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Abstract

This paper introduces a chartering problem that arises in the shipping industry. The chartering

decisions determine the time-charter contracts to enter into, in particular, how many ships of

each type to charter in, and for how long they are to be hired. We show that this problem

can be modeled as a tactical fleet composition problem, with integrated fleet deployment and

speed optimization, which also takes into account market uncertainties. We propose a two-stage

stochastic programming model, and present a computational study based on the case of Odfjell,

a leading chemical shipping company based in Bergen, Norway. We show how the charter plans

produced can change depending on different modeling choices. We also show why and how different

charter plans affect the company’s overall performance, in order to provide guidance in helping the

company make its chartering decisions.
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This paper introduces a chartering problem that arises in the shipping industry.

The chartering decisions determine the time-charter contracts to enter into, in par-

ticular, how many ships of each type to charter in, and for how long they are to be

hired. We show that this problem can be modeled as a tactical fleet composition

problem, with integrated fleet deployment and speed optimization, which also takes

into account market uncertainties. We propose a two-stage stochastic programming

model, and present a computational study based on the case of Odfjell, a leading

chemical shipping company based in Bergen, Norway. We show how the charter plans

produced can change depending on different modeling choices. We also show why

and how different charter plans affect the company’s overall performance, in order to
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Keywords: maritime transportation, fleet composition, fleet size and mix, fleet deploy-

ment, stochastic programming.

1 Introduction

Ever since the 2008–2009 financial crisis, the shipping industry has been under the pressure

of low freight rates brought by the global oversupply of ship capacity. This is partly due

to the long lead times associated with the delivery of newbuildings. For example, in 2009,
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the annual growth rate of the world fleet was 7% even though the world seaborne trade fell

by 4.5% [29]; and in 2014, the world fleet grew by 3.5% which is still above that of global

GDP and trade growth, and even slightly higher than that of the growth of seaborne trade

[30]. In 2016, the grim news about the Hanjin Shipping bankruptcy has further put the

shipping industry on alert. For maritime transportation providers, it is therefore more

critical than ever to ensure efficient management and operation of their fleets in order to

survive the crisis.

This study considers a real-life chartering problem faced by Odfjell, a Norwegian public

listed company based in Bergen, Norway. As a leading company in the global market for

the transportation and storage of bulk liquid chemicals, Odfjell provides services on trading

routes all around the world. Each year by the end of October, Odfjell determines the time-

charter contracts to enter into as a supplement to the capacity of the fleet they currently

own. On a time charter, a daily hire is paid to the ship owner while the shipping company

also bears the sailing costs including fuel and port/canal fees etc. These time charters

represent a significant portion of Odfjell’s annual expenses, around 24% in 2015 [18], and

will decide how many ships of each type to charter in, and for how long they are to be

hired.

Several aspects of the future market, such as customer demands, can be highly un-

certain. For example, some transport contracts only state percentages of the customers’

actual production rather than absolute amounts, which make the committed volumes need-

ing transport uncertain and dependent on the market condition of some specific chemical

products. As a result of these uncertainties, the imbalances between supplies and demands

for transport capacity in different regions are common in chemical shipping. But this also

results in possibilities of picking up optional cargoes from the spot market. Therefore,

with the underlying market uncertainties (such as contractual demands and the size of the

spot market) affecting the shipping capacity required, the decision making on charters has

become rather complicated.

The chartering problem described in this paper can be seen as a tactical fleet compo-

sition problem with a focus on capacity adjustment given an existing fleet [8]. However,

without taking into consideration the operational details to some degree, fleet composition

decisions may be based on a too simplified view. Hence, an integration of deployment or

routing into the fleet composition decisions is warranted in most cases. In our study, we

include fleet deployment decisions to support the capacity evaluation necessary for the

making of the charter plan.

The contribution of this paper is to present a novel stochastic programming model

for the chartering problem, taking into account some of the uncertainties affecting the

market. These include stochastic demands, fuel prices, charter rates and freight rates.

Even though the model is rather general and applicable to many shipping segments and
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companies, we demonstrate its use to the case of Odfjell, and focus on the decisions for

time charters. We show how the charter plans change as we alter some of the modeling:

we vary the level of detail in the modeling of fleet deployment; we use the deterministic

version of the original stochastic model; we assume uncorrelated random variables; and

we treat speed optimization in different ways. We also show how the different chartering

plans affect the company’s overall performance, in order to provide guidance in helping

the company make its chartering decisions.

The remainder of this paper is organized as follows. We first give a brief literature

review in Section 2. The chartering problem is described in Section 3, and the stochastic

programming model in Section 4. Section 5 introduces the case of Odfjell and we present

our computational study in Section 6. We conclude in Section 7.

2 Literature Review

This section presents a survey of papers that are particularly relevant to our study, re-

garding maritime fleet composition (Section 2.1), maritime fleet deployment (Section 2.2)

and decision making under uncertainty in maritime fleet composition or fleet deployment

problems (Section 2.3).

2.1 Maritime fleet composition (fleet size and mix)

Fleet composition models help determine the size and mix of the fleet and can be found at

all levels of the decision hierarchy. At strategic level, fleet composition decisions usually

involve considerable capital investments and deal with such as newbuildings, sale and pur-

chase of second-hand vessels, and demolition of current vessels; at tactical and operational

levels, the problem is more related to capacity adjustment given an existing fleet, e.g.,

the acquisition of additional capacity through time-charters over a relatively short period

of time. We refer the readers to the following two surveys and the references therein.

A survey on fleet composition problems in both maritime and land-based contexts was

presented by Hoff et al. [8], who discussed the industrial aspects of combined fleet com-

position and routing. Pantuso et al. [19] presented another literature survey on fleet size

and mix problems in maritime transportation.

2.2 Maritime fleet deployment

Fleet deployment problems normally consist of finding the optimal allocation of the avail-

able fleet to services, e.g., trading routes. In the maritime sector, there exists a broad

literature on the modeling and solution methods for fleet deployment problems. A sur-

vey of fleet operation optimization and fleet deployment was presented by Perakis [22].
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Some other examples are: Fagerholt et al. [5], Meng and Wang [16], Gelareh and Meng

[6], Gelareh and Pisinger [7], Wang and Meng [31], Andersson et al. [2].

2.3 Decision making under uncertainty

In most (if not all) situations, decisions are made under uncertainty. For the problem

addressed in this study, some information needed to make the charter plan is highly un-

certain, e.g., demand, spot rates and ship operating costs (largely affected by fuel prices),

especially when it comes to market conditions further into the future. It is generally under-

stood that in these situations, stochastic models are more appropriate than deterministic

ones [13].

There are not many studies on maritime fleet composition or fleet deployment prob-

lems in the literature that take uncertainty into account, some exceptions include: Meng

and Wang [16] with uncertain demand, using a distribution-based model and chance con-

straints; Shyshou et al. [27] with uncertain weather conditions and vessel rates using sim-

ulation analysis; Alvarez et al. [1] with uncertain second-hand purchase and sale prices,

charter rates etc., (but not demand), and using robust optimization; Loxton et al. [15]

with uncertain numbers of each type of vehicles needed using a method based on dynamic

programming and Golden section search; Wang et al. [32] with uncertain demand and

chance constraints using sample average approximation; Fagerholt et al. [4] with uncer-

tain demand quantities and patterns, using simulation and a rolling-horizon framework;

Pantuso et al. [20] with uncertain demand, fuel costs and ship values etc., and long-term

multi-period considerations in a maritime fleet renewal problem, while Mørch et al. [17]

also presented a similar shipping capacity renewal problem with financial factors.

To capture the uncertainty considered in our study, a scenario-based stochastic pro-

gramming model is proposed, i.e., the uncertainty of the problem is approximated by a

set of scenarios, each representing a complete realization of all the stochastic elements.

Scenarios used in this context are typically generated based on sampling or on matching

statistical properties of the stochastic phenomena [13]. Whichever scenario generation

method is used, an important but often overlooked question is how the properties of the

uncertain phenomena affect the stochastic program, see discussions in, e.g., Kallberg and

Ziemba [10], Chopra and Ziemba [3], Kaut et al. [11], Lium et al. [14], Pantuso et al. [21].

