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Abstract

We study the war of attrition between two players when the players’ signals are binary
and affiliated. Our model covers both the case of common values and affiliated private values.
We characterize the unique symmetric equilibrium and demonstrate the possibility of non-
monotonic symmetric equilibria, i.e. equilibria where the player with a lower signal wins with
positive probability. Such an outcome is inefficient in the case of private valuations. We com-
pare the war of attrition to other related mechanisms, the all-pay auction and standard first-
and second-price auctions. The war of attrition dissipates the bidders’ rents more effectively
but at the same time distorts the allocation more severely than the other mechanisms. In terms
of expected revenues, the war of attrition dominates the standard auctions, but the ranking
against the all-pay auction is ambiguous.

JEL CLASSIFICATION: D44, D82
KEYWORDS: War of Attrition, affiliated signals

1. Introduction

War of attrition, first applied in biology by Maynard-Smith [1974] to study conflict, is a dynamic
game where two players compete for an exclusive resource. At any point in time, each player has
the option of dropping out from the game or continuing at a cost. The player that drops out last
wins the resource at the moment when the other player quits the game.

In economics, the game has been used as a model of exit from a declining industry, R&D races,
and political campaigns such as lobbying. Fudenberg and Tirole [1986] provide a first analysis
of the war of attrition under private information as a Bayesian game with independent private
values. Krishna and Morgan [1997] spin the Bayesian game as a particular form of an auction
with a special payment rule: both bidders pay the bid of the lowest bidder. We follow Krishna
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and Morgan in using the terminology of bids and bidders in the following. Obviously one should
keep in mind the alternative interpretations of the game as an actual contest.

A natural feature in many contest situations is that some common factor affects the players’
valuation of the prize or the players’ estimates of the value. This observation calls for the analysis
of such models under affiliated values. The paper by Krishna and Morgan [1997] analyzes a war
of attrition model with interdependent valuations à la Milgrom and Weber [1982] and determines
revenue rankings between the war of attrition and other auction forms. Their model includes the
case with affiliated values, but relies on a parametric assumption ensuring that the equilibrium
bidding strategies are increasing in the bidders’ signals. Unlike in standard first- or second-price
auctions, such monotonicity is fragile in contests or auctions with the property that even losing
bidders forfeit their bids, especially when bidders’ types or values are strongly affiliated.1

Our goal in this paper is to extend the analysis to cover also the case of equilibria where mono-
tonicity fails. Without monotonicity, the usual methods of analysis for the standard model with a
continuum of types also fail.2 In order to make progress, we assume the simplest possible statisti-
cal model for the types of players: each of the two players receives either a high or low signal that
is affiliated with her opponent’s signal. The model includes as special cases the affiliated private
values case and the common values case.

We provide a complete characterization for the symmetric equilibria of this binary model. The
symmetric equilibrium is always unique and involves randomizations by both types of players.
Given the all-pay nature of the game, it is clear that the symmetric equilibria cannot have atoms.
Depending on the correlation between the players’ types and the effect of the relative value differ-
ences, our model gives rise to three different types of symmetric equilibria. If the types are weakly
correlated, or if the high-type bidder’s valuation is much larger than the low-type bidder’s, then
the bid supports of the two types are non-overlapping so that the high type bids higher than the
low type with probability one. Otherwise, the supports are partially or totally overlapping. When
the correlation between signals is high enough or the value differences from the two signals is
small, the supports are maximally overlapping in the sense that the support of the low signal bid-
ders is a subset of the support of the high type bidders. In this case, the high signal bidder earns no
information rent (since the lowest bid wins with probability zero) and the war of attrition results
in full rent dissipation.3

Whenever the bid supports of the two types overlap, there is a positive probability that the
low type outbids the high type. We emphasize that this type of equilibrium exists even in the

1To see the role of affiliation, suppose a bidder’s opponent employs an increasing bidding strategy increasing. A
bidder with a high type expects a high-type opponent with a higher probability. This increases her expected pay-
ment when losing the auction and as a result the best response to an opponent’s monotone strategy is not necessarily
monotone.

2In fact, it is not even clear that a pure strategy equilibrium exists.
3 In a similar vein, Krishna and Morgan [1997] have shown by one example that the war of attrition can achieve full

rent dissipation, and established a link to the first-price all-pay auction: if the all-pay auction extracts all the surplus,
then the war of attrition does not have monotone strategies as an equilibrium. In our binary setting, the link between
the two all-pay mechanisms is much sharper: the all-pay auction extracts all the surplus if and only if the war of attrition
does. On the other hand, even if the symmetric equilibrium is non-monotonic in the war of attrition, it is possible that
the equilibrium is in monotone strategies in the all-pay auction.
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case with affiliated private values, which means that the equilibrium allocation is inefficient.4 In
order to compare expected revenues accruing to the auctioneer (or expected effort expenditures in
the contest interpretation) to other auction formats, we need to compare the total surplus and the
information rent captured by the high type bidders across different auction formats. The standard
auction formats, that is the first-price and second-price auctions, achieve allocative efficiency in
our setting and give away the same information rent to the high type.5 We show that the war of
attrition results in a lower information rent to the bidders than the standard formats. We show that
the surplus loss from inefficient allocation in the war of attrition is not as large as the reduction in
the information rent. As a result, the war of attrition outperforms the standard auction formats in
terms of expected revenue.

We also compare the properties of the war of attrition to the closely related contest model
of first-price all-pay auction.6 We have computed the allocation and information rents for that
auction format in Chi et al. [2017]. When comparing the war of attrition and the all-pay auction,
we find that the revenue ranking depends on the primitives of the model that we have in mind.
We show that the information rent extracted by the bidders is always (weakly) higher in the all-
pay auction, which favors the war of attrition in terms of expected revenue. This part is fully in
line with Krishna and Morgan [1997], who compare rents under the restriction that the equilibria
are monotonic in both formats. But when equilibria are non-monotonic, the revenues are also
affected by the reduction in the total surplus due to inefficient allocation. It turns out that this
loss in surplus is always more severe in the war of attrition, which favors the all-pay auction in
terms of seller’s revenue. We show that the revenue ranking can go in either direction depending
on which of these effects dominates. In the special case of common values, allocation is always
efficient and hence the war of attrition performs better.

It is useful to summarize the comparison of the auction formats in our setup by noting that
the rankings for rent dissipation and allocative distortions go in the same direction. The war of
attrition dissipates more of the bidders’ information rents than the all-pay auction, which in turns
dissipates more than the standard auctions. Similarly, the war of attrition distorts the allocation
more than the all-pay auction, which in turn distorts more than the standard auctions. The rent
dissipation effect dominates the distortion effect when contrasting the war of attrition to the stan-
dard auctions so that the expected revenue (or effort) is higher in the war of attrition. When
contrasting to the all-pay auction, either of the two effects may dominate and hence the revenue
ranking is ambiguous.

