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Abstract 

Many biological and economic processes in fishery happen seasonally. Most of the extant literature 

tends to neglect this fact. This work is an initial attempt to treat seasonality in a systematic and proper 

way. We apply a periodic Bellman approach to obtain the optimal feedback policy of each season. Our 

approach has rich potentials. It could deal with seasonal patterns of uneven lengths: some may span 

years and some within the year.  

We find that, in some cases the equilibrium consists of one harvesting season followed by a 

moratorium period, indicating an optimal closure of the fishery that would be overlooked by a yearly 

model. Unlike a typical policy that enforces a moratorium to recover the stock, we find that many 

states first undergo harvesting all year round and later evolve into the seasonal moratorium. A rising 

group biomass could be the overshooting effect instead of a clear sign to increase harvest. We 

sometimes observe declining optimal harvest with increasing states (‘valley’), which may relate to the 

unit profit difference between seasons. Fishing pressure on the mature elicits even heavier harvest in 

the next season on the same group. A protective moratorium of the immature seems to hinder the value 

of the whole stock.  
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1. Introduction   

1.1 Motivation behind seasonality 

Numerous commercial fisheries exhibit periodic patterns, undergoing periods of feeding, reproduction, 

migration, harvesting and so on (Clark, 2010). However, most commercial fisheries are managed 

quintessentially on a yearly basis. For example, agencies like the International Council for the 

Exploration of the Sea (ICES) collects annual data and provides annual advice regarding stock status, 

reference points and Total Allowable Catches (TACs) (Fisheries - European Commission, 2016). 

Often, annual TACs are allotted to different vessel groups that target the resource in different seasons 

(Kvamsdal, Maroto, Morán, & Sandal, 2017). Therefore, we conduct this work believing that research 

and policymaking should incorporate seasonality in fisheries to a larger and deeper extent.  

Our approach is an initial attempt that applies Dynamic Programming (DP) to obtain the optimal 

feedback control policy with both seasonality and multidimensional states in a bioeconomic model. It 

has rich potentials because this approach makes it possible to take into consideration longer 

seasonality that is spanning more than a single year. For instance, we may model El Nino conditions 

that happen at intervals spanning several years combined with a seasonal feature that takes place every 

year.  

Many fisheries with notable seasonal migrations have been studied using diverse methodology. In the 

Northeast Atlantic, the mature part of the Northeast Arctic cod (NEA) migrates from the Barents Sea 

to the Norwegian coast to spawn in the spring, with a remarkable amount aggregated around Lofoten. 

Newly hatched larvae will drift north with the current and reach the Barents Sea by summer, where 

they stay and grow until mature enough to initiate their spawning migration (Durant, Hjermann, 

Sabarros, & Stenseth, 2008).  Hannesson, Salvanes, & Squires (2010) analyzed the effect of 

technological change on labor and productivity in the seasonal Lofoten fishery using data over 130 

years. Hermansen & Dreyer (2010) investigated how the regime aiming to shift the harvesting pattern 

towards the low season performed for Lofoten fishery. For the Texas shrimp fishery, there exists a 

tradeoff between catching the small shrimp in bays and harvesting the large shrimp in the Gulf of 

Mexico (Önal, McCarl, Griffin, Matlock, & Clark, 1991). Önal et al. (1991) developed a nonlinear 

mathematical programming model with multi-periods and size-structure to determine the optimal 

harvesting pattern and unveiled substantial gains from reallocating the effort throughout the season by 

improving the size composition of the catch. 

Although many have approached seasonality in the literature, most built intra-seasonal bioeconomic 

models to analyze within-season harvesting in regulated open access fisheries (Smith, 2012). Larkin & 

Sylvia (1999) set up a nonlinear programming model to determine the time path of harvest by 

allocating effort across months (intra-season harvest pattern) and annual quotas between competing 



industry sectors (catch rights) and found that intra-season quality generated higher net benefits than 

the allocation of catch rights. Holland (2011) simulated an intra-annual numerical model to optimize 

effort and catch over a one-year period in the Maine lobster fishery under seasonal variability in 

catchability. Such intra-season studies tend to assume that fishing takes place over a single season, 

with a frequently fixed season length (Kvamsdal et al., 2017). 

Both the profound role of seasonality in fisheries and the inadequacy in the literature calls for further 

research in this direction. Seasonality in fisheries is a common phenomenon: both biological 

processes, such as spawning, and human activities, such as harvesting, are seasonal rather than 

smoothly distributed over time (Bjørndal & Munro, 2012; Clark, 2010). At the same time, seasonality 

is complex and difficult to cope with: when considering one-year time increments, discrete-time 

models tend to neglect seasonality; when considering autonomous optimal feedback policies, 

continuous-time models neglect it as well (Kvamsdal et al., 2017). Moreover, when seasonality is 

investigated instead of being disregarded, those intra-season studies that imply a single harvesting 

season can be an oversimplification of many real world fisheries.  

We hereby argue that it is appropriate to turn to discrete-time models (Bjørndal & Munro, 2012) and 

we propose uneven time increments that are less than one year in order to incorporate seasonality. To 

fill the gap in the current literature, we introduce multiple harvesting seasons within each year. Each 

season length can be adjusted according to specific fisheries. The stock develops alternately according 

to seasonal dynamics and the cycle goes on in an infinite time horizon.  

1.2 Remarks on the approach 

A rich literature on fisheries management includes implementation of the DP approach (Clark, 1985; 

Lane, 1988; Mangel & Clark, 1983; Poudel, Sandal, Steinshamn, & Kvamsdal, 2012; Walters, 2002) 

but few addressed the issue of seasonality. With the recent finding on periodic Bellman approach 

(Kvamsdal, Maroto, Morán, & Sandal, 2016) , we are able to simplify the problems that consist of 

multiple periods in one cycle and solve them with common DP technique. Nevertheless, it is widely 

recognized that discrete DP suffers from the curse of dimensionality (Anderson, Ben-Israel, Custis, & 

Sarabun, 1981). The skyrocketing computing time brought by additional dimension remains, therefore, 

we begin with the simplest case of two-dimensional states, seeking to preserve both solution efficiency 

and theoretic insights.  

