
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Table 4: Consistently signed terms

Term Sign of
Contribution
“divorce lawyer” +
“new job” +
“suicide” +
“surgery” -

It is consistent with the reports from the Census Bureau that changes in marital status and
career changes precipitate moving across state lines. Furthermore, | think it is of interest that
“suicide,” which could be related to either experiencing a loved one taking their life, or
contemplating it yourself, seems to maybe have a correlation with big moves. What | think
this might be related to is a desire to “start over” when life is at its most depressing, and get a
fresh start. While |1 am unable to find academic studies to support this claim, resources that
are more informal echo this sentiment (Lord, 2015). Finally, searches for “surgery,” which
probably means a person is having surgery either themselves, or someone they care about. It
seems a reasonable link that this would cause someone to be less likely to move, as one is
rendered immobile and financially strained by surgery, and is more likely to gravitate toward

family.
4.4.4 Concluding on Emigration

While | am overall heavily constrained by the sheer amount of data when working with all
50 states over a long period of time, some intuitive results could be found. I think relating
searches to how people behave, and perhaps why, is a meaningful question to ask. Many of
our search queries happen for reasons we may not always be conciously aware of, and doing

a meta-analysis where these trends can reveal patterns in real life is of considerable interest.
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4.5 Implied Volatility, Kurtosis, and Firm Specific Search
Interest

4.5.1 Explaining Implied Probability Distributions Using Search
Volatility

The final topic | cover in this paper is the relation between implied volatility of a firms stock,
and volatility of search interest for that company. Implied volatility, as derived from options
on a firms stock, says something about market beliefs about the stock. Specifically, it is the
best representation of market predictions regarding the probability distribution of future
stock prices. As uncertainty regarding future prices increases, so does implied volatility and
the price of options (Hull, 2011). Whereas high implied volatility implies a platykurtic
distribution with high probability of tail events, low implied volatility implies a leptokurtic

distribution with low probability of tail events.

N

Platykurtic distribution Mormal distribution Leptokurtic distribution
Low degree of peakedness Mesokurtic distribution High degree of peakedness
Kurtosis <0 Kurtosis = 0 Kurtosis = 0

Figure 19: Kurtosis and Probability Distributions

4. 5.2 Data and Indicator

I want to test the hypothesis that there is a link between search interest for a firm,
specifically financially related searches, and implied volatility. 1 accomplish this by again
first creating an indicator for the search terms | deem likely to in some way correlate to
implied volatility (appendix xiii). Next, | have to find historical data on implied volatility. |
find data on Yahoo in the period 2014 to 2017 (Quandl, 2017). I limit myself to call options
for the first 6 months of 2015. | also do not consider skewness, and assume symmetry in the
distribution for this exercise. The gaps in the data correspond to holidays and weekends

without any trading happening.
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Implied Volatilty (30)
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Figure 20: Implied volatility Yahoo (%)

Next, | optimize the indicator to fit the time series of the implied volatility with equation (3).

Implied Volatity and Indicator
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Figure 21: Implied volatility and 3 month avg indicator

4.5.3 Predicting Implied Volatility

What is of main interest to me here is not necessarily finding the best fit, rather trying to see
what kind of predictive power a good indicator might provide. The nature of the options
market for at-the-money options for a large corporation like Yahoo is likely to be liquid, and
very responsive to changes in market information. Therefore, in an ideal world I would have
continuous data during the trading day, which would correspond to continuous data from

google trends.
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Meanwhile, in reality, | do the best with what is available and define predictive success as
the indicator and implied volatility moving in the same direction each trading day. | make
this calculation in excel with an “if” formula that yields a “1” if they move with the same
sign, and “0” if they move with opposite signs (appendix Xiv & xv). | also do not concern
myself with optimizing for “predictive weights” in the indicator, as my method is lacking

enough as it is. The resulting ratio of correct to total predictions is 68/122, or around 55.7%.