4In Chi, Murto, and Välimäki [2017], we show that the possibility of inefficient allocations may not vanish even in a
large (first-price) all-pay auction.

5The equal rent property is a special feature of our binary signal structure.
6In the first-pay all-pay auction the bidders pay their own bid irrespective of who wins, whereas in the war of

attrition the winner pays the second-highest bid. For this reason the war of attrition is sometimes called the second-
price all-pay auction. From here on we use the terms all-pay auction and war of attrition to refer to the first- and
second-price all-pay auctions, respectively.
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2. Binary Model

Two bidders i, j ∈ {1, 2} compete for a single indivisible object.7 At the beginning of the game,
each bidder i privately observes a binary signal ti ∈ {L, H} with H > L. Throughout the paper,
we shall refer to a bidder with ti = H as the high type and a bidder with ti = L as the low type,
respectively. Let p(t1, t2) denote the joint probability mass function of signals. We assume that
p is symmetric over the signals and we define bidder i’s interim belief on tj as pk(m) ≡ Pr(tj =

m|ti = k) without the index i. We also assume that the monotone likelihood ratio property holds:
pH(H)
pH(L) ≥

pL(H)
pL(L) .

After observing her signal, each bidder simultaneously chooses a non-negative bid, and the
highest bidder wins the auction. Both bidders pay the bid of the losing bidder. For each realization
(k, m) of (t1, t2), bidder 1’s valuation for the object is Vk(m) and bidder 2’s is Vm(k). That is, like in
the case of interim belief, we use the subscript of V for the bidder’s own signal and its argument
for the opponent’s signal. We assume VH(m) ≥ VL(m) > 0 for each m = L, H and VH(L) ≥ VL(H),
implying that for each bidder i, a higher ti is good news regardless of tj and ti has at least as great
influence on her own value as tj. It is worth pointing out two special cases of our model. The
model with common values satisfies VH(L) = VL(H) and the model with affiliated private values
satisfies VH(H) = VH(L) and VL(H) = VL(L).

The strategy of bidder i is represented by a pair of distribution functions Fi =
(

FL
i , FH

i
)

of bids,
and the support of the bid distribution is denoted by supp

(
Fk

i
)

for each realization k of ti. Given
a type vector t = (t1, t2) and a bid vector b = (b1, b2) , we can write bidder i’s payoff in the war of
attrition as follows:

ui (b, t) =


Vti

(
tj
)
− bj if bi > bj,

−bi if bi < bj,

1
2 Vti

(
tj
)
− bi if bi = bj,

where only for ease of notation, we assume that each bidder gets the object with equal probability
if the two bids are tied.

A Bayes-Nash equilibrium of the game is a pair of strategies 〈F1, F2〉 such that for each bidder
i 6= j and each realization k of ti, the distribution function Fk

i assigns probability one to the best
response to Fj. A symmetric equilibrium F∗ =

(
FL
∗ , FH

∗
)

is the one where both bidders adopt the
same bidding strategy F1 = F2 = F∗.

Before turning to the analysis, we make two preliminary observations on the form of symmet-
ric equilibria.8 First, there cannot be atoms in the equilibrium bid distribution, since the value of
the object is assumed to be strictly positive for all signal realizations.9 If there was a positive prob-

7With more than two players, the standard (dynamic) war of attrition where the players observe each other’s actions
during the game has no symmetric equilibrium. See Klemperer and Bulow [1999] for the analysis of an N-player war of
attrition with an appropriate modification that guarantees existence of equilibrium. Krishna and Morgan [1997] analyze
a ”silent” (static) war of attrition model, where the players do not observe each other’s actions during the game.

8It is easy to check that these properties also apply to any symmetric equilibrium of (first-price) all-pay auctions.
9One implication of this property is that the equilibrium expected payoff must be continuous in bids, which in turn
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ability of a tie, an arbitrarily small deviation to a higher bid would result in a discrete increase in
the winning probability. Second, the union of the two bid supports, supp(FL

∗ ) ∪ supp(FH
∗ ), must

be an interval starting at zero with no internal gaps. Since the bidders must pay their own bids
when losing, if there was an internal gap, the bidder who submitted the lowest bid above the gap
could decrease her payment by deviating downwards resulting only in a strictly lower payment
in the event of losing the auction. Therefore, a symmetric equilibrium of the game must consist
of atomless bid distributions for the two types, with the union of the supports being a connected
interval that starts from zero.

In light of the first property, we can rule out the case of tie bids in the subsequent equilibrium
analysis and define the symmetric equilibrium in a simple way: F∗ is a symmetric equilibrium of
the game if for each k, b ∈ supp

(
Fk
∗
)

implies

b ∈ argmax
b′

∑
m=L,H

pk (m)

[∫ b′

0

(
Vk (m)− x

)
dFm
∗ (x)− b′

(
1− Fm

∗
(
b′
))]

.

3. Analysis

In this section, we characterize the unique symmetric equilibrium of the war of attrition and
provide a necessary and sufficient condition for the equilibrium to be in monotone strategies.

To begin, we denote by F∗ =
(

FL
∗ , FH

∗
)

a symmetric equilibrium where for each k = L, H, Fk
∗ (b)

indicates the probability of the type-k’s bid being b or less in the equilibrium. Letting φk(m) ≡
Vk(m)pk(m), we can rewrite the equilibrium expected payoff of bidder i with type ti = k from
bidding b as

U(b, k|F∗) = ∑
m=L,H

φk(m)

[
Fm
∗ (b) +

1
Vk(m)

∫ b

0
Fm
∗ (x)dx

]
− b, (1)

where we used integration by parts to obtain the expression.
Even though the payoff formula looks complicated, the following perturbation argument

yields a simple equilibrium condition. Consider a change in bid by the bidder i from b to b + ∆
in the interior of supp(Fk

∗ ). Notice that this bid increment affects bidder i’s payoff only when
bj ≥ b, and that she must be indifferent between those two bids for small enough ∆. Conditional
on ti = k, the probability of the event that her opponent who observed type m placed a bid
bj ∈ [b, b + ∆] is

pk (m) f m
∗ (b)∆

1− pk (L) FL
∗ (b)− pk (H) FH

∗ (b)
,

and the consequential value to bidder i is Vk(m). Hence, if the original bid b is in the support of
type k but not of type m 6= k (so the density f m

∗ (b) equals zero), the following necessary condition

implies that any two distinctive bids chosen from the support of Fk
∗ must yield the same expected payoff to the type-k

bidder. This indifference condition serves as a key analytical tool in what follows.

