City Parking – Solution

A plot of average amount collected weekly for each shift follows.

We see that Shift 2 is below Shift 1 most of the time, with large differences for the latter collections. This becomes more apparent if we could zoom in parts of the plot. Alternatively we may plot the averages for each consecutive year for each shift:

We see that the yearly averages of Shift 2 are considerably below that of Shift 1 in 1984 and the last two years 1987 and 1988.

The differences are not likely to be due to chance alone, which will be confirmed by formal testing as follows:

Two-Sample T-Test and CI: Amount vs Shift (1)

Shift Ν StDev SE Mean Mean 149 147207 24344 1994 1 2 149 136362 26269 2152 Difference = mu (1) - mu (2) Estimate for difference: 10846 95% CI for difference: (5071, 16620) T-Test of difference = 0 (vs not =): T-Value = 3.70 P-Value = 0.000 DF = 294

We see that the hypothesis of equal mean amount for the two shifts is clearly rejected (P=0.000). One could alternatively perform a two-sample non-parametric test (Mann Whitney). This gives a similar negligible P-value. Looking closer at the data it is clear that observations at Christmas and Easter are outliers, but their removal does not affect P=0.000. Since they are few they do not matter much anyway.

The estimated mean difference of 10846 multiplied by 149 provides the estimate of the total amount embezzled of 1 616 048 mill. NOK. If we take the lower confidence limit 5071 literally, we can set a lower limit on the amount embezzled of about 750 000 with a 97.5% guarantee of catching the true amount above it. Is this justified or can we do better?

Concerning the assumptions for computing exact P-values and trustworthy confidence limits: Data for each shift over the range 1983-1988 hardly pass a common normality test (P-values for the Anderson-Darling statistic being P=0.070 and P=0.031 respectively). This is caused by the non-constant levels over time seen from the plot (also mentioned in the case description). This inflates the variances within groups, as well as the pooled variance, having the consequence of too small t-value and too wide confidence intervals. Note that the Mann-Whitney test is not really better justified. Although we get misleadingly wide confidence interval for its 97.5% guarantee, but the statistical significance is not ruined.

Let us therefore look at the data year for year (see plot above).

	Average per	collection	(NOK)			Fraud
Year	Shift 1	Shift 2	Differe	ence	N	estimates
1983	129 701	129 237		464	26	12 064
1984	169 416	157 839	11	577	26	301 002
1985	163 178	158 018	5	160	26	134 160
1986	149 285	147 235	2	050	24	49 200
1987	131 690	110 726	20	964	26	545 064
1988	138 449	111 091	27	358	21	574 518
				Totalling	J NOK	1 616 008
Note.	Two weeks of 1	L986 for Shift	2 omitted	(no collec	ction)	

We may handle the holiday weeks separately, but this will not affect the estimates very much. We see that the total estimate obtained by aggregation over the years is about the same as above.

We now look at the t-tests separately for each year, after having removed observations for Christmas and Easter, as well as a period of strike in 1986, see computer output at the end.

The following conclusions are obtained: The hypothesis of equal mean amount for the two shifts is clearly rejected for the last two years (P=0.000), but not for any of the others at 5% significance level. For the second year (1984) P=0.090 (two-sided), so it is rejected on 10% level, but not on the 5% level. Whether the context justifies using the one-sided P=0.045 should be discussed (we think not). For the separate years the normality tests are passed, except for 1984 Shift 2 and 1987 Shift 1.

The corresponding, hopefully more realistic, confidence limits on the total amount may also be obtained by aggregation over years. Assuming independence between years we can obtain standard error of the total by taking the square root of the sum of squares of the standard error for each year, weighed by the number of Shift 2 weeks in that year. The standard error for each year, typically computed by pooling sum of squares deviation for each shift may be recovered from standard computer output. This computation gives a standard error of about 56 000 which gives a more realistic lower limit of 1 504 000 with about 97.5% guarantee of catching the true amount above it.

Although an improvement over the first analysis, this analysis assumes constant levels within each year, but we may have a seasonal pattern. There are different ways to overcome this. One is as follows: Create a sequence of "matched pairs" from subsequent amounts, collected by different shifts. Then analyze the differences between the amounts within each pair. This allows the level of parking income to vary over time. However, formal inference statements now require that the expected amounts taken away are approximately constant over time. This may of course a questionable assumption, but less so than the ones taken for the analysis above. Note that the pairing can be done two ways; pair a Shift 2 observation with its forward or backward neighbour. Analysis will show that the average of these differences does not differ much. and are about 11 000 with corresponding standard error of about 2 000. Projecting this to the 149 collections of Shift 2 gives the total estimate of about NOK 1 630 000, not much different from the take away estimate above. The corresponding standard error is about 25 000. Taken together this gives a lower limit of 1 580 000 with a 97.5% guarantee. In any case a conservative claim is that the take away is at least NOK 1.5 mill. (5 standard error down the tail).