The method | employed here is not by any means perfect. Even with using backwards
looking weighting in the indicator | was only able to produce an indicator that barely
predicts the correct movement of the implied volatility half of the time. However, 1 still
consider the idea something that may have merit. While | am currently unable to do the
extensive numerical work needed to properly test the notion, I think it would be a

worthwhile effort in the future.
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5. Conclusion

The main argument | try to make is that macro-level search behaviour can potentially reveal
more about real events than is currently understood. The basic computational methods |
employ, combined with simple economic intuition, is able to produce patterns between
search data and real events. By creating indicators intended to track, or predict, real world
economic patterns there exists opportunity to create better understanding of the factors, but

also connections previously unknown.

The indicators for unemployment, consumption, and market returns show real promise as
candidate factors that could be well explained, and potentially predicted, by search trends.
The features most lacking in this paper is a comprehensive list of potentially relevant search
terms, and allowing search terms to interact with different time lags. For future work, I also
imagine looking at terms that on their own may not be related to a factor, but in combination
could be of significance, interaction terms. For instance, an increase in searches for airplane
tickets, without an increase in other pre-vacation related searches, could signal economic

strength as presumably more people can suddenly afford long-distance travel.

Looking at statewide emigration intensity provides a slightly different approach to how the
search data is used. Instead of trying to determine the best possible prediction of a factor, |
try to find consistency in how the search terms correlate with emigration. It can be of interest
to see how search terms, and the collective consciousness, is affected by events. On the other
hand, it is also a possibility that certain moods in a population, inferable by search trends,

can predict phenomena such as emigration intensity.

Trying to capture the markets opinion on the probability distribution of future stock prices is
a more complex task. The “loading” of many search terms is either neutral ambiguous.
Therefore, it made sense to not predict the stock price itself, but rather the uncertainty. My
numerical methods, and ability to parse data, prove woefully inadequate for this task.
However, | remain optimistic that with the proper methodology this idea could prove itself

worthy.
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Appendix

Appendix (i) Removing Seasonality in Excel
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Appendix (ii) Removing Seasonality in Excel (formula)
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Appendix (iif) Minimizing Squared Deviations by Changing Weights
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g3vaan
24179
84584
85165
85212
85757
8E22.5
87159
8B30.6
877503
88679
BEVEE
83236
83536
8387.7
9026.2
F00.1
91347
631
32233
92541
32838
93604
93686

7311730833
46037.36654
1348.740475
17E16.17333
346154354
27432.53354
1315.546354
E4543.47265
4666.163004
1816.552792
13414 11075
30470.60733
9284.340854
350.9103623
107.843852
7a14.43886
5243.563066
74235.0414
SESV212265
12801.50313
259337 85075
33465.40603
2680618553
TFE7. 752735
4495615753
13303.36062
£435.362033
23764.99212
E4EE.922352
17239.48507
34327 1438
5583105331

Tatal z=urm, minimized by changing the weights on the terms
290122.104
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Appendix (iv) Job Sentiment indicator

Job Sentiment Indicator

Search Term Equal Weight Optimized Weights, complete run Optimized weights, predictive post june 2007
cover letter 0.0455 5.2576 0.0874
how to write a cover lett ~ 0.0455 -12.8408 -6.4961
reeducation 0.0455 -0.0245 0.0081
going back to school 0.0455 1.9245 -0.3140
changing careers 0.0455 -0.3961 0.1048
career 0.0455 -2.0460 1.8195
job listing 0.0455 0.9959 0.6811
losing job 0.0455 -0.2291 -0.4293
work placement 0.0455 -0.1491 0.3473
how to find a job 0.0455 2.7719 0.0817
unemployment 0.0455 5.6397 2.4777
job application 0.0455 0.6398 -1.2744
interview questions 0.0455 -4.7513 0.3272
career test 0.0455 1.9523 0.2191
job security 0.0455 0.1541 1.4533
unemployment benefits 0.0455 -1.5755 -0.5869
food stamp eligibility 0.0455 1.5977 -0.3036
lost job 0.0455 0.8290 0.0430
retraining 0.0455 0.2101 0.2256
part time job 0.0455 -1.4784 -1.4401
v 0.0455 3.4924 3.6046
layoffs 0.0455 -0.9742 0.3640

sum weights 1 1 1
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Appendix (v) Consumption indicator