These properties may include, for example, correlations among uncertain elements and

shapes of the stochastic distributions (uniform, triangular, normal etc.). In this study,

we particularly seek to investigate the impact of correlations on the chartering decisions

produced by the stochastic model, and the consequences of failing to take correlations into

account when they are sometimes common in reality.
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3 Problem Description

We consider a shipping company seeking to fulfill the contractual demands for the next

year by providing services using its own fleet as well as time-charters. To meet demand,

in terms of both volume and service frequency required by the transport contracts, the

shipping company needs to make a charter plan and deploy its ships to assure timely

and cost-effective services. The charter plan is responsible for the additional transport

capacity brought in to add to the current fleet for the operations of next year, and the

deployment decisions allocate the ships, including both owned and chartered vessels, to

different trading routes. Such allocation concerns the number of times each type of ships

will operate a given trading route, in order to meet the transport demand of the associated

trade.

Brunswick

Charleston

New York

Southampton

Gothenburg

Rotterdam

Antwerp

US East Coast

N W Europe

Figure 1: A trade lane from Northwest Europe to US East Coast.

A somewhat high level abstraction of demand and service is used in this paper, which

is based on trade lanes between geographic areas. Similar abstractions can be found

in, e.g., Alvarez et al. [1] and Pantuso et al. [20]. A trade represents a transportation

arrangement from one geographic area to another; and a trade lane consists of a number of

loading and discharging ports at the origin and destination geographic areas, respectively.

In Figure 1, an example trade lane from Northwest Europe to the US East Coast is

shown. This trade lane is serviced when a ship picks up cargoes at each of the four origin

ports in Northwest Europe, sails cross the Atlantic Ocean, and unloads the cargoes at

their respective destination ports on the US East Coast. Depending on the contractual

requirements of the cargoes serviced by the trade, a trade lane may require servicing

several times within a specific planning period (e.g., twice a month). Also, some special

constraints regarding the compatibility between cargo types and ships (or tanks in chemical
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shipping) may restrict which vessels that can be assigned to a particular trade lane.

The goal of the shipping company is to find the best chartering strategy that provides

sufficient transport capacity with minimized total costs, which consist of fixed costs as-

sociated with the time charters; and variable costs, of which ship operating costs are an

important component. Ship operating costs are affected by the ship deployment decisions

as well as decisions with respect to sailing speeds, because of the non-linear relationship

between speed and fuel consumption, and of the fact that fuel costs represent a major por-

tion of a ship’s operating costs [28, 26]. In maritime transportation, many of the OR/MS

models found in the literature assume fixed speeds for the ships either explicitly, or im-

plicitly through the calculation of other inputs such as sailing times, due dates and fuel

costs [24]. In this study, we consider speed optimization simultaneously with deployment

decisions in our chartering problem in order to capture the economic trade-offs between

(a) the lower charter costs associated with a higher speed and (b) the higher fuel costs

and hence higher operating costs associated with such higher speeds.

For some tonnage not covered by the fleet when there is a surge in demand during

operation, the shipping company may choose to acquire (usually more expensive) “on the

spot” charters from the spot market instead of planning for the occasional surge in ad-

vance with extra ship(s). In the meantime, unused capacity may also be chartered out at

a certain rate in the spot market during the operation of the fleet. In addition, apart from

contractual cargoes that have to be delivered, picking up optional cargoes from the spot

market where possible can also generate revenue. These possibilities associated with the

spot market are also taken into account when making the charter plan and deployment

decisions. Note that spot markets in the chemical shipping industry are sometimes limited

in terms of both demand and supply of shipping capacity, unlike in other shipping sectors

such as dry bulk. This is mainly due to the fact that ships used in the chemical shipping

industry are specialized tankers and therefore “on the spot” charters are not always avail-

able at short notice. Proper planning for time charters is therefore of great significance

for chemical shipping companies.

4 The Model

In this section we propose our model for the chartering problem. The modeling approaches

and assumptions are introduced in Section 4.1, and the mathematical formulation is pre-

sented in Section 4.2.

4.1 Model development

In our chartering problem, the charter plan for the next year is made at the end of the

given year. In the model, we further divide the planning period into two periods: the
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first (P-1) is from January to March, and the second (P-2) from April to December.

Such division in time reflects the difference in the shipping company’s confidence in its

estimates of market conditions over the two periods: the shipping company is quite sure

of the demands (contractual and spot) they are facing and is also confident about its

prediction on fuel prices, spot rates etc., for P-1; but much less so for P-2, due to high

market volatility. The charter plan therefore, in accordance with the time division, consists

of two sub-decisions: the first determines before P-1 how many and what types of ships to

charter in for the next year; and the second makes further adjustments to the chartered-in

ships, between P-1 and P-2, by determining whether or not the shipping company should

increase or decrease the charters for P-2. These adjustments make up part of the charter

plan and are determined simultaneously with the “main” chartering decisions. This is due

to the fact that the chemical tanker market is relatively small, and therefore charters are

not always available on the spot market.

Jan Feb Mar Apr May Nov Dec

P-1 P-2

Chartering Plan

sub-decision2
adjustments

Ship Type - 1:        6        2           8                      +1              9

Ship Type - 2:        5        1           6                      +1              7

Ship Type - 3:        2        8           10                      -2              8

Ship Type - 4:        0        8           8                      +3              11

Ships in operation in P-1 Ships in operation in P-2Current fleet

sub-decision1
charters

Figure 2: An example illustrating the decision process of a charter plan, and how it affects

the fleet in operation over the planning period.

We illustrate in Figure 2 the composition of a charter plan and how it affects the fleet

over time. The charter plan details the types and numbers of ships to charter in at the

start of January with “sub-decision1”, and the increase/decrease in the charters at the

end of March with “sub-decision2”. An example is also given in Figure 2 to show how the

fleet in operation is affected by the charter plan. Take “Ship Type 3” for example, the

shipping company has two ships of this type in its own fleet. By committing to the charter

plan, eight ships of Type-3 are chartered in starting from January, and two of them are

then taken out of the chartering contract by the end of March. As a result, the shipping

company has ten ships of this type to use during P-1 (January - March) and eight during

P-2 (April - December).

As mentioned in Section 3, a high level abstraction of demand and service is used in
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this study, which is based on trade lanes between geographic areas. With every trade lane

we associate one or more contracts, each representing the aggregated demand on the trade

lane that may be carried using the same type of capacity (tanks). Every contract, in this

context, can therefore represent transport demands from numerous customers.

To satisfy demand, fleet deployment decisions are made for the available ships, and

are also kept at an aggregate level. Like Pantuso et al. [20], we define a loop as a round-

trip route servicing a number of trade lanes that start and end in the same geographic

area. When the destination area of one trade lane is not the same as the origin area of the

immediately next trade lane within a loop, ballast (empty) sailing will take place to connect

the two consecutive trade lanes. We show in Figure 3 a small example with three trade

lanes and several potential loops that can be derived from these trade lanes. In Figure 3a,

three trade lanes, TR1, TR2 and TR3 are represented by solid arrows. The dashed arrows

are the ballast voyages needed in order to form loop L1, involving two trade lanes TR2

and TR3. The graph representation of the loop is further illustrated with bold lines in

Figure 3b, where the circle nodes represent trade lanes and the directed edges represent

potential ballast sailings to connect the trade lanes. Therefore, if a ship is assigned to

loop L1=TR2→TR3, it sails in ballast to the origin area of TR3 after servicing TR2.

And then, subsequent to servicing TR3, the ship sails in ballast back to the origin area

of TR2. Loops consisting of three trade lanes can also be constructed based on the graph

representation in Figure 3b, e.g. TR1→TR2→TR3 and TR1→TR3→TR2. Moreover, if

a loop contains only one trade lane, it would consist of sailing back to the origin area

of the trade lane after servicing it, i.e. the dashed arrow pointing back to itself. After

constructing potential loops with the trade lanes that need servicing, the fleet deployment

decisions assign ships to loops in order to fulfill the demand of each trade lane.

We also include speed optimization in our deployment decisions, since speed is a key

determinant of: (a) the time required to sail the loops; and (b) the fuel costs, as fuel

consumption per time unit is approximately proportional to the third power of speed

[25, 23], which gives a quadratic consumption function per distance unit. However, instead

of a function, shipping companies often have fuel consumption data for a number of discrete

speeds, this is also the case for Odfjell. We therefore use the fuel consumption data for

different speed points and use linear combinations of these points to approximate the fuel

consumption rates between these speeds. For instance, if a particular speed v∗ can be

written as v∗ = a × v1 + b × v2, a + b = 1, a, b ≥ 0, where the fuel consumption rates of

speed points v1 and v2 are known as F1 and F2, respectively; then the fuel consumption

rate F ∗ at speed v∗ is approximated by F ∗ = a×F1 + b×F2. See Andersson et al. [2] for

a more detailed discussion on this approximation approach.