With multidimensional states, a bioeconomic model can describe either interacting species that often 

includes predator-prey relationships (Poudel et al., 2012; Sandal & Steinshamn, 2010) or a single 

stock that is categorized into age or size groups (Tahvonen, 2014). Age-structured models, which are 

widely used to assign catch quotas, have gained more popularity among economists as a consequence 

of the critics on the ‘oversimplified’ traditional biomass approach (Tahvonen, 2010; Townsend, 1986). 

Due to generally large cohort numbers, few of the age-structured studies employed DP approach.  



To better understand the inner structure of a stock, we adopt a commonly accepted practice and divide 

a population into mature (adult) and immature (juvenile) individuals (Holden & Conrad, 2015; Sandal 

& Steinshamn, 2003). Though simple, this practice is intuitive and allows inclusion of critical 

biological processes such as recruitment, as well as other potential model expansions and 

specifications such as size-dependent prices.  

We achieve the optimal feedback solution with the control variable (seasonal harvests) as a direct 

function of the state variable (mature and immature group biomasses). The feedback models take 

prevailing stocks as inputs and automatically respond to the changes in the states, and thus adapt to 

new situations instantaneously (Sandal & Steinshamn, 1997). In addition, the feedback approach can 

easily be extended with stochasticity since it is superior than the alternative time paths approach when 

faced with uncertainty (Agnarsson et al., 2008). 

1.3 Highlights and guidance 

Having proposed the motivation to investigate seasonality and the argumentations for our approach, 

we emphasize that this work, to our knowledge, is the first numerical study of seasonal optimal 

feedback policy with two states using DP. Some findings are intuitive while some others turn out to be 

less expected and novel.  

We find that sometimes the optimal equilibrium cycle consists of one harvesting season followed by a 

moratorium period, implying a natural seasonal closure of the fishery that could be neglected by a 

yearly model. Unlike a typical policy that implements a moratorium to recover the stock, we find that 

many states undergo harvesting during the entire year first and later settle into the cycle of harvesting-

moratorium. An increasing group biomass could be the overshooting effect instead of a decisive signal 

to harvest more. In some cases, a ‘valley’ effect, i.e. declining harvest with rising states, exists in the 

seasonal optimal harvesting policy. We find this effect closely related to the scale of the unit profit 

difference between seasons. The unit harvesting cost shapes the characteristics of the state space area 

where harvest in one season is more prominent than harvest in the rest of the year. Fishing pressure on 

the mature stock in one season can arouse even more aggressive harvesting on the same group in the 

next season. It seems that a regulatory moratorium of the immature group may stem from conservative 

objectives but in fact hinder the value of the whole stock. Therefore, when choosing which group to 

target, it can be beneficial to avoid only harvesting the mature in order to let them reproduce better in 

the spawning season. When the economic profit in one season increases, it takes longer time for the 

maximum state to decrease and leave the abundant region on the state space.  

In Section 2, we first demonstrate the basic model structure with seasonality and two-dimensional 

states; we then specify the biological state transitions and economic rent functions; lastly, we establish 

the credibility of our method and results by referring to the recent theoretic findings on periodic 

Bellman approach. In Section 3, a simple depiction of the solution procedure is provided. Then we 



elaborate on parameter specifications and introduce eight cases. Section 4 manifests the numerical 

approximation results of all the cases, analyzes the effects and provides possible explanations. 

Conclusions and discussions follow in Section 5.  

2. The model   

2.1 Model structure 

As elaborated in Section 1, we choose a simple but representative model structure where we look at an 

infinite horizon, discounted, discrete-time dynamic optimization problem with two-dimensional states 

(mature and immature) and two seasons (S1 and S2), aiming to access both conceptual insights and 

solution feasibility. It is straightforward to depict the seasonal state transitions as follows: 
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Fig. 1. Two-dimensional two-season dynamic cycle. 

The population is represented by the biomass of two age groups, namely mature ( ) and immature ( ). 

Seasonal harvest policy or control of the system is  for S1 and  for S2 respectively. There are two 

dynamic operators during a year noted as , ,  and	 , , , driven by its seasonal 

transitions and policy. States	  and  are the new states in the end of S1 after dynamic operator . 

States	  and  appear in the end of S2 as a result of the dynamic operator  and are the states in the 

beginning of the next S1. The periodic cycle goes on infinitely as demonstrated in Fig. 1.  

As a practice of tradition (Gordon, 1954;  Scott, 1955), we believe it is legitimate to set our objective 

as to maximize the economic rent from the fishery resource. The core purpose of fisheries 

management is to take into account both the conservation of the resource base, as well as the 

exploitation of it (Bjørndal, Lane, & Weintraub, 2004). Profit maximization achieves many of the 

prevalent fishery objectives, for example, it implies conservation of fish stocks and marine 

environment to the extent that this conservation contributes to harvesting profits and conservation in 

itself is valuable (Arnason, 2009).  

 
Fig. 2: Two value functions and seasonal economic gains. 

Seasonal net economic gains are denoted as Π  and	Π . In each season, we assume that the stock first 

undergoes biological processes, such as growth and spawning, and then becomes available for the 



human harvesting activities in the end of the season. Therefore, Π  is obtained at the end of S1 while 

Π  is realized at the end of S2 as shown in Fig. 2 with a timeline.  

The value function manifests the best possible value of the objective and is non-autonomous, 

depending on which season the present time is.  indicates the value in the beginning of S1 or in the 

end of S2 while  represents the value when standing in the end of S1 or in the beginning of S2. Note 

that   and  are not the value of each separate season but rather of the infinite time horizon. 

The value functions in our problem are:                                    

, max
,

Π , , Π , ,  
 

 

(1)

, max
,

Π , , Π , ,  

where  and . The parameter  indicates the length proportion of S1 in a whole year 

and  is the annual discount factor. A varying  generates flexibility and allows the model to deal with 

species or ecological systems of various kinds. 

2.2 A simplified fishery 

Our bioeconomic model describes a single species stock in which the parameters for spawning ground 

condition (cost structure), selectivity and price function are modified. This simplified fishery model 

serves as a starting point to probe into the implications of modeling seasonality in such problems and 

to stimulate and support further research in this direction.  

