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Abstract 

To integrate economic considerations into management decisions in ecosystem frameworks, 

we need to build models that capture observed system dynamics and incorporate existing 

knowledge of ecosystems, while at the same time accommodating economic analysis. The 

main constraint for models to serve in economic analysis is dimensionality. In addition, to 

apply in long-term management analysis, models should be stable in terms of adjustments to 

new observations. We use the ensemble Kalman filter to fit relatively simple models to 

ecosystem or foodweb data and estimate parameters that are stable over the observed 

variability in the data. The filter also provides a lower bound on the noise terms that a 

stochastic analysis requires. In the present article, we apply the filter to model the main 

interactions in the Barents Sea ecosystem. In a comparison, our method outperforms a 

regression-based approach. 

 

Keywords: Barents Sea, Bioeconomics, Ecosystem-Based Management, Ensemble Kalman 

Filter, Multidimensional Models, State Space Model 

 

 

  

Page 2 of 38Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 
 

1 Introduction 

The ecosystem approach to fisheries management has been broadly embraced at both the 

political and scientific levels (UN 2002, Olsen et al. 2007, Holland et al. 2010, Link 2010), 

but adoption in real world situations is limited (Vert-pre et al. 2013, Skern-Mauritzen et al. 

2015). While both empirical and theoretical evidence demonstrate the insufficiency of 

management regimes based on single species models (see Link 2010 and Skern-Mauritzen et 

al. 2015 and references therein), single species models remain at the center of attention for a 

number of reasons. Two central reasons are (i) the limited (in most cases) knowledge of the 

extent and importance of ecological and economic interactions and (ii) the complexity that 

arises in models with such interactions. Notwithstanding, the future lies in co-management 

and multidimensional analysis, and we need methods and techniques to harness multispecies 

models for use in fisheries management (Link 2010, Peck et al. 2014).  

 Multispecies models provide insights into how a group of populations responds to a 

process; such models are critical for better management and evaluation of multispecies 

tradeoffs and tradeoffs between different user sectors (Link 2010, p. 100). Multispecies 

models can also address dynamics that are hard to deal with consistently in single species 

models. Examples are interaction-induced critical depensation, effective carrying capacity 

(which depends on interactions and on the state of the system), dynamic interactions, and 

consistent system responses. Sandal and Steinshamn (2010) is a case in point, where highly 

nonlinear harvest profiles are derived for a multispecies model. The harvest profiles have 

features hardly imaginable in a single species model, such as a declining harvest rate with 

increasing stock level in parts of the state space. 

 To construct tractable multispecies fisheries models, we need estimation techniques 

that deal with parameter and model uncertainty. In our view, relevant models should submit to 

dynamic decision analysis, which implies a limitation in the number of dynamic variables 
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(that is, dimensionality). At the same time, we want models to capture as much as possible of 

the system structure and dynamics, including nonlinear and chaotic behavior. We suggest 

applying the ensemble Kalman filter (Burgers et al. 1998, Evensen 2003), a data assimilation 

method that has seen wide application in meteorology, oceanography, and other fields that are 

concerned with chaotic, nonlinear, and stochastic dynamic systems (Evensen 2009). 

 We use the ensemble Kalman filter to fit a marine ecosystem model to data. 

Evensen (2003, 2009) reviews both theoretical developments and applications of the 

ensemble Kalman filter and related methods. This literature extends the Kalman filter to a 

large class of nonlinear models. The fundamental idea is to use a Markov Chain Monte 

Carlo approach to solve the Fokker-Planck equation that governs the time evolution of the 

model. The model is formulated as a stochastic differential equation, and both the model 

and observations are assumed to have error.  The method facilitates simultaneous model 

fitting and parameter estimation. Simultaneity is consistent with viewing the problem 

as a combined state and parameter estimation problem, which differs from traditional 

approaches that essentially ignore model error (typically, parameters are first estimated 

and then model predictions are calculated in a deterministic fashion; for further details and 

discussion, see Evensen 2009, pp. 95–ff.). With the ensemble Kalman filter, relatively simple 

models can capture much of the complexity observed in marine ecosystems.  We briefly 

describe the ensemble Kalman filter and apply it to a three-species model of the Barents 

Sea ecosystem. We compare our results with those of a regression-based approach. 

 Several different data assimilation methods, usually variational adjoint methods, 

have been suggested to fit aggregated biomass models to data (see Ussif et al. 2003, 

and references therein). Grønnevik and Evensen (2001) applied different ensemble-based 

data assimilation techniques to age-structured fish stock assessment models, the 

ensemble Kalman filter among them. An advantage of the ensemble Kalman filter when 
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compared to variational adjoint methods is that it does not rely on direct optimization, and 

all observations are not processed simultaneously, which reduces computational demand. 

Instead, variable and parameter estimates are updated sequentially according to the 

filtering procedure. The ensemble Kalman filter also facilitates flow-dependent noise 

attribution; flow-dependent (or rather, state-dependent) noise processes, it turns out, 

are fundamental in capturing the dynamics of marine ecosystems.  

If, as in Ussif et al. (2003), there is a known or easily identified functional 

relationship between biological variables and the exploitation strategy, the filter can also 

estimate economic parameters (for example, the exploitation rate). Another feature of the 

ensemble Kalman filter is that it readily applies to both continuous and discrete time 

formulations. This is a useful feature, because, while much bioeconomic modeling uses 

discrete time models, a substantial share of related work in optimization relies on 

continuous time. The difference in models of time may seem innocuous, but the 

corresponding discrete time model of a nonlinear model in continuous time is rather 

complex, while the corresponding continuous time model of a nonlinear model in discrete 

time cannot be uniquely determined because of missing information about the dynamic 

behavior between discrete observation times. 

 The ensemble Kalman filter fits, in an efficient manner, nonlinear aggregated 

biomass ecosystem models to data.  It also estimates the model error, which can be 

translated into uncertainty in model predictions. Combined with developments in high-

dimensional, stochastic optimization, the filter can make bioeconomic analysis relevant 

for real-world fisheries management decisions. Perhaps the main critique of bioeconomics, 

the over-simplification of biological models, loses much of its force when the explanatory 

power of the fitted biomass models matches, and even competes with, that of age-

structured and synthetic models. The potential of the ensemble Kalman filter reaches 
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further. It has the ability to process large amounts of data in high-dimensional systems 

with large numbers of poorly known parameters (see Evensen 2003 and references 

therein) and it should be of interest to researchers working with large and volatile 

systems. 