Following from the notions on the division in time of the planning period (into P-1

and P-2), and on the difference in the shipping company’s confidence in its estimates on
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4. Mathematical Model
In this section a mathematical model for the MFRP
described in §3 is presented. Modeling assumptions
are discussed in §4.1, and the mathematical formula-
tion is given in §4.2.

4.1. Modeling Assumptions
In the following, we assume that ships are paid for
with cash, because this is common for many large
shipping companies. Stopford (2009) states that most
shipping businesses finance at least part of their activ-
ities from internally generated equity. Furthermore,
banks rarely fully finance a ship. If this happens,
this large amount of money must often be negotiated
with a group of banks, which is particularly com-
plicated when the market is poor. In addition, loans
are backed by mortgages and covenants against the
ships that may become too restrictive for companies
with large fleets. Although new buildings are typi-
cally paid in installments made at different milestones
in the building process, we assume for simplicity that
their discounted sum is paid when the order is placed.
Furthermore, although it is in general possible, we
assume a ship cannot be bought in the secondhand
market before being delivered to the company that
ordered it. For simplicity, we neglect the possibility of
bareboat charters in and out.

We assume the negotiation of long-term contracts
and the design of the shipping network to take
place in a separate strategic problem. Consequently,
the contracts to fulfill, the corresponding expected
demands, and the origin and destination ports are
input to our problem. Because the remuneration for
the transportation services provided is fixed by the
contracts available, we seek cost minimization. For
this reason we neglect spot cargoes and the possibil-
ity of providing voyage or space charters. However,
the shipping company is allowed to charter in and
out ships (on time charter) as well as to pay other
companies for providing voyage or space charters. In
the following, we will not distinguish between car-
goes delivered by means of voyage charters and space
charters. We will refer to the sum of these simply
as voyage charters. Furthermore, it should be noticed
that long-term contracts typically engage the shipping
company in the transportation of a share of the cus-
tomer’s production. Therefore, the actual amount of
cargo to ship is uncertain, as the customer’s future
production is not specified.

The MFRP needs to make deployment decisions
in order to estimate the actual tonnage requirements.
These decisions, typically made at a tactical planning
level, are not meant to give any advice on the deploy-
ment itself. Furthermore, since long planning hori-
zons are considered and market information is rarely

detailed, deployment decisions are kept at an aggre-
gate level. For an overview of the tactical ship deploy-
ment problem, see Christiansen et al. (2007).

For each trade, we aggregate the demand to be
shipped from its origin to its destination geographic
area. Therefore, each trade can be considered as a
single origin single destination route. Consider trans-
portation of cars along the trade in Figure 1. For
example, let us assume that the demands in car equiv-
alent units (CEUs) are 350,000 from Inchon to Bris-
tol, 150,000 from Yokohama to Bristol, and 100,000
from Yokohama to Bremerhaven. We associate with
the trade a total aggregated demand of 600,000 CEUs
and consider it as a single origin (Asia) single desti-
nation (Europe) route.

Let us introduce a complete directed graph G =

�N�E�, where each vertex in N represents a trade and
each edge in E = N × N represents a ballast sailing
between the last and first port of the trades it con-
nects. It should be noticed that edges connecting ver-
tices to themselves are allowed. With each vertex we
associate the demand and service time (i.e., the sum
of laden sailing and port time) of the trade it repre-
sents and with each edge we associate the duration
of the corresponding ballast sailing. A small example
with three trades between three geographic regions
is depicted in Figure 2 and Figure 3 shows its graph
representation. It should be noticed that in the graph
(Figure 3) edges are drawn by dashed lines as in the
map (Figure 2) as to emphasize that they represent
ballast sailing and not activities. Figure 2 does not
include all of the ballast sailings between trades for
the sake of legibility.

We define a loop as a ship route that starts and ends
in the same geographic area after servicing, in a given
order, a number of trades N ′ ⊆N . Loops of cardinality
greater than two (i.e., �N ′�> 2) represent Hamiltonian
cycles over subsets N ′ ⊆N . A ship assigned to a loop
services its trades exactly once, sailing in ballast from

Figure 2 (Color online) Example with Three Geographic Areas, Three
Trades, and One of the Possible Loops
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Pantuso, Fagerholt, and Wallace: Uncertainty in Fleet Renewal
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Figure 3 Graph Representation of Three Trades and One Loop
Note. Loop L1 is drawn with thicker lines.

one trade to the next, and comes back to the starting
point of the first serviced trade. The ship will carry a
quantity of cargo not greater than its capacity on any
of the trades in the loop. Figure 2 illustrates an exam-
ple loop, L1, involving two trades and Figure 3 its
graph representation. A ship assigned to the loop L1
services the trade TR2, sails in ballast to the origin
of the trade TR3, services TR3, and sails in ballast to
the origin of TR2. Analogously, if a loop has only one
trade, it consists of servicing the trade and sailing in
ballast to its origin. Ships have to sail loops a number
of times sufficient to fulfill the demand of each trade.
Because in our model loops will be assigned to ship
types and not individual ships, we do not take into
account the sailing between loops.

We believe these assumptions ensure a fair estima-
tion of the tonnage requirement by balancing opti-
mistic and pessimistic elements. On one hand we
do not take into account potential ballast sailings
between loops. It is in fact possible that some ballast
sailings between loops have to be made to make the
routings feasible. To this extent our assumptions are
optimistic since we underestimate the total sailing. On
the other hand, every loop includes a ballast sailing
from the last serviced trade to the starting port of the
first serviced trade. If the next loop starts in a port
other than the origin of the first serviced trade of the
former loop, an actual ship routing decision might
want the ship to sail to the origin of the next trade
directly, without performing the last ballast sailing. To
this extent we make a pessimistic assumption since
we overestimate the sailing time.

The secondhand and charter markets consist of a
finite number of operators and ships. Therefore, we
assume increasing marginal ship purchase prices and

charter in rates and decreasing marginal ship sell-
ing prices and charter out rates, i.e., ships become
more/less expensive when the competition increases/
decreases. To keep the model linear, secondhand
costs, selling prices, and charter rates are described by
piecewise constant functions. The piecewise constant
function is created by means of fares. Each fare is char-
acterized by a price (or equivalently charter rate) and
the number of ships available at that fare. When the
company has already purchased/chartered in all of
the ships available at a given fare, the next ship must
be purchased/chartered in at the next, more expen-
sive, fare. Similarly, when the shipping company has
already sold/chartered out all of the ships that can
be sold/chartered out at a given fare, the next ship
must be sold/chartered out at the following, cheaper
fare. Figure 4 gives a qualitative description of the
fares for secondhand prices (Figure 4(a)) and charter
out rates (Figure 4(b)). As an example, if the shipping
company needs four ships, they can buy three ships
at price p1, but must buy the fourth at price p2. We
assume that, within the same period, selling prices
are always lower than purchasing prices (at any fare)
for the same ship due to transaction costs. Similarly,
scrapping values are assumed lower than purchasing
prices but can be higher than selling prices.

Finally, we define a time period (a period in the fol-
lowing) as any interval of time in which decisions can

p

p

p

2

r

r

r

Figure 4 Qualitative Fares Description
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Figure 3: Example with three trade lanes (TR1, TR2 and TR3) and potential loops [20].

9



market conditions over the two periods, we assume that at the point when the charter

plan has to be made, the market information about P-1 and P-2 is deterministic and

stochastic, respectively, and that there is no known seasonal or monthly changes in the

market during P-2. The market information is described with numerical parameters which

include contractual and spot demand, ship charter in/out rates and spot freight rates etc.

For period P-2, these parameters are assumed to be uncertain and are discretized in order

to model the random process with scenarios, where each scenario is a complete realization

of all of the uncertain parameters over P-2.

We model the decision-making in our chartering problem with a two-stage structure.

