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Abstract 

 

This paper considers sampling in proportion to size from a partly unknown 

distribution. The applied context is the exploration for undiscovered resources, like 

oil accumulations in different deposits, where the most promising deposits are likely 

to be drilled first, based on some geologic size indicators (“creaming”). A Log-normal 

size model with exponentially decaying creaming factor turns out to have nice 

analytical features in this context, and fits well available data, as demonstrated in 

Lillestøl and Sinding-Larsen (2017). This paper is a Bayesian follow-up, which 

provides posterior parameter densities and predictive densities of future 

discoveries, in the case of uninformative prior distributions. The theory is applied to 

the prediction of remaining petroleum accumulations to be found on the mature 

part of the Norwegian Continental Shelf.  

Keywords: Log-normal distribution, sampling proportional to size, resource 

prediction  

                                                           
1 Department of Business and Management Science, Norwegian School of Economics, Helleveien 30, N-5045 
Bergen, Norway; e-mail: jostein.lillestol@nhh.no 
2 Department of Geoscience and Petroleum, Norwegian University of Science and Technology, Sem Sælands 
veg 1, N-7491 Trondheim; e-mail: richard.sinding-larsen@ntnu.no 



2 
 

1. Introduction: Context and model 
 

In the search for a valuable resource in a target area, the sizes of consecutive findings often 

have a declining pattern, consistent with a behavior where the most promising areas are 

explored first, so-called creaming.  Among others, this may be so for the search for petroleum 

resources, as illustrated in Figure 1, showing the consecutive sizes, measured in million 

Standard cubic meter oil equivalents (MSm3o.e), of all N=182 development projects on the 

mature part of the Norwegian Continental Shelf (M-NCS), since the first drilling in 1966 and 

up to 2014.3 An issue here is the likelihood of further major discoveries beyond the last one 

recorded.  

 

Figure 1.  Consecutive sizes of 182 development projects on M-NCS. 

                                                           
3 By the mature part of the Norwegian Continental Shelf is meant The North Sea and The Norwegian 
Sea, excluding Jan Mayen and other frontier areas. The source for this data is The Norwegian 
Petroleum Directorate (NPD), and represents updated values from the petroleum resource account as 
of 31.12. 2013, prepared as input to the Revised National Budget (RNB 2014). 
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Size distributions are often considered to be lognormal, preferably supported by the data, but 

sometimes just because it is analytically convenient. In the current context, the underlying 

size distribution may be different from the sampled one, since the sampling obviously is not 

independent identically distributed (i.i.d.) sampling.  The conventional way of analyzing this is 

to assume sampling from a finite population, where the sampling is performed with 

probabilities proportional to size, and where the population is depleted over time, see 

Kaufman et. al.  (1975). This requires an assumption of the population size N, which is hard to 

estimate with any precision, and may strongly affect the conclusions. An alternative way is to 

assume independent sampling, consistent with an infinite population, but with declining size 

expectations.  This provides a basis for easier, but still realistic, probability calculations.  

Lillestøl & Sinding-Larsen (2017) suggest a model for doing this, which is supported by the 

data.  The model is consistent with lognormal population and lognormal sampling at any 

consecutive stage in the sampling process. The model is as follows: 

  

Assume that size observations St are indexed consecutively by t=1, 2, 3, ... , named time. They 

appear as coming from a distribution  

lognormal (𝜇(𝑡), 𝜎) where 𝜇(𝑡) = 𝜇 + 𝑘(𝑡) ∙ 𝜎2 
 

 and 𝑘(𝑡) tending to zero as t tends to infinity. A convenient choice is 𝑘(𝑡) = 𝛼 ∙ 𝑒−𝛽𝑡, thus 
giving a model with four parameters (𝜇, 𝜎, 𝛼, 𝛽) to be estimated from the data. 
 

The model is consistent with interpreting 𝜇 as the expectation of log-size of the parent 

distribution and sampling proportional to 𝑥𝑘(𝑡) at time t. A decaying creaming function 𝑘(𝑡) 

then reflects that the creaming opportunity gradually diminishes. When t tends to infinity, we 

get at the limit i.i.d. observations, as if we are sampling from the parent population itself 

without creaming. Now we cannot expect to make major discoveries, since the parent 

distribution has a very thin right tail and the opportunity to cream is gone. A key model feature 

is the constant 𝜎, and how it is linked to both variance and expectation of log-sizes.  This is not 

as weird as seen by first sight, since the formulas for expectation and standard deviation of 

size itself, having a lognormal(𝜇, 𝜎) distribution, are 

𝐸(𝑆𝑡) = 𝑒𝜇+𝜎2/2   and  𝜎(𝑆𝑡) = 𝐸𝑆𝑡
√𝑒𝜎2

− 1 

The coefficient of variation is   
𝜎(𝑆𝑡)

𝐸(𝑆𝑡)
= √𝑒𝜎2

− 1  , and the skewness is (𝑒𝜎2
+ 2)√𝑒𝜎2

− 1 , 

both independent of 𝜇. Moreover, we note that 

𝑀𝑜𝑑𝑒(𝑆𝑡) = 𝑒𝜇−𝜎2
  <  𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑡) = 𝑒𝜇   <   𝑀𝑒𝑎𝑛(𝑆𝑡) = 𝑒𝜇+𝜎2/2 

For our model, we have to replace 𝜇 by 𝜇(𝑡) = 𝜇 + 𝑘(𝑡) ∙ 𝜎2 , which amounts to adding 

 𝑘(𝑡) ∙ 𝜎2 in each of the exponents, and then the dependence on  𝜎2 will appear in the median 

as well. 
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The theoretical basis for the model may be challenged, but the model may be useful anyway, 

since it is both simple and may be flexible enough to pick up the essential features of the data. 