We assume that spawning or recruitment takes place during S1, setting S1 as the shorter season in this 

context. Harvesting is assumed to take place smoothly within the season. We introduce a major 

difference between seasons about harvesting: in S1, only the mature group lends itself to harvesting 

while in S2 the selection between  and  remains unfixed. This protection of the young in the 

spawning season can be advocated by multiple arguments: modeling-wise, it simplifies the decision 

variables; economically, it may be easier to take the mature group in S1 when they agglomerate in the 

spawning ground; biologically, sparing the immature at this critical time of the year is likely to 

advantage future prosperity of the stock. If the season is short enough, then one can choose to ignore 

the growth during the season (Mangel, 1984). Thus, we assume for simplicity that 	has little change 

except for biomass loss due to harvesting as shown in Eq. (2).  

                                                                                                                                            (2) 

, 	 	 , 	 	                                                                              (3)                            



Function ,  in Eq. (3) is linear in  with upper bound  and it effectively grasps the spawning 

dynamics: both the slope  and the intercept  are dependent on . As  escalates,  

,  rises via both slope and intercept until it reaches the maximum biomass . This structure 

implies that a stronger  produces more offspring creating higher population density for  and thus 

induce better fitness and faster growth rate of  according to ‘The Allee effect’ (Allee, 1931). When  

becomes zero,  still contributes as much as  to  through spawning, which maintains the 

immature group even without any to start with. When  is zero,  will grow to  after S1. Here the 

‘biomass growth’ counts for both individual weight gain and biomass loss caused by natural mortality, 

so  is not necessarily larger than one.   

,                                                 (4)

, 1                                       (5)

,                                                (6)

,                                  (7)

                                                          (8)

During S2, both groups can lend themselves to harvesting where a gear selectivity parameter  indicates 

the proportion of  that comes from the mature group. Having a parameter  enables the model to 

adjust according to fishing gear or policy. For example, 1 may represent a policy to spare all the 

immature individuals and 0 can signify a fishing gear type that perfectly select all the young fish. 

,  and ,  are the dynamics of the mature and immature group respectively before harvest 

in S2.  

On top of the natural growth and mortality within the mature group itself, which is assumed linear, 

every year a part of the immature matures and transforms to join the mature group. Thus, the dynamics 

of the mature group during S2 consists of three parts: linear growth , maturity 

transformation	  and harvest .  

The function  has a form resembling that of the discrete-time Beverton-Holt recruitment function 

(Beverton & Holt, 1957). It provides a non-linear growth for the immature group during the longer 

season in which smaller states correspond to higher growth rates and as the state increases the 

immature biomass after S2 asymptotically approaches a fixed level. Note that the original Beverton-

Holt function gives the number of population but we are working with stock biomass instead. 

Cannibalistic behavior is expressed in the model as . The multiplicative form means that only 

when both groups coexist, will there be biomass loss due to cannibalism. The dynamics of the 

immature group includes the following items: non-linear growth , maturity transformation	 , 



cannibalistic behavior  and harvest 1 . Fig. 3 summarizes the state transitions of the 

modeled fishery and serves as an extension and specialization of Fig. 1.   

The size and value of the fish stock as a renewable source can grow and change over time due to 

biological factors, regulatory decisions as well as market conditions (Clark & Munro, 1975). After 

elaborating on the biological facets, we now focus on the economic conditions, which can be decisive 

in determining the value functions.  
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Fig. 3: Two-dimensional two-season dynamic cycle with harvest. 

Inspired from the NEA cod stock as one of the most important fisheries worldwide with minimum 

prices set through negotiations (Pettersen & Myrland, 2016), we assume that the unit price is a typical 

downward sloping function of the seasonal harvest with a price floor. Both seasons share the same 

price function structure as in Eq. (9): when harvest is big, the unit price of the fish goes towards the 

minimum  and when harvest is small, the price approaches the maximum . We can easily 

adjust parameter values to enable various price ranges for each season. In this work, we first employ 

the same price function for both seasons leaving costs as the only element contributing to the 

economic difference between seasons. Then, in order to enhance the realism of the model, we explore 

time-dependent price functions that elicit different prices of the fish depending on which season the 

harvest takes place in. Numerical details are elaborated in Section 3.3.  

 
 

(9)   

Π ,  
  

 (10) 

Π , ,
, ,

 (11)

For the seasonal cost functions, there is an important concept in fisheries management: the sensitivity 

of harvesting cost to the biomass density, which is referred to as the marginal stock effect (MSE)1 

(Clark & Munro, 1975). This establishes a connection between stock size and harvesting cost, making 

it possible to account for density dependence and thereby analyze anything from completely uniformly 

distributed stock to perfectly schooling fish (Steinshamn, 2011).  

We introduce stock-cost parameter  to include various levels of stock dependency in the harvesting 

cost. One critical value is 0, signifying that the unit harvest cost is completely independent of the 

                                                            
1 A parameter usually referred to as the stock elasticity, or the schooling parameter in some studies, embodies the 
MSE either in the production function or in the unit harvest cost function. 



aggregated stock size and the total harvesting cost is simply proportional to the harvest amount. This 

can be a valid assumption when the stock is highly densified and it may elicit overfishing because 

taking the last school of fish can remain profitable given a constant unit cost (Bjørndal & Conrad, 

1987). For 0, the unit harvest cost dependents on the stock size, via the corresponding density if 

the ground area is unchanged: less densified stocks are difficult to search and have higher unit harvest 

cost; more densified stocks are easy to find and have lower unit cost. Such stock dependency is 

quintessentially an economic protection of the weaker stocks.  

In S1 when a population migrates into a compact enough spawning ground, the biomass density rises 

as a result of the gathering. We infer that this aggregation or agglomeration in S1 may effectively alter 

the value of  in Eq. (10) given various spawning ground characteristics: when they suggest a salient 

population densification,  is set to zero2; when they indicate a modest density increment,  is set to be 

positive. Having such season-specific cost structure makes it possible to capture more of the diverse 

implications of seasonality.  

In S2, the stock is assumed to be dispersed in a vast enough area with an implicit stock-cost parameter 

of one: the seasonal unit harvest cost is dependent on the total stock size in Eq. (11). We choose the 

state right before harvesting as the reference for the stock size, which may underestimate the costs 

when the harvest amount is significant. 

2.3 Periodic Bellman approach 

Kvamsdal et al. (2016) have shown that classical Bellman approach can be extended to periodic 

problems. Instead of formulate the problem using one high-dimensional single equation with the 

annual contraction factor, we can work directly with the coupled dynamic programming equations and 

legitimately obtain the same unique solution. This extended periodic version of the Bellman approach 

is proved able to avoid cumbersome numerical routines and provide reliable results at the same time, 

offering a feasible and practical solution for such problems.  

