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Abstract

In this article we consider a stochastic optimal control problem where
the dynamics of the state process, X(t), is a controlled stochastic differ-
ential equation with jumps, delay and noisy memory. The term noisy
memory is, to the best of our knowledge, new. By this we mean that the
dynamics of X(t) depend on

∫ t
t−δX(s)dB(s) (where B(t) is a Brownian

motion). Hence, the dependence is noisy because of the Brownian motion,
and it involves memory due to the influence from the previous values of
the state process.

We derive necessary and sufficient maximum principles for this stochas-
tic control problem in two different ways, resulting in two sets of maximum
principles. The first set of maximum principles is derived using Malliavin
calculus techniques, while the second set comes from reduction to a dis-
crete delay optimal control problem, and application of previously known
results by Øksendal, Sulem and Zhang. The maximum principles also
apply to the case where the controller has only partial information, in the
sense that the admissible controls are adapted to a sub-σ-algebra of the
natural filtration.

1 Introduction
In this article, we develop two approaches for analyzing optimal control for a new
class of stochastic systems with noisy memory. The main objective is to derive
necessary and sufficient criteria for maximizing the performance functional on
the underlying set of admissible controls. One should note the following unique
features of the analysis:
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• The state dynamics follows a controlled stochastic differential equation
(SDE) driven by noisy memory: The evolution of the state X at any time
t is dependent on its past history

∫ t
t−δX(s) dB(s) where δ is the memory

span and dB is white noise. In our opinion, it is reasonable and natural
to consider this type of noisy dependence of the past.

• The maximization problem is solved through a new backward stochastic
differential equation (BSDE) that involves not only partial derivatives of
the Hamiltonian but also their Malliavin derivatives.

• Two independent approaches are adopted for deriving necessary and suf-
ficient maximum principles for the stochastic control problem: The first
approach is via Malliavin calculus and the second is a reduction of the
dynamics to a two-dimensional controlled SDE with discrete delay and no
noisy memory. In the second approach, the optimal control problem is
then solved without resort to Malliavin calculus.

• A natural link between the above two approaches is established as we
show that a solution of the noisy memory BSDE can be obtained from
a solution of the two-dimensional (time-) advanced BSDE (ABSDE) and
vice versa.

• To illustrate the usefulness of the Malliavin calculus approach, we outline
in Section 8 an extension of the noisy memory problem where the state
dynamics cannot be reduced to a two-dimensional setting with discrete de-
lay.

To be somewhat more specific, we will outline below the scope of the re-
sults in the article. More precise regularity and measurability assumptions are
provided in Sections 2,3 and 4.

The dynamics is described by the following one-dimensional controlled stochas-
tic functional differential equation with noisy memory:

dX(t) = b(t,X(t), Y (t), Z(t), π(t))dt

+ σ(t,X(t), Y (t), Z(t), π(t)) dB(t) (1.1)

+

∫
R
γ(t,X(t), Y (t), Z(t), π(t), ζ)Ñ(dt, dζ); t ∈ [0, T ],

X(t) = ξ(t); t ∈ [−δ, 0].

In the above SDE, δ > 0 is the memory span, Y (t) := X(t− δ) and the process

Z(t) :=

∫ t

t−δ
X(s) dB(s) (1.2)

stands for the noisy memory of the process X at time t. The control process
π satisfies appropriate measurability and integrability requirements, while the
random coefficients b, σ, γ satisfy regularity and differentiability conditions. The
dynamics is driven by a one-dimensional Brownian motion B, a compensated
Poisson random measure Ñ and an initial process ξ on [−δ, 0].
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The main objective is to determine necessary and sufficient conditions for
finding the maximizing control π∗ of the performance functional J(·), given by

J(π) := E
[ ∫ T

0

f(t,X(t), Y (t), Z(t), π(t))dt+ g(X(T ))
]
, (1.3)

for each admissible control process π. In the above relation, the symbol E[·]
denotes the expectation with respect to an underlying probability measure P
and f, g are given C1 random functions satisfying appropriate measurability and
integrability conditions.

In Section 2, we define the Hamiltonian associated with our maximal control
problem together with a backward SDE (BSDE) ((2.19)-(2.21)). In Section 3,
we obtain a sufficient maximum principle (Theorem 3.1) which states that a
solution of the BSDE yields an optimal control π∗ of the noisy memory control
problem. This is achieved under sufficient Malliavin regularity and concavity
conditions on the Hamiltonian and the performance functional. Under sufficient
differentiability requirements on the underlying functions, we establish Gâteaux-
type differentiability for the performance functional J (Lemma 4.4 and Theorem
4.5). This expresses the necessary condition for the optimal control problem in
terms of the Hamiltonian (Theorems 4.6 and 4.7).

In Section 5, we reduce the noisy memory dynamics to a 2D discrete delay
format. By adapting the analysis in [13], we are able to establish necessary and
sufficient conditions for solving the maximal control problem with noisy memory
(Theorems 5.1, 5.2). A solution of the noisy memory BSDE is obtained using
the solution of the 2D advanced BSDE (Theorem 6.1).

In Section 7, an example with an optimal consumption problem is given,
illustrating the two approaches to the maximal control problem.

In Section 8, we show how the Malliavin calculus approach can be applied
to more general noisy memory problems, where the reduction approach to the
2D dynamics is not feasible. In particular, we replace Z(t) in ((1.1) -(1.2)) by
the more general noisy memory term

Z ′(t) :=

∫ t

t−δ
φ(t, s)X(s)dB(s).

2 The optimization problem
In this section we formulate our main optimal control problem for stochastic
systems with noisy memory.

LetBt(ω) = B(t, ω); (t, ω) ∈ [−δ,∞)×Ω be a Brownian motion and Ñ(dt, dζ) :=
N(dt, dζ)− ν(dζ)dt an independent compensated Poisson random measure, re-
spectively, on a complete filtered probability space (Ω,F , {Ft}t≥0, P ). We as-
sume that F := {Ft}t≥0 is the filtration generated by B and Ñ (augmented
with the P -null sets) and ν(dζ) is the Lévy measure corresponding to the jump
measure N(dt, dζ). Let G := {Gt} be a sub filtration of F, with Gt ⊂ Ft, and
each Gt augmented with the P -null-sets. Note that no other conditions on G are
required. In particular, our results hold for Gt = F0 for all t ≥ 0 (for example
a deterministic control). We denote the set of admissible controls by AG. This
set is contained in the set of all processes that are càdlàg, in L2(Ω × [0, T ]),
measurable wrt. the filtration G and take values in a subset V of R.
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Consider the following controlled stochastic differential equation (SDE) with
discrete delay and noisy memory:

dX(t) = b(t,X(t), Y (t), Z(t), π(t))dt

+ σ(t,X(t), Y (t), Z(t), π(t))dB(t)

+

∫
R
γ(t,X(t), Y (t), Z(t), π(t), ζ)Ñ(dt, dζ);

t ∈ [0, T ], (2.1)

X(t) = ξ(t); t ∈ [−δ, 0]. (2.2)

Here

Y (t) := X(t− δ) (2.3)

where the positive constant δ is a discrete time-delay, while

Z(t) :=

∫ t

t−δ
X(s)dB(s) (2.4)

represents the noisy memory of the process X at time t. The process π ∈ AG is
our control.

Remark 1. It is possible to have a different Brownian motion, say B̃(t), driving
the noisy memory process Z(t) in (2.4). In Sections 2, 3 and 4, the only change
would be that the Malliavin derivative Dt with respect to B should be replaced by
the Malliavin derivative D̃t with respect to B̃ in (2.21) and subsequent relations.
In Section 5, everything still holds if the two Brownian motions are independent.
If they are not independent, we can represent B̃ as a combination of B and
another independent Brownian motion B2 as follows:

dB̃(t) = α(t)dB(t) + β(t)dB2(t),

where α(t) = d
dt E[B̃(t)B(t)] and α2(t) + β2(t) = 1. We omit the details.

On the coefficient functions

b : Ω× [0, T ]× R× R× R× V → R, (2.5)
σ : Ω× [0, T ]× R× R× R× V → R, (2.6)

γ : Ω× [0, T ]× R× R× R× V × R→ R, (2.7)

we impose the following set of assumptions

Assumption 1.

i) The functions b(ω, t, ·), σ(ω, t·) and γ(ω, t, ζ, ·) are assumed to be C1 for
each fixed ω, t, ζ, and ∇ denotes the gradients with respect to the variables
x, y, z, u

ii) The functions b(·, x, y, z, u) and σ(·, x, y, z, u), and γ(·, x, y, z, u, ζ) are pre-
dictable for each x, y, z, u.

iii) Lipschitz condition: The functions b, σ are Lipschitz continuous in the vari-
ables x, y, z, with the Lipschitz constant independent of the variables t, u, ω.
Also, there exists a function L ∈ L2(ν), independent of t, u, ω, such that

|γ(ω,t, x1, y1, z1, u, ζ)− γ(ω, t, x2, y2, z2, u, ζ)| (2.8)
≤ L(ζ){|x1 − x2|+ |y1 − y2|+ |z1 − z2|}, ν − a.e.ζ. (2.9)
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iv) Linear growth: The functions b, σ, γ satisfy the linear growth condition in
the variables x, y, z, with the linear growth constant independent of the vari-
ables t, u, ω Also, there exists a non-negative function K ∈ L2(ν), indepen-
dent of t, u, ω, such that

|γ(ω,t, x, y, z, u, ζ)| (2.10)
≤ K(ζ){1 + |x|+ |y|+ |z|}, ν − a.e.ζ. (2.11)

Assumption 1 i) and Assumption 1 ii) are sufficient to ensure the integrands
in equation (2.1) have predictable versions, whenever X is càdlàg and adapted.
It is always assumed that the Ñ -integral is taken with respect to the predictable
version of γ(t,X(t), Y (t), Z(t), π(t), ζ). Together with the Lipschitz and linear
growth conditions, this ensures that for every π ∈ AG, there exists a unique
càdlàg adapted solution X = Xπ to the equation (2.1), satisfying

E[ sup
t∈[−δ,T ]

|X(t)|2] <∞. (2.12)

This can be seen, for example, by regarding equation (2.1) as a stochastic func-
tional differential equation in the sense of [4] (cf. [9]).