Consumption Indicator

by 0.0500 0.0827E0523 0540756381
loan 0.0500 0.223842897 0.089214697
cancel contract 0.0500 0018937631 -0.084236443
where to by 0.0500 0034520756 0501024262
apply fFor credit card 0.0500 -0.042752101 -0.02850133

online shopping 0.0500 0.01474006 -0.168922846
by online 0.0500 -0.233369886 -0.098192212
by new 0.0500 0.09294342 -0.039451075
best credit card 0.0500 0.074336121 -0.079327823
gift ideas 0.0500 0021200286 0.0286329E6
wacation ideas 0.0500 0.090747172 -0.014226527
Coupons 0.0500 0020126303 0280166593
refinance 0.0500 0034721833 -0.049212012
coat of 0.0500 0.368520225 0216982162

can | afford 0.0500 -0.035959133 -0.074793918
down payrnent 0.0500 -0.045017871 0.038708317
shop 0.0500 0371412187 0107102518

cash for gold 0.0500 -0.004857628 -0.389213263
Saving money 0.0500 0.036154145 0109395734
walue 0.0500 0.031335887 0114030433

sum weights 100 1.00 1.00
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Appendix (vi) Market sentiment indicator

Market Sentiment Indicator (FEARS Index)

Search Term
gold prices
recession

gold price
depression
great depression
gold

economy

price of gold

the depression
crisis

frugal

gdp

charity
bankruptcy
unemployment
inflation rate
bankrupt

the great depression
car donate
capitalization
expense
donation
savings

social security card
the crisis

default

benefits
unemployed
poverty

social security office

sum weights

Equal Weight
0.0333

0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333
0.0333

1.0000
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Appendix (vii) Population in American states