If the optimal control ∗, ∗  is known, the value functions in Eq. (12) are the fixed points of the 

Bellman operators, for which  and  are the seasonal contraction factors respectively.  

, Π , , ∗ , , ∗   
 (12)

, Π , , ∗ , , ∗  

In our two-season setting, the coupled dynamic programming equations are as follows: 

, max Π , , ,   

                                                            
2 Though empirically zero is hardly a realistic number, a stock independent cost structure can provide profound 
implications from our seasonal model. 



, max Π , , ,     (13) 

We establish our numerical work based on the theoretical findings about periodic Bellman approach 

summarized above. The procedure here is to utilize both of the coupled equations in Eq. (13) at the 

same time and solve for control 	from the first contraction process and  from the second. We 

demonstrate further numerical algorithm details in Section 3.1.  

3. Numerical approach 

3.1 Solution procedure 

We discretize the two-dimensional state space evenly with N1 grid points along	  and N2 grid points 

along . All the state transitions before control are , , ,  and , , which can be 

calculated once for all. For any state ending up outside the grid, it will be set to the upper bounds of 

the grid:  and . Lower bounds for both dimensions are zero.  

In the numerical scheme, we use the escapements after each season as the decision variable of that 

season. The policy is bounded so that the states remain non-negative at all times.  

Starting with a rough guess of the value functions, we seek to utilize them to arrive at the optimal 

policies. For each grid point, we find the corresponding upper and lower bounds for the policy and 

then discretize this feasible part of the escapement space evenly using a number of points that is 

proportional to the length of the feasible range.  Hence, the step length of the discretized escapement is 

comparable for all grid points. For each grid point, we interpolate within the grid and obtain all the 

feasible values according to Eq. (12) then pick the maximum value and update the current value 

function on this grid point, completing Eq. (13). Subsequently, we locate the escapement level that 

provides the highest value and update it as the optimal escapement on this grid point, which in turn 

gives us the optimal harvest, which is more straightforward to interpret. One policy iteration is 

accomplished when all the grid points are updated with the newest values and policies for both S1 and 

S2.  

Then a number of coupled value iterations follow, contracting both value functions without updating 

the policies. When the value functions have moved closer to the true fixed points, they are put into 

another round of policy iteration. This iterating process continues until the change in the value 

functions and policies are negligible.  

3.2 Phenomenological parameter specifications 

We construct a reasonable and stylized population to work with, referring to the NEA cod stock. The 

focus and purpose of the numerical illustration is modeling seasonality instead of empirical ones. The 

first season S1 lasts from January to April representing the shorter and more intense harvest season 



(Hermansen & Dreyer, 2010). In this work, we conduct the numerical approximation with an annual 

discount factor of 0.97 and accordingly the seasonal discount factors are 0.97  and 0.97 . 

Referring to several stock assessments from ICES, the state space is set to be 4000  by 

4000	  with 200 (N1 and N2) points distributed evenly along each dimension. All parameters 

introduced earlier are positive numbers. The unit of the states as well as other state-related concepts 

such as harvest and biomass difference is kiloton (10 kg). The unit of the profits and costs is million 

Norwegian kroner (10 NOK). 

The biological parameters mimicking the scale of the population and its dynamics without harvest are 

specified below:  

, 	4000, 0.92 0.00005 0.2 	 	 	                                                                           (14) 

, 0.75 0.2                                                                                                                                      (15) 

,
.

.
0.2 0.00001                                                                                      (16) 

The inherent equilibrium cycle of the stock lies well inside the stock space: see the yellow diamond 

and the black diamond in Fig. 4(a). If left alone, the stock will not collapse with low biomass level so 

it never exhibits critical depensation (Clark, 2010). Yet, the biomass recovery in such situations is very 

slow as shown in Fig. 4(b). If either group is wiped out every year consecutively in whichever season 

possible, the population eventually collapses to zero. This phenomenon goes in line with the single 

species setting here that neither group can be sustained by itself.  

 

Fig. 4. Dynamic paths without harvesting: 

 (a) Full state space in 200 years; (b) Partial state space in 20 years. 

For state transitions, there exists more nonlinearity and complexity for the immature than the mature, 

so we demonstrate the immature group visually. A message from Fig. 5 is the different level of 

sensitivity and susceptibility brought by the states between seasons. When spawning activities occur in 



S1, the new immature state depends heavily on the mature group while the link is not as strong in the 

other case in S2. This is intuitive in the sense that spawning season may display the uttermost direct 

impact from the mature to the immature group.  

 

Fig. 5. Immature group state transitions without harvesting: 

 (a) ,  in S1; (b) ,  in S2. 

3.3 Cases 

Having determined the biological parameters, we now proceed to elaborate on the possibilities of 

parameter values that address harvest activities and economic drives.  

We look at two special values of selectivity parameter : zero and one. For any in between values, the 

optimization results are analyzed but not included here because they lie between the results when  

equals to zero and one. When 0, the whole stock is harvested separately timewise: in S1 only the 

mature is harvested and in S2 only the immature is harvested; when 1, only the mature group 

lends itself to harvesting during the whole year. For 0, the harvest range in S2 is ∈

0, , ; for 1, it is ∈ 0, , . The following equation summarizes the escapement 

policy constraints in both cases: 

∈ 0,  
 

(17)∈
0, , ,					 0
0, , ,					 1

 

Regarding the price, we first propose the same price function  as in Eq. (18) for both seasons 

(Fiskeridirektoratet, 2015). To go a bit further with sophistications, we argue that the longer period S2 

may elicit less intensive harvesting, lower average harvesting rate and limited supply to the market, 

which in turn increases prices especially when the demand is not necessarily dropping in S2. 

Following this argument, we keep the minimum price 10 and raise the maximum price from 18 to 25, 

roughly doubling the min-max price difference, arriving at a shifted and higher price function . 

This can reflect the unmet demand when harvesting happens less intensively during S2.  