Further details on the context and the creaming model is given in Lillestøl and Sinding-Larsen 

(2017), and are not repeated here. Our approach may be seen as an alternative to the two-

stage process model attributed to Kaufman, where the depletion of resources is represented 

by sapling proportional to size from a finite population, coming from a log-normal 

superpopulation. Important references to this approach are Barouch and Kaufman (1967), 

Kaufman et. al. (1975), Andreatta and Kaufman (1986), Lee and Wang (1986), Sinding-Larsen 

and Xu (2005), Kaufman et.al. (2016). The creaming method and the basic lognormal property 

was first demonstrated by Meisner and Demirmen (1981). That paper takes a Bayesian 

approach different from ours. An annotated bibliography of methodology for assessment of 

undiscovered petroleum resources are given by Charpentier et.al (1995). 

 

2. Bayesian estimation 
 

We will do Bayesian estimation of this model for the M-NCS data above, using a common 

Markov chain Monte Carlo (MCMC) method with non-informative priors. Common algorithms 

will provide samples from the joint posterior distribution of (𝜇, 𝜎, 𝛼, 𝛽): (𝜇𝑖, 𝜎𝑖, 𝛼𝑖 , 𝛽𝑖) for  

i=1, 2, 3, …, n. This will be the basis for the construction of corresponding sequences for 

functions of these parameters, among them the creaming function 𝑘(𝑡), the expectation of 

log-size 𝜇(𝑡), and the expectation of size 𝐸(𝑆𝑡), according to the formulas given in Section 1. 

From these sequences, we can estimate their posterior distributions (by smoothed 

histograms), estimate their posterior expectations (by averaging) and estimate other posterior 

characteristics, say mode, median or quantiles accordingly. These four sequences will also be 

the basis for the simulation of predictions beyond t=182, from which predictive distributions 

and associated probabilities and expectations can be estimated.       

We use the MCMC algorithm implemented in OpenBUGS, made accessible directly from R (ref. 

R Core Team, 2013) by the program R2OpenBUGS (ref. Sturtz et. al., 2005; Yan & Ptates, 2013).  

BUGS models are expressed in terms of the precision 𝜏 = 1/ 𝜎2, and the expected log-sizes 

are then written as 

𝜇(𝑡) = 𝜇 + 𝛼 ∙ 𝑒−𝛽𝑡 ∙
1

𝜏
 . 

The four parameters  (𝜇, 𝜏, 𝛼 , 𝛽) will be assigned independent priors according to no specific 

prior knowledge (ignorance). BUGS requires proper distributions to represent non-

informative cases, which is obtained by priors with large variance, i.e. small precision.   As 

prior for 𝜇 is chosen a normal distribution with low precision, and for each of the non-negative 

parameters (𝜏, 𝛼 , 𝛽) is taken a gamma distribution with expectation 1 and variance 1000. 

Exhibit 1 is then our BUGS model, with N being the number of observations (N=182). Note that 
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we have temporarily rescaled 𝛽 by a factor of 100, in order to have the parameters of the 

same order of magnitude at the computing stage.  

 

Exhibit 1. BUGS model 

The BUGS-algorithm imitates sampling from the joint posterior distribution of  (𝜇, 𝜏, 𝛼 , 𝛽), 

using Markov chain Monte Carlo methods. This is done iteratively and requires a “burn-in” 

period, in order to secure stationarity.  It turns out that the situation is rather challenging and 

requires care.  This was expected from the structure of the model itself, and clearly exposed 

by a test run of four chains running in parallel, each with 50 000 iterations, where the first 25 

000 iterations were discarded.  In practical terms, it is difficult to discriminate between a 

favorable population with small opportunity for creaming and a less favorable population with 

larger opportunity for creaming.  More on this later. 

In Exhibit 2 follows the BUGS call from R and the summary output from R2OpenBUGS for a 

representative run of 20 000 iterations, from which the 10 000 first were discarded, leaving 

10 000 simulated realizations (𝜇𝑖, 𝜎𝑖, 𝛼𝑖, 𝛽𝑖), i=1, 2, …, 10 000, from the joint posterior 

distribution. This is sufficient for our purpose. 

 

 

Exhibit 2. Output from run R2OpenBUGS 
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The output in Exhibit 2 provides the estimated mean, standard deviation and five useful 

quantiles of the posterior distribution for each of the four specified parameters, as well as 

some additional diagnostic information. Hereafter, beta is rescaled by 0.01 to its real value, so 

that its mean value is 0.01x0.43=0.0043. 4 

The posterior densities of  (𝜇, 𝜎, 𝛼, 𝛽) obtained by smoothing their histograms for the 10 000 

simulations are displayed in Figure 2.  

 
Figure 2. Posterior densities of parameters (𝜇, 𝜎, 𝛼, 𝛽) 

 

The mode of these densities are respectively -0.58, 1.60, 1.73 and 0.0026.  The posterior 

distribution of sigma seems to be nearly symmetric, and is the most stable parameter in 

repeated computations. The posterior distribution of mu and alpha seem to be moderately 

skew, with the longest tail to the left and to the right respectively.  The tail of these 

distributions seems to be mirror images of each other, due to statistical dependence between 

mu and alpha (see later Figure 3), and have humps that indicate polymodality. They both vary 

                                                           
4 A prior version of this paper contained a numerical error. In fact, a simulated beta-vector was mismatched, 
i.e. belonged to a different run. This affected some of the insight and conclusions. The necessity to handle a fat-
tail problem is now removed, giving similar final predictions to the ones reported earlier.      
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a lot in repeated computations, which seems disturbing for the purpose of individual 

parameter estimation. The posterior distribution of beta is also skew with a long upper tail.  

This parameter governs the rate of decay, and its variability will be important for predictions. 

It is therefore unfortunate, that this parameter also is very sensitive in the estimation process. 

However, for the prediction of future discovery sizes, the situation is not that bad, since 

posterior correlations between the parameters tend to balance individual estimation errors 

in the log-expectation formula. 

