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Abstract A two-species bioeconomic model is analyzed, but in contrast to most
similar models, there is no biological interaction between the species, only economic.
The interaction takes place in themarketwhere the quantity of either speciesmay affect
the price of the other. The effects of cross-price elasticities on the optimal steady state
and on the optimal paths in the sole-owner case are investigated both analytically
(steady states) and numerically (optimal paths). First, it is shown that if the harvest of
one species has impact on the price of another species, then this has a positive effect on
its steady-state stock. The effect increases with the stock-elasticity in the cost function.
Further, in the case of linear demand functions, the steady state outcome depends solely
on the sum of the cross-price parameters and not their individual values. Secondly, in
the investigation of optimal paths, it is shown that if the harvest of one species has
impact on the price of the other, optimal trajectories reach steady state faster for itself
and slower for the other species. Further, when cross-price elasticities are sufficiently
high, the paths go from being monotonic to feature over- or undershooting.

Keywords Renewable resources · Bioeconomic modelling · Fisheries management ·
Market interaction · Cross-price effects

1 Introduction

Analysis ofmulti-species and ecosystemmodels has been common in the bioeconomic
literature at least since the 70s, whether it has been for the purpose of studying open
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access, maximum yield or economic rent; see e.g. Anderson (1975), Silvert and Smith
(1977) andMay et al. (1979). More recent contributions include Kasperski (2015) and
Wang andEwald (2010). In these articles, however, the interaction between species has
always been biological, ecological and sometimes technical, but rarely in the market.
Most articles that take market-interactions into account, are empirical studies, and
many, if not most of them, seem to deal with interaction between aquaculture and wild
caught fish (Anderson 1985; Ye and Beddington 1996).

Analysis of substitutes and complements in demand is fundamental in economics
and well known from basic textbooks as well as numerous empirical studies, e.g.
Meng (2014) and Garcia and Raya (2011) to mention a couple of recent ones. This
phenomenon also applies to natural resources such asfish products (Vignes andEtienne
2011). However, there are only a few studies that systematically investigate implica-
tions of cross-price effects on optimal management of renewable resources from a
conceptual and theoretical angle, probably because such models have a tendency to
become verymessy. There are, however, some recent exceptions to this rule, andQuaas
et al. (2013) is one such. Their results are based on the assumption that there are two
stocks with identical regeneration functions. Using this assumption they investigate
the effect on resilience of substitutability and complementarity. Quaas and Requate
(2013) study the effects of preferences for diversity in amodelwith an arbitrary number
of fish species. An older example is Ruseski (1999) who uses a two-stage, two-period
model to analyze the behavior of two agents, one regulated and one unregulated, who
harvest identical products from two separate stocks. He finds that trade in the presence
of market power and divergent management regimes may produce unexpected results.

Related problems have also been srtudied in the literature on the interplay between
international trade and renewable resources like, for example, Chichilnisky (1994),
Brander and Taylor (1997) and Bulte and Barbier (2005) None of these, however,
deal with the same problem as studied here.

In this article a continuous time two-species bioeconomic model is applied to
investigate the effects of economic (market) interaction between species on opti-
mal management from a sole-owner perspective. That is, the owner, or manager,
of both species is one and the same who maximizes the combined revenue from
the two stocks. This may seem far-fetched if the term sole-owner is taken literally.
But here the more common interpretation of the term sole-owner is used, namely
that it represents the managing authority of a nation who behave as a sole-owner on
behalf of its inhabitants in order to maximize the aggregated resource rent. There
may, for example, exist two stocks in different parts of the country’s EEZ, but with
certain similar characteristics making them substitutes in the market. Such charac-
teristics can be that both species are “white fish” or that they are used for fish-meal
or fish-oil production. This sole-owner exploits a certain degree of direct and indi-
rect market power, and the demand functions are assumed to be stationary over
time.