The first stage decisions are made before the realization of the uncertain market parameters

of period P-2, and comprise the charter plan as well as the deployment of the fleet during

period P-1 where the associated market information is known and deterministic. Note

that we assume that acquiring extra charters from the spot market in P-1 is not possible

because the company, as a major capacity provider in the chemical shipping industry,

always makes plans to cover all known demands. Then for the second stage, the uncertain

market parameters during period P-2 are realized, and the shipping company needs to

make certain recourse decisions to adapt for the observed market parameters. For example,

under some realized scenarios the shipping company may need to acquire some extra

charters “on the spot”, which are normally more expensive than advance ones, in case

of surges in demand; and under other scenarios where demands are lower, the shipping

company may pick up more spot cargoes or charter out their ships more often because of

the excess capacity. These scenario-dependent recourse decisions, though not considered

as important first-stage decisions, serve to send the right signals back to the first stage

where the here-and-now charter plan is made. The charter plan, which determines the

total shipping capacity of the fleet, therefore, needs to be carefully contemplated when

striking a balance between bringing in too much and too little capacity for the planning

period.

4.2 Mathematical formulation

The mathematical formulation of the two-stage stochastic model is as follows, with the

notation shown in Table 1.

Table 1: Notation

Sets

V,K, C the set of ship types, capacity types and contracts, respectively.

N ,R the set of trade lanes and loops, respectively.

Ev the set of speed alternatives for ship type v.

Rv ⊆ R the set of loops that can be sailed by ship type v.
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Riv ⊆ R the set of loops servicing trade lane i that can be sailed by ship type v.

CTR
i ⊆ C the set of contracts serviced by trade lane i.

Vi ⊆ V the set of ship types that can sail trade lane i.

CCP
k ⊆ C the set of contracts compatible with capacity type k.

Kc ⊆ K the set of capacity types compatible with contract c.

S the set of scenarios.

Deterministic Parameters

Nv no. of ships of type v owned by the shipping company.

M1
v ,M

2
v no. of available service days for a ship of type v during P-1 and P-2,

respectively.

Qvk volume of capacity type k installed on ship type v.

Tvre total travel time for ship type v to complete a round trip on loop r with

speed alternative e, including sailing time and time spent at ports, etc.

F 1
c , F

2
c frequency requirement of contract c in P-1 and P-2, respectively.

Dc demand of contract c in P-1.

CRT
vre cost for ship type v to complete a round trip on loop r with speed

alternative e in P-1, including fuel cost, port fees, canal tolls, etc.

CI
v daily charter-in rate for a ship of type v on a “long-term” charter (P-1

plus P-2).

C	v , C
⊕
v (both positive values) adjusting factors for “short-term” charters, repre-

senting the additional daily charter-in rate for ship type v if hired only

for P-1, and only for P-2, respectively.

RO
v revenue of chartering out a ship of type v per day in P-1.

DSP
ik volume of spot cargo available on trade lane i that is compatible with

capacity type k in P-1.

RSP
ik revenue of delivering one tonne of spot cargo with capacity type k on

trade lane i in P-1.

Stochastic Parameters

ps the probability of scenario s taking place in P-2.

Dcs demand of contract c for scenario s in P-2.

CRT
vres cost for ship type v to complete a round trip on loop r with speed

alternative e for scenario s in P-2.

CI
vs cost of chartering in a ship of type v per day for scenario s in P-2 (“on

the spot” extra time charters).

RO
vs revenue of chartering out a ship of type v per day for scenario s in P-2.

DSP
iks volume of spot cargo available on trade lane i that is compatible with

capacity type k for scenario s in P-2.
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RSP
iks revenue of delivering one tonne of spot cargo with capacity type k on

trade lane i for scenario s in P-2.

Decision Variables

wv (charter plan) no. of ships of type v chartered in at the start of P-1.

w	v , w
⊕
v (charter plan) no. of ships of type v to reduce or add (based on wv),

respectively, at the end of P-1.

xvre, xvres no. of round trips sailed by a ship of type v on loop r with speed alter-

native e in P-1, and for scenario s in P-2.

yvs no. of days of extra charter-in for ship type v in scenario s in P-2.

zv, zvs no. of days of chartering out ship type v in P-1, and for scenario s in

P-2.

qivkc, qivkcs volume of contract c carried by capacity type k installed on ship type v

on trade lane i in P-1, and for scenario s in P-2.

qSPivk , q
SP
ivks volume of spot cargo carried by capacity type k installed on ship type

v on trade lane i in P-1, and for scenario s in P-2.

min
∑
v∈V

(
CI
vM

1
vwv + CI

vM
2
v (wv − w	v + w⊕v ) + C	v M

1
vw
	
v + C⊕v M

2
vw
⊕
v

)
(1.a)

+
∑
v∈V

∑
r∈Rv

∑
e∈Ev

CRT
vrexvre −

∑
v∈V

RO
v zv −

∑
i∈N

∑
v∈V

∑
k∈K

RSP
ik q

SP
ivk (1.b)

+
∑
s∈S

ps(
∑
v∈V

∑
r∈Rv

∑
e∈Ev

CRT
vresxvres +

∑
v∈V

CI
vsyvs −

∑
v∈V

RO
vszvs −

∑
i∈N

∑
v∈V

∑
k∈K

RSP
iksq

SP
ivks)

(1.c)

s.t. ∑
r∈Rv

∑
e∈Ev

Tvrexvre + zv = M1
v (Nv + wv) v ∈ V (1)

∑
v∈Vi

∑
r∈Riv

∑
e∈Ev

xvre ≥ F 1
c i ∈ N , c ∈ CTR

i (2)

∑
v∈Vi

∑
k∈Kc

qivkc = Dc i ∈ N , c ∈ CTR
i (3)

∑
r∈Riv

∑
e∈Ev

Qvkxvre ≥
∑

c∈CTR
i ∩CCP

k

qivkc + qSPivk i ∈ N , v ∈ Vi, k ∈ K (4)

∑
v∈Vi

qSPivk ≤ DSP
ik i ∈ N , k ∈ K (5)
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and (2nd-stage constraints)∑
r∈Rv

∑
e∈Ev

Tvrexvres + zvs = M2
v (Nv + wv + w⊕v − w	v ) + yvs v ∈ V, s ∈ S (6)

∑
v∈Vi

∑
r∈Riv

∑
e∈Ev

xvres ≥ F 2
c i ∈ N , c ∈ CTR

i , s ∈ S (7)

∑
v∈Vi

∑
k∈Kc

qivkcs = Dcs i ∈ N , c ∈ CTR
i , s ∈ S (8)

∑
r∈Riv

∑
e∈Ev

Qvkxvres ≥
∑

c∈CTR
i ∩CCP

k

qivkcs + qSPivks i ∈ N , v ∈ Vi, k ∈ K, s ∈ S

(9)∑
v∈Vi

qSPivks ≤ DSP
iks i ∈ N , k ∈ K, s ∈ S (10)

where (variable domains)

wv, w
⊕
v , w

	
v ∈ {0} ∪ Z+ v ∈ V (11)

wv ≥ w	v v ∈ V (12)

xvr, xvrs, yvs, zv, zvs ≥ 0 v ∈ V, r ∈ Rv, s ∈ S (13)

qivkc, qivkcs ≥ 0 i ∈ N , v ∈ Vi, k ∈ K, c ∈ CTR
i ∩ CCP

k , s ∈ S (14)

qSPivk , q
SP
ivks ≥ 0 i ∈ N , v ∈ Vi, k ∈ K, s ∈ S (15)

Expression (1.a) of the objection function represents the cost of the charters decided by

the charter plan. Note that, the charter plan is represented by decision variables wv, w	v

and w⊕v . The relatively long-term (P-1 plus P-2) charter is effectively wv − w	v for ship

type v; and the short-term (P-1 only or P-2 only) charters are w	v and w⊕v for the first and

second periods, respectively. Also note that, Expression (1.a) together with Constraints

(6) and (11) ensure that for each ship type v, w⊕v and w	v will never be simultaneously

positive in an optimal solution, i.e., at least one will be zero.

Expression (1.b) represents the operating costs (including revenues from delivering

spot cargoes and chartering out unused capacity) in the first period, while expression (1.c)

represents the expected operating costs over all scenarios in the second period. Therefore,

expressions (1.a) and (1.b) make up the first-stage costs of the objective function, and

expression (1.c) the expected second-stage costs.

Constraints (1) state that, in P-1, all transport availability of the fleet (owned and

chartered) should be used up, either through the carrier’s own operations or chartered out.

Constraints (2) ensure the satisfaction of the frequency requirement of every contract and

Constraints (3) the demand requirement. Constraints (4) ensure that the total volume

of capacity type k installed on ship type v sailing on trade lane i is respected, and may

be used to carry either contractual or spot cargoes. Constraints (5) restrict the amount

of spot cargo carried by the shipping company within the size of the spot market for
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the respective capacity type. Constraints (6) - (10) are the stochastic P-2 versions of

constraints (1) - (5) for the second stage.