5



for the equalization of the cost and the benefit must hold: 10

φk(k) f k
∗ (b)

1− pk (L) FL
∗ (b)− pk (H) FH

∗ (b)
= 1. (DE-1)

Since b is not in the support of type m 6= k, the distribution function Fm
∗ must be constant at b, and

thus (DE-1) is a linear first-order differential equation for Fk
∗ (b).

On the other hand, when the bid b is in the support of both types, the corresponding necessary
conditions are

φL (L) f L
∗ (b) + φL (H) f H

∗ (b)
1− pL (L) FL

∗ (b)− pL (H) FH
∗ (b)

= 1,

φH (L) f L
∗ (b) + φH(H) f H

∗ (b)
1− pH (L) FL

∗ (b)− pH (H) FH
∗ (b)

= 1.

By rearranging, the conditions can be expressed in a matrix form as follows:[
f L
∗ (b)

f H
∗ (b)

]
=

1
φL(L)φH(H)− φL(H)φH(L)

[
φH(H) −φL(H)

−φH(L) φL(L)

]

×
[

1− pL (L) FL
∗ (b)− pL (H) FH

∗ (b)
1− pH (L) FL

∗ (b)− pH (H) FH
∗ (b)

]
,

(DE-2)

which is now a system of linear differential equations for
(

FL
∗ (b) , FH

∗ (b)
)
.

With (DE-1) and (DE-2) in hand, we can construct the symmetric equilibrium of the game.
We start from b = 0 using the initial condition FL

∗ (0) = FH
∗ (0) = 0, and then derive the bid

distributions from either (DE-1) or (DE-2), depending on whether or not (DE-2) yields a solution
with

(
f L
∗ (b) , f H

∗ (b)
)
� 0. Figure 1 illustrates the equilibrium construction in the phase plane

diagram. It turns out that depending on the parameters, there are three possible cases denoted as
Cases (i) - (iii). This corresponds to three possible equilibrium configurations for the bid supports,
as we summarize in Proposition 1 below. The details of the construction as well as the closed-
form solutions for the bid distributions are given in the proof, which is relegated to Appendix A.
To state our principal result, we define λ := pH(H)

pL(H)
> 1.

Proposition 1. The war of attrition has a unique symmetric equilibrium F∗ with the following properties:

(i) If φH(L) ≥ λφL(L), then the equilibrium is in monotone strategies:

FL
∗ (b) =

1
pL(L)

[
1− exp

(
− b

VL(L)

)]
on supp[FL

∗ ] =
[
0, BL

]
FH
∗ (b) = 1− exp

[
− b− BL

VH(H)

]
on supp[FH

∗ ] = [BH, ∞)

10Notice that whenever bj ∈ [b, b + ∆], the true cost bj is within ∆ from b + ∆ and hence the added cost is approxi-
mated by ∆ .
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Case (i)

Case (ii)

Case (iii)

𝐹𝐹∗𝐿𝐿(𝑏𝑏)

𝐹𝐹∗𝐻𝐻(𝑏𝑏)

Figure 1: Phase plane diagram of the symmetric equilibrium in the three different cases.

where BL = BH = −VL(L) log [pL(H)].

(ii) If φH(L) ∈ (φL(L), λφL(L)), then supp[FL
∗ ] = [0, BL] and supp[FH

∗ ] = [BH, ∞) with BL >

BH > 0. That is, the two supports are partially overlapping.

(iii) If φH(L) ≤ φL(L), then supp[FL
∗ ] ⊂ supp[FH

∗ ] and both supports begin at zero.

Proof. See Appendix A.

Figure 2 illustrates the equilibrium bidding distributions in the three different cases. These
figures are drawn in the case of affiliated private values with valuations VH(H) = VH(L) =

2, VL(H) = VL(L) = 1. To get the three different cases, we have varied the correlation in the
signals by letting pH(H) = pL(L) = γ, pH(L) = pL(H) = 1− γ, where γ = 0.55, 0.65, and 0.75 in
the left, center, and right panels, respectively.

The symmetric equilibrium is monotonic under the condition of case (i). By a monotonic equi-
librium we mean that a high-type bidder, whenever present, wins against a low-type bidder with
probability one. As the bid distribution of each type has no atoms in any symmetric equilibrium,
for every bH ∈ supp(FH

∗ ) and bL ∈ supp(FL
∗ ) we must have bH ≥ bL in a monotonic equilib-

rium. If the condition φH(L) ≥ λφL(L) is not satisfied, the equilibrium is non-monotonic in the
sense that the object is allocated with positive probability to a low-type bidder even when he faces
a high-type opponent. This inefficient allocation does not arise in the symmetric equilibrium of
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(i) (ii) (iii)

Figure 2: Equilibrium bidding distributions in the three different cases

the model with independent types.11 We relegate to Appendix A the exact functional form of
non-monotonic equilibria.

It can be shown that under the condition of case (i), the war of attrition satisfies the following
single-crossing condition (Athey [2001]): if an increment of bid is desirable to the low type when
her opponent employs a monotone strategy, then the same bid increment remains desirable to the
high type. This leads to the equilibrium where the two supports are disjoint.12

In Chi et al. [2017], we analyze the closely related model of (first-price) all-pay auction in the
same binary setting, and show that φH(L) ≥ φL(L) is the sufficient and necessary condition for
its unique symmetric equilibrium to be in monotone strategies. Hence, the result established here
suggests that the war of attrition calls for a stronger condition for the existence of a monotone
strategy equilibrium. Furthermore, the two auction procedures have another difference in the
equilibrium characterization. In the all-pay auction, there are only two different configurations:
either the equilibrium is monotonic (the case corresponding to (i) in Proposition 1) or the supports
are fully nested (the case corresponding to (iii)). The case (ii), where the two supports are partially
overlapping, is hence a distinguished feature of the war of attrition.

To better understand the difference between the two auction formats, let us discuss the in-
centives for deviations of the high types. Start with the all-pay auction. This is an easier form
to analyze, because the bidders always pay their own bid irrespective of the outcome. We show
in Chi et al. [2017] that the unique symmetric equilibrium of the all-pay auction, regardless of
whether it is monotonic or not, retains at least following two properties: the support of the low
type starts at zero and the union of the two bid supports is a connected interval. With this result
in hand, suppose both bidders employ a monotone bidding strategy and consider the highest bid

11When the bidders’ types are independent, we have pH(H) = pL(H) and pH(L) = pL(L). Hence it follows that
λ = 1 and φH(L) ≥ φL(L), and therefore the condition of case (i) is always satisfied.