 

2  The Ensemble Kalman Filter 

Our theoretical presentation of the ensemble Kalman filter is based upon Evensen (2003, 

2009). Our point of departure is the continuous time state space model: 

 �� = ����	�� + 	
���	�� 

� = ��� + � 

(1) 

(2) 

An incremental change �� in the state variable (or n-vector) � is the sum of the drift 

term ����	�� and the stochastic diffusion term 
���	��. The diffusion term represents 

model error, which is composed of inadequacy in ����, potential parameter uncertainty, 

and stochastic drivers. When � is an aggregated biomass vector, ���� is the multi-

dimensional growth function (�:	ℝ� → ℝ�). 
��� is generally a matrix (ℝ� → ℝ�; 

elements may depend on �) and the �-dimensional stochastic, Brownian increments in �� 

are independent, identical, and normally distributed with mean zero and variance ��. That 

is, stochastic drivers in equation (1) are Gaussian white noise. The measurement functional 

��� relates the state vector to the observations �. When the state vector is directly 

observed, the measurement functional is the identity operator. � is a normally 

distributed error term with mean zero and covariance �. Equation (1) is called the state 

equation; equation (2) is called the measurement or observation equation. 

 The ensemble Kalman filter is a sequential method and works as follows. The 

model is integrated forward in time until measurements become available. 

Measurements are used to update the model. The updated model is then further 
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integrated until the next measurement time.  In the theoretical literature, the updating 

step is called the analysis, thus the notation �� for the updated state vector.  The forward 

integrated model (the forecast) is denoted �� . �� is the covariance of the model 

forecast; �� is the covariance of the model analysis. 

 The ensemble Kalman filter uses, as the name suggests, an ensemble of model states: 

a cloud of points in state space, to represent the probability density function at any given 

time. Each ensemble member represents a realization of the state vector from the underlying 

distribution, and, with a large enough ensemble, it conveys distributional properties. With a 

Markov Chain Monte Carlo method (meaning that the model can be formulated as a 

Markov Chain and that a large number of simulated solutions are considered; see Evensen 

2009), each ensemble member is integrated forward in time according to (1).  Errors are 

simulated. The integrated ensemble represents a forecast of the probability density and 

the only approximation is the limited number of ensemble members (Evensen 2009, p. 47). 

The Markov Chain Monte Carlo method is the backbone of the ensemble Kalman filter and 

is equivalent to solving the Fokker-Planck equation for the time evolution of the 

probability density; see Evensen (2003, p. 348) for further details. 

 When measurements are available, each ensemble member is updated as a linear 

weighting between the forecast and the measurements: 

 �� 	= 	 �� 	+ 	��� −	��� (3) 

The weight � is called the Kalman gain. Assuming  is the identity operator, we see that, 

with � = 0, no weight is put on the observation �; with � = � (the identity operator), 

no weight is put on the forecast ��. The Kalman gain is given by: 

 � =	��	�	���	� + ���� (4) 

where we assume that  is a linear operator (a matrix); � denotes its transpose. It is 

crucial that observations are treated as uncertain (� > 0), and, therefore, in the 
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ensemble Kalman filter, the observation probability density is represented by an 

ensemble; in other words,  observations are perturbed (Burgers et al. 1998, pp. 1720-1721). 

It is convenient to let the number of ensemble members in the observation ensemble, 

denoted !, equal the number of ensemble members in the state space ensemble, denoted ". 

In the standard Kalman filter, both the forecast and analysis covariance 

(�� and ��) are in principle unknown; they are defined in terms of the unknown 

true state (see Evensen 2003, p. 347). In the ensemble Kalman filter, they are 

defined in terms of the ensemble means (# denotes the mean or expected value): 

 �$� = #%�"� − 	#%"�&��"� − 	#%"�&��& 

�$� = #%�"� − 	#%"�&��"� − 	#%"�&��& 

(5) 

(6) 

That is, covariances are represented by the ensemble moments that carry the subscript '.  

The observation covariance is also represented by the ensemble moment: 

 �$ = #%�! − ���! − ���& (7) 

The observation ensemble is defined such that it has the true (given) observation as its 

mean: #%!& = �. The ensemble Kalman gain is defined as 

 �$ = 	�$� 	�	��$�	� + �$��� (8) 

We assume that the ensemble is large enough that �$�	�  and �$ are nonsingular; see 

Evensen (2003, p. 349). The analysis step (3) for ensemble member ( is given by: 

 "��(� 	= 	"��(� 	+	�$�!�(� − 	"��(�� (9) 

It can be shown that, by updating the ensemble with the perturbed observations !, the 

updated ensemble "� has the correct error statistics (Evensen 2003, p. 349). The analysis 

covariance can be written as 

 �$� 	= 	 �� −	�$��$� (10) 

which is equivalent to the standard Kalman filter expression for the covariance matrix. 

See Evensen (2003) for derivations and further discussion. 
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 The filter can estimate parameters by adding the parameters to the state vector – 

in essence, by adding dimensions to the state space. Parameters are treated as 

unobserved, constant model states, which implies they are assumed to have zero drift and 

diffusion terms (Hansen and Penland 2007, Kivman 2003). With parameters in the state 

space, involved operators must adapt to make them compatible with the extended state 

vector. The distribution of the ensemble members in the relevant dimension of the state 

space represents the conditional probability density function of the parameter. We 

interpret the mean of the ensemble as the estimate and the spreading of the ensemble as a 

measure of the estimate uncertainty. 

 The ensemble Kalman filter estimates state variables and parameters 

simultaneously.  As Evensen (2009, pp. 95-97) points out, the approach represents an 

improvement to more traditional approaches that ignore model error and stochastic, 

dynamic noise. The sequential nature of the approach yields, for each observation time �, 

parameter estimates conditional upon observations up until �; estimates for the last 

observation are conditional upon all observations and are usually the estimates of 

interest. In situations where regime shifts or similar situations occur, one should inspect 

the behavior of the sequential parameter estimates. 

 While the filter does not directly estimate the scaling of the diffusion term in 

(1), the estimated �$� can be used to infer the appropriate noise scaling. �$� estimates 

the second moment of the density of the state vector at a given moment in time (at, say, �). 

�$� will vary with time (it is dynamic or flow-dependent; dynamic covariance is an 

advantage with the ensemble Kalman filter over variational  methods). The second 

moment of the state vector density can be interpreted as the uncertainty in the 

estimated state conditional upon the state at � − 1 and the uncertain observation at �. 

The uncertainty in the state estimate accounts for parameter uncertainty, observational 

Page 9 of 38 Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10 
 

uncertainty, and model inadequacy; the latter is what the diffusion term in (1) 

represents. Thus, if the covariance is stable over time, or if it is stable after controlling 

for some assumed functional form of the scaling term, such as 
��� = 	
* ∙ �, �$�  can be 

interpreted as an estimate of 
��� (or 
* ). How �$� varies over time maps out the 

distribution of 
*; that is, we essentially follow Hansen and Penland (2007).  

 The initial ensemble should reflect beliefs about the initial state of the system 

(Evensen 2003, p. 350). The filter can be initialized by specifying means and standard 

deviations that characterize the initial ensemble. In the case of unknown parameters, 

initialization is not necessarily straightforward. Our experience is that, with large 

enough standard deviations, such that the initial ensemble covers all eventualities, and 

with enough ensemble members, it is possible to find reasonable traits of the initial 

ensemble. Often, theory and earlier results are available to guide this process. 