In Figure 3 follows six bivariate scatterplots for a sample of 200 observations from the joint 

posterior distribution. We see that alpha correlates negative with mu (-0.95), beta (-0.70) and 

sigma (-0.28), and that beta correlates positive with mu (0.78), and the correlations between 

sigma and mu (0.01), and between sigma and beta (0.04) are minor. The correlations (in 

parenthesis) are computed from all 10 000 observations, not just the 200 in the graphs. 

 

Figure 3. Bivariate scatterplots for a sample of 200 observations from the joint posterior 

distribution 

Looking at the expectation formula, we see that mu and alpha occur linearly, and a deviation 

from expectation for one of them, is likely compensated by the other, due to the strong 

negative correlation. For beta we see a more delicate mechanism that involves both mu and 
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alpha. For instance, a too large beta (fast decay) is likely compensated by a larger mu and 

smaller alpha, the latter giving less weight to the exponential decay factor. 

Remarks. The graphs may seemingly indicate near functional relations between 

parameters, and thus offer the opportunity for parameter reduction. However, this will 

destroy the transparency of the model and the opportunity to separate the effects of 

(dis)favorable population and creaming. The displayed correlation can also throw some 

light on the estimation process, the difficulties and their relevance for prediction.  We 

have seen that sigma is very stable with posterior mean about 1.60 in repeated runs, 

while alpha and beta may vary considerably from run to run. However, the variation goes 

in opposite directions, and may provide the same expectation and similar goodness of fit.  

The situation is due to a “flat” likelihood-function in one or more directions. For instance, 

imagine sigma and beta fixed. Then the likelihood is about constant along a linear path in 

(𝜇, 𝛼)- space. In the non-Bayesian maximum likelihood context, it is like walking on a path 

at a mountain rim, in search for global maximum, hard to find. However, when the 

estimation process offers several seemingly different prediction formulas with similar 

good properties it is, from a mathematical-statistical point of view, immaterial which 

representative is chosen.  From a geoscience point of view it will matter, since some (mu, 

sigma) combinations may have geologically impermissible consequences, as will be 

discussed in section 4.  

 

Recall the expressions for mode, median and mean for the size distribution in terms of the 

parameters (𝜇, 𝜎, 𝛼, 𝛽) at any instant t, past or future.  Consider them as functions of t: 

𝑀𝑜𝑑𝑒(𝑆𝑡) = 𝑒𝜇(𝑡)−𝜎2
,  𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑡) = 𝑒𝜇(𝑡),  𝑀𝑒𝑎𝑛(𝑆𝑡) = 𝑒𝜇(𝑡)+𝜎2/2   

with  𝜇(𝑡) = 𝜇 + 𝛼 ∙ 𝑒−𝛽𝑡 ∙ 𝜎2 

For each t, each of these characteristics have their own posterior distribution, which may also 

be established from our simulations, by plugging in the simulated (𝜇𝑖, 𝜎𝑖, 𝛼𝑖 , 𝛽𝑖), i=1, 2, …, 

10 000. For each t, a smoothed histogram version of the distributions may be displayed as 

above. If we want to present the distributions in the time context, we may turn to so-called 

fan-plots (not shown here). We are here satisfied with just the mean characteristic of these 

distributions, which is taken as posterior estimates of the mode-, median- and mean-function 

given above. This is obtained by averaging the 10 000 calculated quantities obtained from 

each use of one of the formulas above.  It should, however, be noted that the arithmetic mean 

characteristic of these distributions are strongly influenced by the extreme values in the tails.  

From the formulas, we see that the ratio between any two of the three measures does not 

depend on t, and depends only on sigma. In fact, starting with the median, we have 

approximately 

Mean=3.68 x Median   Mode= 0.0776 x Median. 
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This means that the three functions only differ in their scale. Figure 4 displays the function 

and the scale for mean (i.e. expected) size and median size. 

Exhibit 3 shows the numerical values of the estimated mode, median and mean at some 

selected instants: At the beginning (t=1), for the development project following the last one 

observed (t=N+1), and then at t=N+10, N+50, N+100 and N+200.  The corresponding estimated 

means (i.e. expectations) of the normal log-size 𝜇(𝑡) are added as last row of the table. Note 

that this is about estimation of a parametric function, and not the characteristics of the 

distribution of new observations at the given instants. They are conceptually different, but 

coincide by theory for the mean and mean-log, but not for the median and the mode (see 

later).   

 

 

Figure 4. Estimated expectation and median function of t (vertical line at t=N=182) 

 

Parameter    t=1 t=N+1 t=N+10 t=N+50 t=N+100 t=N+200 

Mode 3.8 0.28 0.26 0.19 0.14 0.09 

Median 49 3.7 3.4 2.5 1.8 1.2 

Mean 180 13.4 12.4 9.0 6.5 4.3 

Mean-Log 3.85 1.27 1.19 0.85 0.49 - 0.01 

 

Exhibit 3. Posterior estimates of mode, median and mean of the log-normal distribution at 

instants t=1, N+1, N+10, N+50, N+100, N+200.  
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Remark. It may be tempting to do this calculation in reverse order, that is, use the parameter 

estimates of each of the four parameters, obtained by averaging the simulations, and then 

plug this into the expectation formula. However, this approach will depend on the choice 

among different parameterizations, and may turn out very different results.  For instance, 

since (𝑚𝑒𝑎𝑛(𝜎𝑖))2 > 1/ 𝑚𝑒𝑎𝑛(𝜏𝑖), averaging over sigma will give a larger result than 

averaging over tau. The issue may occur in any Bayesian model estimated by posterior 

simulations, the log-normal model with its exponential expectation being a vulnerable case. 

Some ambiguities, like the one above, may be artificially resolved by using the geometric mean 

instead of the arithmetic mean. 5 

A posterior estimate of the creaming function  𝑘(𝑡) = 𝛼 ∙ 𝑒−𝛽𝑡 may be obtained similarly for 

each t, by averaging over the 10 000 simulations. The obtained creaming function is given in 

Figure 5.  