12More precisely, it can be shown that when the condition φH(L) ≥ λφL(L) is satisfied, bidder i’s expected payoff
U(b, k|Fj) exhibits increasing differences in (b; k): ∂U(b, L|Fj)/∂b < ∂U(b, H|Fj)/∂b. Hence it follows from Milgrom
and Shannon [1994] that supp(FL

i ) ≤ supp(FH
i ) in the strong set order.
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in the support of the low-type bid distribution, denoted BL := sup supp(FL
∗ ). By submitting that

bid, the low type wins for sure against a low-type opponent but loses for sure against a high-type
opponent, so that her payoff is VL(L)pL(L)− BL. Since the low type must be indifferent between
bidding BL and zero, this highest bid must be BL = VL(L)pL(L). Furthermore, as the union of the
two supports has no internal gap, BL also constitutes the lowest bid of the high-type support. In
order to have such monotone strategies as an equilibrium, however, the high-type bidder must
make a non-negative profit at BL, which is the case if and only if

pH (L)VH (L)− BL ≥ 0, or φH(L) ≥ φL(L).

A salient feature making the analysis of the all-pay auction straight-forward in comparison to
the war of attrition is the fact that the local incentives for deviations by the high type are constant
in the support of the low type. This follows from the fact that for the low type to be indifferent
throughout her bidding support, her winning probability must be equal to her bid, and hence
her bidding density is constant. This means that also for the high type the winning probability
must change linearly in her bid, making her payoff linear in her bid. Consequently, the payoff
to deviations by the high type changes linearly and thus her best-response has the bang-bang
property. The linear dotted curve in Figure 1 shows the equilibrium path of the all-pay auction in
the phase plane with the same parameters as in Case (iii) of the war of attrition. This illustrates
why the case of partially overlapping supports does not appear in the all-pay auction (see Chi
et al. [2017] for detailed analysis).

In the war of attrition the high type’s payoff for deviations does not change linearly in their
bids, since it is the hazard rate of the opponent’s bid rather than its density function that must
remain constant across the support of the low type’s bid distribution. To understand the condition
for monotonic equilibria, suppose again that both bidders employ a monotone bidding strategy.
It follows from the equation (DE-1) with k = L and b = BL that in a monotonic equilibrium (i.e.,
FH
∗ (BL) = 0), the low type’s density function of bids must satisfy

f L
∗ (BL) =

1− pL(L)
φL(L)

. (2)

At the same time, in order to rule out local deviations from BL by the high type, we must have:

φH(L) f L
∗ (BL)

1− pH(L)
≥ 1, or f L

∗ (BL) ≥
1− pH(L)

φH(L)
,

which, combined with (2) and the fact that pm (H) = 1− pm (L), m = H, L, gives the condition of
case (i) in Proposition 1:

φH(L) ≥ λφL(L).

It is the curvature of the deviation payoff to the high type that induces the qualitative difference
in the equilibrium characterization between the two games. In the all-pay auction where the
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deviation payoff for the high types is linear, the monotone equilibria fail to exist if and only if
a bid of zero is in the bidding support of the high type. In the war of attrition, on the other hand,
the high type’s deviation payoff is non-linear. As a result, there is a range of parameters where the
equilibrium is in non-monotonic strategies and yet the high type earns a positive rent, since the
bidding support of the high type does not contain zero (like case (ii) of Proposition 1).

We conclude this section by computing the expected rents for the two types in the symmetric
equilibrium of the war of attrition. For this purpose, we first note that zero belongs to supp(FL

∗ )

in all of the cases in Proposition 1, implying right away that the low types earn no rents, which
is to be expected. In contrast, the rents for the high type vary in different cases. To handle the
three cases at one time, consider the lowest bid in the bid support of the high type, denoted by
BH := inf supp(FH

∗ ). Since the union of the two supports has no internal gaps, the low type must
be indifferent between bidding zero and BH. This observation leads us to an alternative expression
of BH. Getting the low type’s payoff from (1) and then setting U(BH, L|F∗) = 0 gives

BH = pL(L)
[

VL(L)FL
∗ (BH) +

∫ BH

0
FL
∗ (x)dx

]
. (3)

On the other hand, by submitting the bid BH, the high type earns an expected payoff of

U(BH, H|F∗) = −BH + pH(L)
[

VH(L)FL
∗ (BH) +

∫ BH

0
FL
∗ (x)dx

]
= FL

∗ (BH)
[
φH(L)− φL(L)

]
− (pL(L)− pH(L))

∫ BH

0
FL
∗ (x)dx, (4)

where we used (3) to obtain the second expression. Hence we derived the high types’ information
rents (4) in terms of BH. At this boundary, the low type’s equilibrium bid distribution must satisfy

FL
∗ (BH)


= 0 if φH(L) < φL(L)

∈ (0, 1) if φH(L) ∈ [φL(L), λφL(L))

= 1 if φH(L) ≥ λφL(L).

4. Payoff Comparisons

In this subsection, we contrast the rent division and efficiency properties of the war of attrition
to other auction formats, the first- and second-price auctions and the all-pay auction. We then
provide some revenue ranking results. In Chi et al. [2017], we show that in the current binary
setting the first- and second-price auctions are payoff-equivalent, and therefore we shall use the
term ”standard auction” to encompass both of theses formats.13

For the war of attrition and the all-pay auction, it may be more natural to interpret payments

13We know from the linkage principle (Milgrom and Weber [1982]) that when we allow a richer signal space, the
second-price auction is revenue-superior to the first-price auction.
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as effort expended when competing for a prize. Hence the comparison of expected revenues can
be seen as comparisons between expected equilibrium effort. Similarly, the revenues in standard
auction formats (first- and second-price auctions) can be interpreted as commitments to effort
levels conditional on winning the contest.

To compute the expected revenue from an auction, we subtract the bidders’ rent from the total
surplus. When the symmetric equilibrium is non-monotonic, different auction procedures may
lead to not just a different amount of rents appropriated by bidders but a different total surplus
generated, where the latter difference arises from the possibility of an inefficient allocation in the
all-pay mechanisms. We start the analysis by ranking the auction formats in terms of bidders’
information rents and then in terms of allocational efficiency. After that, we provide revenue
rankings.