 For a given time �, the ensemble Kalman filter provides an estimate of the state 

of the system and its parameters conditional upon observations up until �.  By 

smoothing the filter estimates, we obtain estimates conditional upon all observations 

(Evensen and van Leeuwen 2000). The filter and smoother estimates for the final 

observation are identical, and the smoothed parameter estimates are constant through 

time. The ensemble Kalman smoother can be formulated as a sequential method and in 

terms of the filter analysis; see Evensen (2003, p.360) for details. That smoother 

parameter estimates are constant and identical to the final filter estimates follows from 

the explicit modeling of parameters as deterministic but unknown constants (see 

Hansen and Penland 2007 and Kivman 2003) and is straightforward from the 

formulation in terms of the filter estimates; see Evensen (2009) for details. The 

ensemble Kalman smoother is particularly useful in problems involving unknown 

parameters, as it provides estimates of the state variables, conditional upon all 
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observations, and upon parameter estimates, also conditional upon all observations. In 

contrast, the filter provides, for a given �, state estimates conditional upon observations up 

until � and upon parameter estimates conditional upon observations up until �; these 

estimates clearly are poor before the parameter estimates converge. 

 To summarize, the ensemble Kalman filter can be interpreted as a statistical Monte 

Carlo method where the ensemble evolves in state space with the mean as the best 

estimate and the spreading of the ensemble as the error variance (Burgers et al. 1998, p. 

1720). For many problems, the sequential processing of observations proves to be a 

better approach than the simultaneous processing that is typical in variational methods 

(Evensen 2009, p. 101). 

 

3  The Barents Sea Model 

The Barents Sea is one of the most productive ocean areas in the world, and is subject to 

extensive research (Gjøsæter et al. 2009, Huse et al. 2004, Durant et al. 2008; see also 

further references therein). The commercially most important stocks are cod (Gadus 

morhua) and capelin (Mallotus villosus); cod is highly valued as human food and capelin is 

an important part of the cod diet. Capelin is also caught for fishmeal and oil production. 

Juvenile herring (Clupea harengus L.) enters the Barents Sea when large year-classes arise 

in the Norwegian Sea. Herring has an important influence on the ecosystem; it is preyed 

on by cod while it preys on capelin larvae. We limit our model to these three fish stocks 

for two main reasons.  First, our model captures the dynamics of the cod stock to a high 

degree, and the cod fishery, as the most important fishery in the region, is our main 

interest. Second, for the model to be relevant for bioeconomic analysis, we have to limit 

its complexity and dimensionality. We have in mind the type of analysis carried out in 

Sandal and Steinshamn (2010) and Poudel et al. (2012); see also Kugarajh et al. (2006). 

Page 11 of 38 Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 
 

To limit complexity, we use simple growth functions and interaction terms common 

in traditional bioeconomic analysis.  While dimensionality is based upon technical 

limitations, we find comfort in the view promoted by Holling and Meffe (1996, p. 

333) that the driving forces of an ecosystem are confined to a relatively small subset of 

variables and relationships. While our choice of variables and relationships does not 

contain all driving forces of the Barents Sea ecosystem, we observe that our model 

captures much of the variation detected in stock assessments. 

 

3.1  The State Space Model 

The biomass of the three stocks are the state variables; cod is denoted �� , capelin is 

denoted �, , and herring is denoted �-. Both cod and capelin are harvested in the Barents 

Sea; ℎ� and ℎ, denote harvest rates of cod and capelin. Herring is not harvested in the 

Barents Sea, but eggs and larvae flow in from the Norwegian Sea. The best model would 

feature a lagged inflow variable (see discussion below), but a lagged variable would mean that 

the model is not autonomous; to accommodate dynamic analysis, the model should be 

autonomous. Thus, we use �- as a proxy for the herring inflow; again, see discussion below. 

Finally, we denote parameters /0 and vectors in boldface. The dynamic model for the 

system is written in differential form: 

 ��� = 	������, /�, /,� + 2����, �,, /-� + 2,�3, /4� − ℎ���� +	
��3���� 

��, =	 ��,��,, /5, /6� − 2����, �,, /7� − 2���,, �-, /8� − ℎ,��� +	
,�3���, 

��- =	 ��,��-, /9, /�*� + 2���,, �-, /��� − 2,�3, /�,� + /�-�-��� +	
-�3���- 

(11) 

(12) 

(13) 

where growth functions are denoted �0 and interaction terms are denoted 20 . Table 1 

reports functional forms that we discuss further below. The stochastic increments ��0 are 

independent, with mean zero and variance ��. The scaling term 
0��� reflect correlations 

in the noise processes. Two principal models of the scaling term were tried: white noise 
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(
0��� = 
*0 ) and state-dependent white noise (
0��� = 
*0 ∙ 3 = 	
*0��� + 
*0,�, +


*0-�-) .  

The first terms in each model equation are the growth functions. The growth functions 

model the growth that does not happen through the modelled interactions. For cod (11), 

we use the logistic growth function; for the pelagic stocks capelin (12) and herring (13), we 

use the modified logistic growth function (see Table 1 for specifications). The related 

parameters (/�, /,, /5, /6, /9, and /�*) are interpreted accordingly. (The idea of carrying 

capacity, that is, the standard interpretation of the second parameter in the logistic and 

modified logistic, becomes unclear in an ecosystem setting. The capacity of the ecosystem 

to harbor any one species depends on the state of the entire system. Hence, intrinsic single 

species notions such as carrying capacity must be treated with caution in our multispecies 

approach.) While the logistic is the standard assumption, we found that the modified logistic 

better captures the tendency of the pelagic stocks to remain at low stock levels for extended 

periods before rapidly growing to high levels. 

All species interactions in the system are predator-prey relationships. Cod preys upon 

both herring and capelin, while herring preys upon the capelin stock. (A competitive, 

mutually destructive interaction between the pelagic species is an interesting alternative 

model that was estimated, together with a few other specifications. The model reported here 

provided the best overall fit to the data. Brief descriptions of, and results from, alternative 

models are available from the authors.) The interaction terms are per definition positive, 

and corresponding terms (cod-capelin corresponding to capelin-cod, for example) have 

opposite signs. The capelin-cod and capelin-herring interaction terms (2��∙�) are inspired by 

the crude Lotka-Volterra form of predator-prey interaction (May et al. 1979, p. 268), where 

the product of the stock levels is adjusted by an intensity parameter. The functional form 

of, for example, the capelin-cod interaction is 2����, �,, /7� = 	/7���,, where /7 is the 
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intensity parameter. We will discuss the interpretation of the interaction intensity 

parameter further below. 