The performance functional J(π) of π ∈ AG is given by

J(π) := E
[ ∫ T

0

f(t,X(t), Y (t), Z(t), π(t))dt+ g(X(T ))
]
, (2.13)

where E[·] denotes expectation with respect to P and

f : Ω× [0, T ]× R× R× R× V → R and
g : Ω× R→ R

are given functions. Throughout this paper, the functions f, g are assumed to
satisfy the following conditions:

Assumption 2.

i) The functions f(ω, t, ·) and g(ω, ·) are C1 for each t, ω.

ii) The functions f(·, x, y, z) are progressively measurable, and g(·, x, z) is FT
measurable.

iii) Whenever π ∈ AG, with corresponding X(t) = Xπ(t), Y (t) = Y π(t) and
Z(t) = Zπ(t), it holds that

E
[ ∫ T

0

(|f |+ (∇f)2)(t,X(t), Y (t), Z(t), π(t))dt+ (|g|+ (g′)2)(X(T ))
]
<∞.

The problem we will consider is to find an optimal control π∗ ∈ AG for J(·),
i.e. to find π∗ ∈ AG such that

sup
π∈AG

J(π) = J(π∗). (2.14)

To do so, we will require the following notion of the generalized Malliavin deriva-
tive for Brownian motion.
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2.1 The generalized Malliavin derivative for Brownian mo-
tion

We refer to Nualart [10], Sanz-Solè [14] and Di Nunno et al. [6] for information
about the Malliavin derivativeDt for Brownian motionB(t) and, more generally,
Lévy processes. In Aase et al. [2], Dt was extended from the space D1,2 to
L2(P ), where D1,2 denotes the classical space of Malliavin differentiable FT -
measurable random variables. The extension is such that for all F ∈ L2(FT , P ),
the following holds:

(i) DtF ∈ (S)∗, where (S)∗ ⊇ L2(P ) denotes the Hida space of stochastic
distributions,

(ii) the map (t, ω) 7→ E[DtF |Ft] belongs to L2(FT , λ × P ), where λ denotes
the Lebesgue measure on [0, T ].

Moreover, the following generalized Clark-Ocone theorem holds:

(iii)

F = E[F ] +

∫ T

0

E[DtF |Ft]dB(t). (2.15)

See [2], Theorem 3.11, and also [6], Theorem 6.35.

Notice that by combining Itô’s isometry with the Clark-Ocone theorem, we
obtain

E
[ ∫ T

0

E[DtF |Ft]2dt
]
= E

[( ∫ T

0

E[DtF |Ft]dB(t)
)2]

= E[(F 2 − E[F ]2)] (2.16)

As observed in Agram et al. [3], we can also apply the Clark-Ocone theorem
to show that:

Proposition 2.1. (Generalized duality formula) Let F ∈ L2(FT , P ) and let
ϕ(t) ∈ L2(λ× P ) be adapted. Then

E
[
F

∫ T

0

ϕ(t)dB(t)
]

= E
[ ∫ T

0

E[DtF |Ft]ϕ(t)dt
]

(2.17)

Proof. By (ii)-(iii) above and the Itô isometry we have

E
[
F

∫ T

0

ϕ(t)dB(t)
]

= E
[(

E[F ] +

∫ T

0

E[DtF |Ft]dB(t)
)(∫ T

0

ϕ(t)dB(t)
)]

= E
[( ∫ T

0

E[DtF |Ft]dB(t)
)(∫ T

0

ϕ(t)dB(t)
)]

= E
[ ∫ T

0

E[DtF |Ft]ϕ(t)dt
]
.

For further results regarding the generalized Malliavin derivative, see Øk-
sendal and Røse [11].
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2.2 The Hamiltonian and the associated BSDE
To solve problem (2.14) we formulate a stochastic maximum principle, suitably
modified for this situation:

First, define the Hamiltonian

H : [0, T ]× R× R× R× V × R× R× L2(ν)→ R (2.18)

by

H(t, x, y, z, u, p, q, r(·)) := f(t, x, y, z, u) + b(t, x, y, z, u)p

+σ(t, x, y,z, u)q +

∫
R
γ(t, x, y, z, u, ζ)r(ζ)ν(dζ) (2.19)

Associated with the above Hamiltonian we have the following backward
stochastic differential equation (BSDE) in the unknown processes p, q and r:

dp(t) = −E[µ(t)|Ft]dt+ q(t)dB(t) +

∫
R
r(t, ζ)Ñ(dt, dζ); 0 ≤ t ≤ T

p(T ) = g′(X(T )) (2.20)

where

µ(t) =
∂H
∂x

(t) +
∂H
∂y

(t+ δ)1[0,T−δ](t) +

∫ t+δ

t

E
[
Dt
(∂H
∂z

(s)
)
|Ft
]
1[0,T ](s)ds. (2.21)

Here,
∂H
∂x

(t)

is abbreviated notation for

∂H
∂x

(t,X(t), Y (t), Z(t), π(t), p(t), q(t), r(t, ·)) (2.22)

etc.
In particular, we say the processes p, q, r are adjoint processes corresponding

to π if the following holds: p is càdlàg and adapted, q, r are predictable,

E
[

sup
t∈[0,T ]

p(t)2 +

∫ T

0

{
q(t)2dt+

∫
R
r(t, ζ)2ν(dζ) +

∂H
∂z

(t)2

}
dt
]
<∞, (2.23)

and the equalities (2.20) holds P -a.s. for every t ∈ [0, T ].

Remark 2. Note that due to the conditional expectation of the Malliavin deriva-
tive in the adjoint equation (2.20) and the Clark-Ocone formula (2.15), the pro-
cess µ has the alternative description

µ(t) =
∂H
∂x

(t) +
∂H
∂y

(t+ δ)1[0,T−δ](t) +

∫ t+δ

t

θs(t)1[0,T ](s)ds,

where, for fixed s, θs(t) is the unique process satisfying

∂H
∂z

(s) = E
[∂H
∂z

(s)
]

+

∫ s

0

θs(t)dB(t). (2.24)
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Although the proofs in Sections 3-4 can be carried out without resorting to Malli-
avin calculus, we have found the notation useful. We also remark that we have
not been able to prove Theorem 6.1 in Section 6, without using Malliavin cal-
culus. Moreover, we emphasise that Malliavin calculus is needed as an efficient
tool to actually find this process θs(t). See the example in Section 7.

Note that the BSDE (2.20) is time-advanced in the sense that µ(t) involves
future values like X(t + δ) etc. In this way the BSDE is similar to the time-
advanced BSDE in [13], but note that the Malliavin derivative in the last term of
(2.21) constitutes a new ingredient. To the best of our knowledge, such BSDEs
with Malliavin derivatives have not been studied before.

2.3 Short-hand notation
Before we continue with the maximum principles, we introduce some abbrevi-
ated notation. For any admissible control π ∈ AG, we write X = (X,Y, Z) for
the corresponding processes from the state equation (2.1) orXπ = (Xπ, Y π, Zπ),
if confusion may occur. Similarily, adjoint processes corresponding to π are de-
noted by p, q, r or pπ, qπ, rπ. Often, we will mark a control with a diacritic.
Then the corresponding processes will be marked with the same diacritic, i.e.
the processes X̂ = X̂, Ŷ , Ẑ and p̂, q̂, r̂ corresponds to the control π̂.

When any of the coefficient functions b, σ, γ, the utility function f , the Hamil-
tonian H or any of their derivatives, is evaluated in a set of processes all cor-
responding to the same control, we typically omit all variables except the time
variable, and mark the function with the control or the diacritic when necessary.
As an example, we write

H(t) := Hπ(t) := H(t,X(t), π(t), p(t), q(t), r(t, ·))

Ĥ(t) := H(t, X̂(t), π̂(t), p̂(t), q̂(t), r̂(t, ·)).

3 A sufficient maximum principle
In this section we assume that the set V of all admissible controls is convex.
Our main result here is a sufficient maximum principle for the system with
noisy memory.

Theorem 3.1. (Sufficient maximum principle for systems with noisy memory)
Let π̂ ∈ AG with corresponding X̂, Ŷ , Ẑ, and adjoint processes p̂, q̂, r̂. Moreover,
suppose that the following hold:

i) The functions

x→ g(x) (3.1)

and

(x, y, z, u)→ H(t, x, y, z, u, p̂(t), q̂(t), r̂(t, ·)) (3.2)

are concave a.s. for all t ∈ [0, T ].
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ii) For every v ∈ V

E
[ ∂
∂u
H
(
t, X̂(t), π̂(t), p̂(t), q̂(t), r̂(t)

)∣∣∣Gt](v − π̂(t)) ≤ 0 (3.3)

dt× P -a.s.

Then π̂ is an optimal control for the noisy memory control problem (2.14).

Proof. Fix π ∈ AG with corresponding processesX(t), b(t), σ(t), γ(t), p(t), q(t), r(t).
Write

J(π)− J(π̂) = I1 + I2, (3.4)

where

I1 := E[

∫ T

0

(
f(t,X(t), π(t))− f(t, X̂(t), π̂(t))

)
dt] (3.5)

and

I2 := E[g(X(T ))− g(X̂(T ))]. (3.6)

By the definition of H and its concavity, we find that

I1 = E
[ ∫ T

0

{
H(t,X(t), π(t), p̂(t), q̂(t), r̂(t, ·))−H(t, X̂(t), π̂(t), p̂(t), q̂(t), r̂(t, ·))

−
(
b(t,X(t), π(t))− b(t, X̂(t), π̂(t))

)
p̂(t)

−
(
σ(t,X(t), π(t))− σ(t, X̂(t), π̂(t))

)
q̂(t)

−
∫
R

(
γ(t,X(t), π(t), ζ)− γ(t, X̂(t), π̂(t), ζ)

)
r̂(t, ζ)ν(dζ)

}
dt
]

≤ E
[ ∫ T

0

{∂Ĥ
∂x

(t)
(
X(t)− X̂(t)

)
+
∂Ĥ
∂y

(t)
(
Y (t)− Ŷ (t)

)
+
∂Ĥ
∂z

(t)
(
Z(t)− Ẑ(t)

)
+
∂Ĥ
∂u

(t)
(
π(t)− π̂(t)

)
−
(
b(t)− b̂(t)

)
p̂(t)−

(
σ(t)− σ̂(t)

)
q̂(t)

−
∫
R

(
γ(t, ζ)− γ̂(t, ζ)

)
r̂(t, ζ)ν(dζ)

}
dt
]

(3.7)

Since g is concave and from the terminal condition of the adjoint equation, we
have that

I2 ≤ E[g′(X̂(T ))(X(T )− X̂(T ))] = E[p̂(T )(X(T )− X̂(T ))]. (3.8)