4.1. Bidder Rents

We let UM (H) denote the expected payoff of the high type in the symmetric equilibrium of an
auction of type M, where M ∈ {W, A, S} stands for war of attrition (W), all-pay auction (A) and
standard auctions (S). In Chi et al. [2017], we show that the all-pay auction and the standard auc-
tions have a unique symmetric equilibrium in which the low type earns no rents. As even in the
war of attrition the rent of the low type is fully dissipated, it is sufficient for revenue comparisons
to consider the expected rents of the high type only. The first two lines in equation (5) below sum-
marize our previous result on standard auctions and the all-pay auction. The third line reproduces
the result (4) from the previous section.

UM(H) =



pH(L)
[
VH(L)−VL(L)

]
for M = S

max
{

φH(L)− φL(L), 0
}

for M = A

FL
∗(BH)

[
φH(L)− φL(L)

]
− (pL(L)− pH(L))

∫ BH

0
FL
∗ (x)dx for M = W.

(5)

This expression gives us the ranking of the auction formats in terms of bidder rents:

Proposition 2. The standard auctions leave a strictly higher rent to the bidders than the other formats, and
the all-pay auction leaves a higher rent than the war of attrition. This holds strictly whenever the rent in
the all-pay auction is non-zero.

Proof. Because pL(L) > pH(L) and FL
∗ (BH) ∈ [0, 1], we obtain from (5) the ranking of the high

type bidder’s payoff across the auction formats: US(H) > UA(H) ≥ UW(H), where the equality
UA(H) = UW(H) holds only when UA(H) = UW(H) = 0. Since the low type bidder gets zero in
all the formats, the result follows.
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𝐹𝐹∗𝐻𝐻(𝑏𝑏)

𝐹𝐹∗𝐿𝐿(𝑏𝑏)

APA

WOA

Figure 3: Probability of misallocation: war of attrition vs. all-pay auction

4.2. Allocational Efficiency

A misallocation takes place when a low-type bidder wins the auction and a high-type bidder is
present.14 This is the only source of inefficiency in the model. We have shown in Chi et al. [2017]
that a misallocation never takes place in the symmetric equilibrium of the standard auctions. We
now compare the probability of misallocation between the war of attrition and the all-pay auction.

To compute the probability of misallocation, it is useful to investigate the equilibrium path
in the

(
FL
∗ (b) , FH

∗ (b)
)

phase plane as b ∈ [0, ∞). The curve marked as WOA in Figure 3 shows
the equilibrium path of the war of attrition in the case (iii) of Proposition 1 (the parameters are
the same as used in Figures 1 and 2). As b increases, both FH

∗ (b) and FL
∗ (b) increase in such a

way that the path bends upwards until b reaches BL, where FL
∗
(

BL
)
= 1. Figure 3 shows also the

corresponding path in the all-pay auction with the same parameter values, marked as APA. This
curve starts at the same slope in the origin, but in contrast to the war of attrition it moves linearly
at a constant slope. We show in the proof of Proposition 3 below that this distinction between the
two paths is a general feature in the case where the rents are fully dissipated in both auctions.

Let us now consider the probability of misallocation. Conditional on one bidder having a low
signal and one having a high signal, we are interested in the probability of the low type winning

14We use the term ”misallocation” across all the cases even if the allocation has no efficiency consequences in the
special case of common values.
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the auction, which can be written as:

BL∫
0

FH
∗ (b)

dFL
∗ (b)
db

db.

By changing the variable of integration to β := FL
∗ (b), we can write this integral as

1∫
0

FH
∗ (β) dβ,

which is just the area under the equilibrium path illustrated by shaded regions in Figure 3. The
probability of misallocation in the case of the all-pay auction is given by the light shaded area
while in the war of attrition it is given by the sum of the two shaded areas. We can hence conclude
that the probability of misallocation is higher in the case of the war of attrition and we have an
unambiguous ranking of the auction formats in terms of their efficiency:

Proposition 3. The probability of misallocation is higher in the war of attrition than in the all-pay auc-
tion. This holds strictly whenever the probability of misallocation is non-zero in the war of attrition. The
probability of misallocation is zero in the standard auctions.

Proof. We compare the probability of misallocation between the war of attrition and the all-pay
auction separately in the three cases of Proposition 1.

In Case (i) both formats have a monotonic equilibrium so that the probability of misallocation
is zero.

In Case (ii) the equilibrium in the war of attrition features some overlap between the bidding
distributions. Therefore the probability of misallocation is strictly positive. In contrast, as we have
shown in Chi et al. [2017], the equilibrium in the all-pay auction is monotonic and the probability
of misallocation is zero.

In Case (iii), there is overlap in the bidding supports in both auction formats. We computed in
the proof of Proposition 1 the equilibrium bidding distributions as:

F̂L (b) = 1− ĉ1er1b − ĉ2er2b,

F̂H (b) = 1− d̂1er1b − d̂2er2b,

where r1, r2, ĉ1, ĉ2, d̂1, and d̂2 are real numbers such that

r2 < r1 < 0,

ĉ1 < 0, ĉ2 > 0, d̂1 > 0, d̂2 < 0.

13



The slope of the equilibrium path can then be written as

dF̂H
∗ (b)

dF̂L
∗ (b)

=
−d̂1r1er1b − d̂2r2er2b

−ĉ1r1er1b − ĉ2r2er2b =
d̂1 + d̂2

r2
r1

e(r2−r1)b

ĉ1 + ĉ2
r2
r1

e(r2−r1)b
,

where the last step divides both sides by a positive number −r1er1b so that both the nominator
and denominator remain positive. Given that d̂2 < 0 and ĉ2 > 0, we see that the nominator is
increasing in b while the denominator is decreasing in b, so that the slope dF̂H

∗ (b)
dF̂L
∗ (b)

increases in b. In
other words, the equilibrium path bends upwards as b increases, as displayed in Figure 3.

We have shown in Chi et al. [2017] that the corresponding bidding distributions in the two-
player all-pay auction are uniform. Denoting them by ĜL

∗ (b) and ĜH
∗ (b), we can write them in

terms of the notation used here as

ĜL
∗ (b) = − (r1ĉ1 + r2ĉ2) b

ĜH
∗ (b) = −

(
r1d̂1 + r2d̂2

)
b,

so it follows that
∂ĜH
∗ (b)

∂ĜL
∗ (b)

=
d̂1r1 + d̂2r2

ĉ1r1 + ĉ2r2
= lim

b↓0

dF̂H
∗ (b)

dF̂L
∗ (b)

.

Hence, the slopes of the equilibrium paths in the two auction formats coincide at the origin.
Therefore the area under the equilibrium path of the war of attrition is strictly larger than that
of the all-pay auction, which means that the probability of misallocation is higher in the war of
attrition.