While cod preys upon both capelin and herring, it has a tendency to prefer capelin when 

both types of prey are available (Durant et al. 2008, Gjøsæter et al. 2009). That is, the 

predation pressure on herring from cod is reduced when capelin is abundant. Thus, we 

modify the cod-herring interaction term to reflect cod’s preference for capelin, and have 

2,�3, /�,� = /�,���- :;
:<=:;

. The fraction 
:;

:<=:;
 yields a model of preference such that, in 

the extreme case with no capelin (�, = 0), the fraction equals one and the interaction term 

is unmodified. When capelin is present (�, > 0), the fraction takes a value between zero 

and one and the interaction (cod predation) is weaker. 

As is evident from the model equations (11 - 13), the interaction terms 2� and 2, 
represent a biomass loss for the prey species and a biomass gain for the predator 

species.  The intensity parameters scale the product of biomass for each species in the 

terms to account for the rate of biomass loss in the prey species. Biomass is not 

conserved in the interactions, and the additional interaction parameters (/-, /4, and 

/��) reflect the loss of biomass in the interactions. The loss in the cod-capelin 

interaction, for example, is given by 
>;
>?

, and this and corresponding fractions are 

expected to take values between zero and one. Because most of the biomass is lost, 

these values are expected to lie closer to zero than one. We can think of these fractions 

as biomass conversion rates between species. Presumably, regularities exist for 

biomass conversion rates. While known or assumed interaction relationships would be 

helpful in reducing the number of parameters in the model, biologists reject the idea of 

stable relationships (S. Tjelmeland, personal communication). Thus, we refrain from 

prescribing fixed conversion rates. 

Page 14 of 38Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 
 

The final parameter, /�-, measures the influence of the inflow of herring on the herring 

stock growth.  Most of the time, the amount of herring biomass that enters the Barents Sea 

is relatively small. Over a few years, however, the herring biomass grows substantially. 

Thus, we could lag the inflow variable two years and multiply it with the scaling 

parameter /�-. The idea is that three-year- old (and older) herring make up most of the 

herring biomass in the Barents Sea, and the biomass influx two years earlier better 

explains the change in the herring stock. As mentioned above, a lagged variable would 

go against the need for an autonomous model. Thus, we use �- as a proxy for the inflow. 

The correlation coefficient of �- and inflow lagged two years is 0.811 and is nonzero 

with a p-value of 5.5	 ∙ 10��4; therefore, we find �- to be a reasonable proxy. The 

assimilation run with the lagged inflow yields only minor alterations to our results; these 

results are available from the authors. (After three or four years in the Barents Sea, the 

juvenile herring returns to its main habitat in the Norwegian Sea to mature and 

eventually spawn; the herring growth rate in our model reflects the migration behavior.) 

To avoid negative parameters, parameters are all assumed to be log-normally 

distributed. (Formally, they are treated as /0 = exp�E0�, where each E0 is a stochastic 

constant that is normally distributed.) 

We treat estimates from stock assessments as measurements of the state variables, and 

the measurement operator is thus the identity operator. Note that parameters are added 

to the state vector as described above. We denote the extended state vector F. The 

measurement operator must thus be adjusted to be compatible with the state vector by 

adding zeros. Parameters are treated as unobserved states. The observation equation 

becomes 

 G = F + H (14) 

where 
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 F =	 I�0/JK,  L	 = 	 %1⋯3&,  (	 = 	 %1⋯13&,  and  =	 %O	P& (15) 

O is a three by three identity matrix and P is a three by thirteen null matrix. G is a 

three-element vector of observations, and H is the error term vector, which is normal,  

independent, and identically distributed with mean zero and variance Q. 

 

3.2  An Alternative Model 

For comparison, we set up a simple, alternative model in the spirit of much of the work in 

bioeconomic analysis. The crude idea is to fit the individual stock equations with ordinary 

least squares. The independent variables RS are defined as observed changes in stock levels 

from year to year, controlling for harvest in the case of cod and capelin. We have R0,S =

�0,S=� − �0,S + ℎ0,S for cod and capelin (L = 1,2); for herring (not harvested), we have R-,S =

�-,S=� − �-,S. The regression equations are as follows: 

R�,S = U� + V���,S	 + V,	��,S, +	V-��,S�,,S +	V4��,S�-,S
�-,S

�,,S +	�-,S +	W�,S (16) 

R,,S = U, + V5�,,S	, + V6U	�,,S- +	V7��,S�,,S +	V8�,,S�-,S +	W,,S (17) 

R-,S = U- + V9�-,S, + V�*U	�-,S- +	V���,,S�-,S +	V�,��,S�-,S
�-,S

�,,S +	�-,S +	V�-�-,S +	W-,S (18) 

The parameters denoted U0 are the intercepts and are added to the otherwise unchanged 

equations for the main model. Thus, the parameters V0 refer to the same terms as do the 

parameters /0 above. 

The model in equations (16-18) is formulated in discrete time, and the model in 

general and the parameters in particular are not directly comparable to those in the 

continuous time formulation (11-13). The comparison is nevertheless not completely 

irrelevant; as discussed above, fitting of continuous time model formulations in 

discrete time frameworks is widespread in the bioeconomic literature. 

 

Page 16 of 38Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 
 

3.3  Data 

The fish stocks in the Barents Sea cannot be observed directly. However, the Institute of 

Marine Research in Bergen and the Knipovich Polar Research Institute of Marine 

Fisheries and Oceanography in Murmansk carry out extensive, yearly ecosystem surveys.  

Based upon these surveys, they provide yearly estimates of the stock levels of all the 

important species in the Barents Sea. The stock estimates are published by the 

International Council for the Exploration of the Sea (ICES), and most of our data are 

collected from the ICES online database. We treat the stock estimates as observations. 

Notably, Ekerhovd and Gordon (2013) raise issues with stock estimates from virtual 

population models.  We share their concern about the consistency in the stock estimates, 

but find it beyond our scope to apply the (Ekerhovd and Gordon 2013) adjustment here. 

Uncertainty in stock assessments is unfortunately not reported, and we are left to 

speculate. The herring inflow data was provided by S. Tjelmeland (personal 

communication). 

We have stock estimates, catch data and herring inflow estimates from 1950 to 2007. 

However, the ICES database does not contain data on capelin prior to 1972. For the period 

prior to 1972, we collected catch data from Røttingen and Tjelmeland (2008, see Figure 

2).  Capelin stock estimates were collected from Marshall et al. (2000, see Figure 1, p. 

2435). The early capelin stock estimates are more uncertain than later estimates, and we 

assume a 50% increased observation uncertainty on the capelin stock data prior to 1972. 

All data are visually presented in Figure 1, with error bars showing assumed 

observation uncertainty. All numbers are given in tonnes. 

 

3.4  Estimation Strategy and the Initial Ensemble 
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While the success of our approach hinges to some degree on reasonable characteristics of 

the initial ensemble, it is not immediately clear what constitutes reasonable characteristics.  