2006 2007 2008 2009 2010 2011
Alabama 4,629,000 4,673,000 4,718,000 4,758,000 4,785,000 4,801,000
Alaska 675,302 680,300 687,455 698,895 713,985 722,720
Arizona 6,029,000 6,168,000 6,280,000 6,343,000 6,414,000 6,469,000
Arkansas 2,822,000 2,849,000 2,875,000 2,897,000 2,922,000 2,939,000
California 36,020,000 36,250,000 36,600,000 36,960,000 37,350,000 37,700,000
Colorado 4,720,000 4,804,000 4,890,000 4,972,000 5,049,000 5,119,000
Connecticut 3,517,000 3,527,000 3,546,000 3,562,000 3,577,000 3,594,000
Delaware 859,268 871,749 883,874 891,730 899,769 907,619
District of
Columbia 570,681 547,404 580,236 592,228 604,453 620,472
Florida 18,170,000 18,370,000 18,530,000 18,650,000 18,840,000 19,110,000
Georgia 9,156,000 9,350,000 9,505,000 9,621,000 9,713,000 9,812,000
Hawaii 1,310,000 1,316,000 1,332,000 1,347,000 1,364,000 1,378,000
Idaho 1,469,000 1,505,000 1,534,000 1,554,000 1,571,000 1,584,000
lllinois 12,640,000 12,700,000 12,750,000 12,800,000 12,840,000 12,860,000
Indiana 6,333,000 6,380,000 6,425,000 6,459,000 6,491,000 6,517,000
lowa 2,983,000 2,999,000 3,017,000 3,033,000 3,050,000 3,065,000
Kansas 2,763,000 2,784,000 2,808,000 2,833,000 2,859,000 2,870,000
Kentucky 4,219,000 4,257,000 4,290,000 4,317,000 4,346,000 4,368,000
Louisiana 4,303,000 4,376,000 4,436,000 4,492,000 4,544,000 4,575,000
Maine 1,324,000 1,327,000 1,331,000 1,330,000 1,328,000 1,328,000
Maryland 5,627,000 5,653,000 5,685,000 5,730,000 5,786,000 5,844,000
Massachusetts 6,410,000 6,432,000 6,469,000 6,518,000 6,557,000 6,612,000
Michigan 10,040,000 10,000,000 9,947,000 9,902,000 9,878,000 9,877,000
Minnesota 5,164,000 5,207,000 5,247,000 5,281,000 5,311,000 5,348,000
Mississippi 2,905,000 2,928,000 2,948,000 2,959,000 2,970,000 2,978,000
Missouri 5,843,000 5,888,000 5,924,000 5,961,000 5,996,000 6,011,000
Montana 952,692 964,706 976,415 983,982 990,898 997,746
Nebraska 1,773,000 1,783,000 1,796,000 1,813,000 1,830,000 1,842,000
Nevada 2,523,000 2,601,000 2,654,000 2,685,000 2,705,000 2,719,000
New
Hampshire 1,308,000 1,313,000 1,316,000 1,316,000 1,317,000 1,318,000
New Jersey 8,662,000 8,678,000 8,711,000 8,756,000 8,802,000 8,843,000
New Mexico 1,962,000 1,990,000 2,011,000 2,037,000 2,066,000 2,078,000
New York 8,251,000 8,310,000 8,347,000 8,392,000 8,192,000 8,287,000
North Carolina 8,917,000 9,118,000 9,309,000 9,450,000 9,562,000 9,651,000
North Dakota 649,422 652,822 657,569 664,968 674,499 685,326
Ohio 11,480,000 11,500,000 11,520,000 11,530,000 11,540,000 11,550,000
Oklahoma 3,594,000 3,634,000 3,669,000 3,718,000 3,762,000 3,787,000
Oregon 3,671,000 3,722,000 3,769,000 3,809,000 3,839,000 3,869,000
Pennsylvania 12,510,000 12,560,000 12,610,000 12,670,000 12,710,000 12,750,000
Rhode Island 1,063,000 1,057,000 1,055,000 1,054,000 1,053,000 1,052,000
South Carolina 4,358,000 4,444,000 4,529,000 4,590,000 4,636,000 4,673,000
South Dakota 783,033 791,623 799,124 807,067 816,463 824,289
Tennessee 6,089,000 6,167,000 6,247,000 6,306,000 6,357,000 6,398,000
Texas 23,360,000 23,830,000 24,310,000 24,800,000 25,260,000 25,650,000
Utah 2,526,000 2,598,000 2,663,000 2,723,000 2,776,000 2,816,000
Vermont 622,892 623,481 624,151 624,817 625,960 626,687
Virginia 7,674,000 7,751,000 7,833,000 7,926,000 8,025,000 8,111,000
Washington 6,371,000 6,462,000 6,562,000 6,667,000 6,744,000 6,823,000
West Virginia 1,828,000 1,834,000 1,840,000 1,848,000 1,854,000 1,855,000
Wisconsin 5,578,000 5,611,000 5,641,000 5,669,000 5,691,000 5,710,000
Wyoming 522,667 534,867 546,043 559,851 564,460 567,768
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Appendix (viii) Outbound Package Shipments