10 18 10 .                                                                                                                                     (18) 

10 25 10 .                                                                                                                                     (19) 

Stock independent cost function in S1, i.e. 0, is a critical and interesting scenario. Except this, we 

are also curious to investigate a moderate level of economic protection, or stock dependency in the 

cost function, that may arise in the case of a crowded spawning ground. Therefore, we employ 0.5 

as the second option. In order to achieve reasonable results and comparable scales, we calibrate the 

cost parameters and employ the following numerical expressions for the seasonal economic gains: 

Π 6                                                                                                                   (20) 

Π , .                                                                                                                                     (21) 

Π , ,
, ,

                                                                                        (22)                            

Π , ,
, ,

                                                                                        (23) 

We display Π  and Π  in Fig. 6 with various state values to offer a brief visualization of the economic 

drive behind the optimization. For most states, the function is monotonically increasing in seasonal 

harvest, while for some states it is concave e.g. when 2400 in Fig. 6(b). As the states grow, Eq. 

(22) and Eq. (23) begin to merge due to drastically decreasing price differences. However, this is not 

explicitly displayed since high harvest levels are of little relevance in our representation.  

 

Fig. 6. Seasonal net economic gains: (a)  in S1; (b)  in S2. 

The graphical comparison of the unit harvest cost is illustrated in Fig. 7. The red surface manifesting 

the costs in S2 writes as 
, ,

. The blue surface representing S1 is 6	when 0 in Fig. 7(a) 

and .  when 0.5 in Fig. 7(b). In both Fig. 7(a) and (b), the red surface surpasses the blue surface 



on roughly the same percentage of the state space area, allowing them to be more suitable for 

comparison and discussion.  

  

Fig. 7. Unit harvest costs: (a)	 ; (b)	 . . 

Table 1 displays the overview of eight combinations of parameter values. We present the cases that we 

believe are necessary, representative and informative. All the cases are independent and can 

potentially represent specific fisheries around the world. We argue that it is legitimate to compare 

among them thanks to properly established numerical scales.  

Table 1. Parameter values for all cases. 

 0 0.5 0 1 ;  ;  Π ;	Π  

Case 1          Eq. (20); Eq. (22) 

Case 2          Eq. (20); Eq. (23) 

Case 3          Eq. (20); Eq. (22) 

Case 4          Eq. (20); Eq. (23) 

Case 5          Eq. (21); Eq. (22) 

Case 6          Eq. (21); Eq. (23) 

Case 7          Eq. (21); Eq. (22) 

Case 8          Eq. (21); Eq. (23) 

 

  



4. Results 

Table 2 summarizes the most interesting general findings of our results. We elaborate and provide 

more detailed observation and analysis for each finding.  

Table 2. Highlights of general findings. 

General Findings Explanation & Implications 

Moratorium in S2 at the equilibrium for some cases. Equilibrium cycle acts as a target escapement policy. 
Emerges naturally instead of being enforced. 

Some states begin with positive year round harvests 
and later evolve into harvesting (S1)-closure (S2). 

Typically, moratorium is enforced to recover the 
stock.  

Overshooting potentially caused by contraction 
process that is stronger in one direction.  

A rising group biomass could be the overshooting 
effect instead of a clear signal to increase harvest. 

A ‘valley’ effect (declining harvest with rising states) 
exists for some . 

We find it closely related to the unit profit difference 
between seasons. 

Starting from various initial states, we follow the seasonal optimal harvesting policies and reach the 

‘equilibrium’ that consists of two seasonal states in a yearly cycle as in Fig. 8. One novel observation 

is that the equilibrium  in Cases 1-5 and 7 are all zero3, signifying that the optimal harvesting 

includes a seasonal closure of the fishery, which is not forced by regulations but naturally emerge 

instead. For example, in Cases 1-4 it is optimal to harvest 57 kilotons of the mature fish during S1 and 

leave the whole stock to itself during S2. This cycle acts as a target escapement policy. In the 

equilibrium cycle of Cases 6 and 8, harvesting takes place all year round but the rate and amount differ 

between seasons. A typical yearly model may simply overlook such important implications provided 

by our model with uneven season lengths and multiple harvesting seasons. 

Harvest moratorium is not a new topic or finding from other fisheries models (Clark, Clarke, & 

Munro, 1979; Kasperski & Wieland, 2009; Kennedy, 1992). Nonetheless, it is novel to bring 

seasonality into such models and reach a moratorium during a part of the annual cycle as a long-term 

optimal steady situation. This coincides with practices in real fishery: harvesting is often assumed to 

take place during the whole year but many fleets only harvest seasonally.  

Typically, the stock first goes through moratorium to recover the biomass and then lends itself to 

harvesting when it becomes abundant enough. Our results contradict this pattern and indicate that 

many initial states begin with positive harvests in both seasons but later evolve and settle down in an 

annual equilibrium cycle of harvesting (S1)-closure (S2). Visual examples of such initial states in Fig. 

8 include the maximum states and the one with the maximum immature group and zero mature stock 

in Cases 1-5 and 7.  

                                                            
3 A consistency check for the validity of our numerical results is that all three pairs, i.e. Cases 1-3, 2-4, 5-7, with 
different values of selectivity parameter  end up in the same equilibrium cycle with the same equilibrium values 
since selectivity in S2 makes no difference when we don’t harvest in S2 at all.  



 

Fig. 8. Dynamic paths with optimal policy in 200 years. 



Moreover, even when the stock undergoes moratorium first and harvesting later, our results exhibit 

diversified paths towards the equilibrium cycle depending on the initial state and the case-specific 

parameters. In Cases 1-5 and 7 when the initial state is 200 kilotons of the mature, an annual 

moratorium first applies, and then  becomes positive but S2 remains a moratorium period. In Cases 

6 and 8, the same initial state will undergo a similar process but eventually lend itself to harvest in S2 

as well. When the initial state enlarges to 2000 kilotons of the mature in Cases 1-5 and 7, S1 is the 

only harvesting season and this situation maintains for the entire trajectory. Nevertheless, in Cases 6 

and 8, S2 will later turn into a harvesting season as well. When the initial state is 4000 kilotons of the 

immature in Cases 6 and 8, S1 becomes the temporary moratorium period in the earlier years. 

In each case, various initial states in Fig. 8 seem to join a certain path converging to the equilibrium. 

The hallmarks of the trajectories imply that the contraction can be strong in one direction so that the 

states move quickly towards the path and weak in another so that they progress slowly along the path. 

Taking Case 1 for example, we find that the contraction is much faster along direction 14 than 

direction 25 in the neighborhood of the equilibrium states. Though our calculation is valid closely 

around the equilibrium, the features seem rather global on the state space.  