If we apply the Itô formula to p̂(t)(X(t)− X̂(t)), we find that

p̂(T )(X(T )− X̂(T )) =

∫ T

0

E[−µ̂(t)|Ft] ·
(
X(t)− X̂(t)

)
+ p̂(t) ·

(
b(t)− b̂(t)

)
+ q̂(t) ·

(
σ(t)− σ̂(t)

)
+

∫
R
r̂(t, ζ) ·

(
γ(t, ζ)− γ̂(t, ζ)

)
ν(dζ)dt

+

∫ T

0

q̂(t) ·
(
X(t)− X̂(t)

)
+ p̂(t) ·

(
σ(t)− σ̂(t)

)
dB(t) (3.9)

+

∫ T

0

∫
R

[
r̂(t, ζ) ·

(
X(t)− X̂(t)

)
+
(
p̂(t) + r̂(t, ζ)

)
·
(
γ(t, ζ)− γ̂(t, ζ)

)]
Ñ(dt, dζ).
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Consider a suitable increasing sequence of stopping times τn defined by

τn := T ∧ inf
{
t > 0 :

∫ t

0

[(
q̂(s) ·

(
X(s)− X̂(s)

)
+ p̂(s) ·

(
σ(s)− σ̂(s)

))2

+

∫
R

(
r̂(s, ζ) ·

(
X(s)− X̂(s)

)
+
(
p̂(s) + r̂(s, ζ)

)
·
(
γ(s, ζ)− γ̂(s, ζ)

))2

ν(dζ)
]
ds ≥ n

}
. (3.10)

It is easy to see that the sequence {τn}∞n=1 converges to T . Now, since stochastic
integrals with L2-integrands have 0 expectation, it follows that

E[p̂(τn)(X(τn)]− X̂(τn)] = E
[ ∫ τn

0

E[−µ̂(t)|Ft] ·
(
X(t)− X̂(t)

)
+ p̂(t) ·

(
b(t)− b̂(t)

)
+ q̂(t) ·

(
σ(t)− σ̂(t)

)
+

∫
R
r̂(t, ζ) ·

(
γ(t, ζ)− γ̂(t, ζ)

)
ν(dζ)dt.

]
Note that the integrands are dominated by integrable processes, so we can pass to a
limit. Combining this with (3.8), we find that

I2 ≤ E
[ ∫ T

0

E[−µ̂(t)|Ft] ·
(
X(t)− X̂(t)

)
+ p̂(t) ·

(
b(t)− b̂(t)

)
+ q̂(t) ·

(
σ(t)− σ̂(t)

)
+

∫
R
r̂(t, ζ) ·

(
γ(t, ζ)− γ̂(t, ζ)

)
ν(dζ)dt

]
. (3.11)

Finally, combining the estimates for I1 and I2 (3.7, 3.11), we obtain

J(π)− J(π̂) ≤ E
[ ∫ T

0

{∂Ĥ
∂x

(t) ·
(
X(t)− X̂(t)

)
+
∂Ĥ
∂y

(t) ·
(
Y (t)− Ŷ (t)

)
+
∂Ĥ
∂z

(t) ·
(
Z(t)− Ẑ(t)

)
+
∂Ĥ
∂u

(t) ·
(
π(t)− π̂(t)

)
(3.12)

− µ̂(t) ·
(
X(t)− X̂(t)

)}
dt
]

= E
[ ∫ T

0

∂Ĥ
∂y

(t) ·
(
Y (t)− Ŷ (t)

)
dt
]

(3.13)

− E
[ ∫ T

0

∂Ĥ
∂y

(t+ δ) ·
(
X(t)− X̂(t)

)
1[0,T−δ](t)dt

]
(3.14)

+ E
[ ∫ T

0

∂Ĥ
∂z

(s) ·
(
Z(s)− Ẑ(s)

)
ds
]

(3.15)

− E[
∫ T

0

∫ t+δ

t

E[Dt[
∂Ĥ
∂z

(s)]|Ft]1[0,T ](s)(X(t)− X̂(t))dsdt
]

(3.16)

+ E
[ ∫ T

0

∂Ĥ
∂u

(t) ·
(
π(t)− π̂(t)

)
dt
]

= E
[ ∫ T

0

∂Ĥ
∂u

(t) ·
(
π(t)− π̂(t)

)
dt
]
. (3.17)

We will show that the sum of the integrals (3.13-3.16) is in fact 0. Changing
the order of integration and using the duality formula for Malliavin derivatives
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(Proposition 2.1), we get

E
[ ∫ T

0

∂Ĥ
∂z

(s) ·
(
Z(s)− Ẑ(s)

)
ds
]

= E
[ ∫ T

0

∂Ĥ
∂z

(s) ·
∫ s

s−δ

(
X(t)− X̂(t)

)
dB(t)ds

]
=

∫ T

0

E
[∂Ĥ
∂z

(s) ·
∫ s

s−δ

(
X(t)− X̂(t)

)
dB(t)

]
ds

=

∫ T

0

E[
∫ s

s−δ
E[Dt(

∂Ĥ
∂z

(s))|Ft] ·
(
X(t)− X̂(t)

)
dt]ds

= E[
∫ T

0

∫ t+δ

t

E[Dt(
∂Ĥ
∂z

(s))|Ft]1[0,T ](s)(X(t)− X̂(t))dsdt
]
.

(3.18)

Also, note that

E
[ ∫ T

0

∂Ĥ
∂y

(t) ·
(
Y (t)− Ŷ (t)

)
dt
]

= E
[ ∫ T

0

∂Ĥ
∂y

(t) ·
(
X(t− δ)− X̂(t− δ)

)
dt
]

(3.19)

= E
[ ∫ T

0

∂Ĥ
∂y

(t+ δ) ·
(
X(t)− X̂(t)

)
1[0,T−δ](t)dt]

Now continuing where we left off from (3.17), we find that

J(π)− J(π̂) ≤ E
[ ∫ T

0

∂Ĥ
∂u

(t) ·
(
π(t)− π̂(t)

)
dt] (3.20)

= E[
∫ T

0

E[∂Ĥ
∂u

(t)|Gt](π(t)− π̂(t))dt] ≤ 0 (3.21)

by (3.3). Hence, π̂ is optimal.

4 A necessary maximum principle
Here we develop a Gateaux-type (or directional) differentiability property for
the performance functional J (Lemma 4.4, Theorem 4.5). The differentiability
of J is obtained under suitable regularity hypotheses on the coefficients of the
SDE with noisy memory, the performance functional and the set of admissible
controls. See Assumption 3 below. The directional derivative of the performance
functional yields a necessary condition for the optimal control problem in terms
of the Hamiltonian.

In the subsequent discussion, we will use the same notation | · | to denote
any norm on Rn, because such norms are all equivalent.

We impose the following set of assumptions throughout this section:

Assumption 3.

i) The functions ∇b and ∇σ are bounded. The upper bound is denoted by D0.
Also, there exists a non-negative function D ∈ L2(ν) such that

|∇γ(t, x, y, z, u, ω, ζ)| ≤ D(ζ)

11



ii) The functions ∇f and ∇g are dominated by some

D1(·) ∈ L2(Ω× [0, T ]), and D2 ∈ L2(Ω),

respectively.

Let π, η ∈ AG and suppose η is bounded. Consider the stochastic differential
equation

dK(t) = (K(t),K(t− δ),
∫ t

t−δ
K(r)dB(r), η(t)) ·

[
∇b(t,X(t), π(t)) dt

+∇σ(t,X(t), π(t)) dB(t) +

∫
R
∇γ(t,X(t), π(t), ζ)Ñ(dt, dζ)

]T
(4.1)

K(t) = 0, t ∈ [−δ, 0].

We remark, that we regard the gradients as row vectors, and · as matrix multi-
plication.

Lemma 4.1. The equation (4.1 ) has a unique càdlàg solution
K = Kπ,η ∈ L2(Ω× [−δ, T ]), with

E[ sup
t∈[−δ,T ]

|K(t)|2] <∞. (4.2)

The proof of the above lemma is straightforward, considering the equation
(4.1) as a stochastic functional differential equation as in [4]. The approach is
similar to the one in [9], with the addition of applying Kunita’s inequality for
Ñ -integrals ([8], Corollary 2.12). We remark that the boundedness conditions
on ∇b, ∇σ and ∇γ are used in the proof.

To simplify the exposition in the rest of the section, we will adopt the fol-
lowing notation:

K(t) : = Kπ,η(t) :=
(
Kπ,η(t),Kπ,η(t− δ),

∫ t

t−δ
Kπ,η(s) dBs

)
, and

(K(t), η(t)) : = (Kπ,η(t), η(t)) :=
(
Kπ,η(t),Kπ,η(t− δ),

∫ t

t−δ
Kπ,η(s) dBs, η(t)

)
,

(4.3)

for 0 ≤ t ≤ T .

4.1 Directional differentiability of the performance func-
tional

Suppose now that π, η ∈ AG. Also assume that there exist an interval I ⊂ R
containing 0 such that the perturbations π + sη is in AG for each s ∈ I. The
following lemmas give continuity and differentiability results for the function

s 7→ Xπ+sη.

We begin by defining the random fields

Fs(t) : = Fπ,ηs (t) := Xπ+sη(t)−Xπ(t),

Fs(t) : = Fπ,η(t) := Xπ+sη(t)−Xπ(t) =
(
Fπ,ηs (t), Fπ,ηs (t− δ),

∫ t

t−δ
Fπ,ηs (r)dB(r)

)
.

12



Lemma 4.2. There exists constants C > 0, independent of π, η such that

E
[

sup
0≤v≤t

∣∣∣Fs(v)|2
]
≤ C ‖ η ‖2L2(Ω×[0,T ]) s

2. (4.4)

Moreover there is measurable version of the random field (ω, t, s) 7→ Fs(t, ω)
such that for a.e. ω, Fs(t, ω)→ 0 as s→ 0 for each t.