Constraints (11) - (15) determine the domains of the decision variables. Note that

only the chartering decisions wv, w
⊕
v and w	v are required to take integral values. The

deployment variables, xvre and xvres, are continuous, because in maritime transportation

a round trip can take a long time and therefore the fractional part can mean that the final

round trip will be finished in the next planning period. In addition, variables yvs, zv, zvs

are assumed to be continuous for simplicity as their integrality is less important.

5 The Case

This section presents our case study. Some of the data input, such as the shipping net-

work and the numbers used for contract volumes and charter rates are not real due to

confidentiality reasons, but reflect the real situation in the chemical shipping industry as

well as in many other shipping segments. See Table 6 in the Appendix for an overview of

the data input.

5.1 Network, ships and contracts

We consider the following nine geographic areas in the shipping network: Asia Pacific,

Middle East, Northwest Europe, South Africa, South East Asia, US Atlantic Coast, US

Gulf, South America West Coast, and South America East Coast. We further include in

total 22 trade lanes among these 9 areas for our case study, where each trade lane can be

considered as a single origin single destination trading route, e.g. Northwest Europe to US

Atlantic Coast. With every trade lane we associate one contract and we therefore have in

total 22 contracts.

Each contract is characterized by two types of parameters, demand volume and service

frequency, over the planning period. As mentioned in Section 3, the planning period is

divided into two periods P-1 and P-2, representing January-March and April-December,

respectively. Note that the length of period P-2 is three times as that of period P-1.

The volume and frequency of a contract is therefore also distributed over the two periods

proportional to the lengths of the periods. However, the demand volume of any contract

during period P-2 is considered to be stochastic. Take Contract 1 on trade lane 1 for

example, this contract consists of a deterministic volume of 180,000 tonnes of cargo to be

delivered during P-1, and a stochastic demand volume for P-2 with an expected value

of 540,000 tonnes, which is three times that of P-1. Furthermore, Contract 1 requires

servicing 24 times during the planning period, i.e., twice a month. Hence, we ensure that

the trade lane associated to the contract will be serviced at least 6 and 18 times during

P-1 and P-2, respectively.

14



We consider four different types of chemical tankers operated by Odfjell: Kvaerner,

Poland, 19k and 33k. The ships of these four classes have total capacities of 34 782, 51

085, 21 646 and 37 027 deadweight tonnes, respectively. In practice, the ships that belong

to the same ship class usually have slightly different capacities (within 5%), depending on

such as the ship’s year of making. In our experiments, however, we assume the ships have

the same capacity if they are of the same class. Two capacity types are considered, which

correspond to two types of tanks installed on the tankers: stainless steel and zinc coated.

The compatibility relations in association with tank types are reflected by the setting of

sets Kc ⊆ K in our model, which are the set of capacity types compatible with contract c.

From the fleet data given by the shipping company, two speed points (with corre-

sponding fuel consumption rates), design speed and minimum speed, are defined for each

ship class. For our case study, we only use these two speeds for speed optimization when

deploying the fleet, as the two speed points are close to each other (within 15%) in each

case.

5.2 Construction of feasible loops

In order to satisfy the demand on each trade lane, the deployment decisions assign ships

to service routes, which are loops in our model. Therefore, potential loops are to be

constructed based on the given trade lanes.

Inspired by Pantuso et al. [20], we start by defining Cmax ≥ 1 as the highest loop

cardinality when constructing the set of loops. If Cmax = 3, for instance, we may let a

loop contain three trade lanes at the most. We also introduce a measure µ for any specific

loop r, computed by

µ(r) =
ballast sailing distance of loop r

total sailing distance of loop r

as the ballast ratio of loop r. We then define µmax
k ∈ [0.0, 1.0], k ≤ Cmax as the maximum

acceptable ballast ratio for loops made of k trade lanes.

We present the method of constructing the set of feasible loops in Algorithm 1. The

algorithm takes as input the set of trade lanes N , the highest loop cardinality Cmax

and maximum acceptable ballast ratios µmax
k for all k ≤ Cmax, and returns the set of

feasible loops R as output. For each k ≤ Cmax, the algorithm enumerates all possible

k-combinations of N (Line 4 of Algorithm 1); and for every such k-combination, the

algorithm constructs all possible loops, by connecting the trade lanes in a sequence using

ballast sailings as shown in Section 4.1, and then finds the shortest one (Line 5 to Line 10).

This is done because some loops may be completely dominated by others in terms of

sailing efficiency. For example, as mentioned in Section 4.1, there may be two loops that

involve all three trade lanes in Figure 3: TR1→TR2→TR3 and TR1→TR3→TR2. One

may clearly see that the latter loop makes little sense compared with the former, as it
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Algorithm 1 Construction of feasible loops

1: R ← ∅ . initialize the set of feasible loops

2: k ← 1 . start from loops with one trade lane

3: while k ≤ Cmax do

4: for each N sub ⊆ N , card(N sub) = k do

5: L ← ∅ . a temporary set of loops

6: for each circular permutation of N sub do

7: Construct the corresponding loop by connecting the trade lanes

8: Add this loop to L
9: end for

10: r∗ ← the shortest loop in L
11: Calculate µ(r∗) . calculate the ballast ratio of loop r∗

12: if µ(r∗) ≤ µmax
k then . all µmax

k , k ≤ Cmax are given

13: Add r∗ to R
14: end if

15: end for

16: k ← k + 1

17: end while

18: return R

includes sailing across the Pacific Ocean in ballast twice. In such a case, the less efficient

loop can be discarded as it is dominated by another loop which services the same trade

lanes. In addition, the algorithm only adds to R the loops with ballast ratios within

certain thresholds described by µmax
k (Line 12 of Algorithm 1), in order to eliminate those

infeasible loops as they involve too much ballast sailing.

We can therefore, by configuring Cmax as well as µmax
k when creating the set of feasible

loops, determine the level of detail considered within the deployment of the fleet. If

more loops are included, potentially we should expect more efficient and eventually better

deployment decisions. In our computational study, we will test the effect of including

different sets of loops in our model by altering the configuration of Cmax and µmax
k values

(detailed results reported in Section 6.1), in order to find out what kind of loops are more

likely to be used when deploying the ships, and therefore of higher value to the shipping

company.

5.3 Charter costs

In the chartering problem introduced in this paper, fleet deployment is integrated as a

means to give a more accurate estimation of the actual tonnage needed during the planning

period, so that the chartering decisions can be properly made. In particular, should the
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company plan for more capacity in advance before the planning period, or should they

rely more on spot capacity “on the fly” after the uncertain parameters have been realized?

When striking a balance between the two when planning for charters, the charter costs

(in advance and spot) are important factors to consider.

In our model, CI
v , v ∈ V is used to denote the charter-in rate for a ship of type v

on an advance long-term (P-1 plus P-2) charter. Then, for every ship type v, we set

both C	v and C⊕v to be equal to 8% of the value of CI
v in our case study, which are the

additional charter rates if a ship of this type is hired only for P-1 or P-2. In other words,

when planning for advance charters, the company pays 8% more on daily charter rates for

short-term charters than the relatively long-term ones.

After the realization of the uncertain parameters in period P-2, extra capacity is also

available from the spot market in the form of spot charters, in case of insufficient fleet

capacity under some scenarios. The price for the extra capacity is determined by CI
vs

under scenario s, and the mean value for CI
vs across all scenarios is set to be 1.5 ∗ CI

v for

any ship type v. Note that, in practice, 50% more for spot charters is sometimes too high

an estimate in cases where spot charters are available; on the other hand, there are cases

where they are not at all available from the spot market, especially in more specialized

shipping segments. We therefore set the spot charters to be 50% more expensive to make

a balance between these two situations, so as to avoid relying too much on the spot market

and to lower the risk of not being able to find extra capacity. Similarly, the charter-out

rates, RO
v and the mean value for RO

vs, are set to be 0.5 ∗CI
v to reflect the reality that the

company may not always be able to sell the excess capacity in the spot market, and to

prevent our solutions from chartering for speculation purposes since this is not the focus

of the shipping company.