Overshooting in some cases could come as a result of the speed and direction of the contraction 

process. Given an initial state far from the equilibrium, it takes a long time to approach the steady 

state. Together with a faster speed along a certain direction, overshooting can emerge. For example, 

starting with the maximum immature state in Case 1, the mature stock quickly rises above the 

equilibrium then slowly drops towards the steady state. Therefore, observing an increase of group 

biomass could potential be the overshooting effect instead of a clear indication to harvest more. 

 

Fig. 9. Unit profit and harvest along the diagonal of the state space.  

                                                            
4 The eigenvalue is 0.58 for direction 1 with eigenvector of (-0.82, 0.58). A smaller eigenvalue indicates a 
stronger and faster contraction.  
5 The eigenvalue is 0.97 for direction 2 with eigenvector of (0.48, 0.88).  
 



We identify decreasing harvest with increasing states (‘valley’) on some  surfaces in Fig. 10. To 

investigate closely, we demonstrate seasonal unit profit of harvest and seasonal harvest along the 

diagonal6 of the state space, taking Cases 1 and 2 as an example in Fig. 9. According to the solid blue 

line in Fig. 9(b), it is optimal to harvest 174 kilotons of the mature on top of the ‘valley’ (diagonal 

states 960) and only 152 in the bottom (diagonal states 1500) even though both states are more prolific 

in the latter case.  

It is counterintuitive to diminish harvest given stocks that are more abundant. Since Π  is 

monotonically increasing with harvest, the key must lies in the benefits from later periods. When  

remains zero,  seems to be rising with the states at a fast rate. When  is positive, the fishing 

pressure is diverted partly to S2, consequently  increases less drastically. Moreover, when the 

economic advantage of S2 (solid green line in Fig. 9) is significant such as in Case 2,  not only rises 

slower with harvest but also decreases in order to exploit higher profits from S2.  

In fact, this phenomenon has traces in all cases: the slope of  drops a little ahead of the end of S2 

moratorium, preparing for better stock conditions for harvest in S2; when  becomes positive,  

either continues increasing at a lower speed or decreases creating the dent depending on the scale of 

the unit profit difference. The ‘valley’ is an interesting and robust effect as a result of the trade-off, or 

competition, between harvesting seasons.  

Table 3 lists the most important findings that refer to specific parameters. 

Table 3. Highlights of parameter-specific findings. 

Parameter-specific Findings Explanation & Implications 

0 can originate from S1 but work on both seasons in 
the same direction (elicit heavier harvesting) when  is 
small. 

One consequence is that the equilibrium states are smaller 
for Cases with 0. 

 occupies bigger share in the annual harvest when the 
unit harvest cost is lower in S2. 

Difference of the unit harvest cost partially determines the 
state space area where one seasonal harvest dominates the 
other.  

Fishing pressure on  in S2 arouses even more aggressive 
harvesting on  in S1. 

It is more efficient to gain biomass by having a large 
amount of  rather than  in the beginning of S1. 

 is pressed to lower levels along its optimal path towards 
the equilibrium when 1. 

With 1,  is spared and can fully utilize the growth, 
thus  can be harvested to a lower level. 

1 in S2 results in a lower value of the resource in the 
long term. 

Higher efficiency of transferring  to  via spawning. 
When determining , we should avoid too much pressure 
on  in S2 so that they reproduce better in S1. 

When Π  is higher, the maximum state moves towards the 
equilibrium at a slower pace.  

The stock suffers more natural biomass loss when staying 
in the abundant states region. With higher Π , it becomes 
more affordable to remain there. 

                                                            
6 For example, diagonal states of 1000 means that both mature and immature states are 1000 kilotons.  



 

Fig. 10. Optimal harvest policy  in S1. 



 

Fig. 11. Optimal harvest policy  in S2. 



Focusing on the distinctions triggered by the stock-cost parameter , we compare Cases 1-4 where 

0 with Cases 5-8 where 0.5. Looking at  in Fig. 10, one of the most obvious disparities is the 

natural moratorium: in Cases 1-4, the moratorium zone covers roughly from zero to 500 kilotons for 

both states; in Cases 5-8, it spreads along the immature axis occupying much bigger state space area. 

These traits go in line with the model assumptions and parameter values. When 0.5, harvests are 

limited due to extremely high costs when the mature group is weak despite the state of the immature. 

Without this protective mechanism i.e. 0, the natural moratorium in S1 exists for much lesser 

states. Once the states fall out of this puny area,  becomes positive.  

Referring to Eq. (21) and the blue surfaces in Fig. 7, the unit harvesting cost in S1 with 0.5 

escalates over the one with 0 when the mature group is smaller than 1806 kilotons. This gives rise 

to some features exemplified in Fig. 12(a): with smaller mature states, 0 (Case1) evokes relatively 

heavier harvesting; at higher mature stock levels, 0.5 (Case5) generates bigger harvests instead. 

The former feature is reflected in the optimal path of an initial state where the mature stock is zero and 

the immature stock is at its maximum (see Fig. 8): the trajectories reveal salient drops of the mature 

stock level after S1 along the path when 0 (Cases 1-4) while the counterparts (Cases 5-8) are much 

smoother. In addition, we observe that some part of the optimal  surface when 0 even reaches 

the myopic solution, in which merely the present season’s net revenue is valued. In the myopic part, it 

is economically justified to wipe out the mature group in S1 when the immature is abundant because 

the immature is protected against harvesting in S1 and a considerable part of them will transit to join 

the mature in the next season S2, maintaining the whole stock biomass level.  

 

 

Fig. 12. Difference of 	and  between Case 1 and Case 5: (a)	 ; (b)	 . 

 

 



The results of  in Fig. 11 evince that the cost in S1 effectively influences the optimal harvest in S2, 

presumably through biological transitions. Altering the value of the stock-cost parameter  mainly 

shifts the  surface, not its general shape. Such a shift typically lends itself to more aggressive  

when 0. The natural moratorium tends to remain its shape and size, except for minor shift on the 

edge in some cases. For instance, the sharp red area in the middle of the zero plain in Fig. 12(b) 

implies that the moratorium zone on the state space in Case 1 is slightly larger.  

In addition to Case 1 and Case 5, the other three case pairs demonstrate similar attributes as in Fig. 12. 