The biological model is a surplus growth model, but the only interaction between
the species is in the market where the quantity of each species may affect the price
of the other. The aim of this study is to investigate implications of market interaction
upon the optimal steady state and on the paths leading to the steady state. Revenue
and costs for each species are separable, but the harvest of one species enters the
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inverse demand function for the other. There are several possibilities, for example
that one species affects the price of the other, but not vice versa. The most realistic
assumption is probably that they are true substitutes such that both species affect the
other species’ price. Somewhat facetiously, we can say that they predate on each others
price. No technical or biological interactions are considered, but the two stocks can
have completely different growth functions. No artificial assumptions about symmetry
are made.

The analysis is divided in two parts, first a steady state analysis and then a dynamic
analysis. Each of these parts are again divided in two, based onwhether the net revenue
function depends on the state variable(s) or not. This is because the state variables turn
out to play an important role for the results. In the steady state analysis, the results
are derived analytically from the mathematical model. In the dynamic analysis, on the
other hand, numerical methods are resorted to as it is beyond realistic expectations
to hope for closed-form solutions of a highly non-linear system of four differential
equations.

2 The generic model

The model is a continuous-time, bioeconomic model of the surplus-growth type, with
two species, x and y, but with no biological interaction. The two species are assumed
to be substitutes in the market implying that the cross-price elasticities are negative. In
other words, the price of one species may depend on both own supply and the supply
of the other species, and therefore there exist certain degrees of market power that are
exploited. The generic inverse demand functions look as follows:

px = px (hx , hy)

py = py(hx , hy)

where pi is price of species i and hi is harvest of species i . Technically it is assumed
that ∂pi/∂h j < 0 for i, j ∈ (x, y). The net revenue function, in its most generic form,
is then defined as

R(x, y, hx , hy) = px (hx , hy)hx + py(hx , hy)hy − κx (x, hx ) − κy(y, hy) (1)

where x and y denote the size of the respective stocks, and κx and κy are cost functions.
The separability of the cost functions rule out technical interactions.

The net revenue function is the objective function to bemaximizedwith respect to hx
andhy as control variables,whereas x and y are the state variables. The state and control
variables are all functions of time, t . In addition there are two separate biological
surplus growth functions, one for each species: f (x) and g(y). The infinite horizon
dynamic optimization problem resulting from this leads to the following discounted
Hamiltonian:

H = e−δt R(x, y, hx , hy) + λ[ f (x) − hx ] + γ [g(y) − hy]
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where λ and γ are costate variables, also functions of t , and δ is the discount rate. The
first-order conditions for this general case are given by1

∂H/∂hx = ∂H/∂hy = 0 (2)

and

dλ/dt = −∂H/∂x, dγ /dt = −∂H/∂y

together with the dynamic constraints

dx/dt = f (x) − hx (3)

dy/dt = g(y) − hy (4)

and initial conditions x(0) = x0 and y(0) = y0.Now let Rwith subscripts represent the
first and second partial derivatives with respect to its respective arguments as defined in
Eq. (1). For example R1 ≡ ∂R/∂x and R12 ≡ ∂2R/∂x∂y. From the general definition
of R it is seen that

R12 = R14 = R21 = R23 = R32 = R41 = 0.

The first-order conditions solved with respect to the discount rate yield the following
two criteria:

δ = f ′(x) + R31

R3

dx

dt
+ R33

R3

dhx
dt

+ R34

R3

dhy

dt
+ R1

R3
(5)

δ = g′(y) + R42

R4

dy

dt
+ R43

R4

dhx
dt

+ R44

R4

dhy

dt
+ R2

R4
. (6)

The two equations in (2) can be used to find explicit solutions for the costate variables
and hence their time derivatives. Taking the first-order conditions and solving for
dx/dt, dy/dt, dhx/dt and dhy/dt by eliminating the costate variables and their time
derivatives, yields the following systemof non-linear first-order differential equations:

dhx/dt = R34A − R44B

C

dhy/dt = −R33A + R43B

C

where2

1 It is assumed that H is continuous, strictly concave and twice differentiable in the control variables hx
and hy . Concavity in H is fulfilled when demand is downward sloping and the cost functions are convex.
2 It is worth noticing that A depends on y and hy whereas B depends on x and hx .
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A = R4(g
′ − δ) + R42(g − hy) + R2

B = R3( f
′ − δ) + R31( f − hx ) + R1

C = R33R44 − R34R43.