5.4 Scenario generation for random parameters

Recall that the demand of every contract in P-2 (Dcs) is considered to be stochastic. These

stochastic demands represent the most important uncertain phenomena in our problem,

as they directly affect the actual capacity needed. All stochastic demands are assumed to

follow symmetric triangular distributions with standard deviations equal to around 40% of

their corresponding means. Furthermore, the following parameters for period P-2 are also

considered to be stochastic: DSP
iks , optional demands from the spot market; CRT

vrs , round

trip sailing costs; CI
vs, extra charter-in rates; RO

vs, charter-out rates; RSP
iks freight rates for

spot cargo delivery. To represent the uncertainty of these random parameters, we assume

the following relationship that connects an underlying random variable to every random

parameter: RP = ξ ∗ E[RP ], where RP is the random parameter, E[RP ] its expected

value and ξ the underlying random variable which can also be seen as a scaling factor

based on the expected values.
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We use in total five underlying random variables. We associate random parameters

DSP
iks to variable ξ1, which determines the realization of optional demands from the spot

market. Note that, by making such association we assume that all random parameters

associated to a given random variable are perfectly correlated. For example, for each

i, i′ ∈ N , k, k′ ∈ K, DSP
iks are perfectly correlated to DSP

i′k′s. Variable ξ2 determines the

realization of sailing costs which are largely dependent on fuel price, and is associated to

random parameters CRT
vrs . Similarly, we associate random parameters CI

vs, R
O
vs and RSP

iks

to variables ξ3, ξ4 and ξ5, respectively.

There are, therefore, 27 random variables during period P-2 to be included in our

model: 22 of them are the stochastic demands for each of the 22 contracts; and five

underlying random variables ξ1 ∼ ξ5. Every underlying random variable is assumed to be

subject to the same triangular distribution with lower limit 0, mode 1 and upper limit 2.

We also assume a correlation matrix of 27*27 elements to represent the inter-relationship

within the set of random variables, in order to investigate whether or not we should take

it into account when making the charter plan. We set all values in the matrix to 0.65,

indicating that there is a relatively strong positive correlation between any pair of random

variables. We make this assumption due to the fact that, generally speaking, all demands

and prices are to some extent dependent on market prosperity, and therefore increase or

decrease simultaneously.

In order to discretize the given distributions of the random variables with given corre-

lations, the scenario generation process is performed using the moment-matching method

introduced by Høyland et al. [9]. This method takes as input the first four marginal

moments and correlations, and generates the desired number of scenarios with equal prob-

abilities, i.e., ps = 1/|S| for all s ∈ S in our case.

However, as faced in other stochastic programming problems where stochasticity is ap-

proximated with discrete distributions, the quality of such an approximation hinges upon

the quality of the scenario-generation method used. Since the chosen scenario generation

method is a heuristic approach which also involves random elements, the scenario tree

generated on every run is different, though with the same input of marginal distributions

and correlations. To make sure the results are not much affected by the particular sce-

nario tree used, we check the in-sample stability and out-of-sample stability [12] for using

50 scenarios in our stochastic program. We generate 20 scenario trees (each containing 50

scenarios) and solve the stochastic problem with each of them. In the in-sample stability

test, we observe a difference between the highest and lowest objective function values, of

1.34%. To test for out-of-sample stability, we sampled a much larger scenario tree with

1000 scenarios to represent the uncertainty of the “true” problem. We calculate the “true”

objective function values corresponding to the 20 solutions (charter plan decisions) coming

from different (smaller) scenario trees, and observe a difference of 0.46% between the high-
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est and lowest. In addition, the average in- and out-of-sample values are only 2.06% apart.

These stability calculations yield acceptable difference values and confirm that our model

using 50 scenarios is in- and out-of-sample stable. In this paper, therefore, we generate

a scenario tree that contains 50 scenarios with the distributions and correlation matrix

given in this section and name it Stoch-COR. We use this set of scenarios to represent

the uncertain “reality” the company is facing in our case study.

6 Computational Study

In this section we present a computational study of the case described in Section 5. All

programs are implemented in C++ on Microsoft Visual Studio 2010, and solved using

CPLEX 12.6.1 on an Intel 3.4 GHz processor with 16 GB memory.

6.1 Effect of level of detail in deployment

In our chartering problem, the deployment decisions select loops to operate from a set of

feasible loops, and assign shipping capacity to those selected. As explained in Section 5.2,

we may increase the level of detail in the fleet deployment by using a larger set of feasible

loops, i.e., by increasing Cmax and µmax
k when creating the loops.

In order to see how varying the level of detail in the deployment modeling influences

the results, we obtain several different sets of feasible loops by altering Cmax and µmax
k

values, and solve the stochastic problem with each such set. We report in Table 2 the

optimal objective function value and run time for each case. As an example, in Case 3,

i.e., Cmax = 3, µmax
1 = 1.0, µmax

2 = 1.0, µmax
3 = 0.5, we accept as feasible loops: (1) all

loops made of one trade lane (as they all have a ballast ratio of 0.5); (2) those loops made

of two trade lanes that have a ballast ratio less than 1.0; (3) those loops made of three

trade lanes that have a ballast ratio less than 0.5. Note that in this table, Case 3 is set as

the benchmark case for performance comparison; and “n/a” indicates that the parameter

is not applicable in that particular case.

In Case 1, where only the loops made of one or two trade lanes are accepted as feasible

loops, we observe a loss in total cost of 6.8%. Then by increasing Cmax to 3 and adding

some loops made of three trade lanes with ballast ratios under 0.2, the loss is significantly

lowered from 6.8% to 2.0% in Case 2. This shows that these loops, which are made of

three trade lanes and have low ballast sailing ratios, are potentially of great value to the

shipping company. When µmax
3 is further increased to 0.5 (Case 3), thus allowing more

loops with higher ballast ratio in the model, we obtain better performance in terms of

relative loss (0.0%). No improvement can be gained by further increasing µmax
3 to 1.0

(Case 4). Moreover, in Cases 5 and 6, where Cmax is 4 and µmax
4 is set to 0.5 and 1.0,

respectively, we obtain even better results. However, the improvements are less significant
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Table 2: Expected total costs and run times using different loop sets in deployment.

Case

Parameter Setting

Cmax µmax
1 µmax

2 µmax
3 µmax

4

Num.of Opt.Obj.
Loss

Run Time

Loops Func.Val. [sec]

1. 2 1.0 1.0 n/a n/a 253 351 6.8% 14.0

2. 3 1.0 1.0 0.2 n/a 284 335 2.0% 14.5

3. 3 1.0 1.0 0.5 n/a 972 329 0.0% 40.8

4. 3 1.0 1.0 1.0 n/a 1793 329 0.0% 95.5

5. 4 1.0 1.0 1.0 0.5 6350 327 -0.6% 477.5

6. 4 1.0 1.0 1.0 1.0 9108 327 -0.6% 1056.2

Note: the losses are increases in total cost relative to Case 3 (marked in bold).

while the run times grow dramatically. Also, in practice, operating long service loops

consisting of four or more trade lanes is not desirable for the shipping company, as they

are more affected by possible delays during the voyages and are thus more risky. Therefore,

in all of our remaining experiments, we use the feasible set containing 972 loops (Case 3)

for fleet deployment in our programs since it represents a good balance between solution

quality and run time.

Notice that by comparing Case 1 (Cmax = 2) and Cases 2, 3, and 4 (Cmax = 3),

we observe that only considering loops with two trades may lead to some noticeable loss,

compared with allowing loops with three trades. The absolute values of these losses are,

however, affected by the demand structure of the problem, especially the sizes of the one-

way-only trades operated by the company. Under a different circumstance, for example,

if for every trade there is usually another trade with a comparable size but in the oppo-

site direction, the simple back-and-forth round trips may already be sufficient and hence

including longer loops may not be very beneficial. In Table 2 and this paper, therefore,

we do not focus on the absolute values of the losses, and no general statements should

be drawn from these values with regards to the absolute quality of a certain parameter

setting. Instead, we emphasize the more general insights: when the model is used as

a decision support tool, one should always try increasing the level of detail in the fleet

deployment to evaluate if the potential gains are large enough to be worthwhile, as there

may also be underlying and implicit costs in association with operational changes that are

not considered in this model; and the computational efforts required to do so are not likely

to become prohibitively expensive quickly as loops that are much too long are generally

not desirable.
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6.2 Effect of using different input

6.2.1 Input cases to be tested

The charter plan differs depending on how we describe the market conditions in period

P-2. We shall view the input labeled Stoch-COR (see Section 5.4) as our base case.