While we can rely on external, empirical evidence for a few of the parameters in the 

interaction terms, we must produce reasonable initial ensemble characteristics for most 

parameters in a heuristic fashion. The parameter subspace has thirteen dimensions (one 

for each parameter), and, while it is not impossible to search, via trial and error, the 

parameter subspace for an appropriate, initial ensemble, the high dimensionality makes 

the approach unlikely to succeed. (Our main metrics of appropriateness are whether the 

state estimates resemble the stock assessment data and to what degree the spread of the 

ensemble in the parameter dimensions contracts over time. In addition, we have used the 

Bayesian Information Criterion (BIC), but carefully, since the criterion is not unique 

because of the Monte Carlo element of the filter (see Ekerhovd and Kvamsdal 2014). We 

have also considered the distribution of the Kalman gain over time and stability of 

parameter estimates.) 

By first assimilating each equation individually, we reduce the dimensionality of the 

relevant parameter subspace substantially. When we assimilate the cod equation (11), 

for example, the state space consists of the cod stock level as the only state variable and 

the four parameters in the equation (/� - /4) as parameter variables. The variables �, 

and �- are treated as control variables. 

We have good ideas about reasonable ensemble initializations of the biomass 

conversion rates (limited support) and the interaction intensity parameters for the 

cod-capelin and cod-herring interaction terms (empirical evidence).  The capelin-

herring interaction intensity is assumed to be an order smaller than the cod-capelin 

interaction intensity. Thus, when searching for reasonable initial ensemble 

characteristics in the single equation assimilations, we need mostly to be concerned 
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with the parameters of the growth functions. What we have called the capacity 

parameters are characterized by an ensemble mean higher than observed historic levels 

(exploited fisheries usually have stock levels below their full capacity). To find reasonable 

characteristics for the ensembles along the growth rate dimensions, we consider a range 

of levels and compare, as mentioned above, model fit, ensemble contraction, the Bayesian 

Information Criterion, and the distribution of the Kalman gain. To demonstrate, we 

briefly discuss an example of the procedure in Appendix A.2. Means and spreads of the 

initial ensemble for the parameter dimensions in the single equation assimilations are listed 

in Table A2 in the appendix. 

The estimates from the single equation assimilations are used to characterize the mean 

of the normal distributions from which we draw the initial ensemble for assimilation of the 

full model.  Exceptions are those parameters for which we have empirical support for the 

initial ensemble characteristics. Ensemble spreads (standard deviations of distributions 

from which initial ensembles are drawn) are also inherited from the single equation 

assimilations, with the same exceptions. 

The initial ensemble is drawn randomly from a multivariate normal distribution. For the 

three state variables, we use the first observations as the mean of the initial ensemble and 

30% of the first observations as the standard deviation. 

The initial ensemble for the interaction intensity parameters /7,  /8, and /�,  were 

characterized based upon empirical evidence.  The term 2��3, X� = 	 /7���, in (12) reflects 

the loss of capelin biomass from the interaction with cod. Gjøsæter et al. (2009, see figure 

5, p. 45) estimated, from stomach content data, the amount of capelin consumed by the 

Barents Sea cod for the years 1984-2006. The consumption varies over time, as do the cod 

and capelin stock levels. To get a reasonable initial measure of /7, we regressed the total 

consumption of capelin on the product ���, (without intercept; we also ran the regression 
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with the intercept, and with and without two outliers; slope estimates varied somewhat but 

the distribution finally used for the initial ensemble spanned all estimates). Notably, 

Gjøsæter et al. (2009) provided us with data for 1984-2007 (that is, one more year of 

data than what they based their original analysis upon). The estimated coefficient was 

3.46 ∙ 10��* (standard error 5.1 ∙ 10���, �[\], 	0.63). Similar data for the capelin-

herring interaction are not available.  Herring is, however, thought to have a smaller 

predation rate on capelin than does cod; we set the implied mean for /8 at 10% of the 

implied mean of /7 . For the herring-cod interaction intensity parameter /�, , data are 

available.  Gjøsæter et al. (2009) also estimated the amount of herring consumed by the 

Barents Sea cod. Regressing the consumed amount of herring on the term ���- :;
:<=:;

 

yielded a coefficient of 3.03 ∙ 10��� (standard error 6.46 ∙ 10��,, �[\], 	0.44). As with /7, 

we set the mean of the initial shadow parameter (E�,� ensemble to correspond to the 

estimated coefficient. In comparison, regressing on the term ���- produces the coefficient 

2.49 ∙ 10��� (standard error 3.76 ∙ 10��,, �[\], 	0.61). 

The additional interaction parameters /- , /4 , and /��  (reflecting biomass conversion 

rates) cannot be larger than the corresponding parameters /7, /8, and /�,, as it is assumed 

that some biomass is lost in the interactions. The biomass loss assumption is not 

explicitly enforced, but initial implied ensemble means for the three additional 

interaction parameters were set to 25% of /7 for /-, 10% of /�, for /4 and 10% of /8 

for /��. Typically, one assumes that 90% of the biomass is lost between trophic levels, 

but cod is particularly adapted to catching capelin and thus we specified a higher 

biomass conversion rate for the cod-capelin interaction. 

We discuss further implementation details in Appendix A.1. 

 

4  Results 
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Table 2 reports parameter estimates, with standard errors in parentheses, for the single 

equation assimilations. Table A2 in the appendix reports the prior characterizations for 

comparison.  The third column (‘Contraction’) in Table 2 reports the standard error of the 

estimates as a fraction of the standard deviation of the prior distribution. The ensemble 

Kalman filter will mechanically contract parameter ensembles, but the amount of 

contraction depends on the amount of information the filter retains. Assessing the 

contraction is equivalent to comparing the width of the parameter confidence intervals at 

the beginning and end of the assimilation. Both tables and also subsequent tables report 

estimates of the shadow parameters E0. However, our interest lies with the parameters 

/0 = exp�E0�, and Table 2 reports what we call the /-interval, which is the two standard 

error interval around the mean estimate of the underlying parameter /0. 

 We also calculate an estimate and standard error of the parameters in the diffusion 

terms.  We denote the parameters 
0,0, where the subscripts denote the relevant state  

variable. Table 2 reports the results. 

Further, Table 2 reports the BIC-scores,  the average root mean squared innovations, 

the difference R-squared (�,̀ , appropriate for time series data, see Harvey 1984), the 

Lilliefors a-statistic and the Ljung-Box b-statistic (with 15 lags) for each equation. A 

few comments on these statistics are in order. The BIC-scores, both here and later, are 

evaluated with a bandwidth of 200.000 (tonnes); see Ekerhovd and Kvamsdal (2014) for 

details. The innovation is the distance between the observations and the estimated state 

variables. In our model, with the state-dependent noise scaling 
 ∙ �, it is useful to 

normalize the root mean squared innovations with the estimated state. Thus, what we 

report as the average root mean squared innovation is the time-average of the following 

expression 
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�c� = 	dE%�� − Ff

��,&
E%Ff�&

 (19) 

The subscript g denotes that it is the smoothed estimate which goes into the expression. 