It seems that the state-independent harvesting cost induced by 0 in S1 can originate from one 

season but work on both seasons in the same direction, i.e. to elicit heavier harvesting, when the 

mature group is below a certain level. This level, which is about 3000 in Fig. 12, can signify a sizable 

state space area, which includes the equilibrium cycle. Therefore, with more aggressive harvesting 

throughout the year, equilibrium cycle states are remarkably smaller for Cases 1-4 with 0.  

Having examined the seasonal harvests separately, we probe into the tradeoff between harvesting in S1 

and in S2. Fig. 13 manifests the proportion of  to the total annual harvest if we follow the optimal 

policy during the year. The gray surface depicts this proportion with each state on the stock space as 

the starting state of S1. The blue part at the bottom displays the natural moratorium zone where it is 

optimal to leave the stock to itself throughout the year. The red plain highlights the area where the 

proportion is smaller than 50%, which indicates that  is more dominant in the annual harvest. We 

find that the red plains in Fig. 13 tend to appear at locations on the state space that correspond to the 

area where the red surface (unit harvest cost in S2) lies beneath the blue surface (unit harvest cost in 

S1) in Fig. 7. In Cases 1-4 where 0,  dominates when both states are ample while in Cases 5-8 

where 0.5,  is more weighted when the immature group is abundant and the mature state is 

smaller. We learn that the difference in the unit harvest cost determines, to some extent, the hallmarks 

of the state space area where harvest in one season dominates the other.  

We proceed to investigate how selectivity parameter  alters the results. The key divergences of  

between cases, where  is the only varying parameter, lie along the two zero axes as shown in Fig. 11. 

On one hand, when the mature group is zero i.e. 0, what left available for harvesting in S2 is 

0,  of the mature and ,  of the immature. Referring to Fig. 5(b), we 

deduce that there is less harvesting potential when we select the mature group  with 1. 

Consequently,  along this axis exhibits stronger conservation when 1. This decrease in  is 

more visible when seasonal price functions are identical because otherwise the increment of economic 

reward in S2 brings up  and alleviates this decrease effect. On the other hand, when the immature 

group is zero i.e.  0, what left available to take is , 0  of the mature and , 0 0 

of the immature. Hence, for Cases 1,2,5 and 6 when 0,  along this axis is all zero while for 

Cases 3,4,7 and 8 when 1,   becomes positive as the mature group prospers.   



 

Fig. 13. Proportion of  to annual harvest. 



Selecting only the mature in S2 ( 1) enhances  on most of the stock space for all four case pairs. 

In addition, it shrinks the area represented by the red plain in Fig. 13, which means that  occupies a 

larger share of the annual harvest on more state space area when 1. It may seem counterintuitive 

that the fishing pressure on the mature in S2 arouses even more aggressive harvesting in S1 on the 

same group.  

This thought provoking phenomenon may be explained from the biological perspective: the strongest 

growth of the stock is the stepwise linear transition of the immature during S1, which is dependent on 

both states. The marginal biomass increment incurred by one more state unit is  0.00005 0.2  of 

the mature and 0.00005 0.92  of the immature. Apparently, it is more efficient to gain biomass 

by having a copious amount of the immature rather than the mature in the beginning of S1. When 

0, we are forced to diminish the immature in the beginning of S1, hence it is crucial to retain the 

mature at a higher level in order to exploit the growth. When 1, the immature group is free from 

being harvested and can fully utilize the growth, so the mature group can lend itself to harvesting 

towards a lower level. One evidence is the optimal path of the maximum states as the initial point in 

Fig. 8: Cases 3,4,7 and 8 1  tend to press the mature group to lower levels along its path towards 

the equilibrium cycle.  

The surfaces of both value functions are almost identical across cases. Therefore, we calculate the 

average value on the state space as an indicator for its general level. As illustrated in Table 4, both  

and 	are lower on average when 1, suggesting that the compulsory selection targeting the 

mature group in S2 results in a lower value of the resource in the long term. This may relate to the 

high efficiency of transferring mature biomass to the immature through spawning and the relatively 

low efficiency of transferring immature to the mature via natural maturation. Hence, when deciding on 

the selectivity , it can be worthy to avoid putting all the fishing pressure on the mature group in S2 

and to allow it to produce more offspring in the spawning season S1. From the standpoint of 

policymaking, it seems that a complete ban on harvesting a certain part of a stock may stem from 

conservative purposes but can also hinder the value and potential of the whole stock.  

Additionally, this level drop of the value functions turns out to be particularly evident when price is  

in S2 and when 0.5 in S1. First, when price is higher in S2, setting 1 implies a better reward 

for catching the mature while having 0 signifies a greater return on taking the immature. 

Considering that sparing the mature during S2 can be beneficial according to the previous arguments 

on biomass transferring efficiency, diminishing the mature 1  surely incurs a bigger value loss. 

Second, when the cost in S1 is dependent on the mature group, it is better to avoid landing at a low 

mature state in the beginning of S1. Consequently, with 1 we are constrained to lessen the mature 

group during S2, which in turn weakens the mature group in the beginning of S1 and thus elicits a 

wider gap of the values. 



Table 4. Differences of the average  and  between cases with  and . 

Differences of the average values ;  ;	  

 

0 
Diff  (Cases 1,3) = 722 Diff  (Cases 2,4) = 1274  

Diff  (Cases 1,3) = 559 Diff  (Cases 2,4) = 972 

 

0.5 

Diff  (Cases 5,7) = 1403 Diff  (Cases 6,8) = 2578 

Diff  (Cases 5,7) = 1149 Diff  (Cases 6,8) = 2187 

 

Lastly, we look into the two price options i.e. Eq. (22) and Eq. (23) in S2. The relevant Π  with 

harvests less than 1000 kilotons are significantly higher for Cases 2,4,6 and 8 than Cases 1,3,5 and 7 

as shown in Fig. 6(b). As exhibited in Fig. 10, there is a clear shift of  towards lower harvest levels 

for all case pairs when Π  becomes comparatively less attractive. In addition, it is not surprising to 

observe evident declines of the proportion surfaces with enlarged Π  in Fig. 13, which denotes that as 

the profit in S2 improves the optimal policy tends to postpone and harvest more in S2.  