Together with the dynamic constraints (3) and (4), using R32 = R41 = 0, this consti-
tutes a system of four differential equations. In the following we assume decreasing
marginal return on harvest, that is R33 < 0 and R44 < 0. If, in addition, we assume
C > 0, then R will be partially convex in the control variables. This is fulfilled if the
direct price effect is stronger than the cross-price effect, which seems to be a reason-
able assumption. Restricting the search for optimal steady states to the closed intervals
0 ≤ hi ≤ MSYi , and x and y to be between zero and the natural carrying capacity,
will guarantee the existence of both a maximum and minimum in the control variables
on this interval. In the following, focus will be on interior solutions when they exist.

Finding closed form solutions for the time paths x(t), y(t), hx (t) and hy(t) for this
system is far too optimistic, even in the simplest case. In stead, in the section Dynamic
Analysis the system will be solved numerically. But first we will look at steady states.

3 Steady state analysis

In this section the properties of steady states are analyzed, and it is all based on the
fairly general formulation of the net revenue function found in (1). By setting all time
derivatives equal to zero, it is seen that the criteria (5) and (6) simplify to the following
in steady state:

δ = f ′(x) + R1

R3
(7)

δ = g′(y) + R2

R4
(8)

These two equations togetherwith hx = f (x) and hy = g(y) yield four equations to be
solved for x , y, hx and hy . The following analysis is divided in two parts, namely when
the net revenue (in practice costs) depends on the state variables x and y, and when
it does not. These two cases can be thought of as representing purse seine technology
and trawl technology, respectively. With purse seine technology there is usually little
or no relationship between total stock size and costs of harvest whereas for trawl
technology it is believed to be a strong relationship between stock size and costs. In
reality, stock-dependence of costs varies along a continuum for both technologies. This
dependence has been studied empirically by a number of authors, for example Harley
et al. (2001) and Sandberg (2006). In this article, I focus on the extreme cases where
the stock-elasticity is either zero or one, in order to isolate the most interesting results.

3.1 State-independent net revenue

When costs do not depend on the stock size, all costs can technically be integrated in
the demand function by defining the price as a price net of costs. Then an interesting
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conclusion can be made directly from observing the two simple expressions (7) and
(8). This is stated in the following proposition:

Proposition 1 If there is no stock-dependece of any kind in the revenue function, the
optimal steady state stock and harvest levels will not be affected by own- or cross-price
parameters.

Proof If the stock levels are not explicitly included in the revenue function, or the
derivatives are zero, the last terms in (7) and ( 8) will disappear as R1 = R2 = 0. Then
these two equations will be two independent equations in x and y, and the steady state
will only depend on biological parameters and the discount rate ��

The implication of Proposition 1 is that without stock-dependence the Golden Rule,
as stated, for example, in Grafton et al. (2004, p. 113) is exactly the same in a two-
species model with market interactions as it would be with two single-species models,
namely that the marginal biological productivity of each stock should equal the alter-
native rate of return represented by the discount rate. As such, this is a generalization
of the same result from single-species models. Mathematically it may look simple,
but thinking about it, this is a fairly strong and far from obvious observation. Let us
put it this way: If the quantity of herring in the market affects the price of mackerel
and vice versa, this will not affect the optimal standing stock levels of mackerel or
herring, nor their corresponding harvest levels, as the technology in these two fish-
eries are purse seine technology. If, on the other hand, the quantity of haddock in the
market affects the price of cod and vice versa, this will affect the optimal standing
stock and corresponding harvest levels as the fisheries in question are characterized
by bottom trawl technology where the size of the stock has strong impact on the cost
of harvesting. The intuition behind this is much the same as in the single-species case
with downward sloping demand.