2006 2007 2008 2009 2010 2011
Alabama 2,326 2,151 2,200 1,691 1,880 1,749
Alaska
Arizona 7,838 6,911 5,992 4,143 4,194 4,221
Arkansas 1,487 1,303 1,098 797 873 948
California 27,435 23,538 20,380 14,729 14,892 14,758
Colorado 6,336 6,322 5,414 3,642 3,956 4,080
Connecticut 3,013 2,817 2,740 1,971 2,093 2,155
Delaware 594 566 536 385 433 444
District of
Columbia 800 793 710 477 516 588
Florida 17,019 15,123 13,470 9,378 8,745 9,067
Georgia 7,967 7,292 6,989 4,849 4,775 5,489
Hawaii
Idaho 1,266 1,398 1,182 657 624 711
Illinois 9,500 9,599 9,097 6,365 7,153 6,821
Indiana 3,871 3,660 3,642 2,584 2,474 2,133
lowa 1,316 1,297 1,290 1,101 1,072 1,039
Kansas 2,285 2,223 2,320 1,706 1,883 1,934
Kentucky 2,151 2,168 2,087 1,645 1,680 2,119
Louisiana 2,872 2,244 2,010 1,494 1,332 1,429
Maine 1,040 918 1,082 823 735 747
Maryland 5,440 4,660 4,562 3,404 3,518 3,299
Massachusetts 5,037 4,357 4,253 3,157 3,190 3,129
Michigan 6,816 7,074 6,680 4,846 4,458 3,487
Minnesota 4,250 3,960 3,887 3,264 2,918 2,865
Mississippi 1,448 1,345 1,204 949 962 943
Missouri 4,571 3,983 4,057 2,973 3,847 2,827
Montana 1,020 1,050 866 579 751 886
Nebraska 1,119 1,153 1,229 857 998 921
Nevada 2,278 2,186 1,928 1,303 1,451 1,373
New
Hampshire 1,007 850 918 721 715 708
New Jersey 6,244 6,220 5,322 4,239 5,179 4,190
New Mexico 1,767 2,061 1,693 1,104 1,141 1,346
New York 10,354 9,804 8,693 6,223 6,315 6,574
North Carolina 6,106 6,120 6,219 4,590 4,648 5,122
North Dakota 933 945 759 438 487 523
Ohio 8,230 7,771 7,131 5,282 5,575 4,748
Oklahoma 2,211 2,420 2,087 1,381 1,597 1,456
Oregon 3,042 3,213 2,966 1,664 1,635 1,694
Pennsylvania 7,534 7,194 7,678 5,411 5,528 4,662
Rhode Island 722 576 691 422 402 531
South Carolina 2,958 3,044 3,082 2,211 2,111 2,328
South Dakota 391 349 343 273 315 355
Tennessee 3,987 3,776 3,608 2,845 2,876 2,927
Texas 17,224 16,707 14,908 10,622 11,011 10,800
Utah 2,051 1,909 1,801 1,206 1,462 1,424
Vermont 377 320 332 282 242 255
Virginia 8,309 7,477 8,081 6,079 5,804 6,691
Washington 7,651 7,210 7,181 5,004 4,874 4,626
West Virginia 514 485 557 399 413 491
Wisconsin 4,050 3,941 3,549 2,726 2,741 2,594
Wyoming 497 452 458 303 363 417
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Appendix (ix) Relative Emigration Intensity

2006 2007 2008 2009 2010 2011

Alabama 5.02 4.60 4.66 3.55 3.93 3.64
Alaska 0.00 0.00 0.00 0.00 0.00 0.00
Arizona 13.00 11.20 9.54 6.53 6.54 6.52
Arkansas 5.27 4.57 3.82 2.75 2.99 3.23
California 7.62 6.49 5.57 3.99 3.99 3.91
Colorado 13.42 13.16 11.07 7.33 7.84 7.97
Connecticut 8.57 7.99 7.73 5.53 5.85 6.00
Delaware 6.91 6.49 6.06 4.32 4.81 4.89
District of Columbia 14.02 14.49 12.24 8.05 8.54 9.48
Florida 9.37 8.23 7.27 5.03 4.64 4.74
Georgia 8.70 7.80 7.35 5.04 4.92 5.59
Hawaii 0.00 0.00 0.00 0.00 0.00 0.00
Idaho 8.62 9.29 7.71 4.23 3.97 4.49
Illinois 7.52 7.56 7.13 4.97 5.57 5.30
Indiana 6.11 5.74 5.67 4.00 3.81 3.27
lowa 4.41 4.32 4.28 3.63 3.51 3.39
Kansas 8.27 7.98 8.26 6.02 6.59 6.74
Kentucky 5.10 5.09 4.86 3.81 3.87 4.85
Louisiana 6.67 5.13 4.53 3.33 2.93 3.12
Maine 7.85 6.92 8.13 6.19 5.53 5.63
Maryland 9.67 8.24 8.02 5.94 6.08 5.65
Massachusetts 7.86 6.77 6.57 4.84 4.87 4.73
Michigan 6.79 7.07 6.72 4.89 4.51 3.53
Minnesota 8.23 7.61 7.41 6.18 5.49 5.36
Mississippi 4.98 4.59 4.08 3.21 3.24 3.17
Missouri 7.82 6.76 6.85 4.99 6.42 4.70
Montana 10.71 10.88 8.87 5.88 7.58 8.88
Nebraska 6.31 6.47 6.84 4,73 5.45 5.00
Nevada 9.03 8.40 7.26 4.85 5.36 5.05
New Hampshire 7.70 6.47 6.98 5.48 5.43 5.37
New Jersey 7.21 7.17 6.11 4.84 5.88 4.74
New Mexico 9.01 10.36 8.42 5.42 5.52 6.48
New York 12.55 11.80 10.41 7.42 7.71 7.93
North Carolina 6.85 6.71 6.68 4.86 4.86 5.31
North Dakota 14.37 14.48 11.54 6.59 7.22 7.63
Ohio 7.17 6.76 6.19 4.58 4.83 4.11
Oklahoma 6.15 6.66 5.69 3.71 4.25 3.84
Oregon 8.29 8.63 7.87 4.37 4.26 4.38
Pennsylvania 6.02 5.73 6.09 4.27 4.35 3.66
Rhode Island 6.79 5.45 6.55 4.00 3.82 5.05
South Carolina 6.79 6.85 6.81 4.82 4.55 4.98
South Dakota 4.99 4.41 4.29 3.38 3.86 4.31
Tennessee 6.55 6.12 5.78 4.51 4.52 4.57
Texas 7.37 7.01 6.13 4.28 4.36 4.21
Utah 8.12 7.35 6.76 4.43 5.27 5.06
Vermont 6.05 5.13 5.32 4,51 3.87 4.07
Virginia 10.83 9.65 10.32 7.67 7.23 8.25
Washington 12.01 11.16 10.94 7.51 7.23 6.78
West Virginia 2.81 2.64 3.03 2.16 2.23 2.65
Wisconsin 7.26 7.02 6.29 4.81 4.82 4.54