The lower the average root mean squared innovation, the better is the model fit. Note 

that, in the absence of the normalization issue, the average root mean squared innovation 

is the average distance between the ensemble members and the observation; if the 

observation and the ensemble mean are close, the average root mean squared innovation 

will be close to the estimate of the noise scaling term, which is derived from the second 

moment of the ensemble. 

The Lilliefors a-statistic tests normality of error terms; the Ljung-Box b-statistic 

tests autocorrelation in errors. There are no signs of autocorrelation in any of the 

assimilations. Errors in the capelin equation deviate from normality to some degree 

(the h-value is slightly below the conventional 5% level). A density error plot shows 

that the deviation consists of an overrepresentation of large, negative errors. A 

scatterplot of the errors shows that large negative errors occur mainly at low stock 

levels and likely reflect that the model cannot predict exactly when the stock escapes 

near zero states. 

To discuss the actual estimates in Table 2 is of limited interest; their main function is 

to serve as priors for the full model. We do note, however, that while the contraction 

rate is substantial for most other parameters, the interaction parameters (parameters 

3, 4, 7, 8, 11, and 12) have not contracted much. As the full model results will show, 

contraction is somewhat better when we assimilate all equations simultaneously. The 

small contraction rates for the interaction parameters underline the need for 

informative priors. 

The cod equation has the smallest average root mean squared innovation and has a 

similar BIC-score as that for the capelin equation. �,̀  is much lower for the cod 
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equation than for the other equations, however. The high �,̀  in the other equations likely 

derives from relatively high gain values, which leads to state variable estimates close to the 

observations. Comparing with results from the alternative (regression-based) model (see 

Table 4), they all have lower �,-statisics. (We will discuss the results in Table 4 in more 

detail below.) Finally, the estimated noise scaling parameters in Table 2 are highly significant 

for all equations and underline the importance of the state-dependent noise processes. 

Table 3 reports results for the full model assimilation. The BIC-score for the entire 

model is 269.70, while �,̀  is 0.9548. To properly test multivariate normality would require 

more observations than are available here. The multivariate Ljung-Box b-statistic (Hosking 

1980), with 15 lags, is 125.47 (h-value is 1.000; no signs of autocorrelation). Notably, the 

prior for the full model assimilation is based upon the results reported in Table 2 for all 

parameters, apart from the two parameters for which we have empirical evidence (/7 and 

/�, ).  For those parameters, we kept the original prior information as given in Table A2. 

If we compare the contraction rates reported in Tables 2 and 3, we observe that, 

overall, contraction is better in the full model assimilation for the capelin and herring 

equation. In the cod equation, the interaction parameters have better contraction rates in 

the full model assimilation, while the growth parameters contract better in the single 

equation assimilation. That some growth parameters do not contract as much in the full 

model assimilation is likely because most of the signal in the data about these parameters 

is picked up in the single equation assimilation that was run prior to the full model 

assimilation. 

In Table 3, the average root mean squared innovations have improved considerably for all 

state variables compared to the values in the single equation assimilations (Table 2). As 

discussed above, the average root mean squared innovations can be close to the 
* estimate 

if the ensemble mean is close to the observations. Further, significant cross-correlations 
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in 
* (the off-diagonal terms) may be challenging in model applications; as we report 

below, estimated cross-correlations are close to zero. 

Below, we report estimates and standard errors of the noise scaling term 
* (20). All 

off-diagonal elements are statistically indifferent from zero, which suggests that there 

is little correlation in the different stochastic processes of the system. The diagonal 

elements are also relatively small, at least when compared to hypothetical scenarios 

studied in theoretical work (Poudel et al. 2012).  The standard errors do not give a 

correct measure of the significance of the diagonal elements, as the elements are positive 

by definition, but nevertheless show that the system is stochastic. If one wishes to carry 

out studies of worst-case scenarios, it could be of interest to investigate whether high 

or low levels are correlated in time across equations. 

 


* =	

i
j
j
j
j
k 0.0802�0.0098�

0.0004
�0.0034�

0.0008
�0.0035�

0 0.1113
�0.0250�

−0.0010
�0.0030�

0 0 0.0948
�0.0047�m

n
n
n
n
o

 (20) 

Figure 1 shows the smoothed stock level estimates (solid curves) with two standard 

errors to each side (shaded areas) for all three state variables (top panel: cod; middle 

panel: capelin; bottom panel:  herring). The figure also shows the observed stock levels 

(circles) with assumed observation uncertainty (the error bars show two standard 

deviations around the observations). Most observations lie within the four standard 

error band and the model captures most of the system dynamics. The smoothed 

parameter estimates are constant over time, and we interpret the smoothed estimates 

as model fit with uncertain but stable parameters (that is, as reported in Table 3). 

Capelin stock data is more uncertain prior to 1972. As expected, the stock estimates 

have larger standard errors prior to 1972.  Compare, for example, the width of the 

standard error band in Figure 1 (middle panel) in the years before and after 1972, or at 
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the peaks around 1970 and 1980, which are at roughly the same level.  After 1972, the 

capelin stock estimates, in addition to being more precise, lie closer to the measurements. 

 If we compare our estimates in the cod equation to those of Ussif et al. (2003), 

there are considerable differences. (Our estimates are based on some ten years more of 

data, but there is nothing spectacular about the last ten years of our data, perhaps apart 

from considerable levels of herring.) Our central estimate for the carrying capacity is 

6.5 million tonnes; their estimate is 5.2 million tonnes. As mentioned above, the 

carrying capacity parameter in our model does not reflect the full capacity because 

interaction terms may contribute. Thus, our estimate is a lower bound (perhaps the 

lower end of the /-interval should be considered: 5.4 million tonnes). We estimate the 

logistic growth rate in the cod equation at 0.55; Ussif et al. estimate it at 0.34. Our 

estimate is larger and suggests that much larger harvest quotas can be sustainable. The 

maximum of our estimated growth curve, interaction terms aside, is at 899 thousand 

tonnes, while that of Ussif et al. (2013) is 460 thousand tonnes. In comparison, quotas 

in recent years have exceeded our maximum. Thus, our estimates in the cod equation 

seem to better align with reality. Published estimates of the remaining parameters were 

not available to us. 

 

4.1  Alternative Model Results 

Ordinary least squares parameters estimates and related t-statistics, root mean squared errors, 

�,-statistics, Lillifors a-statistics, and Ljung-Box b-statistics, for the individual equations (16 

– 18), are reported in Table 4. The overall impression is a poor fit, with �, statistics barely 

acceptable. There are no signs of autocorrelation, but errors are not normally distributed in the 

cod (16) and herring (18) equations. Plots show that deviations are minor for the cod equation, 

but severe deviations are present in the herring equation. Few parameter estimates are 
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statistically significant at the conventional 95% level. Most parameters are of the expected 

sign in the cod and capelin equations (16 – 17), except for the insignificant capelin-cod 

interaction parameter V7. The intercepts (U� and U,) should be close to zero if the classical 

growth model were to hold water, but they are not. The herring equation (18) seems entirely 

driven by the inflow (V�-), with the rest of the equation seemingly representing noise. The 

interaction parameters (V�� and V�,) are of the expected sign and somewhat removed from 

zero; the growth parameters are essentially zero. 