Proof. For simplicity, we consider the case where b, σ = 0. Define

βs(t) := E
[

sup
−δ≤v≤t

∣∣∣Fs(v)|2
]
. (4.5)

Observe that by Kunita’s inequality, it follows that

E[ sup
0≤v≤t

|Fs(t)|2] = E
[

sup
0≤v≤t

{
|Fs(v)|2 + |Fs(v − δ)|2 +

∣∣∣ ∫ v

v−δ
Fs(r)dB(r)

∣∣∣2}]
≤ 2βs(t) + E

[
sup

0≤v≤t

∣∣∣ ∫ v

v−δ
Fs(r)dB(r)

∣∣∣2]
≤ 2βs(t) + C2,T

∫ v

v−δ
|Fs(r)|2dr

]
≤ (2 + δC2,T )βs(t)

(4.6)

Notice that since ∇γ is dominated by D, γ is Lipschitz in all spacial variables,
with Lipschitz constant D(ζ). From the integral representation of X, Itô’s
isometry, and finally the Lipschitz condition on γ we find that

βs(t) ≤
∫ t

0

E
[ ∫

R
|γ(v,Xπ+sη, π + sη)− γ(v,Xπ, π)|2ν(dζ)

]
dv

≤
∫ t

0

E
[ ∫

R
D(ζ)2|(Fs(t), sη(t))|2ν(dζ)

]
dv

≤‖ D ‖2L2(ν)

∫ t

0

(2 + δ)βs(v) dv + s2 ‖ η ‖2L2(Ω×[0,T ]) .

Hence by Gronwall’s lemma there is a constant C ′ > 0 such that

βs(t) ≤ C ′s2 ‖ η ‖2L2(Ω×[0,T ]) . (4.7)

Combining this with the estimate (4.6) yields the first part of the lemma.
Now, using the first part of the lemma, and an estimate similar to (4.6), we

find that for each s1, s2 ∈ I

E[ sup
0≤t≤T

|Fπ,ηs1 (t)− Fπ,ηs2 (t)|2] = E[ sup
0≤t≤T

|Xπ+s1η(t)−X(π+s1η)+(s2−s1)η(t)|2]

E[ sup
0≤t≤T

|Fπ+s1η,η
s2−s1 (t)|2] ≤ C|s1 − s2|2 ‖ η ‖2L2(Ω×[0,T ]) .

Let D be the space of càdlàg paths from [0, T ] to R3 equipped with the uniform
topology. Then by the Kolmogorov-Totoki theorem (see e.g. [8, 15]), it holds
that the random field

I × Ω 3 (s, ω) 7→ Fπ,ηs (·, ω) ∈ D[0, T ], (4.8)

has a continuous version. Thus there is a version of Fπ,η such that (ω, s, t) 7→
Fπ,ηs (t, ω) is jointly measurable, càdlàg in t and continuous in s. In particular
for a.e. ω it holds that Fπ,ηs (t, ω)→ 0 for every t, as s→ 0.
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Next, we define the random fields

As(t) : =
Xπ+sη(t)−Xπ(t)

s
−Kπ,η(t), −δ ≤ t ≤ T ;

As(t) : =
Xπ+sη(t)−Xπ(t)

s
−Kπ,η(t) =

(
As(t), As(t− δ),

∫ t

t−δ
As(r)dB(r)

)
, 0 ≤ t ≤ T.

Lemma 4.3. Suppose that π, η ∈ A. Then

E
[

sup
0≤v≤t

∣∣∣As(v)
∣∣∣2]→ 0 (4.9)

as s→ 0.

Proof. Define

αs(t) := E[ sup
−δ≤v≤t

|As(v)|2] (4.10)

Similarly as in the previous proof, we have

E[ sup
0≤v≤t

|As(v)|2] ≤ (2 + C2,T δ)αs(t) (4.11)

We remark that in order to use Taylor’s formula for the u-variable, when U
is not open, we need to assume that b, σ, γ have C1-extensions that are defined
on an open set containing U . In extending the results to controls in e.g. Rn,
one needs to take extra care.

From the integral representation of X and K, and by adding and subtracting
a term, we find that

As(t) =

∫ t

0

∫
R0

1

s

{
γ(v,Xπ+sη, π + sη, ζ)− γ(v,Xπ, π, ζ)

}
−∇γ(v,Xπ, π, ζ) · (Kπ,η(v), η(v))TÑ(de, dv)

=

∫ t

0

∫
R0

1

s

{
γ(v,Xπ+sη, π + sη, ζ)− γ(v,Xπ, π + sη, ζ)

}
−∇x,y,zγ(v,Xπ, π, ζ) ·Kπ,η(v)TÑ(dζ, dv)

(4.12)

+

∫ t

0

∫
R0

1

s

{
γ(t,Xπ, π + sη, ζ)− γ(v,Xπ, π, ζ)

}
− ∂

∂u
γ(v,Xπ, π, ζ)η(v)Ñ(dζ, dv),

(4.13)

for −δ ≤ t ≤ T . From Kunita’s inequality, we have that

αs(t) = E[ sup
−δ≤v≤t

|As(v)|2] ≤
∫ t

0

C2,T 2(Is,1(v) + Is,2(v)) dv (4.14)

where

Is,1(v) =

∫
R0

E
[∣∣∣1
s

{
γ(v,Xπ+sη, π + sη, ζ)− γ(v,Xπ, π + sη, ζ)

}
−∇x,y,zγ(v,Xπ, π, ζ) ·Kπ,η(v)T

∣∣∣2]ν(dζ)

(4.15)

Is,2(v) =

∫
R0

E
[∣∣∣1
s

{
γ(t,Xπ, π + sη, ζ)− γ(v,Xπ, π, ζ)

}
− ∂

∂u
γ(v,Xπ, π, ζ)η(v)

∣∣∣2]ν(dζ).

(4.16)
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We will show that
∫ t

0
Is,2(v)dv → 0 as s → 0 and that Is,1(v) are bounded by

terms on the form

ϑs(v) + ϕ(v)αs(v) (4.17)

where ϕ ≥ 0 is integrable and for fixed s, ϑs ≥ is integrable. Moreover it holds
that

∫ t
0
ϑs(v)dv → 0 as s→ 0. From Grönwall’s inequality (see, e.g. the version

in [1]), it holds that

αs(t) ≤ 2C2,T

∫ T

0

(
ϑs(v) + Is,2(v)

)
dv · exp

{
2C2,T

∫ t

0

ϕ(v)dv
}
→ 0

as s → 0. We first consider Is,1 from equation (4.15). Let ∇x,y,z denote the
gradient with respect to the variables x, y, z. Applying Taylor’s formula with
integral remainder and adding and subtracting a term yields

Is,1(v) =

∫
R
E
[∣∣∣1
s

{
γ(v,Xπ+sη, π + sη, ζ)− γ(v,Xπ, π + sη, ζ)

}
−∇x,y,zγ(v,Xπ, π, ζ) ·Kπ,η(v)T

∣∣∣2]ν(dζ)
=

∫
R
E
[∣∣∣ ∫ 1

0

∇x,y,zγ(v,Xπ + λFs(v), π + sη, ζ) · 1
s
Fs(v)

T

−∇x,y,zγ(v,Xπ, π, ζ) ·Kπ,η(v)T dλ
∣∣∣2]ν(dζ)

=

∫
R
E
[∣∣∣ ∫ 1

0

∇x,y,zγ(v,Xπ + λFs(v), π + sη, ζ) ·As(v)
T

+
(
∇x,y,zγ(v,Xπ + λFs(v), π + sη, ζ)−∇x,y,zγ(v,Xπ, π, ζ)

)
·Kπ,η(v)T dλ

∣∣∣2]ν(dζ)
≤
∫
R
E
[
2

∫ 1

0

∣∣∣∇x,y,zγ(v,Xπ + λFs(v), π + sη, ζ) ·As(v)
T
∣∣∣2 dλ]ν(dζ) (4.18)

+

∫
R
E
[ ∫ 1

0

2
∣∣∣(∇x,y,zγ(v,Xπ + λFs(v), π + sη, ζ)

−∇x,y,zγ(v,Xπ, π, ζ)
)
·Kπ,η(v)T

∣∣∣2 dλ]ν(dζ) (4.19)

Now, we can use boundedness of ∇γ and the inequality (4.11) to show that the
term (4.18), is bounded by

2 ‖ D ‖2L2(ν) (2 + δ)αs(v).

Now consider the term (4.19). Observe that since λFs(v) converges pointwise
to 0, ∇x,y,zγ is bounded and continuous, and the integrand is dominated by the
P × [0, T ]× dλ×R-integrable function 2D(ζ)2|K(v)|2, it follows by Lebesgue’s
dominated convergence theorem that (4.19) satisfies the conditions of ϑs.

In a similar way, using Taylor’s formula, we may show that∫ T

0

Is,2(v)dv

≤ E
[ ∫

R

∣∣∣ ∫ 1

0

( ∂

∂u
γ(v,Xπ, π + λ(sη), ζ) − ∂

∂u
γ(v,Xπ, π, ζ)

)
dλ · η(v)

∣∣∣2ν(dζ)]dv.
Now, the integrand is dominated by 2D(ζ)2η(s)2, which is
P × [0, T ] × dλ × R-integrable, and converges point wise to 0, because ∂

∂uγ is
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continuous. Therefore, ∫ T

0

Is,2(v)dv → 0

as s→ 0. This completes the proof of Lemma 4.3.

Lemma 4.4 (Differentiability of the performance functional J). Suppose
π, η ∈ AG with η bounded. Suppose there exist an interval I ⊂ R with 0 ∈ I,
such that the perturbation π + sη is in AG for each s ∈ I. Then the function
s 7→ J(π + sη) has a (possibly one-sided) derivative at 0 with

d

ds
J(π + sη)

∣∣∣
s=0

= E
[
g′(X(T )) ·K(T ) +

∫ T

0

∇f(t,Xπ(t), π(t)) · (K(t), η(t))Tdt
]
.