If we only use one scenario, where every random variable is replaced by its mean value

(as many companies do), the charter plan produced may be very different. We denote by

Determ the input in the latter case. Note that our model can easily be set up with only

one scenario. As shown in the literature [e.g., 33, 34], using deterministic demands higher

than the means sometimes gives better performance, as that results in higher capacities,

giving better flexibility in operations. Recall that all stochastic demands are assumed to

follow symmetric triangular distributions with standard deviations equal to around 40% of

their corresponding means. We therefore also create three other input cases (to be used in

the deterministic version of the model), denoted Det-65, Det-75 and Det-85, referring to

demands set at the 65th, 75th and 85th percentile of their demand distribution. Moreover,

in order to establish whether modeling the correlations among random variables matters,

we generate another set of scenarios, denoted Stoch-IND (to be used in the stochastic

model), using the moment-matching heuristic [9], but with all elements in the correlation

matrix set to zero, which indicate that the random variable are uncorrelated.

6.2.2 Charter plans produced with different input

Table 3: Charter plans produced with different input.

Charter Plan

w w	 w⊕ w w	 w⊕ w w	 w⊕

Determ Det-65 Det-75

Kvaerner 4 0 0 4 0 1 4 0 3

Poland 3 0 0 3 0 1 3 0 4

19k 10 0 0 10 0 2 10 0 2

Ship 33k 3 0 0 4 0 0 4 0 1

Type Det-85 Stoch-IND Stoch-COR

Kvaerner 4 0 3 4 0 3 4 0 4

Poland 3 0 5 3 0 2 3 0 3

19k 10 0 2 10 0 2 10 0 3

33k 4 0 3 4 0 0 5 0 0

We show in Table 3 the charter plans produced with the six input cases. For example,

the charter plan made with input Det-75 is to charter in four ships of class Kvaerner,
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three ships of class Poland, 10 ships of class 19k, and four ships of class 33k for the entire

planning period (P-1 plus P-2), and further charter in 3, 4, 2 and 1 ships of the four classes,

respectively, for period P-2. As expected, when planning with the deterministic model

and with higher demand expectation, i.e., Det-65, Det-75 and Det-85, the shipping

capacity brought in by the charter plan is higher than using Determ as input. We may

also clearly see that, when planning with the stochastic model, regardless of the correlation

matrix used, the capacity is higher than that in the Determ case. This is because the

optimal solution is using slack capacity to hedge against market uncertainty.

6.2.3 Evaluation of different charter plans

Now we evaluate the performance of the charter plans, always comparing to base scenario

set Stoch-COR. For example, to evaluate the charter plan produced with Determ, we

fix the advance charter-in variables (wv, w	v and w⊕v ) to the corresponding values shown

in Table 3, solve the stochastic problem again using the input Stoch-COR, and observe

the resulting optimal solution.

In Table 4, we report the cost evaluation for the charter plans introduced in Section

6.2.2, in which a detailed breakdown of the total cost is shown in each case (column). In

particular, we show the subtotals for the three major cost components: advance charter-

in cost (or the cost of the charter plan), total cost for fleet operation in P-1 and total

(expected) cost for fleet operation in P-2. These three components, in fact, correspond

sequentially to Expression (1.a), Expression (1.b) and Expression (1.c), which make up

the objective function of the mathematical formulation presented in Section 4.2.

We see from Table 4 that the charter plan produced with Determ gives the largest loss

in total cost (12.7%), relative to the optimal charter plan produced with Stoch-COR.

In the Determ case, the company invests around 60 million USD less (compared with

the optimal case) in the charter plan, but ends up spending almost 100 million USD more

operating the fleet during P-2. This is mainly due to the high extra charter-in cost (89

mill USD on average), which can be explained by the advance charter-in capacity being

insufficient, and therefore the company has to turn to the more expensive “on the spot”

capacity in case of demand surges. Such loss brought by capacity insufficiency can be

mitigated by planning with higher demand expectation, as suggested by the decreased

loss values for cases Det-65, Det-75 and Det-85.

If the charter plan is made using the stochastic model, but with zero correlation among

all pairs of random variables, i.e., case Stoch-IND, the loss also decreases compared to

Determ. In this case, disregarding the correlation information leads to a loss of 4.9%,

which may also be partly explained by the insufficient investment on the charter plan (132

versus the “optimal” 151).

However, from the results and comparison displayed in Table 4, it is not enough to
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Table 4: Cost evaluation of implementing different charter plans.

Using deterministic model Using stochastic model

(USD mill) Determ Det-65 Det-75 Det-85 Stoch-IND Stoch-COR

Charter Plan:

Adv Chrt-In 94 115 148 166 132 151

Operation P-1:

Deployment 55 54 54 54 54 53

Charter out 0 0 0 0 0 0

Spot cargoes -21 -21 -21 -21 -21 -21

Total(P-1) 34 33 33 33 33 32

Operation P-2:

Deployment 209 207 209 210 207 208

Extra Chrt-In 89 59 22 9 34 17

Charter out -1 -3 -7 -9 -5 -7

Spot cargoes -54 -55 -61 -62 -56 -71

Total(P-2) 243 208 163 148 180 146

Grand Total 371 355 344 346 345 329

Loss 12.7% 8.0% 4.5% 5.3% 4.9% 0.0%

Note: the losses are increases in total cost relative to Stoch-COR.
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conclude that insufficient advance charter-in capacity has been the only reason for losses.

Unlike some other transportation problems with homogeneous fleets or capacity, the ship-

ping capacity in our problem is heterogeneous, there are incompatibility issues between

capacity (tank) types and contracts, and also (more importantly) between trade lanes and

ship classes. The latter incompatibility relations are represented by the setting of sets

Vi ⊆ V in the model, which indicate that some ship types are not allowed to sail certain

trade lanes. In chemical shipping, this is usually not due to the physical restrictions of the

ships (e.g. draft, tank layout), but is mainly due to the undesired operational complexity

caused by large deviations from the company’s old deployment arrangements. For exam-

ple, Odfjell has always used the large tankers on trade lanes between Northwest Europe

and the US Gulf, and is therefore reluctant to use small tankers on these trade lanes, where

there are economies of scale, even if this may lead to an overall improvement in its total

costs. Such restrictions have complicated the chartering problem, as the market uncer-

tainty cannot be simply dealt with using increased investments in total advance capacity.

This can be seen by comparing Det-75 with Stoch-COR in Table 4. The charter plan

produced by Det-75 amounts to a total investment of 148 million USD in advance char-

ters, which is almost the same size as the optimal amount; however, its resulting expected

operational cost during P-2 (163 mill USD) is over 10% higher than that in the optimal

case (146 mill USD). Moreover, for the Det-85 case, where even more investment is made

in advance charters, the expected P-2 operation cost is still slightly higher than that of

case Stoch-COR. By looking into the results in detail, we have observed that although

the charter plans produced with Det-75 and Det-85 seem to have prepared for “enough”

total capacity in advance, they have both brought in some “wrong” ships (compared to

the “correct” and optimal charter plan produced by Stoch-COR, see Table 3), which

eventually result in losses.

Therefore, to obtain better chartering decisions, the shipping company should, where

possible, use the stochastic model and take both individual distributions and correlation

information into account. If the company has to use the deterministic model, results show

that planning with higher demand expectation than the means can lead to better decisions.

However, due to the incompatibilities between trade lanes and ship types, deterministic

models may struggle with providing the “correct” combination (mix) of the different types

of ships to charter in.

6.3 Effect of including speed optimization

Speed optimization is included in our modeling of fleet deployment, as this may eventually

contribute to a better tonnage evaluation in the charter plan. In practical life, speed

differentiation is, however, only implemented at the operational stage; tactical plans are

usually made assuming one speed for each ship type. This is also the case for the shipping
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company we are working with, as they normally only use design speeds to make their

tactical charter plans.

Table 5: Effect of planning with different speeds.