 The root mean squared errors in Table 4 are reported in levels and do not, as such, 

compare to the average root mean squared innovations reported in Table 3. More relevant is 

the root mean squared error relative to the mean of the left-hand side variables (for equation L: 

�cp0 Rq,Srrrr⁄ ), which evaluates to 0.4015, 2.673, and 52.44 in the three equations. Only the 

first is similar to any of the average root mean squared innovations reported in Tables 2 and 3, 

but is still higher than all of them. That �cp0 Rq,Srrrr⁄  evaluates as a static concept (all points 

matter) while the average root mean squared innovations evaluates in a dynamic sense 

(measured locally in time) reflect the larger point that, while ordinary least squares fits all 

points simultaneously without regard for their order, the ensemble Kalman filter operates 

sequentially and fits paths in the state space. 

 The carrying capacity in the cod equation in the alternative model (16) is estimated at 

4.8 million tonnes; the growth rate at 0.35. The implied maximum of the growth curve, again 

when interaction terms are ignored, is 436 thousand tonnes. As discussed above, the ensemble 

Kalman filter estimates from the model (11 – 13) seem more realistic. 

 

5  Conclusions 

The ensemble Kalman filter relates structurally to the standard Kalman filter and the 

extended Kalman filter in the sense that they minimize the variance of the state estimates. 
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However, the ensemble Kalman filter has some advantages. Unlike the extended Kalman 

filter, it requires no linearization. It solves rank problems that may occur with large 

numbers of observed variables. Unlike variational adjoint methods, it requires no adjoint 

operator and is thereby simpler to implement, and it has flow-dependent (non-constant) 

covariance. Further, the ensemble Kalman filter is well suited to large-scale problems, as it 

extends to asynchronous and missing observations and other issues (Evensen 2009). On 

the other hand, the ensemble integration (in the forecast step) can be computationally 

costly and, with strongly nonlinear systems, iterative procedures called multiple data 

assimilations hold better promise (Emerick and Reynolds 2012). As such, the ensemble 

Kalman filter is just the tip of the iceberg of a range of related methods that apply to a 

large range of problems (Evensen 2003). 

In applying the ensemble Kalman filter, we have shown how relatively simple 

aggregated biomass models, typical in bioeconomic analysis, can capture much of the 

dynamics of ecosystems.  When compared to earlier efforts of applying data assimilation 

methods to bioeconomic models (Ussif et al. 2003), our model seems a better fit and 

agrees better with stylized facts. The model presented here shows the most promise from 

among a number of different specifications. (Among the specifications we tried were: capelin 

and herring with common carrying capacity, that is, competitive, mutually destructive 

interaction, notably with fewer parameters; pure, white – not level dependent – noise in the 

error term; assumed perfect observations of the control variables; herring inflow as a state 

variable; and herring inflow as white noise around a non-zero mean.) In the interest of space, 

we cannot go into full details, but the alternative models have a number of undesirable 

properties that, when added together, wipe out the advantage of, for example, fewer 

parameters. 
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A prominent modeling possibility that could be explored is data timing. In our 

current approach, we assume a constant harvest rate throughout each year. The 

harvesting is more concentrated in winter and spring, however.  Further, the stock 

assessments are usually carried out in the fall. These nuances of timing could influence 

the dynamics of the system were they taken into account.  We have chosen not to go into 

this in our current approach for two reasons. One is a need to limit the scope of our 

present work. Second and more important, our current approach better serves the model 

needs in a bioeconomic framework for decision and management analysis. 

The main model does of course have room for other improvements. The /-intervals 

for several of the parameters are not particularly tight, for example, and the estimates 

of elements in the 
* matrix are not very precise. Based upon our experience, we 

conclude that the best source of improvements would be more data.  While some of the 

series we use here extend further than what we utilize, herring inflow estimates are not 

further available. Notwithstanding, estimates of parameters in chaotic systems are not 

likely to be very precise, and management models should be flexible and adaptive 

(Holling and Meffe 1996, p. 332). It is important that management models take the 

uncertainty of the dynamics into account (Hill et al. 2007). Adaptive management 

models such as feedback models are already well understood in the bioeconomic 

literature (Sandal and Steinshamn 1997).  The challenge is to solve models of higher 

dimensionality that must underlie ecosystem-based management (Fulton et al. 2011).  

We believe the ensemble Kalman filter has an important role to play in both 

theoretical and operational management research, particularly in light of calls for 

ecosystem-based management (Pew Oceans Commission 2003). 

When we compare the ensemble Kalman filter to the standard approach that relies on 

ordinary least squares, two major points emerge. First, the discrete time equivalent of a 

Page 28 of 38Natural Resource Modeling * Manuscript Under Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

29 
 

model formulated in continuous time does not, in general, have the same functional form, 

but this is nevertheless often assumed. If, as with certain discretization schemes, the discrete 

time equivalent cannot be efficiently written in one equation, how to apply ordinary least 

squares is unclear. If, on the other hand, one formulates the model in discrete time in order 

to apply ordinary least squares, there is no unique representation of the discrete time model 

in continuous time and, therefore, optimization schemes in continuous time, for example, 

cannot be applied. Second, the ensemble Kalman filter fits the dynamics of the model in the 

sense that it forces paths in the state space to track the observations. Ordinary least squares, 

at least in the standard formulation, differentiates away the dynamics and is left with a cloud 

of points where the order is no longer essential. Further, we have the flow-dependent 

covariance (model error) that can be used to fit dynamic noise models and the explicit 

incorporation of observational uncertainty; these features of the ensemble Kalman filter 

have no equivalent in ordinary least squares, to our knowledge. In the final analysis, with 

the ensemble Kalman filter, we obtain a model that represents the continuous time dynamics 

of key species in the Barents Sea. Our adaptation of the standard approach is admittedly 

naïve, but discrete time estimation methods based on ordinary least squares cannot provide 

anything similar. 

In a broader scope, we aim to answer calls for ‘flexible, adaptive, and experimental’ 

management models (Holling and Meffe 1996, p. 332), who further write that ‘effective 

natural resource management that promotes long-term system viability must be based on an 

understanding of the key processes that structure and drive ecosystems, and on acceptance of 

both the natural ranges of ecosystems variation and the constraints of that variation for 

long-term success and sustainability’ (p. 335). We think that, when models are simplified 

and reduced down to the key driving phenomena, the ensemble Kalman filter can capture 

both variation and stability in ecosystems and can serve in tractable management models. 
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Table 1: Functional forms used in the model equations. 