But even in the case where the optimal steady state is not affected by the cross-
price parameters, the paths towards the steady will typically be affected irrespective
of technology, as we shall see later. In practice, the way stock levels affect net revenue
is through the cost functions. More specifically, therefore, if the cost functions are
stock independent, optimal steady states will be characterized by the condition that
marginal biological growth should equal the discount rate. In the special case that
the discount rate is zero, the optimal steady states will correspond to the maximum
sustainable yield levels. One practical implication of this is that cross-price effects
do not make any difference with respect to steady states in schooling (purse seine)
fisheries whereas they may make a difference in demersal (trawl) fisheries.

3.2 State-dependent net revenue

With state-dependent net revenue, the last terms in Eqs. (7) and (8) come into play as
R1 and R2 are no longer zero. The cross-price parameters enter the equations through
the denominator of the last term, namely R3 and R4. From (1) it is seen that these are
given as
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R3 = ∂px
∂hx

hx + px + ∂py
∂hx

hy − ∂κx

∂hx
(9)

R4 = ∂px
∂hy

hx + py + ∂py
∂hy

hy − ∂κy

∂hy
. (10)

It is the cross-price parameters that are of interest here, and these are ∂py
∂hx

< 0 in (9)

and ∂px
∂hy

< 0 in (10). Let us concentrate on R4, as the analysis of R3 is equivalent. As
the two species are supposed to be substitutes, the cross-price elasticities are negative
implying that R4 is smaller when the cross-price effect is taken into account than if
the species are economically independent, that is ∂px

∂hy
= 0. This will unambiguously

lead to a higher steady state stock and a more conservative harvest policy. This can be
stated in the following proposition:

Proposition 2 Assuming strictly concave growth functions and net revenue that
depends positively on the stock level for one of the stocks, then if the harvest of one
species reduces the price of the other species, this implies a higher optimal steady
state stock for the affecting stock.

Proof Assume that the only cross-price effect present is from hy to px . Then it is
seen from (10) that having such a cross-price effect compared to not having it, will
reduce R4 through the term ∂px

∂hy
< 0. As R2 > 0, reducing R4 will make the fraction

R2/R4 larger. From (8) it is seen that making R2/R4 larger has to be compensated by
a smaller g′(y) for a given δ. R4 and g′(y) therefore goes in the same direction. As
g is assumed to be concave, smaller g′(y) implies going to the right (higher stock).
Exactly the same reasoning applies to (9). ��

Proposition 2 says that if the harvest of y affects the price of x negatively, then this
will imply a higher optimal standing stock of y, and vice versa, compared to when
there is no such effect. The intuition is that the downward pressure on revenue from the
other species can be regarded as an addition to themarginal cost for the sole owner, and
therefore we have the well-known phenomenon that higher costs have a conservative
effect. The interesting thing is that this only comes into effect when net revenue also
depends on the stock. In practice, it implies that for demersal fisheries, wherewe expect
high stock dependence of costs, cross-price relationships play a conservative role
whereas for schooling fish stock (typical pelagic fisheries) cross-price relationships
have little or no effect. This is an important result as it adds to the well-known fact
that schooling species are already most vulnerable and exposed to extinction and
collapse due to the technology in the fishery, which usually is purse seine. Demersal
species caught by trawl, on the other hand, is to large extent naturally protected by
their behavior (uniform distribution in the ocean) which makes it extremely costly to
harvest on very small stocks even under open access regimes.

Corollary The steady state stock for one of the species, for example x, may depend on
the harvest of the other, y, even if the opposite is not true. This happens when R1 �= 0
but R2 = 0 or vice versa.

Proof This follows directly from (7) and (8) ��
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Even though (7) and (8) are easy to relate to conceptually, closed-form solutions
for the steady state levels are almost impossible to find except for the simplest spec-
ifications of demand and cost functions, and even in these cases the expressions tend
to become too long and messy to be of any practical value.