(4.20)

Proof. For simplicity, we consider only the case where g = 0. By using Taylor’s
formula with integral remainder, and proceeding as in the previous proof, one
can show that∣∣∣J(π + sη)− J(π)

s
− E

[ ∫ T

0

∇f(t,Xπ, π) · (K(t), η(t))Tdt
]∣∣∣

= E
[ ∫ T

0

∣∣∣f(t,Xπ+sη, π(t) + sη)− f(t,Xπ, π)

s
−∇f(t,Xπ, π) · (K(t), η(t))T

∣∣∣]dt
≤ E

[ ∫ T

0

∣∣∣f(t,Xπ+sη, π + sη)− f(t,Xπ, π + sη)

s
−∇x,y,zf(t,Xπ, π) ·K(t)T

+
∣∣∣f(t,Xπ, π + sη)− f(t,Xπ, π)

s
− ∂

∂u
f(t,Xπ, π) · η(t)dt

]
≤ E

[ ∫ T

0

∫ 1

0

∣∣∣∇x,y,zf(t,Xπ + λFs, π + sη) ·As(t)
T
∣∣∣dλdt] (4.21)

+ E
[ ∫ T

0

∫ 1

0

∣∣∣(∇x,y,zf(v,Xπ + λFs, π + sη, ζ)−∇x,y,zf(v,Xπ, π + η, ζ)
)

·Kπ,η(v)T
∣∣∣ dλdt] (4.22)

+ E
[ ∫ T

0

∣∣∣ ∫ 1

0

( ∂

∂u
f(v,Xπ, π + λ(sη), ζ)− ∂

∂u
f(v,Xπ, π, ζ)

)
dλ · η(v)

∣∣∣dt] (4.23)

The term (4.21) tends to 0 because from the boundedness of ∇x,y,zf and
Cauchy Schwartz inequality, we have

E
[ ∫ T

0

∫ 1

0

∣∣∣∇x,y,zf(t,Xπ + λFs, π + sη) ·As(t)
T
∣∣∣dλdt] (4.24)

≤
(
E
[ ∫ T

0

|D1(t)|2
]
dt
) 1

2
(
E
[ ∫ T

0

|As(t)|2
]
dt
) 1

2

, (4.25)

and this tends to 0 as s→ 0, by Lemma 4.3
The term (4.22) tends to 0 as s→ 0 because the integrand is dominated by

the function 2D1|K| which is integrable, ∇x,y,zf is continuous and λFs → 0 as
s→ 0 for each t, λ and a.e. ω.

Similarly, the term (4.23) tends to 0 as s → 0, because the integrand is
dominated by the function 2D1|η| which is integrable, ∂

∂uf is continuous and
sηλ→ 0, for each t, λ and a.e. ω. Hence the lemma is proved.
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Theorem 4.5 (Differentiability of J in terms of the Hamiltonian). Sup-
pose π, η ∈ AG with η bounded. Suppose there exist an interval I ⊂ R with 0 ∈ I
such that the perturbation π + sη is in AG for each s ∈ I. Also assume that
there exists unique corresponding adjoint processes p = pπ q = qπ and r = rπ.
Then

d

ds
J(π + sη)

∣∣
s=0

= E
[ ∫ T

0

∂

∂u
Hπ(t)η(t)dt

]
. (4.26)

Proof. Define a sequence of stopping times by

τn := T ∧ inf
{
t > 0 :

∫ t

0

(
|p(s)|2 + |q(s)|2 +

∫
R
|r(s, ζ)|2ν(dζ)

)
·
(
|K(s)|2 + |η(s)|2

)
ds ≥ n

}
.

Clearly τn → T P -a.s. as n→∞. Observe that

E[g′(X(T )) ·K(T )] = E[p(T )K(T )]. (4.27)

From Itô’s formula, we find that

p(τn)K(τn) =

∫ τn

0

p(t)(K(t), η(t)) ·
[
∇b(t)dt+∇σ(t)dB(t)

+

∫
R
∇γ(t, ζ)Ñ(dt, dζ)

]T
+

∫ τn

0

K(t)
[
E[−µ(t, π)|Ft]dt+ q(t)dB(t) +

∫
R
r(t, ζ)Ñ(dt, dζ)

]
+

∫ τn

0

q(t)(K(t), η(t)) · ∇σ(t)Tdt

+

∫ τn

0

∫
R
r(t, ζ)(K(t), η(t)) · ∇γ(t, ζ)TÑ(dt, dζ)

+

∫ τn

0

∫
R
r(t, ζ)(K(t), η(t)) · ∇γ(t, ζ)Tν(dζ)dt.

(4.28)

where (K(t), η(t)) is the concatenation of K(t−) and η(t) (see (4.3)).
The stochastic integrals in (4.28) have zero expectation, since their inte-

grands are square integrable by the definition of the stopping times. Combining
this with the definition (2.19) of the Hamiltonian yields

E[p(τn)K(τn)] = E
[ ∫ τn

0

(K(t), η(t)) ·
(
p(t)∇b(t)

+ q(t)∇σ(t) +
∫
R
r(t, ζ)∇γ(t, ζ)ν(dζ)

)T
dt
]

+ E
[ ∫ τn

0

K(t)E[−µ(t, π)|Ft]dt
]

= E
[ ∫ τn

0

(
∇H(t)−∇f(t)

)
· (K(t), η(t))T dt

]
+ E

[ ∫ τn

0

K(t)E[−µ(t, π)|Ft]dt
]
.

Now, since the adjoint processes K and η are square integrable (see (4.2)), the
integrands above are dominated by an integrable processes, and hence by the
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dominated convergence theorem, it follows that

E[p(T )K(T )] = lim
n→∞

E[p(τn)K(τn)]

= lim
n→∞

E
[ ∫ τn

0

(
∇H(t)−∇f(t)

)
· (K(t), η(t))T +K(t)E[−µ(t, π)|Ft]dt

]
= E

[ ∫ T

0

(
∇H(t, π)−∇f(t, )

)
· (K(t), η(t))T +K(t)E[−µ(t, π)|Ft]dt

]
.

Then, using Lemma 4.4 and (4.27) gives

d

ds
J(π + sη)

∣∣∣
s=0

= E
[
p(T )K(T ) +

∫ T

0

∇f(t,Xπ(t), π(t)) · (K(t), η(t))Tdt
]

= E
[ ∫ T

0

∇H(t,X(t), π(t), p(t), q(t), r(t)) · (Kt, ηt)
Tdt
]

+ E
[ ∫ T

0

K(t)E[−µ(t, π)|Ft]dt
]

= E
[ ∫ T

0

∂

∂x
Hπ(t)K(t)dt

]
− E

[ ∫ T

0

K(t)
∂

∂x
Hπ(t)dt

]
+ E

[ ∫ T

0

∂

∂y
Hπ(t)K(t− δ) dt

]
− E

[ ∫ T

0

K(t)
∂

∂y
Hπ(t+ δ)1[0,T−δ](t)dt

]
(4.29)

+ E
[ ∫ T

0

∂

∂z
Hπ(t)

∫ t

t−δ
K(r)dB(r)

]
− E

[ ∫ T

0

K(t)

∫ t+δ

t

E
[
Dt
(∂Hπ
∂z

(r)
)
|Ft
]
1[0,T ](r)drdt

] (4.30)

+ E
[ ∫ T

0

∂

∂u
Hπ(t)η(t)dt

]
= E

[ ∫ T

0

∂

∂u
Hπ(t)η(t)dt

]
.

To prove the last equality, it is sufficient to show that each of the lines (4.29)
and (4.30) is equal to zero. Observe first that

E
[ ∫ T

0

∂

∂y
Hπ(t)K(t− δ)dt

]
= E[

∫ T

δ

∂

∂y
Hπ(t)K(t− δ) dt

]
= E

[ ∫ T−δ

0

∂

∂y
Hπ(t+ δ)K(t)dt

]
= E

[ ∫ T

0

K(t)
∂

∂y
Hπ(t+ δ)1[0,T−δ](t)dt

]
.

Also, using Fubini’s theorem and the duality formula for the Malliavin derivative
(Proposition 2.1), we can show that:

E
[ ∫ T

0

∂

∂z
Hπ(t)

∫ t

t−δ
K(r)dB(r)dt

]
=

∫ T

0

E
[ ∫ t

t−δ
E
[
Dr

( ∂
∂z
Hπ(t)

)
|Fr
]
K(r)dr

]
dt

= E
[ ∫ T

0

∫ T

0

K(r)E
[
Dr

( ∂
∂z
Hπ(t)

)
|Fr
]
1[t−δ,t](r)dtdr

]
= E

[ ∫ T

0

∫ T

0

K(r)E
[
Dr

( ∂
∂z
Hπ(t)

)
|Fr
]
1[r,r+δ](t)dtdr

]
(4.31)

= E
[ ∫ T

0

∫ r+δ

r

K(r)E
[
Dr

( ∂
∂z
Hπ(t)

)
|Fr
]
1[0,T ](t)dtdr

]
= E

[ ∫ T

0

K(t)

∫ t+δ

t

E[Dt

(∂Hπ
∂z

(r)
)
|Ft]1[0,T ](r)drdt

]
.

This completes the proof of the theorem.
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4.2 Necessary maximum principles
In this section, we develop necessary maximum principles in terms of the Hamil-
tonian.

Theorem 4.6 (Necessary maximum principle I). Suppose π̂ ∈ AG. Denote
by X̂ the corresponding state process and suppose that there exist corresponding
adjoint processes p̂, q̂, and r̂. In addition we assume that for each t0 ∈ [0, T ] and
each bounded Gt0-measurable random variable α, the process η(t) = α1[t0,T ](t)
belongs to AG. Then the following statements are equivalent

i) For each bounded η ∈ AG,

d

ds
J(π̂ + sη)

∣∣∣
s=0

= 0.

ii) For each t ∈ [0, T ],

E
[
∂

∂u
H
(
t, X̂(t), π̂(t), p̂(t), q̂(t), r̂(t)

)∣∣∣Gt] = 0 P -a.s.

Suppose in addition that whenever η ∈ AG is bounded, there exists ε > 0 such
that

π + sη ∈ AG for each s ∈ (−ε, ε).

If π̂ is optimal then i) and ii) holds.

Using Theorem 4.5, the proof is similar to that of Theorem 4.1 in [13].
If the space of admissible control values V is closed and an optimal control

have trajectories with values on the boundary of V on a non-negligible set, then
the first necessary maximum principle is of little use.

Suppose now that AG is convex, that π̂, π ∈ AG with π̂ optimal. Then the
perturbation π̂ + s(π − π̂) ∈ AG for every s ∈ [0, 1]. And, hence it holds that
d
dsJ(π̂+ s(π− π̂))|s=0 ≤ 0, for every s ∈ [0, 1], or equivalently (by Theorem 4.5)
that

E
[ ∫ T

0

∂

∂u
Ĥ(t)(π(t)− π̂(t))dt

]
≤ 0.

In particular this holds for every admissible π of the form

πh,t(s) :=

{
v, s ∈ [t, t+ h), ω ∈ B
π̂(s) otherwise

(4.32)

where t ∈ [0, T ], h > 0, v ∈ V and B ∈ Gt. Fix t ∈ [0, T ], B ∈ Gt. Observe that

0 ≥ 1

h
E
[ ∫ t+h

t

∂

∂u
Ĥ(r)(πh,t(r)− π̂(r))dr

]
= E

[ 1

h

∫ t+h

t

∂

∂u
Ĥ(r)(v − π̂(r))dr1B

]
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Now since the above inequality holds for every B ∈ Gt, it follows that

0 ≥ E
[ 1

h

∫ t+h

t

∂

∂u
Ĥ(r)(v − π̂(r))dr

∣∣Gt] P − a.s.