We have shown in Chi et al. [2017] that both standard auction formats have a unique symmetric
equilibrium in which the probability of misallocation is zero.

4.3. Revenue Rankings

For each auction procedure M, let ΠM denote the expected revenue accruing to the seller and let
LM denote the surplus loss relative to the socially efficient policy. Also, for each n = 0, 1, 2, let P(n)
denote the probability of the event that exactly n of the two bidders receives the signal H. Finally,
let Π? denote the expected social surplus from the efficient allocation rule. With these symbols,
we can write the expected revenue in auction M as

ΠM = Π? − LM −
2

∑
n=1

P(n) · n ·UM(H).

We start by comparing the war of attrition to standard auctions. When the bidding supports
are disjoint in the symmetric equilibrium, the war of attrition achieves the efficient allocation but,
compared to standard auctions, reduces the information rents given away to the high type, leading
to a higher expected revenue. In contrast, when the bidding supports are (partly) overlapped, the
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revenue loss due to rents for the high types and the efficiency loss coexist (except when zero is in
the support of both bid distributions). We show in the proof of the next proposition that the sum
of these two components is always lower than the revenue loss from rents in standard auctions,
and hence the war of attrition outperforms standard auctions in either case.

Proposition 4. The symmetric equilibrium of the war of attrition generates a higher expected revenue than
the symmetric equilibrium of a standard auction.

Proof. When φH(L) ≥ φL(L) · λ, the unique equilibrium of the war of attrition is in monotone
strategies, so there is no surplus loss from inefficient allocation: LW = 0. Hence ΠW > ΠS is
immediate from UW(H) < US(H).

When φH(L) ≤ φL(L), zero is in the support of both types in the war of attrition. In this case,
the mechanism extracts full surplus but suffers from inefficiency. The social cost of the inefficient
allocation amounts to VH(L)− VL(H) and can occur only when one of the bidders is of the high
type and the other is of the low type. This event takes place with probability P(1). The surplus
loss LW is hence bounded by P(1) [VH(L)−VL(H)], which is less than P(1) [VH(L)−VL(L)], i.e.
the expected information rent given to the bidders in the standard auction formats. Therefore,
ΠW > ΠS.

In the remaining case, φH(L) ∈ (φL(L), φL(L) · λ), the war of attrition suffers from an ineffi-
cient allocation and at the same time leaves rents to the high type. To complete the proof, first note
that a surplus loss can occur only if the low type makes a bid above BH. In this case the surplus is
reduced by VH(L)− VL(H), which is smaller than VH(L)− VL(L). This gives us an upper bound
for LW :

LW < P(1)
(

1− FL
∗ (BH)

) [
VH(L)−VL(L)

]
.

Furthermore, we see from (4) that the high-type bidders’ information rent is bounded from
above by

UW(H) < FL
∗ (BH) pH(L)

[
VH(L)−VL(L)

]
.

By summing over the possible realizations of the types, we get a bound for the total informa-
tion rent:

2

∑
n=1

P(n) · n ·UW(H) <
2

∑
n=1

P(n) · n · FL
∗ (BH) pH(L)

[
VH(L)−VL(L)

]
= P(1)FL

∗ (BH)
[
VH(L)−VL(L)

]
,

where the last equality follows from the fact that P(1) = pH(L)∑2
n=1 P(n) · n. Combining the two

upper bounds and using the fact that FL
∗ (BH) ≤ 1, we obtain:

ΠW > Π? −P(1) [VH (L)−VL (L)] = ΠS.

Therefore, the expected revenue in the war of attrition is higher than in standard auctions in all of
the cases.
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In the same manner, we can determine the revenue ranking between all-pay and standard
auctions. When the equilibrium is monotonic, the all-pay auction achieves allocative efficiency
and gives away lower rents to the high type than standard auctions. When the equilibrium is non-
monotonic, the all-pay auction suffers from the allocative inefficiency that curtails revenues, but
the auction fully extracts the information rents from both types. We show in Chi et al. [2017] that
the revenue loss arising from inefficiency is lower than the loss from rents in standard auctions,
and therefore the all-pay auction is superior in revenues to standard auctions in any cases.

We turn next to the comparison between the two all-pay mechanisms. As a first observation we
note that the rent ranking UW(H) ≤ UA(H) implies that in the absence of allocative inefficiencies,
the war of attrition generates a higher expected revenue to the seller. In particular, this is the case
with common values, where allocation is always efficient.

Proposition 5. In the model with common values (i.e. when VH (L) = VL (H)), the symmetric equilibrium
of the war of attrition generates a higher expected revenue than the symmetric equilibrium of the all-pay
auction.

Proof. In the model with common values, the ex post value of the object is common to every
bidder, so that there is no surplus loss from inefficient allocation in any mechanisms. Therefore,
we only need to compare the amount of rents given up to the high type. By Proposition 2, all-pay
auction leaves a higher information rent than the war of attrition, so ΠW ≥ ΠA follows.

When VH(L) > VL(H), we have to take into account the surplus loss from allocative ineffi-
ciency as well as information rents. If φH(L) − φL(L) ≤ 0, then both auction formats dissipate
all the bidder rents, so that the more severe inefficiency of the war of attrition implies higher rev-
enues for the all-pay auction. If φH(L)− λφL(L) ≥ 0, then both auction formats have a monotonic
equilibrium with no allocational inefficiencies, and hence the more effective rent dissipation by
the war of attrition generates higher revenue. Note that this latter finding is in full accord with the
revenue ranking results in Krishna and Morgan [1997].

There is also a range of parameters φH(L) ∈ [φL(L), λφL(L)) where the war of attrition in-
volves overlap in bidding supports but the symmetric equilibrium of the all-pay auction is effi-
cient. In this range, allocative efficiency favors the all-pay auction, whereas the rent for the high
type favors the war of attrition. At one end of the parameter range (where φH(L)− φL(L) is pos-
itive but close to zero), rents in both mechanisms vanish, and hence the inefficiency of the war of
attrition dominates revenue comparison. At the other end of the parameter range (where φH(L)
approaches λφL(L) from the left), the inefficiency of the war of attrition disappears and the bidder
rent difference relative to the all-pay auction dominates.