In the case of linear demand functions, that is when

px (hx , hy) = ax − bxhx − cxhy (11)

py(hx , hy) = ay − byhy − cyhx (12)

where ai is the constant term, bi is the sensitivity to ownharvest and ci is the cross-price
sensitivity, the following statement is proposed:

Proposition 3 If demand functions are linear, the steady-states are determined exclu-
sively by the sum of the cross-price parameters.

Proof It is seen from the analysis above and Eqs. (7) and (8) that the cross-price
parameters only affect the steady state through the terms R3 and R4. In the linear case
these terms can be written

R3 = ax − 2bxhx − (cx + cy)hy

R4 = ay − 2byhy − (cx + cy)hx .

Thus it is seen that the cross-price parameters enter the equations that determine the
steady state in the form of the sum of the two parameters. ��

In other words, no matter how asymmetric the economic and biological submodels
are with respect to demand, cost structure and surplus growth function, if the cross-
price parameters change value such that their sum remains the same, the steady state
will remain unchanged. In practice this means that the two fish stocks can be quite
different regarding economic, biological and technological aspects, if we let the cross-
price parameters change values such that for example cx = 3 and cy = 7 instead of
the other way around, it will not change the steady state.

4 Dynamic analysis

Not only the steady state, but also the optimal paths leading to the steady state are
of interest, and, in particular, how they are affected by the cross-price parameters.
As in the previous section, the case with stock-independent net revenue, in practice
stock-independent costs, will be analyzed first. Thereafter the case where net revenue
depends on the stocks, is investigated.

4.1 State-independent net revenue

Here we let net revenue depend on harvest only and not on the stock size. This is
representative of fisheries with purse seine technology targeting schooling fish, and
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only the extreme case is investigated, that is no trace of the stocks in the net revenue
function whatsoever, which implies that, in addition to R32 = R41 = 0, from earlier,
we also have

R1 = R2 = R31 = R42 = 0

just like in Sect. 3.1. The first-order conditions corresponding to (5) and (6) then
simplifies to:

δ = f ′(x) + R33

R3

dhx
dt

+ R34

R3

dhy

dt

δ = g′(y) + R43

R4

dhx
dt

+ R44

R4

dhy

dt

This system can be solved for the time derivatives of the control variables yielding

dhx/dt = R4R34(g′ − δ) − R3R44( f ′ − δ)

C
(13)

dhy/dt = R4R33(g′ − δ) − R3R34( f ′ − δ)

C
(14)

and C denotes the determinant as earlier, assumed to be positive. It is immediately
seen that in the case with stock independent net revenue, although the steady states
are unaffected by the cross-price parameters, the optimal paths are affected.

Together with the dynamic constraints, (3) and (4), the equations (13) and (14)
constitute a system of four non-linear first-order differential equations. In principle,
this is a solvable systemyielding the optimal time paths for hx (t), hy(t), x(t) and y(t).
Due to the non-linearities, meaningful closed-form solutions are beyond expectation.
The only approach, therefore, is to solve the system numerically.

In order to perform numerical analysis, special functional forms must be deter-
mined. Here linear inverse demand functions will be applied where the price of each
species depends on both own harvest and the harvest of the other species as specified
by Eqs. (11) and (12). In addition it is assumed that the growth functions, f and g,
are standard logistic surplus growth functions:

f (x) = rx x

(
1 − x

Kx

)

g(y) = ry y

(
1 − y

Ky

)

where ri and Ki have the conventional interpretations as intrinsic growth rate and
carrying capacity for i = (x, y), see Clark (2010). The numerical specification of the
above equations is given in appendix. The numbers are not meant to represent any real
fisheries, rather they are meant to describe completely hypothetical, but still possible,
fisheries with meaningful characteristics; in other words fisheries that very well might
have existed.
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First, the optimal steady state is found: From Proposition 1 we know that in this

x 60
y 332.5
hx 9
hy 74.8125

case the steady state is independent of the cross-price parameters ci . In a non-linear
four-dimensional system, there are multiple possible solutions, but fortunately, for the
cases considered here, there is only one possible solution within the feasible region

x ∈ [0, Kx ], y ∈ [0, Ky] and hi ∈
[
0, ri Ki

4

]
. Remember that with the logistic model

r K
4 represents maximum sustainable yield.
In order to investigate the effect of cross-price parameters on the optimal time paths,

we start by looking at the development of x with (cx = 0.08 ) and without (cx = 0)
cross-price effect in the case without stock-dependence. This is illustrated in Fig. 1.3