Wyoming 9.51 8.45 8.39 5.41 6.43 7.34
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Appendix (x) MISERY index

The MISERY index

new job
unemployment
divorce
divorced

retire

rape

lawyer

prison

drugs

surgery

heart attack
health

funeral

death
accident
custody
obesity

debt

murder
college application
divorce lawyer
retired

suicide

North
Dakota
0.56
-0.21
0.10
-0.15
0.00
0.01
0.24
-0.11
0.00
-0.20
0.09
-0.01
-0.07
-0.04
0.00
0.08
-0.13
0.17
-0.03
0.48
0.38
-0.22
0.07

Arizona
0.14
0.00
-0.11
0.13
0.19
0.17
-0.20
-0.22
0.33
-0.15
0.22
0.24
-0.23
-0.02
-0.32
-0.56
0.07
-0.04
0.19
-0.03
0.72
0.06
0.41

lowa
0.25
-0.22
-0.10
0.07
-0.06
-0.06
-0.04
0.01
0.01
-0.08
0.05
0.15
0.04
0.02
-0.04
0.12
0.10
0.02
0.03
0.02
0.65
0.00
0.07

West-Virginia
0.04
-0.06
-0.10
0.10
-0.10
0.02
-0.03
-0.04
-0.03
0.00
-0.06
0.09
-0.11
0.09
-0.06
-0.02
0.00
0.13
0.02
0.54
0.49
-0.02
0.12
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hts for individual states (formulas)

imizing weig
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Appendix (xiii) Volatility Indicator

Firm Search Volatility (Yahoo)

Optimized Weighting

Search Term
yahoo merger
yahoo merge
yahoo bankrupt
marissa mayer
yahoo bankruptcy
yahoo buy

yahoo sell

yahoo crisis
yahoo good
yahoo bad

yahoo new

yahoo takeover
yahoo fear

yahoo buyout
yahoo risk

yahoo cash

yahoo earnings
yahoo announcement
yahoo press release
yahoo income
yahoo assets
yahoo bond
yahoo net worth
yahoo ceo

yahoo option
yahoo fails

sum weights

0.030736322
-0.071063999
0.067125404
0.112605169
0.051840057
0.077692206
-0.071523049
-0.013638537
-0.072958386
0.029703353
0.548934907
0.042889406
0.022467302
0.03304012
-0.042491168
-0.006848179
0.090803038
0.095317921
0.022938962
-0.048111846
0.038445653
-0.056232649
0.05774685
0.130963947
-0.015008689
-0.055374117

0.0000




49

IVe power In exce

Appendix (xiv) Calculating predict
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| (formulas)

IVe power In exce

Appendix (xv) Calculating predict
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