Planning with Planning with

design & min speeds design speed

Determ Det-65 Det-75 Det-85
Stoch Stoch

Determ
Stoch

-IND -COR -COR

Adv Chrt-In 94 115 148 166 132 151 71 117

(USD mill)

Total Cost 371 355 344 346 345 329 397 360

(USD mill)

Loss 12.7% 8.0% 4.5% 5.3% 4.9% 0.0% 20.6% 9.5%

Avg Speed P-1 13.5 13.2 13.2 13.2 13.2 13.0 14.4 14.4

(knots)

Avg Speed P-2 13.6 13.6 13.5 13.4 13.5 13.4 13.7 13.4

(knots)

In all the experiments conducted before Section 6.3 we have included both design and

minimum speeds for all ship classes (see Section 5.1) and taken speed optimization into

account already at the tactical planning stage. To investigate how much we lose by not

taking speed optimization into account in the first stage, we create two additional input

cases, both assuming that the charter plan is made with only design speeds for all ship

classes, and compare their results with the other input cases introduced earlier. Note

that when applying different speed options one only needs to change the input, e.g., Ev
(the set of speed alternatives for ship type v) and Tvre (total travel time for ship type

v to complete a round trip on loop r with speed alternative e), while the model stays

the same. We report the comparison in Table 5. The two additional input cases, which

are the one-speed versions of Determ and Stoch-COR, respectively, are grouped under

the “Planning with design speed” title, while the original six input cases are under the

“Planning with design & min speeds” title. We report the chartering costs, total costs

and relative losses for the two additional input cases in Table 5, evaluated the same way as

in Table 4. We also emphasize that for all cases in Table 5, regardless of how the first-stage

charter plan is made (planning with design & min speeds or planning with only design

speed), the second-stage deployment always performs “full” speed optimization with all
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speed alternatives considered.

The results show that if planning with design speed only, the company would invest

much less in advance charters compared to the corresponding two-speed (design & min)

case. The resulting losses relative to the optimal case, 20.6% and 9.5%, suggest that taking

speed optimization into account is beneficial and can lead to better chartering decisions.

Technically, this is obvious as speed flexibility adds to the set of feasible solutions to the

problem.

Furthermore, to better illustrate how planning with single speeds influences the actual

speed decisions during the operations of the fleet, we introduce a simple approach, in the

following, to give an approximation of the average speed of the fleet in operation.

Let Eve be the speed of ship type v at speed alternative e in knots, Wv the total

capacity of each ship of type v in dead weight tonnes, and Lr the length of loop r. Also

let x∗vre, v ∈ V, r ∈ Rv, e ∈ Ev be the deployment decisions during P-1 in the optimal

solution to a specific chartering problem; and let x∗vres, s ∈ S, v ∈ V, r ∈ Rv, e ∈ Ev be the

deployment decisions for P-2. We then define ÊP–1 and ÊP–2 as the average ton-mile

speed (in knots) of the whole fleet in operation during period P-1 and P-2, respectively,

and they can be calculated using the following equations (16) and (17):

ÊP–1 =

∑
v∈V

∑
r∈Rv

∑
e∈Ev

EveWvLrx
∗
vre∑

v∈V

∑
r∈Rv

∑
e∈Ev

WvLrx
∗
vre

(16)

ÊP–2 =

∑
s∈S

∑
v∈V

∑
r∈Rv

∑
e∈Ev

psEveWvLrx
∗
vres∑

s∈S

∑
v∈V

∑
r∈Rv

∑
e∈Ev

psWvLrx
∗
vres

(17)

Note that the above approach implies that larger ships carry more weight (than smaller

ones) in the calculation of the fleet’s average speed. We calculate the average ton-mile

speeds for every input case, when evaluated under the same uncertain “reality”, and the

results are shown in Table 5.

We observe that the fleet slows down under the optimal charter plan Stoch-COR,

made with both design and minimum speeds considered. In fact, the average speeds in this

case are the lowest among all. We also see that in the one-speed versions of the Determ

and Stoch-COR cases (planning with design speed only), lower investments on advance

charters (71 and 117 mill USD) are made compared to their two-speed counterparts (94

and 151 mill USD). This is because in the one-speed cases, speeds are fixed at design

speeds (which are higher than minimum speeds) when the charter plans are made, with-

out the option to slow the fleet down. However, during the operational phase (especially

period P-2 during which extra charters are allowed), where the option of slow-steaming
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is available, the optimal solutions would employ slower speeds in order to improve their

overall performances. In contrast, although slow-steaming is also possible in P-1, the

average speed of the fleet is maintained at a high level to ensure sufficient shipping capa-

bility, since the company under-invests in advance charters and lacks access to the spot

market for extra capacity. Hence we see the drop in average fleet speed in the last column

of Table 5, from 14.4 knots in period P-1 to 13.4 knots in period P-2.

7 Conclusion

In this paper, we have introduced and studied a chartering problem in the shipping indus-

try. This problem is modeled as a tactical fleet composition problem, with integrated fleet

deployment and speed optimization, which also takes into account market uncertainties.

A scenario-based two-stage stochastic programming model is proposed, and is applied in

a computational study on the case of Odfjell, a leading chemical shipping company based

in Norway. In practice, the model may be used as a decision support tool for making the

charter plans and can easily be converted to an adaptive one by rerunning the programs

on the fly with updated information.

In the computational study, we have shown that the charter plans and their costs

differ when certain aspects of the modeling change. We studied the level of detail in the

modeling of fleet deployment (such as speed optimization and loop construction), using

the deterministic version of the model instead of its stochastic counterpart, and assuming

uncorrelated random variables.

In particular, our results show that better results can be obtained by increasing the

level of detail in fleet deployment, but at the expense of higher computational efforts.

By evaluating the charter plans produced using the deterministic model, and using the

stochastic model but without considering correlations, we show that the shipping company

should, where possible, use the stochastic model and take both individual distributions

and correlation information into account. If the company has to use the deterministic

model, we show that planning with higher demands than the means can lead to better

decisions. However, due to the possible incompatibilities between trade lanes and ship

types, deterministic models may struggle with providing the “correct” combination (mix)

of the different types of ships to charter in. We have also shown the benefit of integrating

speed optimization when making the charter plans.
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Appendix

Table 6: The value/range of the parameters in the computational study. Note: t for

tonnes, M for millions, and K for thousands.

Parameters Value / Range

Sets

|V|, |K|, |C| no. of ship types, capacity types and contracts. 4, 2, 22

|N | no. of trade lanes. 22

|R| no. of loops. 253–9108

|Ev| no. of speed alternatives for ship type v. 2

|S| no. of scenarios. 50

Deterministic Parameters

Nv no. of ships of type v owned by the shipping company. (6, 6, 5, 5)

M1
v no. of available days for a ship of type v during P-1. 90

M2
v no. of available days for a ship of type v during P-2. 270

Tvre total travel time for ship type v to complete a round

trip on loop r with speed alternative e, including sail-

ing time and time spent at ports, etc.

11–145 [days]

F 1
c frequency requirement of contract c in P-1. 3 or 6

F 2
c frequency requirement of contract c in P-2. 9 or 18

Dc demand of contract c in P-1. 108,000–180,000[t ]

CRT
vre cost for ship type v to complete a round trip on loop

r with speed alternative e in P-1, including fuel cost,

port fees, canal tolls, etc.

$ 0.14–4.68M

CI
v daily charter-in rate for a ship of type v on a “long-

term” charter (P-1 plus P-2).

$ 12-30K

C	v , C
⊕
v (both positive values) adjusting factors for “short-

term” charters, representing the additional daily

charter-in rate for ship type v if hired only for P-1,

and only for P-2, respectively.

$ 0.96–2.4K

(i.e., both 8%×CI
v )

RO
v revenue of chartering out a ship of type v per day in

P-1.

$ 6-15K

(i.e., 0.5×CI
v )

DSP
ik volume of spot cargo available on trade lane i that is

compatible with capacity type k in P-1.

15,000–30,000[t ]

RSP
ik revenue of delivering one tonne of spot cargo with ca-

pacity type k on trade lane i in P-1.

$ 16–129

Stochastic Parameters (expected values)
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ps the probability of scenario s taking place in P-2. 0.02

Dcs demand of contract c for scenario s in P-2. 324,000–540,000[t ]

CRT
vres cost for ship type v to complete a round trip on loop

r with speed alternative e for scenario s in P-2.

$ 0.14–4.68M

CI
vs cost of chartering in a ship of type v per day for sce-

nario s in P-2 (“on the spot” extra time charters).

$ 18-45K

(i.e., 1.5×CI
v )

RO
vs revenue of chartering out a ship of type v per day for

scenario s in P-2.

$ 6-15K

DSP
iks volume of spot cargo available on trade lane i that is

compatible with capacity type k for scenario s in P-2.

45,000–90,000[t ]

RSP
iks revenue of delivering one tonne of spot cargo with ca-

pacity type k on trade lane i for scenario s in P-2.

$ 16–129
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