However, this simple economic incentive explanation, i.e. take more when the return is better, is not 

valid for  on the entire state space. A higher Π  seems to shrink the moratorium zone of , 

contributing to the positive part of the surfaces in Fig. 14, but propose a much more cautious 

harvesting policy in S2 as the states escalate, producing the negative part beneath the red zero plain 

when both stocks are plentiful. Consequently, in the abundant region on the state space, both seasonal 

harvests are smaller for cases with higher Π . This is in line with the observations from Fig. 8: taking 

Case 1 and 2 as an example, starting from the maximum point in the state space, it takes only six years 

in Case 1 but eight years in Case 2 for both stocks to halve. The trajectories hint that when the 

economic return is higher in S2, the stocks spend longer time in the abundant area and move towards 

the equilibrium cycle at a slower pace.  

This phenomenon can be motivated by the biological transition for the immature group in S2: on one 

hand, a greater mature stock diminishes the immature biomass more severely due to cannibalism as in 

Eq. (7), though on a trivial scale; on the other hand, the nonlinear curves, manifested in Fig. 5(b), elicit 

bigger biomass drops at larger immature states. These traits suggest that the stock suffers heavier 

biomass losses due to natural reasons when staying in the plentiful region on the stock space. When 

the profit increases in S2, it becomes more affordable to remain in the prolific region and enjoy 

benefits brought by ample biomasses, which leads to a comparatively prolonged process towards the 

equilibrium cycle.  

When 0, harvesting in S2 directly brings down the immature stock, alleviating the natural biomass 

loss next year. When 1, reducing the mature stock merely affects the immature indirectly through 

spawning. Since the loss alleviation is stronger and more direct with 0, we speculate that the 

prolongation derived from the affordability to stay in the abundant state area with an increased Π  is 



also more prominent when 0, thanks to the less urgent biomass losses. One confirmatory evidence 

lies in the prolongation effect of the maximum initial state. It takes longer time (ten years) in Case 4 

than in Case 3 (nine years) for both states to halve. The time difference that stands for the prolongation 

is one year when 1 (between Case 3 and Case 4) but two years when 0 (between Case 1 and 

Case 2). Since the level of negativity in the abundant region in Fig. 14 is associated with the scale of 

the prolongation, another evidence is that Fig. 14(a) and (c) demonstrate more evident decline of the 

 difference in the plentiful region than that in Fig. 14(b) and (d) respectively.  

 

 

Fig. 14. Difference of  between cases with  and . 

Referring to Fig. 6(a), 0.5 leads to higher Π  than 0 when the mature stock is plentiful. Thus 

in the abundant region, the incremental affordability brought by a higher Π  seems less significant 

when Π  is already larger. Accordingly, the prolongation effect is supposed to be weaker when 

0.5: the time difference is one year between Case 5 and Case 6 with 0.5, which is shorter than two 

years between Case 1 and Case 2 with 0. In addition, Fig. 14(c) and (d) display a lesser decline of 

 difference in the plentiful area than that in Fig. 14(a) and (b) respectively.   



5. Conclusions and discussions 

As an initial attempt, we employ DP technique in a periodic Bellman approach to present a seasonal 

model numerically. We obtain the optimal feedback harvesting policies given multiple uneven seasons 

and two-dimensional states. Our method provides a useful tool for seasonal regulation measures, such 

as periodic moratorium, locational closure, seasonal TACs, fleet-specific TACs or seasonal target 

escapement and the like. The tradeoff of harvesting between seasons is driven by multifold 

mechanisms, which leads to profound implications for bioeconomic modeling and policymaking.  

Key findings are listed in Table 2 and 3 and the most intriguing ones are rather counterintuitive. We 

find it sometimes optimal to adopt a seasonal closure of the fishery in the equilibrium cycle, which 

would hardly be discovered from an annual model. Unlike a typical policy that imposes a moratorium 

to recover the stock, we find that many states first undergo harvesting all year round and then develop 

into the seasonal moratorium. A growing group biomass could be the overshooting effect instead of a 

clear signal to increase harvest. In some cases on part of the state space, the optimal seasonal harvest 

declines with rising states creating a ‘valley’, which may originate from the unit profit difference 

between seasons. Fishing pressure on the mature in one season leads to even heavier harvesting on the 

same group in the next season. It seems that sparing the immature may derive from conservative 

purposes but in fact diminish the value of the whole stock.  

Our approach can potentially adapt for various biological and economic seasonality in fishery. Some 

forage fish, such as herring, make vast migrations between spawning, feeding and nursery grounds. In 

this case, the season number and season lengths can be adjusted according to behaviors that are shaped 

by ocean currents, plankton abundance, tradeoff between predator avoidance and growth (Brönmark, 

Skov, Brodersen, Nilsson, & Hansson, 2008). Although the curse of dimensionality is inevitable, the 

multidimensional states may instead represent predator-prey multispecies relationships, such as cod 

and capelin in the Barents Sea. This allows for more focus on ecological analysis and food web 

studies, which are gaining more attention as a research topic. For single species models, the biological 

dynamics could include depensation so that the model becomes more realistic for species that are 

particularly vulnerable at lower states. The decision variables, i.e. harvesting policies, may be 

extended to season-state-specific instead of simplified to season-specific as in our presentation.  

Possible modeling extensions exist in various directions. It is interesting to employ size(group)-

dependent price functions (Zimmermann, Steinshamn, & Heino, 2011). The model can be in 

continuous time and also apply the periodic Bellman approach to investigate seasonality. Stochasticity 

can be added to the biological transitions via different fluctuations in such as the ocean temperature, 

food availability, cannibalistic behavior, predator distribution etc. Randomness may also be 

incorporated in the price and cost functions. We are currently working on establishing stochastic 

models with seasonality.  



Furthermore, the big potentials and rich implications of our approach goes beyond the model we 

present in this work. This approach enables us to take into consideration longer seasonality that spans 

more than a single year. For example, the El Nino conditions impact the ocean temperature drastically 

at intervals spanning several years, affecting numerous ocean lives as well as commodity prices in 

different countries. In addition, the flexibility to employ uneven season lengths makes it possible to 

combine more than a single seasonal pattern in the model: for instance, we can model El Nino as a 

condition that happens once every several years together with a seasonal feature, such as upwelling in 

the spring, which takes place annually. Except for natural phenomenon, such combined seasonal 

patterns may potentially be extended to market price, technological breakthrough, economic trend and 

countless other aspects in natural resource modeling.  
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