Proposition 6. If VH (L) > VL (H), the revenue ranking between the symmetric equilibria of the war of
attrition and the all-pay auction is ambiguous. In particular, the all-pay auction generates a strictly higher
expected revenue than the war of attrition when φH(L)− φL(L) ≤ 0, whereas the war of attrition generates
a strictly higher expected revenue than the all pay auction when φH(L)− λφL(L) ≥ 0.
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Proof. When φH(L) ≤ φL(L), zero is in the support of both types in both auction formats, and
hence the rents are fully dissipated; UA(H) = UW(H) = 0. By Proposition 3, the probability of
misallocation is strictly higher in the war of attrition than in the all-pay auction. With VH (L) >

VL (H) this implies LW > LA and so ΠA > ΠW .
When φH(L)− λφL(L) ≥ 0, the bidding supports are disjoint and the allocation is efficient in

both mechanisms and LW = LA = 0. By Proposition 2 we have UA(H) > UW(H), and therefore
ΠA < ΠW .

5. Conclusion

This paper takes the first steps towards analyzing the war of attrition when the players have
affiliated signals. Taking advantage of simple binary signal structures, we provided a complete
characterization of the unique symmetric equilibrium and identified tight conditions under which
the equilibrium is in monotone or non-monotone strategies. The condition for monotonicity is not
satisfied if the types are strongly affiliated or if the high type is not sufficiently good news for the
bidder’s valuation. In either case, the bidding supports of the two types of bidders have a partial
or complete overlap even in the case of affiliated private values, thereby leading to an inefficient
allocation of the object.

Comparing the war of attrition to the all-pay auction in the same binary setting, we found that
the same parameter condition applies to full rent dissipation in both auction formats. However,
there are notable difference in terms of rent division and efficiency properties. We show that the
war of attrition dissipates the bidder information rents more effectively than the all-pay auction
but at the same time distorts allocation more. The standard first- and second-price auctions feature
less rent dissipation and allocational distortions than either of the all-pay formats.

Our analysis makes heavy use of the binary signal structure that we have assumed. The struc-
ture enables us to derive the equilibrium condition, the system of differential equations, in a sim-
ple and tractable way even when monotonicity fails. It still remains an open question how to
extend the analysis presented here to a general signal structure.
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A. Proof of Proposition 1

We analyze the system of linear differential equations (DE-2). For each type k = L, H, define
Gk (b) := 1− Fk

∗ (b) and gk (b) := − f k
∗ (b). Then we can rewrite (DE-2) as a homogeneous system:[

gL (b)
gH (b)

]
= h

[
a1 a2

a3 a4

] [
GL (b)
GH (b)

]
:= A

[
GL (b)
GH (b)

]
, (6)

where

h := −
[
φL(L)φH(H)− φL(H)φH(L)

]−1
< 0,

a1 := φH(H)pL (L)− φL(H)pH (L) > 0,

a2 := φH(H)pL (H)− φL(H)pH(H) = pL (H) pH (H)
[
VH(H)−VL(H)

]
> 0,

a3 := −φH(L)pL (L) + φL(L)pH (L) = pL (L) pH (L)
[
VL(L)−VH(L)

]
< 0,

a4 := −φH(L)pL (H) + φL(L)pH (H) .

Unlike the sign of the other parameters, the sign of a4 is undetermined by the primitives of the
model, but as will be seen, whenever the two bid supports are overlapped in equilibrium, we have
a4 > 0. The desired symmetric equilibrium can be characterized by a straightforward phase-plane
analysis of (DE-1) and (6) over the plane

[
GL (b) , GH (b)

]
∈ [0, 1]× [0, 1].

We start by defining the region in the plane where overlapping bidding supports are feasible,
i.e. the region where (6) admits gL (b) ≤ 0 and gH (b) ≤ 0 (recall that gk (b) := − f k

∗ (b)). Since
a1 > 0, a2 > 0 and h < 0, we see from (6) that gL (b) ≤ 0 holds always. For gH (b) ≤ 0, on
the other hand, we need a4 > 0 and a3GL (b) + a4GH (b) ≥ 0, which outlines the region D where
overlapping supports are feasible:

D :=
{[

GL, GH
]
∈ [0, 1]× [0, 1] :

GH

GL ≥ −
a3

a4

}
.

To derive explicit solutions for the bid distributions, we note that the matrix A has two real
eigenvalues

r1 =
h
2

(
a1 + a4 −

√
(a1 − a4)

2 + 4a2a3

)
< 0,

r2 =
h
2

(
a1 + a4 +

√
(a1 − a4)

2 + 4a2a3

)
< r1 < 0.

To see that both r1 and r2 are real-valued, write

a1 − a4 = pL (L) pH (H)
{

VH(H)−VL(L)
}
+ pL (H) pH (L)

{
VH(L)−VL(H)

}
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= pL (L) pH (H)
{

VH(H)−VL(H)
}
+ pL (L) pH (H)

{
VL(H)−VL(L)

}
+ pL (H) pH (L)

{
VH(L)−VL(L)

}
− pL (H) pH (L)

{
VL(H)−VL(L)

}
≥ pL (L) pH (H)

{
VH(H)−VL(H)

}
+ pL (H) pH (L)

{
VH(L)−VL(L)

}
,

where the inequality follows from VL(H) ≥ VL(L) and log-supermodularity of p. As a result,

(a1 − a4)
2 ≥

[
pL (L) pH (H)

{
VH(H)−VL(H)

}
+ pL (H) pH (L)

{
VH(L)−VL(L)

}]2

.

Observe that −a2a3 is simply the product of the two terms inside the bracket above:

−4a2a3 = 4pL (L) pH (H) pL (H) pH (L)
{

VH(H)−VL(H)
}{

VH(L)−VL(L)
}

.

Since (s + u)2 ≥ 4su for every s, u ∈ <, we have (a1 − a4)
2 + 4a2a3 ≥ 0.

The general solution to (6) is then[
GL (b)
GH (b)

]
= c1

[
k1

1

]
er1b + c2

[
k2

1

]
er2b, (7)

where c1 and c2 are free parameters and k1 and k2 are normalized eigenvector components

k1 =
a1 − a4 −

√
(a1 − a4)

2 + 4a2a3

2a3
< 0,

k2 =
a1 − a4 +

√
(a1 − a4)

2 + 4a2a3

2a3
< k1 < 0.