The stock is assumed to be overexploited initially (like so many fish stocks around
the world), and it is seen that the approach to the steady state is asymptotic due to the
non-linearity [as opposed to the bang-bang approach resulting from linear models, see
Clark (2010)]. The boundary conditions applied here are x0 = 45 and hx at t = 65
equal to the optimal steady state harvest. It is reassuring to see that with these initial
conditions the stock level approaches the independently calculated steady states even
when they are not restricted to it. I take this as a confirmation that the paths are really
optimal. It is seen that without cross-price effect both stock and harvest approach
their steady state values monotonically. With cross price effect from the harvest of y
on the price of x , on the other hand, the stock development of x goes down initially
(undershooting) and reaches its steady state more slowly. The harvest is first higher
than the steady state level, then goes below and then gradually approaches it. This is
both an interesting, and very robust result.

The corresponding stock and harvest development for y is illustrated in Fig. 2. Here
the initial stock is y0 = 300.

Themost noticeable feature is that the effect on species x , whose price is affected by
the other species, is more pronounced than for species y, which causes the effect. The
stock of y approaches its steady state faster with cross-price effect than without.This
is the opposite of the x-stock development which even goes down initially. In other
words, the behavior of the x-stock is less bang-bang like and the y-stock more bang-
bang like with cross-price effect from y on x .

4.2 State-dependent net revenue

In the section “Steady state analysis” therewas significant difference between the cases
with and without stock-dependent net revenue, in practice costs. It may therefore be

3 The numerical solutions have been found using dsolve (numeric) in Maple 18.

123



Predators in the market: implications... 337

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

hx x hx-c x-c

Fig. 1 Stock and harvest development for species x with (x-c and hx-c) and without (x and hx) cross price
effect when there is no stock-dependence. Harvest of y affects price of x
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Fig. 2 Stock and harvest development for species y with (y-c and hy-c) and without (y and hy) cross price
effect when there is no stock-dependence. Harvest of yaffects price of x

interesting to investigate whether there is any noticeable difference in the dynamics
case also. In this section the standard cost function derived from the Schaefer produc-
tion is applied:

κx (hx , x) = Cxhx
x

κy(hy, y) = Cyhy

y

where the values for the parameters Cx and Cy are given in Appendix.
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Table 1 Results from the
dynamic analysis and
state-dependent costs

cx = 0 cx = 0.08 cx = 0 cx = 0.08
cy = 0 cy = 0 cy = 0.01 cy = 0.01

x 77.1 110.6 78.7 121.1

y 409.6 413.4 410.2 413.0

hx 9.4 7.3 9.4 5.8

hy 75.5 75.4 75.5 75.4

First, the long-term optimum is calculated, and this is affected by the cross-price
parameters as shown earlier. The steady state for the case without cross-price effects
and for some combinations of parameter values are reported in Table 1.

According to Proposition 2, x will increase when cy increases and vice versa,
everything else equal. This is confirmed by the table. Typically the stock will also
increase when the own price-parameter increases, but not necessarily so, as seen when
cy increases from 0 to 0.01 for cx = 0.08. In this case the stock y decreases slightly.

Figures 3 and 4 illustrate the time-paths for x and y, respectively, with and without
cross-price effects, but this time with stock-dependent costs.