 

Figure 5. Creaming function estimated by posterior means (vertical line at N=182) 

Here the vertical line is the division between the past, for which we have the data ranging 

back to -182, and the future, with horizons h up to 300. Initially (at h=-182) the expected 

creaming factor is about two, i.e.  sampling proportional to square of size,  and then declines 

close to sampling proportional to size  h=0 and down to sampling proportional to square root 

of size at about h=200. It seems that the creaming opportunity and/or ability is meager beyond 

a horizon of 300. For the non-Bayesian analysis of this data in Lillestøl and Sinding-Larsen 

(2017), the horizon H=256 was chosen to give a reasonable match to the whole population in 

the finite population context. Figure 5 indicates that the horizon might be slightly extended. 

However, it is not unreasonable, and is kept here for comparison purposes. The choice of 

                                                           
5 For the non-Bayesian modelling of the problem with parameters fixed, but unknown, and estimated 
by maximum likelihood, we do not meet the same problem. Instead, we have the issue of bias.     
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horizon for prediction and decision purposes will be discussed in some detail in a separate 

section. 

It is of some interest to explore in some more detail the dependencies in the posterior 

solution, in particular how sigma may affect the expectations in the predictive context. 

Moreover, sigma is a determining parameter for the upper tail of the predictive distributions. 

In Figure 6, we exhibit bivariate scatterplots of 200 simulated values at t=N+1=183 for each of 

the creaming factor, log-size expectation and size expectation against its corresponding sigma. 

These are the same runs as those serving as basis for Figure 3 extended past t=N, which also 

represent the basis for the predictive evaluations in section 3. 

 

Figure 6. Bivariate scatterplots for posteriors of creaming, log-size expectation and size 

expectation at t=N+1=183 versus sigma for the sample of 200 observations from the joint 

posterior distribution. 

We see that there is apparently slight negative correlation between sigma and the creaming 

factor (-0.21), a favorable compensation feature for the additive term of the expectation 

formula. There is a weak negative correlation between sigma and the log-size expectation (-

0.07) and moderate positive correlation between sigma and the size expectation (0.43). The 

latter is not surprising, since /2 adds to the log-size expectation in the exponent (see formula 

in section 1). However, it may perhaps come as a surprise that the log-size expectation itself 

does not have a stronger dependence on sigma in the posterior predictive context, since  

appear as a multiplicative factor to the creaming function. The explanation to this is the 

outweighing effect of alpha shown in Figure 3.   As increasing sigma also widens the likely 

upper range of discovery sizes, there may be an inherent danger over-prediction here. This 

will be explored further in a later section.   

It is of some interest to compare the Bayesian solution with the non-Bayesian in Lillestøl and 

Sinding-Larsen (2017), based on classic frequentist ideas and maximum likelihood estimates. 

They are given in Exhibit 4. 
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Exhibit 4. Parameter estimates for the non-Bayesian model 

The Bayesian posterior means of these parameters were mean-mu=-1.66, mean-sigma=1.61, 

mean-alpha=2.16, mean-beta=0.0043. We see that these values deviates less than two 

standard errors from the maximum likelihood values. In fact, sigma is very close, beta within 

one standard error, alpha at one standard error and mu at about 1.5 standard error away from 

the values given in Exhibit 4. However, as expected with non-informative priors the modes of 

the posterior distributions are close to the maximum likelihood estimates. 

 We also see that the Bayes-estimates are smaller for mu and higher for alpha than the 

corresponding maximum likelihood estimates. This conforms well to the compensation 

feature mentioned above. The estimated creaming function turned out lower in the non-

Bayesian case, starting at 1.6 at h = -182 and down to 0.6 at h=0. On the other hand, the 

Bayes estimate of mu is less (i.e. more negative).  This means a slightly different emphasis. 

The Bayesian solution see a less promising population, but a stronger opportunity for 

creaming. It is therefore not obvious from this, which one of the two solutions will turn out 

the most optimistic predictions.   

Some end remarks on the model and priors: An alternative parameterization is 

𝜇(𝑡) = 𝜇(1 − 𝛾 ∙ 𝑒−𝛽𝑡 ∙
1

𝜏
 ). 

A meaningful expression requires mu and gamma to have opposite signs. The most likely value 

of mu is negative, and therefore gamma positive. In this case, 𝛾𝑒−𝛽𝑡/𝜏 is the relative raise in 

expected log-size at time t due to creaming, which at the start is 𝛾/𝜏. Relative to the precision, 

the alternative parameters 𝛾 and 𝛼 play the roles of measure of increased log-size 

expectations in relative and absolute terms respectively. This model is identical to our 

previous model by setting 𝛼 = 𝛾 ∙ 𝜇.  If we use the alternative parameterization, and assign 

independent priors on (𝜇, 𝜏, 𝛾 , 𝛽), this will force 𝜇 and  𝛼 to be negatively correlated, unless 

the expectation of 𝛾 is taken to be zero. Thus, non-informative priors in one of the two 

parameterization implies informative dependence between two parameters in the other one.  
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3. Bayesian prediction 
 

From the n=10 000 simulated values of  (𝜇, 𝜎, 𝛼, 𝛽) we may now generate future values 

according to the model at time N+h, starting at N=182, for different horizons h=1, 2, 3,…, H. 

This means that 

log(𝑆𝑁+ℎ) = 𝜇 + 𝛼𝑒−𝛽(182+ℎ) ∙ 𝜎2 +  𝜎 ∙ 𝑧ℎ 

where 𝑧ℎ, ℎ = 1,2, … , 𝐻 are distributed independent standard normal.  We now get 10 000 

simulated predictions of 𝑆𝑁+ℎ by plug-in of  (𝜇𝑖, 𝜎𝑖, 𝛼𝑖, 𝛽𝑖)  and 𝑧ℎ𝑖 for i=1, 2, …, 10 000. In fact, 

we made 10 repeats for each of the 10 000, so that we have 100 000 simulated predictions as 

basis for computing predictive distributions, by smoothing the histograms. In Figure 7 follows 

a plot of the predictive distribution of size at t=N+1, i.e. development project 1 after N=182.  