We are now ready to analyze the three mutually exclusive cases in Proposition 1:

Case (i): φH(L) ≥ λφL(L)

In this case, a3 < a4 ≤ 0 and therefore D = ∅, meaning that the system (DE-2) does not have a
feasible solution with ( f L

∗ (b), f H
∗ (b))� 0. Hence there should be no overlap between the two bid

supports. The equilibrium
(

FL
∗ , FH

∗
)

described in case (i) of Proposition 1 follows by solving the
necessary indifference condition (DE-1) separately for FL

∗ and FH
∗ . First, (DE-1) for type k = L,

pL (L) f L
∗ (b)VL(L)

1− pL (L) FL
∗ (b)

= 1,

with initial condition FL
∗ (0) = 0 gives the formula for FL

∗ (b). Then setting the boundary condition
FL
∗
(

BL
)
= 1 (recall that BL = sup supp(FL

∗ )) gives the formula for BL. Similarly, (DE-1) for type

19



𝒟𝒟 = ∅
𝐺𝐺𝐻𝐻(𝑏𝑏)

1

1𝐺𝐺𝐿𝐿(𝑏𝑏)

Figure 4: Case (i)

k = H is
pH (H) f H

∗ (b)VH(H)

1− pL (L)− pH (H) FH
∗ (b)

= 1,

which with initial condition FH
∗
(

BL
)
= 0 gives the formula for FH

∗ (b). Figure 4 displays the
equilibrium trajectory which is marked by arrows.

Case (ii): φL(L) ≤ φH(L) < λφL(L)

In this case, we have a4 = −φH(L)pL(H) + φL(L)pH(H) > 0 and

[
GL (b) , GH (b)

]
∈ D ⇔ GH (b)

GL (b)
> − a3

a4
=

φH(L)pL (L)− φL(L)pH (L)
φL(L)pH (H)− φH(L)pL (H)

> 1.

Since GH (0) /GL (0) = 1 < −a3/a4, bid zero cannot be in the support of FH
∗ . It is easy to check

that the only possibility is that there is a bid interval [0, BH ], where only type L is active, and
FL
∗ (b) in that interval follows from the indifference condition (DE-1) for type L together with

initial condition FL
∗ (0) = 0. The formula for BH is

BH = VL(L) log
[

φH(L)−VL(L)pH (L)
φL(L)−VL(L)pH (L)

]
< VL(L) log [pL(H)]−1 ,

which follows from the condition

1
GL (BH)

=
1

1− FL
∗ (BH)

= − a3

a4
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Figure 5: Case (ii)

that defines the point where the equilibrium path hits D where overlapping supports are feasible
(see Figure 5, where D is the shaded area). It is easy to verify from (6) that we have a trajec-
tory

[
GL (b) , GH (b)

]
with gL (b) < gH (b) < 0 for b ∈

[
BH, BL

]
, where BL is pinned down by

GL (BL
)
= 1. To get an explicit formula for the bidding distributions, we plug initial conditions

GL (BH) = − a4
a3

and GH (BH) = 0 into (7), which gives:

F̃L (b) = 1− GL (b) = 1− c̃1 exp [r1 (b− BH)]− c̃2 exp [r2 (b− BH)] ,

F̃H (b) = 1− GH (b) = 1− d̃1 exp [r1 (b− BH)]− d̃2 exp [r2 (b− BH)] ,

where

c̃1 =

(
a1 + a4 +

√
(a1 − a4)

2 + 4a2a3

)(
a1 − a4 −

√
(a1 − a4)

2 + 4a2a3

)
4a3

√
(a1 − a4)

2 + 4a2a3

< 0,

c̃2 = −

(
a1 + a4 −

√
(a1 − a4)

2 + 4a2a3

)(
a1 − a4 +

√
(a1 − a4)

2 + 4a2a3

)
4a3

√
(a1 − a4)

2 + 4a2a3

> 0,

d̃1 =
a1 + a4 +

√
(a1 − a4)

2 + 4a2a3

2
√
(a1 − a4)

2 + 4a2a3

> 0,

d̃2 = −
a1 + a4 −

√
(a1 − a4)

2 + 4a2a3

2
√
(a1 − a4)

2 + 4a2a3

< 0,
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Figure 6: Case (iii)

and BL is obtained from boundary condition F̃L (BL
)
= 1:

BL = BH +

(
−1

h

)
·

log

(
a4

(
a1−a4+

√
(a1−a4)

2+4a2a3

)
−2a2a3

a4

(
a1−a4−

√
(a1−a4)

2+4a2a3

)
−2a2a3

)
√
(a1 − a4)

2 + 4a2a3

.

The remaining part of FH
∗ for b > BL follows directly from indifference condition (DE-1) for type

H with initial condition FH
∗
(

BL
)
= F̃H (BL

)
.

Case (iii): φH(L) < φL(L)

In the last case, all points
[
GL (b) , GH (b)

]
satisfying 0 ≤ GL (b) ≤ GH (b) are in the set D,

including the initial point
[
GL (0) , GH (0)

]
= [1, 1]. The system (DE-2) then pins down a unique

trajectory from
[
GL (0) , GH (0)

]
= [1, 1] to

[
GL (BL

)
, GH (BL

)]
, where GH (BL

)
> 0 and where

BL defined by GL (BL
)
= 0 (see Figure 6). Using initial conditions GL(0) = GH(0) = 1, we get the

formulas for the bidding distributions from (7):

F̂L (b) = 1− ĉ1er1b − ĉ2er2b,

F̂H (b) = 1− d̂1er1b − d̂2er2b,
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where

ĉ1 =

(
a1 − a4 − 2a3 +

√
(a1 − a4)

2 + 4a2a3

)(
a1 − a4 −

√
(a1 − a4)

2 + 4a2a3

)
4a3

√
(a1 − a4)

2 + 4a2a3

< 0,

ĉ2 =

(
−a1 + a4 + 2a3 +

√
(a1 − a4)

2 + 4a2a3

)(
a1 − a4 +

√
(a1 − a4)

2 + 4a2a3

)
4a3

√
(a1 − a4)

2 + 4a2a3

> 0,

d̂1 =
a1 − a4 − 2a3 +

√
(a1 − a4)

2 + 4a2a3

2
√
(a1 − a4)

2 + 4a2a3

> 0,

d̂2 =
−a1 + a4 + 2a3 +

√
(a1 − a4)

2 + 4a2a3

2
√
(a1 − a4)

2 + 4a2a3

< 0,

and the highest bid BL in the low-type bid support is determined by F̂L (BL
)
= 1 as before:

BL =

(
−1

h

)
·

log

((
a1−a4−2a3−

√
(a1−a4)

2+4a2a3

)(
a1−a4+

√
(a1−a4)

2+4a2a3

)
(

a1−a4−2a3+
√

(a1−a4)
2+4a2a3

)(
a1−a4−

√
(a1−a4)

2+4a2a3

)
)

√
(a1 − a4)

2 + 4a2a3

.

Lastly, the part FH
∗ for b > BL can be obtained from indifference condition (DE-1) for type k = H

with initial condition FH
∗
(

BL
)
= F̃H (BL

)
. The proof is now complete.
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