=
1

h

∫ t+h

t

E
[ ∂
∂u
Ĥ(r)|Gt

]
(v − π̂(r))dr P − a.s.

Letting h→ 0 in the above inequality, we obtain

E
[ ∂
∂u
Ĥ(r)|Gt

]
(v − π̂(r)) ≤ 0, P − a.s.

for a.e. t ∈ [0, T ].
This gives the following maximum principle:

Theorem 4.7 (Necessary maximum principle II). Suppose that AG is a
convex set, containing all controls of the form (4.32). Assume that π̂ ∈ AG
is optimal. Denote by X̂ the solution of the corresponding state equation and
suppose there exist corresponding adjoint processes p̂, q̂, and r̂. Then

E
[ ∂
∂u
H
(
t, X̂(t), π̂(t), p̂(t), q̂(t), r̂(t)

)∣∣∣Gt](v − π̂(t)) ≤ 0

dt× P -a.s.

5 Reduction of noisy memory to discrete delay
In this section we formulate our one-dimensional noisy memory stochastic con-
trol problem as a two-dimensional control problem with discrete delay. This
allows us to apply (a two-dimensional generalization of) previously known re-
sults from Øksendal et al. [13] to get an alternative maximum principle for our
original control problem. We then compare the maximum principles from the
noisy memory-/Malliavin calculus approach and the discrete delay-approach.

Consider the original dynamics (2.1) for the process X, including the noisy
memory term. For notational purposes, denote X1(t) := X(t). Define a new
process X2(t) by

X2(t) :=

∫ t

−δ
X1(s)dB(s). (5.1)

Then, using the above transformation (5.1), the dynamics in (2.1) can be rewrit-
ten as a two-dimensional SDE with discrete delay and no noisy memory:

dX1(t) = b(t,X1(t), X1(t− δ), X2(t)−X2(t− δ), π(t))dt

+ σ(t,X1(t), X1(t− δ), X2(t)−X2(t− δ), π(t))dB(t)

+

∫
R
γ(t,X1(t), X1(t− δ), X2(t)−X2(t− δ), π(t))Ñ(dt, dζ),

dX2(t) = X1(t)dB(t),

X1(t) = ξ(t), t ∈ [−δ, 0],

X2(t) =

∫ t

−δ
ξ(u)dB(u), t ∈ [−δ, 0]. (5.2)
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In particular, we notice that by uniqueness of solutions, for any given π ∈ AG,
it follows that X1 = X, and that

X(t) = (X1(t), X1(t− δ), X2(t)−X2(t− δ)) (5.3)

when X is defined as in Section (2.3). Furthermore, under Assumption 1 in
Section 2, a unique solution always exists. If we write X̃(t) := (X1(t), X2(t))T

and Ỹ (t) := X̃(t− δ), then the vector form of this equation is

dX̃(t) = b̃(t, X̃(t), Ỹ (t), π(t))dt+ σ̃(t, X̃(t), Ỹ (t), π(t))dB(t) (5.4)

+

∫
R
γ̃(t, X̃(t), Ỹ (t), π(t))Ñ(dt, dζ), (5.5)

where

X̃(t) :=

[
ξ(t)∫ t

−δ ξ(l)dB1(l)

]
, t ∈ [−δ, 0], (5.6)

b̃(t, x1, x2, y1, y2, π(t)) :=

[
b(t, x1, y1, x2 − y2, u)

0

]
,

γ̃(t, x1, x2y1, y2, u) :=

[
γ(t, x1, y1, x2 − y2, u)

0

]
,

σ̃(t, x1, x2y1, y2, u) :=

[
σ(t, x1, y1, x2 − y2, u)

x1

]
.

This is a two-dimensional SDE with discrete delay and jumps. The results
of Øksendal et al. [13] can, in a straight-forward manner, be generalized to two
dimensional dynamics. Hence, we can write down the performance function,
Hamiltonian and adjoint equations as in [13]. The performance functional (2.13),
can be rewritten as

J(π) = E
[ ∫ T

0

f̃(t, X̃(t), Ỹ (t), π(t))dt+ g̃(X̃(T ))
]
, π ∈ AG,

where

f̃(t, x1, x2, y1, y2, u, ) = f(t, x1, y1, x2 − y2, u), and
g̃(x1, x2) = g(x1).

Now, the Hamiltonian for the reduced problem, denoted by H, is

H(t, x1, x2, y1, y2, u, p1, p2, q1, q2, r1(·), r2(·))

: = f̃(t, x1, x2, y1, y2, u) + b̃T(t, x1, x2, y1, y2, u)

[
p1

p2

]
+ σ̃T(t, x1, x2, y1, y2, u)

[
q1

q2

]
+

∫
R0

γ̃T(t, x1, x2, y1, y2, u, ζ)

[
r1(ζ)
r2(ζ)

]
ν(dζ)

= f(t, x1, y1, x2 − y2, u) + b(t, x1, y1, x2 − y2, u)p1

+ σ(t, x1, y1, x2 − y2, u)q1 + x1q2 +

∫
R0

γ(t, x1, y1, x2 − y2, u, ζ)r1(ζ)ν(dζ)

= H(x1, y1, x2 − y2, u, p1, q1, r1) + x1q2 (5.7)
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where H is the Hamiltonian from the 1-dimensional problem (2.19).
The time-advanced BSDEs defining the adjoint equations for p̃ = (p1, p2)T,

q̃ = (q1, q2)T and r̃ = (r1, r2)T are given by the system

dp̃(t) = −E[∇xHT(t, X̃(t), Ỹ (t), π(t), p̃(t), q̃(t), r̃(t))

+∇yHT(t+ δ, X̃(t+ δ), Ỹ (t+ δ), π(t+ δ), p̃(t+ δ), q̃(t+ δ), r̃(t+ δ))1[0,T ](t+ δ)|Ft]dt

q̃(t)dB(t) +

∫
R
r̃(t, ζ)Ñ(dt, dζ)

p̃(T ) = ∇g̃T(X̃(T )).

If we write the equation for p1 and p2 separately, and combine this with (5.3)
and (5.7), we obtain the following system

dp1(t) = −E[µ1(t)|Ft]dt+ q1(t)dB(t) +

∫
R
r1(t, ζ)Ñ(dt, dζ)

p1(T ) = g′(X1(T )),

(5.8)

dp2(t) = −E[µ2(t)|Ft]dt+ q2(t)dB(t) +

∫
R
r2(t, ζ)Ñ(dt, dζ)

p2(T ) = 0.

(5.9)

where,

µ1(t) = q2(t) +
∂

∂x
H(t,X(t), π(t), p1(t), q1(t), r1(t)) (5.10)

+
∂

∂y
H(t+ δ,X(t+ δ), π(t+ δ), p1(t+ δ), q1(t+ δ), r1(t+ δ))1[0,T ](t+ δ)

and

µ2(t) =
∂

∂z
H(t,X(t), π(t), p1(t), q1(t), r1(t)) (5.11)

− ∂

∂z
H(t+ δ,X(t+ δ), π(t+ δ), p1(t+ δ), q1(t+ δ), r1(t+ δ))1[0,T ](t+ δ).

This is a 2-dimensional time advanced BSDE (ABSDE). In the 1-dimensional
case, existence and uniqueness results for the solution of such ABSDEs can
be found in Øksendal, Sulem and Zhang [13], Theorems 5.2-5.4. However, the
extension to the 2-dimensional case is trivial, so the existence and uniqueness
theorems apply to equations (5.8) and (5.9) as well.

Now, we can state a sufficient maximum principle for this problem based on
the (generalized) results from Øksendal et al. [13]. The following theorem holds
under Assumption 1 of Section 2.

Theorem 5.1. (A sufficient maximum principle via 2D discrete delay)
Let π̂ ∈ AG with corresponding solution X̂1, X̂2 to the 2-D discrete delay

SDE (5.5), with corresponding Ŷ1, Ŷ2. Suppose also that there exists corre-
sponding adjoint processes p̂1, p̂2, q̂1, q̂, r̂1 and r̂2(i.e. solutions to the system
(5.8)-(5.9).) Suppose also that the following conditions hold:
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i) (x1, x2) 7→ g(x1) and

(x1, x2, y1, y2, u) 7→ H(t, x1, y1, x2 − y2, u, p̂1(t), q̂1(t), r̂1(t)) + x1q̂2(t)

are concave for all t a.s.

ii)

max
v∈U

E[H(t, X̂(t), v, p̂1(t), q̂1(t), r̂1(t, ·))|Gt]

= E[H(t, X̂(t), π̂(t), p̂1(t), q̂1(t), r̂1(t, ·)))|Gt]

for all t ∈ [0, T ] a.s., where U is the set of admissible control values.

Then π̂ is an optimal control.

Proof. This follows from the expressions above and a generalization of the results
in Øksendal et al. [13] using the stopping time technique from the proof of
Theorem 3.1 (from Øksendal and Sulem [12]). Also, we have expressed the 2D-
Hamiltonian H in terms of our 1D Hamiltonian H as in (5.7)

Similarly, we can find a necessary maximum principle using the (general-
ized) results from Øksendal et al. [13]. In the following theorem, we impose
Assumption 1 of Section 2 and Assumption 3 of Section 4.

Theorem 5.2. (Necessary maximum principle via 2D discrete delay)
Let π̂ ∈ AG with corresponding solution X̂1, X̂2 to the 2D discrete delay SDE (5.5),
with corresponding Ŷ1, Ŷ2. Suppose also that there exists corresponding adjoint
processes p̂1, p̂2, q̂1, q̂, r̂1 and r̂2 (i.e. solutions to the system (5.8)-(5.9).) Then,
the following statements are equivalent,

(i) For all bounded β ∈ AG,

d

ds
J(π̂ + sβ)|s=0 = 0. (5.12)

(ii) For all t ∈ [0, T ],

E[
∂

∂u
H(t, X̂(t), π̂(t), p̂1(t), q̂1(t), r̂1(t, ·))|Gt] = 0 a.s. (5.13)

Proof. This follows from the expressions above and Øksendal et al. [13].