As expected, the distribution is very peaked at low values, but has a fairly long upper tail. 

 

Figure 7. Predictive density of discovery size at time t=N+1 for N=182. 

The characteristics median and mean for the predictive distributions of size at instants t=N+1, 

N+10, N+50, N+100, N+200 and N+256 are obtained by averaging the 100 000 simulated 

values, and are given in Exhibit 5. We see that the obtained predictive density for t=183 has 

median=3.6 and mean=13.5, which may be taken as point estimates of the corresponding 

distribution median and expectation at t=183.   
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Characteristic    t=N+1 t=N+10 t=N+50 t=N+100 t=N+200 T=N+256 

Median 3.6 3.3 2.4 1.6 1.0 0.7 

Mean 13.5 12.6 9.2 6.6 4.1 3.4 

 

Exhibit 5. Median and Mean of the predictive distribution of Size at instants t=N+1, N+10, 

N+50, N+100, N+200 and N+256.  

As a check of this result, one may refer to Exhibit 3, which gave posterior estimates of the 

median- and mean-function expressed by the four parameters (𝜇, 𝜎, 𝛼, 𝛽). The two exhibits 

show conceptually different quantities. However, the means should be theoretically identical, 

but may differ slightly numerically. The median does not possess this property, and the 

relevant median estimate for the prediction context is the one given here. However, we see 

that the values in Exhibit 3 and Exhibit 5 are close for both the mean and the median.   

The predictive distribution at different horizons may be presented graphically in a so-called 

fan-chart. Here the quantiles (including the median) appear for different horizons in a time 

context (not shown here). Instead we present Figure 8, which provides some insight to how 

the predictive distribution extends the actually observed discoveries beyond t=N=182.  Here 

the curves for mean and median of the predictive distribution of sizes are drawn for t ranging 

up to N+H=182+256=438. 

 

Figure 8. Predictive fit on log-scale: The actual observed sizes (t=1, 2,…, N=182) and the 

curves for mean and median of the predictive distribution of sizes (t=N+h, for h=1,2,…, 256). 

We see that the median curve extends the data nicely, and has a slight concave curvature.6 

The mean curve is seemingly out of bound. However, there may be a reasonable explanation 

for this. The Bayesian approach, with sigma random, opens up for values on both sides of a 

                                                           
6 Note also that the gap between these two posterior predictive curves widens with time. This is not contrary to 
the model itself, which implies a constant ratio between the mean and the median for fixed parameters.   
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fixed value. This will have different effects on the infinite upside than the downside limited 

by zero.  The obtained predictive density is in theory a mixture of log-normal distributions 

and will have heavier tail than any of the single log-normal distributions involved. As a 

mixture, this may be contra-intuitive, but may happen when covariation of the expectation 

and variance is positive. The mean is strongly affected by heavy tails, and it is no surprise 

that it will be inflated as seen.  

The lesson here is that the useful key characteristic in the current context is not the mean 

(i.e. expectation), but the median. In terms of prediction error judged by a loss-function, the 

median is optimal for linear symmetric loss, and the mean optimal for symmetric squared 

loss.  In the current context, it is more reasonable to imagine asymmetric loss. It is more 

unpleasant to over-estimate the resources than under-estimate them. This favors the 

median over the mean. In this respect, the mode will also be a viable alternative.  

An interesting question is whether it is approximately log-normal for some fixed parameter 

set, consistent with the non-Bayesian conception of log-normal size distribution for any t. We 

have performed quantile-quantile plots from the simulated predictions (based on the 

simulated varying parameters) for t=N+1 and some other t’s. They all show points almost in 

straight line, confirming the approximate log-normality with a sigma larger than the point 

estimate in the Bayesian model.  

We will now study in probability terms what is possible to achieve within a given horizon: short 

and intermediate horizons like H=10, 25 and 50, and longer horizons like 100, and in particular 

horizon H=256. The probabilities of at least one development project above given sizes within 

horizons H=10, 25, 50, 100 are displayed in Figure 9. 

 

Figure 9. The probability of at least one above given sizes within horizons H=10, 25, 50, 100. 
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Some actual numbers for some selected size levels, among them that of a giant field (79 

Msm3o.e.) and Johan Sverdrup (373.84 Msm3o.e.), for horizons H=10, 25, 50, 100 and 256 are 

given in Exhibit 6. 

Size level  10 20 50 100 200 Giant Johan 
Sverdrup 

H=10 0.96 0.82 0.44 0.20 0.07 0.24 0.02 

H=25 0.99 0.96 0.66 0.35 0.13 0.45 0.04 

H=50 0.999 0.99 0.84 0.51 0.21 0.63 0.07 

H=100 1.000 0.999 0.92 0.64 0.29 0.76 0.11 

H=256 1.000 1.000 0.96 0.74 0.38 0.84 0.15 

 

Exhibit 6.  Probabilities of at least one discovery over given size levels 10, 20, 50, 100, 200, 

Giant (79) and Johan Sverdrup (373.84)  within horizons H=10, 25, 50, 100, 256.   

These probabilities may be compared with the ones obtained from the non-Bayesian analysis 

in Lillestøl and Sinding-Larsen (2017). There the probabilities of at least one giant field at 

horizons H=10, 25, 50 were 0.22, 0.44 and 0.63, respectively. The probabilities of observing 

another field of size at least that of Johan Sverdrup at horizons H=10, 25, 5, were 0.02, 0.03 

and 0.06. We see that the non-Bayesian probabilities match almost perfectly with the 

corresponding Bayesian ones in Exhibit 6. 