Term Functional Form 

Logistic Growth ��t�0 , /u, /vw = 	 /u�0 	x1 −	�0 /vy z 

Modified Logistic Growth �,t�0 , /u, /vw = 	 /u�0, 	x1 −	�0 /vy z 

Modified Logistic Growth with Common Capacity �-t�0 , �J , /u, /vw = 	 /u�0, 	x1 − 	�0 +	�J /vy z 

Lotka-Volterra Interaction 2�t�0 , �J , /uw = 	 /u�0�J 

Modified Lotka-Volterra Interaction 2,t�0 , �J , �{ , /uw = 	 /u�0�{ �{ �J + �{y  
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Table 2: Parameter estimates with standard errors in parentheses for the single equation 

assimilations (the horizontal lines separate the different assimilations). The table also reports 

contraction rates and the /-interval for each parameter, noise-scale estimates (
0,0), and BIC-

scores, the average root mean squared innovation, �,̀ , the Lilliefors a-statistic, and the Ljung-

Box b-statistic (with 15 lags) for each equation (h-values in parentheses). 

 Estimate Contraction /-interval 

Cod, equation (12), BIC: 91.63, Avg. RMSI: 0.1518, �,̀ : 0.2724, a: 0.1026 (0.1366), b: 22.60 (0.0928) 

E� -0.5694 

(0.1159) 

0.114 (0.5039, 0.6354) 

E, 15.64 

(0.2672) 

0.544 (4.780 e6, 8.158 e6) 

E- -23.12 

(0.4886) 

0.986 (0.4540 e-10, 1.472 e-10) 

E4 -26.46 

(0.4917) 

0.982 (1.959 e-12, 5.240 e-12) 


�,� 0.1248 

(0.0115) 

  

Capelin, equation (13), BIC: 177.63, Avg. RMSI: 0.2300, �,̀ : 0.9938, a: 0.1182 (0.0450), b: 10.18 (0.8079) 

E5 -12.58 

(0.3831) 

0.3780 (2.335 e-6, 5.024 e-6) 

E6 16.45 

(0.2094) 

0.710 (11.35 e6, 17.26 e6) 

E7 -21.74 

(0.4845) 

0.978 (2.206 e-10, 5.815 e-10) 

E8 -24.10 

(0.485) 

0.970 (2.095 e-11, 5.533 e-11) 


,,, 0.2289 

(0.0430) 

  

Herring, equation (14), BIC: 89.13, Avg. RMSI 0.1956, �,̀ : 0.9972, a: 0.0929 (0.2488), b: 11.07 (0.7472) 

E9 -11.58 

(0.6948) 

0.693 (0.4633 e-5, 1.859 e-5) 

E�* 15.70 

(0.3484) 

0.690 (4.647 e6, 9.330 e6) 

E�� -26.36 

(0.4757) 

0.976 (2.206 e-12, 5.714 e-12) 

E�, -24.24 

(0.9523) 

0.978 (1.136 e-11, 7.631 e-11) 

E�- -0.1432 

(0.4597) 

0.929 (0.5471, 1.372) 


-,- 0.1953 

(0.0092) 
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Table 3: Parameter estimates with standard errors in parentheses for the full model 

assimilation. The table also reports contraction rates and the /-interval for each parameter, 

and the average root mean squared innovation for each state variable. 

 Estimate Contraction /-interval 

Cod, equation (12), Avg. RMSI: 0.09445 

E� -0.5829 

(0.0735) 

0.623 (0.5186, 0.6008) 

E, 15.69 

(0.1922) 

0.704 (5.403 e6, 7.937 e6) 

E- -23.16 

(0.4337) 

0.914 (0.5660 e-10, 1.347 e-10) 

E4 -26.47 

(0.4508) 

0.929 (2.033 e-12,5.009 e-12) 

Capelin, equation (13), Avg. RMSI: 0.1202 

E5 -12.81 

(0.0643) 

0.169 (2.548 e-6, 2.899 e-6) 

E6 16.56 

(0.0788) 

0.372 (1.445 e7, 1.692 e7) 

E7 -21.86 

(0.4490) 

0.931 (2.034 e-10, 4.994 e-10) 

E8 -24.31 

(0.4415) 

0.922 (1.779 e-11, 4.302 e-11) 

Herring, equation (14), Avg. RMSI 0.1013 

E9 -11.53 

(0.1844) 

0.270 (0.8099 e-5, 1.171 e-5) 

E�* 15.18 

(0.1634) 

0.490 (3.327 e6, 4.614 e6) 

E�� -26.13 

(0.4463) 

0.937 (2.847 e-12,6.951 e-12) 

E�, -24.36 

(0.9020) 

0.934 (1.065 e-11, 6.472 e-11) 

E�- 0.1168 

(0.3817) 

0.879 (0.7673, 1.646) 
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Table 4: Parameter estimates with standard errors in parentheses for regressions of the 

individual equations in the alternative model. The table also reports �-statistics, the root mean 

squared errors �,, the Lilliefors a-statistic, and the Ljung-Box b-statistic (with 15 lags) for 

each equation (h-values in parentheses). 

 Estimate �-stat 
Cod, equation (16), RMSE: 2.52 e5, �,: 0.258, a: 0.1583 (0.0013), b: 16.08 (0.3762) 

U� 1.147 e5 

(2.02 e5) 

0.56 

V� 0.357 

(0.211) 

1.69 

V, -7.29 e-8 

(4.57 e-8) 

-1.59 

V- 1.49 e-8 

(7.64 e-9) 

1.95 

V4 1.88 e-8 

(1.23 e-8) 

1.52 

Capelin, equation (17), RMSE: 1.43 e6, �,: 0.331, a: 0.0668 (>0.500), b: 13.96 (0.5278) 

U, 6.63 e5 

(3.37 e5) 

1.96 

V5 1.11 e-7 

(5.96 e-8) 

1.85 

V6 -1.44 e-5 

(6.76 e-6) 

-2.14 

V7 2.03 e-8 

(6.21 e-8) 

0.326 

V8 -1.53 e-7 

(3.29 e-8) 

-4.66 

Herring, equation (18), RMSE: 1.17 e6, �,: 0.252, a: 0.1968 (<0.001), b: 21.76 (0.1141) 

U- -1.01 e5 

(3.15 e5) 

-0.31 

V9 -3.07 e-7 

(2.95 e-7) 

-1.04 

V�* 2.71 e-5 

(2.98 e-5) 

0.90 

V�� 3.88 e-8 

(3.05 e-8) 

1.27 

V�, -2.13 e-7 

(1.60 e-7) 

-1.33 

V�- 0.83 

(0.65) 

1.28 
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Figure 1: Smoothed stock level estimates (solid curves) with two standard errors to each side 

(shaded areas). Stock level observations with observation uncertainty (circles and error bars) 

and harvest (squares) and inflow (triangles) levels. Top panel: Cod. Middle panel: Capelin. 

Bottom panel: Herring. 
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