6 Solution of the noisy memory BSDE
Now we have two pairs of necessary and sufficient maximum principles for the
noisy memory problem. One pair of maximum principles, Theorem 3.1 and
Theorem 4.6, was proved directly using Malliavin calculus. The other pair,
Theorem 5.1 and Theorem 5.2, was proved indirectly by rewriting the problem
as a 2D optimal control problem with discrete delay and jumps, and then mod-
ifying previously known results of Øksendal et al. [13] to derive the maximum
principles.
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We have seen that essentially, the only difference in the 1D and the 2D max-
imum principles, is that in the 1D maximum principle, the 1D Hamiltonian H is
evaluated at the 1D adjoint processes p, q, r and in the 2D maximum principle,
the 1D Hamiltonian H is evaluated at the 2D adjoint processes p1, q1, r1. This
means that we do not actually need to know the processes p2, q2 and r2, and
thus the 2D approach seems unnecessarily complicated.

However, in this section, we establish a connection between the adjoint pro-
cesses in the Malliavin calculus approach to the corresponding ones in the dis-
crete delay approach. Recall that we say that processes p, q, r is a solution to
the noisy memory BSDE if r, q are predictable, the estimate (2.23) holds and
p, q, r satisfy (2.20)-(2.21). Similarily, we say that pi, q1, ri, i = 1, 2 is a solution
to the 2D time advanced BSDE if qi, ri, i = 1, 2 are predictable, the estimate

E
[

sup
t∈[0,T ]

|pi(t)|2 +

∫ T

0

{
|qi(t)|2 +

∫
R
|ri(t, ζ)|2ν(dζ)

}
dt
]
<∞ (6.1)

holds for i = 1, 2, and qi, ri, i = 1, 2 satisfy (5.8) -(5.9).

Theorem 6.1. (Solution of the noisy memory BSDE)
Suppose that (pi, qi, ri); i = 1, 2 is the solution of the 2-dimensional ABSDE
(5.8) -(5.9). Define p(t) := p1(t), q(t) := q1(t), r(t, ζ) := r1(t, ζ), and suppose
that E[

∫ T
0

∂H
∂z (t)2dt

]
<∞. Then (p, q, r) solves the noisy memory BSDE (2.20)-

(2.21). Moreover,

q2(t) =

∫ t+δ

t

E
[
Dt(

∂H
∂z

(s))|Ft
]
1[0,T ](s)ds. (6.2)

Proof. For simplicity, we may assume r = r1 = r2 = 0, since the jump terms do
not play an essential role here. First note that in general we have that if (p2, q2)
solves a BSDE of the form

dp2(t) = −θ(t, p2(t), q2(t))dt+ q2(t)dB(t); p2(T ) = F (6.3)

then

q2(t) = Dtp2(t) (6.4)

See for example Øksendal and Røse [11] for a proof in this general setting. For
an earlier proof valid under more restrictive conditions see e.g. Proposition 5.3
in El Karoui, Peng and Quenez [7]

Also, note that the solution p2(t) of (5.9) can be written as

p2(t) = E[
∫ T

t

E[µ2(s)|Fs]ds|Ft]

=

∫ T

t

E[µ2(s)|Ft]ds

=

∫ T

t

E[∂H
∂z

(s,X(s), π(s), p1(s), q1(s), r1(s)) (6.5)

− ∂H
∂z

(s+ δ,X(s+ δ), π(s+ δ), p1(s+ δ), q1(s+ δ), r1(s+ δ))1[0,T−δ](s)|Ft]ds

=

∫ t+δ

t

E[∂H
∂z

(s,X(s), π(s), p1(s), q1(s), r1(s))|Ft]1[0,T ](s)ds.
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Combining this with (6.4) and using proposition 3.12 in [6], we get (6.2). Also

q2(t) = Dt

∫ t+δ

t

E[
∂H
∂z

(s,X(s), π(s), p1(s), q1(s), r1(s))|Ft]1[0,T ](s)ds

=

∫ t+δ

t

E[Dt
∂H
∂z

(s,X(s), π(s), p1(s), q1(s), r1(s))|Ft]1[0,T ](s)ds

Now, by replacing q2 with∫ t+δ

t

E[Dt
∂H
∂z

(s,X(s), π(s), p1(s), q1(s), r1(s))|Ft]1[0,T ](s)ds,

in the definition (5.10) of µ1, we see that the solutions p1, q1, r1 of (5.8) solve
the 1D adjoint equation (2.20).

We also have a converse of this theorem:

Theorem 6.2. Suppose that p, q, r solves the ‘noisy memory’ BSDE (2.20)-
(2.21), and that E

[ ∫ T
0

∂H
∂z (t)2dt

]
<∞. Define p1 := p, q1 := q, r1 := r and

p2(t) :=

∫ t+δ

t

E
[∂H
∂z

(s)
∣∣∣Ft]1[0,T−δ](s)ds (6.6)

q2(t) :=

∫ t+δ

t

E
[
Dt
∂H
∂z

(s)
∣∣∣Ft]1[0,T−δ](s)ds (6.7)

r2 := 0. (6.8)

Then (pi, qi, ri), i = 1, 2 solves the 2-dimensional ABSDE (5.8) - (5.9)

Proof. Clearly, the first part (5.8) of the 2D ABSDE is satisfied. It remains to
show that

p2(t) =

∫ T

t

E
[∂H
∂z

(s)− ∂H
∂z

(s+ δ)1[0,T−δ](s)
∣∣Fs]ds− ∫ T

t

q2(s)dB(s). (6.9)

From the relation (2.16), it follows that∫ T

0

E
[ ∫ T

0

E
[
Ds

∂H
∂z

(r)
∣∣Fs]2ds]1/2dr = ∫ T

0

(
E
[∂H
∂z

(r)2 − E
[∂H
∂z

(r)
]2])1/2

dt <∞.

Then, we can use the stochastic Fubini theorem (see e.g. [16]), and the following
straightforward consequence of the Clark-Ocone Formula

∂H
∂z

(r) = E
[∂H
∂z

(r)
∣∣Ft]+

∫ r

t

E
[
Ds

∂H
∂z

(r)
∣∣Fs]dB(s)
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to find that∫ T

t

q2(s)dB(s) =

∫ T

t

∫ T

t

E
[
Ds

∂H
∂z

(r)
∣∣Fs]1[s,s+δ](r)drdB(s)

=

∫ T

t

∫ T

t

E
[
Ds

∂H
∂z

(r)
∣∣Fs]1[r−δ,r](s)dB(r)ds

=

∫ (t+δ)∧T

t

∫ r

t

E
[
Ds

∂H
∂z

(r)
∣∣Fs]dB(s)dr +

∫ T

(t+δ)∧T

∫ r

r−δ
E
[
Ds

∂H
∂z

(r)
∣∣Fs]dB(s)dr

=

∫ (t+δ)∧T

t

∂H
∂z

(r)− E
[∂H
∂z

(r)
∣∣Ft]dr + ∫ T

(t+δ)∧T

∂H
∂z

(r)− E
[∂H
∂z

(r)
∣∣Fr−δ]dr

=

∫ T

t

∂H
∂z

(r)dr −
∫ T

(t+δ)∧T
E
[∂H
∂z

(r)
∣∣Fr−δ]dr − ∫ (t+δ)∧T

t

E
[∂H
∂z

(r)
∣∣Ft]dr

=

∫ T

t

E
[∂H
∂z

(s)− ∂H
∂z

(s+ δ)1[0,T−δ](s)
∣∣∣Fs]ds− p2(t),

and hence (6.9) holds.

We notice that what this theorem says, is that the 1D and the 2D maxi-
mum principles are essentially the same. However, we have two sets of adjoint
equations, which can be an advantage in applications, as in general it can be
extremely difficult to find solutions of both the 1D and the 2D time-advanced
BSDE.

Also note that as a consequence of the theorem, a (unique) solution of the
noisy memory BSDE exists whenever there exists a (unique) solution to the
ABSDE (5.8) and (5.9). As mentioned, existence criteria for this ABSDE can
be found in Øksendal, Sulem and Zhang [13].

7 Application of the noisy memory maximum prin-
ciple

As an example of the noisy memory optimal control problem, we consider two
optimal consumption (optimal harvest) problem,

where the SDE for the state process X(t) is given by

dX(t) = (a0Z(t) + a1X(t)− π(t))dt+ σ(t,X(t), Y (t), Z(t), π(t))dB(t)

+

∫
R
γ(t,X(t), Y (t), Z(t), π(t), ζ)Ñ(dt, dζ); t ∈ [0, T ], (7.1)

X(t) = ξ(t); t ∈ [−δ, 0].

where ao, a1 ∈ R, and σ, γ are given functions satisfying the conditions of Sec-
tion 3. We say that π ∈ AG if π > 0, dP × dt a.s.

Consider a performance functional J(π) of π ∈ AG given by

J(π) := E
[ ∫ T

0

f(t, π(t))dt+G(T )X(T )
]
, (7.2)

where we assume that f : Ω×[0, T ]×V → R is concave with respect to π for each
t and ω. These assumptions are reasonable for a standard optimal consumption
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problem. We assume that G(T ) is a lognormal random variable (representing a
stochastic terminal payoff price) of the form

G(T ) = exp(

∫ T

0

ψ(t)dB(t)) (7.3)

for some given deterministic function ψ ∈ L2([0, T ]). We solve this noisy mem-
ory problem using the Malliavin stochastic maximum principle in Theorem 3.1.

In this case, the 1D Hamiltonian is

H(t, x, y, z, π, p, q, r(·))

= f(t, π) + (a0z + a1x− π)p+ σ(t, x, y, z, u)q +

∫
R
γ(t, x, y, z, ζ)r(ζ)ν(dζ),

The BSDE for the adjoint processes p, q, r is given by equation (2.20), with

µ(t) = a1p(t) +
∂σ

∂x
(t)q(t) +

∫
R

∂γ

∂x
(t, ζ)r(t, ζ)ν(ζ)

+
(∂σ
∂y

(t+ δ)q(t+ δ) +

∫
R

∂γ

∂y
(t+ δ, ζ)r(t+ δ, ζ)ν(ζ)

)
1[0,T−δ](t)

+

∫ t+δ

t

E
[
Dt
(
a0p(t) +

∂σ

∂z
(s)q(s) +

∫
R

∂γ

∂z
(s, ζ)r(s, ζ)ν(ζ)

)∣∣∣Ft]1[0,T ](s)ds.