The predictive distribution of maximum discovery size within a given horizon may be obtained 

from our simulations as well.  Figure 10 is a fan-plot, showing how some characteristics of the 

distribution increases with the horizon.  It pictures the 50% curve (the median), the 25% and 

75% curves (the quartiles Q25 and Q75) and the 10% and 90% curves (our Q10 and Q90). We 

see how the quartile range [Q25, Q75] and the range [Q10, Q90] increase with the horizon. 

 

Figure 10. Fan-plot of the maximum discovery size within a given horizon. 
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We see that the median of the distribution increases rapidly for horizons up to around 50.  

Then it fades off gradually, and seems to be limited by size 150.  It is still some increase beyond 

100, but hardly noticeable beyond horizon h=200.  The mean will have a similar curve above 

the median curve, seemingly limited by size 200. These curves are bend down due to the 

decaying expectations in additional discoveries, over which the maximum is taken. Note that 

the distribution of maximum size will have a heavy upper tail, and for those the median is 

more relevant than the mean.  

The predictive density of the magnitude of total aggregated resources within horizon H=256 

is given in Figure 11. This is done by aggregating the simulations of for h=1, 2, …, 256, and then 

smooth the histogram of the resulting 100 000 obtained values. This distribution has 

mean=1665, which may be taken as a point estimate of expected magnitude of total 

aggregated resources.7  Quantile characteristics of the distribution are given in Exhibit 7. The 

10% quantile Q10 and the 90% quantile Q90 are marked by vertical dotted lines in Figure 11. 

Quantile 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 

Total  635 722 843 1091 1460 1980 2699 3302 3966 

 

Exhibit 7. Quantile characteristics of distribution of total aggregated resources within 

horizon H=256 

                                                           
7 Expected total aggregated resources within horizon H may be calculated by the sum of the 

consecutive expectations. As a check, one could plug-in of point estimates in the expectation formula 

and add over the horizon.  As indicated above, this may not give the correct result. 
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Figure 11. Predictive density of total aggregated resources within horizon H=256 

The fan-plot in Figure 12 demonstrates the distribution of total aggregated resources for 

different horizons. It pictures the median curve and the quantile curves (Q10, Q25, Q75, Q90) 

for horizons h ranging up to H=256. We see how the quartile range [Q25, Q75] and the range 

[Q10, Q90] increase with the horizon. 

 

Figure 12. Fan-plot of predictive densities of total aggregated resources within horizons. 
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Predictive simulations based on our log-normal exponential model using maximum-likelihood 

estimates in the log-expectation formula are performed in Lillestøl & Sinding-Larsen (2017).  

In the case of H=256 we obtained mean=1665, median=1603 and quantiles Q10=1129 and 

Q90=2213. We see that the mean is head on, while the median is smaller in the Bayesian case. 

This reflects a distribution with long tail towards right. Moreover the quantile ranges are 

wider. This non-Bayesian calculation reflects the expected decay and the log-normal 

randomness, taking the estimated parameter values as given.  With added parameter 

uncertainty, we expected this range widened, since the Bayesian approach takes this 

parameter uncertainty explicitly into account. The results is in line with the typical experience 

that non-informative priors typically leads to posterior point estimates close to the maximum 

likelihood solution.   

It is also possible to answer question about how large portion of the total, the few large 

discoveries will account for. In Figure 13 and Figure 14 show this in two ways, for the five 

largest discoveries within horizons h=5, 6, …, 256.  Figure 13 gives the expected aggregated 

size of the five largest discoveries pictured together with the total aggregated size. The five 

largest curve bends down rapidly and at horizons 50, 100, 200 and 256, the levels are 506, 

689, 840 and 880 respectively. Figure 14 gives the corresponding share of the top five among 

the total aggregated size.  At horizons 50, 100, 200 and 256, the shares are 58%, 45%, 35% 

and 32% respectively.  

 

Figure 13. Expected size of five largest discoveries within horizon h=5, 6, …, 256. 

Figure 14. Expected share of total for the five largest discoveries within horizon h=5, 6, …, 256. 

The Bayesian solution in this section offers a fair comparison with the numbers in the reports 

of the Norwegian Petroleum Directorate (NPD). The predictive distribution for the totals 

derived from the NPD-report has mean about 1575, in comparison with our mean=1665.8 The 

                                                           
8 Note that the horizon H=256 was selected in Lillestøl and Sinding-Larsen (2017) to match the obtained 
estimate of expected total aggregated resources with the NPD expectation equal to 1665. Unfortunately, this 
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quantile characteristics are given in Exhibit 8, together with our corresponding quantile 

characteristics. 

Quantile 0.5% 5% 10% 25% 50% 75% 90% 95% 99.5% 

NPD-Total 695 891 993 1192 1461 1815 2272 2645 4396 
Bayes-Total  500 722 843 1091 1460 1980 2699 3302 5665 

 

Exhibit 8. Quantile characteristics of distribution of total aggregated resources within 

horizon H=256 

There is an almost perfect match with the median, while our distribution has a slightly higher 

mean and a longer right tail. Recall that our results are dependent on the choice of horizon 

H=256.  We can interpret a similarity of means and/or medians several ways. If we agree on 

the expected (or median) remaining resources, then we implicitly agree on the horizon as well. 

If we agree on the horizon, then we agree on the expected (or median) remaining resources 

as well. There is, of course the possibility that we disagree on both, and they outweigh each 

other.    Having a range from Q10 to Q90 which is wider than those of NPD, may also be given 

different interpretations.   It may reflect the parameter uncertainty, taken explicitly into 

account. It may reflect a potential brought forward by the data, not taken into account in the 

NPD predictions. Or it may reflect specific information available to NPD, not reflected in the 

data. 

The obtained results may give raise to interesting questions to discuss with NPD expertise. 