It is seen that the paths increasemonotonically and approach the steady state asymp-
totically without any sign of over- or undershootingwhen there is no cross-price effect.
And, just like in Figs. 1 and 2, it is seen that the introduction ofmarket interaction leads
to over- and undershooting for the species whose price is affected by the other species.
The effect, however, is not very pronounced. It is further confirmed that the steady
states themselves are affected by the stock-dependence, but this is almost negligible
for the affecting stock.

Thus, it is seen that whether net revenue is stock-dependent or not does not have any
significant impact on the shape of the optimal time paths although it has significant
impact on the steady states. The shape of the time-paths are mainly affected by the
cross-price parameters.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
hx x hx-c x-c

Fig. 3 Stock and harvest development for species x with (x-c and hx-c) and without (x and hx) cross price
effect when there is stock-dependence in costs. Harvest of y affects price of x
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Fig. 4 Stock and harvest development for species y with (y-c and hy-c) and without (y and hy) cross price
effect when there is stock-dependence in costs. Harvest of y affects price of x

5 Summary and conclusions

This article is about a two-species bioeconomic model where the only interaction
between the species is in the market. In other words, there is no technical or biological
interaction between the species. This may be relevant for a social planner, for example
the managing authorities in a country, who has to deal with several species around the
coast. These species may be located in different geographical areas and therefore do
not interact biologically, but their products are sold in the same market.

The article is structured in two parts, first steady-state analysis and then dynamic
optimal path analysis. These parts again are divided in two sections, with and with-
out state-dependent costs. Steady states are studied both analytically and numerically
whereas optimal paths are studied numerically. The main result from the steady-state
analysis is that if the harvest of one species has impact on the price of another species,
then this has a positive effect on its stock. The effect increases with the stock-elasticity
in the cost function. In other words, whether cross-price elasticities have impact on the
steady state or not, depends on the technology in the respective fisheries. In fisheries
where effort and costs are independent of the total stock size, cross-price elasticities
have no such effect. This is typically relevant for fish species with schooling behavior,
and therefore harvested using purse seine technology. For demersal species, which
typically are caught using bottom trawl, the cross-price elasticities actually affect the
optimal size of standing stocks and corresponding harvest. More precisely, the qualita-
tive effect is such that the presence of cross-price elasticities have a conservative effect
on the stocks. In other words, the presence of a substitute in the market reduces the
price and thereby profitability, and hence has a conservational effect on the stock. This
was shown analytically in the section Steady State Analysis. This is a generalization
of the same result from single-species models. A novel result found here is that, in
the case of linear demand functions, it is the sum and only the sum of the cross-price
parameters that affect the steady states, and not their composition or individual values.
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In the section Dynamic Analysis it is shown that optimal paths towards steady
state are affected by cross-price elasticities whether costs depend on stock or not. If
harvest of one species has impact on the price of another species, optimal trajectories
reach steady state faster for itself and slower for the other species. Further, when the
cross-price influence is sufficiently strong, the stock and harvest paths go from being
monotonically increasing or decreasing to exhibit over- or undershooting. Overshoot-
ing is defined as the casewhere the stock is induced to increase initially even though the
initial stock is above the target. Undershooting is defined as the case where the stock
is induced to decrease although it already under the target steady state. In other words,
over- and undershooting refer to regions where the variables make an initial departure
from the target before they come “back on the track”. No trace of over- or undershoot-
ing have been found when the cross-price effects are removed. It is the indirect gain
made by the cross-price effects that make over- and undershooting optimal.

The results presented here are fairly novel, and therefore there is scope for quite
a bit of future research. This may include the combination of biological and mar-
ket interaction, the combination of technological interaction and market interaction.
And it may, of course, include other numerical examples, numerical analysis of other
functional forms, and not least empirical investigation of particular cases.
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6 Appendix

In this appendix the numerical specification applied in the analysis is summarized in
the following table

rx Kx ry Ky δ

0.25 150 0.4 760 0.05
ax bx cx
10 0.1 0.08
ay by cy
15 0.02 0.01
Cx Cy
200 1500
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