Example 7.1 (1D method). We now assume that

σ(t,X(t), Y (t), Z(t), π(t)) = σ0(t)X(t),

where σ0(t) is a deterministic function and γ(t, ζ) = 0 for all t, ζ. We also
assume that N = 0, so that {Ft}t∈[0,T ] is the natural filtration generated by the
Brownian motion alone. Then the Hamiltonian is reduced to

H(t, x, y, z, π, p, q, r(·)) = f(t, π) + (a0z + a1x− π)p+ σ0(t)xq,

and the adjoint equation takes the form:dp(t) = −{a1p(t) + σ0(t)q(t) + a0

∫ t+δ
t

E
[
Dt
(
p(s)

)
|Ft
]
1[0,T ](s)ds}dt+ q(t)dB(t)

p(T ) = G(T ).

(7.4)

Let us try a solution p(t) of the form

p(t) = p(0) exp
( ∫ t

0

β(s)dB(s) +

∫ t

0

{α(s)− 1

2
β2(s)}ds

)
(7.5)

= p(0)M(t) exp
( ∫ t

0

α(s)ds
)

(7.6)

where α(s) and β(s) are deterministic functions and M(t) is the martingale

M(t) := exp
( ∫ t

0

β(s)dB(s)− 1

2

∫ t

0

β2(s)}ds
)
. (7.7)
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Then by the chain rule for Malliavin derivatives we have

Dtp(s) = p(s)β(t)1[t≤s]. (7.8)

Substituted into (7.4) this gives{
dp(t) = {−A(t)p(t) + σ0(t)q(t)}dt+ q(t)dB(t)

p(T ) = G(T )
(7.9)

where

A(t) = a1 + a0β(t)

∫ (t+δ)∧T

t

exp(

∫ s

t

α(r)dr)ds. (7.10)

The solution of the linear BSDE (7.9) is (see e.g. Theorem 1.7 in [12])

p(t) =
1

Γ(t)
E[G(T )Γ(T )|Ft], (7.11)

where {
dΓ(t) = Γ(t)[A(t)dt+ σ0(t)dB(t)]

Γ(0) = 1,
(7.12)

i.e.

p(t) = C exp
( ∫ t

0

ψ(s)dB(s) +

∫ t

0

{1

2
σ0(s)2 − 1

2
(σ0(s) + ψ(s))2 −A(s)}ds

)
(7.13)

where

C = exp
( ∫ T

0

{A(s)− 1

2
σ0(s)

2 +
1

2
(σ0(s) + ψ(s))2}ds

)
. (7.14)

Comparing (7.5) and (7.13)-(7.14) we see that if we choose
β(t) = ψ(t)

α(t) = 1
2σ0(t)2 − 1

2 (σ0(t) + ψ(s))2 −A(t)

p(0) = C

(7.15)

then p(t) given by (7.5), with the corresponding q(t) = Dtp(t) = β(t)p(t) solve
the BSDE (7.4). The first order (necessary) condition for the maximisation of
the Hamiltonian is

E
[∂f
∂π

(t, π(t))|Gt
]

= E
[
p(t)|Gt

]
. (7.16)

Note that if G = F, then this reduces to

∂f

∂π
(t, π(t)) = p(t). (7.17)

since f , π and p are adapted to F.

By the noisy memory necessary maximum principle, Theorem 4.6, if π∗ is
an optimal control, then π∗ solves (7.16). Since f is concave, this is also a
sufficient condition for optimality of π∗ by Theorem 3.1.
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Notice also the contribution of the noisy memory term to the optimal solu-
tion: If we solve the same problem in Example 7.1 without the memory term,
i.e. where the SDE for the state process X(t) is given by

dX(t) = (a1X(t)− π(t))dt+ σ0(t)X(t))dB(t) t ∈ [0, T ],

X(t) = ξ(t); t ∈ [−δ, 0].
(7.18)

(where a1 ∈ R, and σ as above), the stochastic maximum principle implies that
the first order condition for maximisation of the Hamiltonian is still given by

∂f

∂π
(t, π(t)) = p(t). (7.19)

However, in this case, the solution p(t) of the adjoint BSDE given by the simpler
expression

p(t) = exp(

∫ t

0

ψ(s)dB(s) +
1

2

∫ T

t

ψ2(s)ds+ a1(T − t)), (7.20)

which clearly is a different solution (actually, a special case) than in the example.
In Example 7.1, we considered a class of optimization problems where the

dependence on the noisy memory gives us a different optimal solutuion than the
corresponding equation without the noisy memory term (with the exception of
the “trivial“ case with ψ = 0).

Now, we give instead an example of a large class of problems where the
dependence on the noisy memory term does not affect the closed form of the
optimal solution.

Example 7.2 (2D method). Consider the optimization problem given in the
beginning of this section, this time with the only restriction being that G(T ) = 1.

If we try to solve this stochastic control problem using the maximum principle
from Section 5, we find that the 2D adjoint equations are given by

dp1(t) = −E[µ1(t)|Ft]dt+ q1(t)dB(t) +

∫
R0

r1(t, ζ)Ñ(dt, dζ)

dp2(t) = −E[µ2(t)|Ft]dt+ q2(t)dB(t) +

∫
R0

r2(t, ζ)Ñ(dt, dζ),

p1(T ) = 1,

p2(T ) = 0,

(7.21)

where

µ1(t) = a1p1(t) +
∂σ

∂x
(t)q1(t) +

∫
R

∂γ

∂x
(t, ζ)r1(t, ζ)ν(ζ) + q2(t)

+
(∂σ
∂y

(t+ δ)q1(t+ δ) +

∫
R

∂γ

∂y
(t+ δ, ζ)r1(t+ δ, ζ)ν(ζ)

)
1[0,T−δ](t),

µ2(t) = a0p1(t) +
∂σ

∂z
(t)q1(t) +

∫
R

∂γ

∂z
r1(t, ζ)ν(dζ)

− 1[0,T−δ](t)
(
a0p1(t+ δ) +

∂σ

∂z
(t+ δ))q1(t+ δ) +

∫
R

∂γ

∂z
(t+ δ, ζ)r1(t+ δ, ζ)

)
.
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One can easily verify that the processes q1 = q2 = 0, r1 = r2 = 0 and

p1(t) = ea1(T−t), p2(t) := a0

∫ T

t

p1(s)− 1[0,T−δ](s)ds (7.22)

solve the equation (7.21). Since p1 = p, inserting the 2D adjoint processes
into the 2D necessary maximum principle also yields the first order condition
(7.16). A generalization of this problem, including a comparison of the 1D and
2D approaches, is given as an example in Section 8.

8 A generalized noisy memory control problem
The Malliavin approach can be extended to situations where the 2D approach
is not applicable, e.g. if the noisy memory process Z(t) from (2.1) -(2.4) is
replaced by the generalized noisy memory process

Z ′(t) :=

∫ t

t−δ
φ(t, s)X(s)dB(s),

where φ : Ω × [0, T ] × [−δ, T ] → R, is bounded, jointly measurable and with
φ(·, r, ·) adapted to {Ft}t∈[r−δ,r] for each fixed r ∈ [0, T ]. Such a state equa-
tion can not in general be reduced to a 2D discrete delay equation, due to the
dependence on t in φ.

If we also replace µ in the adjoint equation (2.20)-(2.21) by

µ′(t) =
∂H
∂x

(t) +
∂H
∂y

(t+ δ)1[0,T−δ](t)

+

∫ t+δ

t

E
[
Dt

(∂H
∂z

(s)
)
|Ft
]
φ(t, s)1[0,T ](s)ds,

, (2.21’)

(and otherwise leave the set-up exactly as in Section 2), it is fairly straight-
forward to show that Theorems 3.1, 4.6, 4.7 are valid also for this generalized
Noisy memory problem.

The proofs can be carried out by mimicking our proofs from Sections 3-4.
In addition to replacing Z by Z ′ in all of Section 2, the only difference from the
proofs in Sections 3-4 is that we need to

• replace K by K ′, and∫ t

t−δ
K(s)dB(s) by

∫ t

t−δ
K ′(s)φ(t, s)dB(s),

with K ′ satisfying

dK′(t) = (K′(t),K′(t− δ),
∫ t

t−δ
K′(r)φ(t, r)dB(r), η(t)) ·

[
∇b(t,X(t), π(t)) dt

+∇σ(t,X(t), π(t)) dB(t) +

∫
R0

∇γ(t,X(t), π(t), ζ)Ñ(dt, dζ)
]T

(4.1’)

K′(t) = 0, t ∈ [−δ, 0],

throughout section 4
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• replace terms of the form

E[Dt
∂H
∂z

(s)|Ft] by E[Dt
∂H
∂z

(s)|Ft]φ(t, s)

in (3.15)-(3.16), (3.18),(4.30) and (4.31).

Example 8.1. Reconsider, the optimal consumption problem from Example 7.2,
this time depending on the generalized noisy memory process Z ′(t):

dX(t) = (Z ′(t) + a1X(t)− π(t))dt+ σ(t,X(t), Y (t), Z ′(t), π(t))dB(t)

+

∫
R
γ(t,X(t), Y (t), Z ′(t), π(t), ζ)Ñ(dt, dζ); t ∈ [0, T ], (8.1)

X(t) = ξ(t); t ∈ [−δ, 0].

with

Z ′(t) =

∫ t

t−δ
φ(t, s)X(s)dB(s).

Here X(t) is a cash flow and π is the consumption rate. We let φ be determin-
istic. It is reasonable to choose φ(t, ·) as a function gradually increasing from
0 at time t− δ to some a0 ∈ R at time t, however this is not necessary for the
analysis. We leave the performance functional and the set of admissible controls
as in Section 7. Then, the Hamiltonian is

H(t, x, y, z, u, p, q, r(·))

= f(t, u) + (z + a1x− u)p+ σ(t, x, y, z, u)q +

∫
R
γ(t, x, y, z, ζ)r(ζ)ν(dζ),

and the adjoint equation has a deterministic solution satisfying

dp(t) = −{a1p(t) +

∫ t+δ

t

E
[
Dt

(
p(s)

)
|Ft
]
φ(t, s)1[0,T ](s)ds}dt,

p(T ) = 1,

i.e. p(t) = ea1(T−t), q = 0, r = 0, as in Example 7.2. The first order condition
for maximality of π∗ is

E
[∂f
∂u

(t, π∗(t))|Gt
]

= p(t). (8.2)

We can verify using the sufficient maximum principle (Theorem 3.1) that (8.2)
is indeed a sufficient condition for optimality of π∗. We notice in particular that
the dependence on the noisy memory process Z ′(t) does not affect our choice of
optimal strategy.
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