Which horizon do they see as a realistic one, connected to their predictive distribution. Is 

H=256 a realistic one? If so, they may possess some risk reducing information about the future, 

not inherent in the data. If the horizon imagined by NPD is (considerably) less than 256, then 

it may either be so that they have not taken into account all information inherent in the data, 

or that they possess specific information about the future not inherent in the data.  One may 

ask whether all uncertainties are represented.   

We stress here that we believe that NPD has lot of information not inherent in the data, and 

that the results presented here are what the data may indicate without any extra information.   

 

 

 

 

                                                           
number also included Jan Mayen, a frontier area not covered by our data. With this area excluded, we would 
have arrived at a horizon somewhat less than 256, and then obtained an even better match with the mean. 
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4. The choice of horizon 
 

Our prediction of undiscovered resources refers to a discovery horizon beyond 2013 that 

represents potential future additions of recoverable petroleum resources, either in separate 

discoveries or as contribution to resource growth. In the past, only 75% of all actual discoveries 

on the M-NCS have resources where recovery remains likely and of those 40% have their 

reserves included in existing fields and discoveries. Thus, a horizon of 10 in the prediction 

scheme may correspond to an exploration effort that discovers 33 potential developments 

(encompassing about 2.5 years’ time span), using past years performance as a guide to the 

future. A horizon of 100, 200 and 256 therefore encompasses approximately a time span of 

25 years, 50 years and 65 years respectively.  

The predictive distribution of total aggregated resources is clearly dependent on the choice of 

horizon, which may be open for discussion.  We see this as an opportunity, rather than a 

drawback. The traditional approach, assuming sampling proportional to size from a finite 

population requires specification of population size. This is also open for discussion, and may, 

or may not, be supported by geological expertise. For decision making purposes, some extra 

considerations on the time scale have to be added, answering questions on when the remains 

of the population are so small that they are not economic attractive, or the time span goes 

beyond time when petroleum is phased out anyway.   The creaming model approach with 

decaying creaming factor is very flexible, and turns out predictions for any horizon.  For both 

scientific and decision-making purposes, we have a common framework, and the choice of 

horizon is a well-defined issue, open for discussion with wide participation. The choices may 

well come out as follows:  H=50 or less (short-term investors), H=100 (reports, to present 

medium-term economic potential), H=200 or more (scientists, to mimic all petroleum 

resources there are). The choice of horizon is, in some contexts, determined prior to looking 

at the data, in other contexts, derived from data itself. In the latter case, the following 

reasoning may be relevant. Creaming may be seen as the use of geological expertise to go for 

the most promising first. Thus, a decaying creaming function will represent diminishing ability 

or opportunity to provide useful information.  At some point, the creaming factor is close to 

zero, meaning that the geological opportunities are close to exhausted. It then makes sense 

not to let the horizon go beyond this point, in our data an H in the range 200 to 300. 
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5.  New discoveries 

 

 It may be of interest to compare our predictions, based on data up to and including year 2013, 

with the discoveries actually made in the following years. For the year 2014-2016, there were 

33 discoveries listed in Exhibit 11 in increasing order.9   

Discovery mill Sm3 o.e. Discovery year

6407/7-9 A 0,2 2016

34/6-3 A (Akkar) 0,3 2014

6407/7-9 S 0,4 2016

6406/2-8 (Imsa Sør) 0,7 2015

35/11-20 B 0,7 2016

35/8-6 A 0,8 2016

34/8-16 S (Tarvos) 0,9 2015

35/11-20 S 1,0 2016

2/4-22 S (Romeo) 1,3 2015

35/11-18 (Syrah) 1,3 2015

15/6-13 1,3 2015

6407/1-7 1,4 2014

6507/10-2 S (Novus) 1,5 2014

16/1-26 S 1,5 2016

6406/6-4 S 1,8 2015

35/11-17 (F-Vest) 2,0 2014

30/11-10 (Krafla Nord) 2,0 2014

35/11-18 2,0 2015

6706/11-2 (Gymir) 2,0 2015

25/5-9 (Trell) 2,1 2014

30/11-9 A (Askja Øst) 2,2 2014

6406/12-3 A (Bue) 2,2 2014

6706/12-3 (Roald Rygg) 2,4 2015

34/10-54 A (Valemon Nord) 2,4 2014

26/10-1 (Zulu Øst) 2,5 2015

34/10-54 S (Valemon Nord) 3,5 2014

6406/12-4 S (Boomerang) 3,5 2015

6707/10-3 S (Ivory) 5,1 2014

6706/12-2 (Snefrid Nord) 6,3 2015

2/4-23 S (Julius) 7,0 2015

25/2-18 S (Langfjellet) 7,8 2016

36/7-4 (Cara) 7,9 2016

6406/12-3 S (Pil) 18,6 2014  

Exhibit 11. Discoveries made in the years 2014-2016 (following t=182). 

These contain a number of smaller discoveries under evaluation as of December 31st 2016.10  

Some of them may be included in existing fields, others are candidates for becoming 

standalone developments that preferably can be tied back to a nearby infrastructure. 

However, many of the smaller discoveries may fail to be developed or considerably delayed. 

It is also a possibility that two or more medium sized discoveries, not individually worth 

developing, are combined to a development project. It is therefore not possible, at this stage, 

to pinpoint how many development projects these 33 discoveries will lead to.  

                                                           
9  As before, the source for data is the yearly reports from The Norwegian Petroleum Directorate (NPD), prepared 

as input to the Revised National Budget (RNB2017). 

10 In a press release of 02.11. 2017 ENGIE E&P, the operator of the Cara-licence, has announced an increase in 
their resource estimate of 36/7-4 (Cara) from 7.9 MSm3o.e. to 11.8 MSm3o.e., the second largest in Exhibit 11. 
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Based on the performance in the past, referred to in Section 5, the 33 discoveries in Exhibit 11 

will correspond to a horizon H=10. Let us say that at the end of year 2013 (at t=182), we were 

sure that a discovery of size above 10 would lead to a development project. For the horizon 

H=10, the chance of getting at least one discovery above size 10 was close to one, which in 

fact materialized. Although we had about 96% chance of getting at least one above 20, it did 

not materialize as an individual discovery, but may in principle materialize in conjunction with 

some other discovery. In this respect, our calculations are not inconsistent with the empirical 

findings.  

We may also compare some characteristics of the empirical distribution of the actual sizes 

with the ones predicted from our model. The empirical median is a relevant and convenient 

characteristic.  In Exhibit 12   we give the expected empirical median of H observations, taken 

over t=N+1, N+2,…, N+H, for some values of H. 

H 5 10 15 20 25 50 100 

E(Median) 5.2 4.4 3.9 3.7 3.6 3.1 2.5 

 

Exhibit 12. Expected median size among H development projects after t=182 

Note that this is derived directly from the simulations, and is not directly related to the median 

functions or the median of the predictive distributions at t=N+1, N+2,…, N+H. 

The size distribution in Exhibit 11 may be judged under different assumptions. One possibility 

is to assume that the about 10 largest discoveries will end up as separate development 

projects. In Exhibit 11, we see 11 discoveries of size 2.4 or larger that may be sufficient for 

being a candidate for development, either separately or together with neighboring fields, if 

they exist. The median of the 11 largest numbers in Exhibit 11 is 5.1, while the expected 

median of size for the 11 next development projects after t=182 is 4.1, slightly less than the 

4.3 median for H=10 in Exhibit 12. This is close when taking into account its variability.  If we 

assume that some of the discoveries above 5.1 are matched with smaller ones into projects, 

this will not affect the median. However, the median will be raised if one of the 11, smaller 

than 5.1 is matched with one or more discoveries less than 2.4, and this brings the sum of 

their sizes above 5.1.   However, these findings do not discredit in any our model. 

 

6. Extensions 
 

The model may be extended in various directions, in order to pretend being more realistic, 

allowing for more features in the data. A possibility is to include autocorrelation between 

successive discoveries, to be estimated from the data as well. With positive correlation, the 

variance of the total discoveries as a sum will increase.  However, inclusion of autocorrelation 

is not expected to have a noticeable effect on the expected aggregated resources. Moreover, 
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this will destroy the nice features of our basic model, which allows simple simulations based 

on independent sampling. Another possibility is based on the observation that the data is 

indicative of a slight excess of small discoveries. The situation may be modelled as a two-

regime-model, with a pure noise process of small discoveries is running concurrent with the 

log-normal exponential decay process. At each instant, there are fixed but unknown 

probabilities of coming from the one regime or the other. Both model extensions require 

additional parameters with attached uncertainties to be expressed by prior distributions. Both 

model extensions may lead to a more troublesome estimation process. Anyway, they are not 

expected to give noticeable different results from those above, except that it is likely that the 

quantile ranges in the predictive distribution of the accumulated sizes of discoveries will be 

widened. 

In this work, we have used non-informative priors. There may exist prior information that 

legitimate the use of informative priors, in terms of expectations and statements of 

uncertainty. We may then combine this information with the data. We then face the problem 

of translating this information into priors for the current model parameters. A more basic 

question is whether the available information is implicitly based, at least partly, on the M-NCS 

discovery sequence itself. We may then face the trap of using the same data twice, which is 

illegitimate.    

The possibility to adopt a creaming model with truncated log-normal discovery sizes is under 

investigation. The creaming features of this model are given in Lillestøl & Sinding-Larsen 

(2017). This is a model, which may still fit the data, but freed from any heavy tail problems. It 

is also amenable for full Bayesian solution, which is easily implemented in R, using 

R2OpenBugs.11 The choice of truncation point will be somewhat arbitrary. We have tentatively 

tried a model with truncation point T=2000 and T=2500, with promising results. For the 

estimation phase, the parameter sigma seem to average about 1.6, as before. The Bayes 

estimates, i.e. posterior means, of mu and alpha seem to be more negative and positive, 

respectively, while beta is smaller.  This means a less favorable population, but better 

opportunity for creaming than the non-truncated solution in section 4. The posterior 

distribution of mu seems to be multimodal, more so with lower truncation point.  The quantile 

characteristics for the predictive distribution of total aggregated resources for Horizon H=256 

are given in Exhibit 13, for the case of truncation T=2000, and for comparison, together with 

those for the unrestricted model and the NPD-predictions in section 4.  

Quantile 0.5% 5% 10% 25% 50% 75% 90% 95% 99.5% 
Bayes - 2000 547 765 871 1083 1483 1845 2387 2825 4219 
Bayes - ∞  500 722 843 1091 1460 1980 2699 3302 5665 

NPD-Total 695 891 993 1192 1461 1815 2272 2645 4396 

                                                           
11 For estimation, this requires a log-transform of the data in the Bugs-model and reference to the truncated 
normal distribution. For simulation of future discovery sizes, one may use the function rlnormTrunc, available 
from the R-package EnvStat. 
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Exhibit 13. Quantile characteristics of distribution of total aggregated resources within 

horizon H=256 for truncated lognormal model (T=2000). 

As expected, the truncation at T=2000 narrows the quantile ranges, and the effect is clearly 

seen at both ends of the distribution. At the low end, the quantiles are shifted a bit upwards, 

and at the high end downwards. The comparison with the NPD-quantiles reveals a noticeable 

difference at the high end, where the 95%-quantile of NPD is the lowest, and this is reversed 

when T=2000, for the more extreme 99.5% quantile.  This is a clear revelation of the effect of 

adopting a truncated model with “low” truncation point. 

In order not to be overly optimistic, it may be tempting to adopt a truncated lognormal model. 

As said, the choice of truncation point is somewhat arbitrary, and the effects of truncation 

need further investigation. However, it should be noted that non-truncation also contain a 

truncation decision, by allowing unlimited sizes. 
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