<u>Note</u>. Autocorrelation in the differences may shrink the computed standard error and thus give a unrealistic high lower limit. This can be checked and does not seem to be the case.

Analysis	Estimated mean	Lower limit for	
	amount taken	97.5% guarantee	
Overall (very naïve)	1 616 000	756 000	
Yearly (naïve)	1 616 000	1 504 000	
Matching pairs	1 657 000	1 608 000	

A summary of the results so far (rounded to nearest thousand)

The calculations above are admittedly crude, and may be improved by even more sophisticated methods. However, they are probably sufficient for the intended purpose. In practice one could defend beyond any doubt an amount of at least 1.5 mill. NOK, which is 5 times (instead of 2) the standard error down from the matching pair estimate.

It is felt that a two-factor analysis of variance will not provide new insight. As expected the computer output (3) shows a highly significant difference between the shifts after the differences between years are accounted for, and it also shows a significant interaction between shift and year, i.e. the shift differences are not uniform over the years. Looking at the residuals they fail the normality test, mainly due to a long left tail for both shifts, which may be partly due to some holidays not accounted for. We may want to perform a non-parametric test using shift as

treatment and year as block. Common software may not include this, but test results will not differ anyway. The parametric ANOVA-model may also be basis for estimation of the total difference and corresponding confidence limits. Note however that the model assumes constant within year means, and is not likely to provide the kind of narrow limits as the "matched pair" approach.

Computer output

Two-Sample T-Test and CI: Amount vs Shift (1)

Shift	Ν	Mean	StDev	SE Mean
1	149	147207	24344	1994
2	149	136362	26269	2152

Difference = mu (1) - mu (2) Estimate for difference: 10846 95% CI for difference: (5071, 16620) T-Test of difference = 0 (vs not =): T-Value = 3.70 P-Value = 0.000 DF = 294

Two-Sample T-Test and CI: Amount83 versus Shift83 (2a)

Shift83	Ν	Mean	StDev	SE Mean
1	24	130789	12283	2507
2	2.4	132120	7420	1515

Difference = mu (1) - mu (2) Estimate for difference: -1330 95% CI for difference: (-7265, 4605) T-Test of difference = 0 (vs not =): T-Value = -0.45 P-Value = 0.652 DF = 37

Two-Sample T-Test and CI: Amount84 versus Shift84 (2b)

Shift84	Ν	Mean	StDev	SE Mean
1	24	170256	17334	3538
2	24	160869	20117	4106

Difference = mu (1) - mu (2) Estimate for difference: 9388 95% CI for difference: (-1530, 20305) T-Test of difference = 0 (vs not =): T-Value = 1.73 P-Value = 0.090 DF = 45

Two-Sample T-Test and CI: Amount85 versus Shift85 (2c)

Shift85 N StDev SE Mean Mean 164263 3685 24 18052 1 161456 2 14162 2891 24 Difference = mu (1) - mu (2) Estimate for difference: 2807 95% CI for difference: (-6638, 12252) T-Test of difference = 0 (vs not =): T-Value = 0.60 P-Value = 0.552 DF = 43

Two-Sample T-Test and CI: Amount86 versus Shift86 (2d)

Shift86 Ν Mean StDev SE Mean 22 17564 1 150393 3745 149296 15777 3290 2 23 Difference = mu (1) - mu (2) Estimate for difference: 1097 95% CI for difference: (-8962, 11156) T-Test of difference = 0 (vs not =): T-Value = 0.22 P-Value = 0.827 DF = 42

Two-Sample T-Test and CI: Amount87 versus Shift87 (2e)

Shift87	Ν	Mean	StDev	SE Mean
1	23	134507	11814	2463
2	24	112632	12806	2614

Difference = mu (1) - mu (2) Estimate for difference: 21876 95% CI for difference: (14637, 29114) T-Test of difference = 0 (vs not =): T-Value = 6.09 P-Value = 0.000 DF = 44

Two-Sample T-Test and CI: Amount88 versus Shift88 (2f)

Shift88 Ν Mean StDev SE Mean 3943 138449 18069 1 21 2 21 111091 16428 3585 Difference = mu (1) - mu (2) Estimate for difference: 27358 95% CI for difference: (16580, 38137) T-Test of difference = 0 (vs not =): T-Value = 5.13 P-Value = 0.000 DF = 39

General Linear Model: Amount_versus Year_; Shift_ (3)

Factor	Type	Levels	Value	es				
Year_	fixed	б	1983	1984	1985	1986	1987	1988
Shift_	fixed	2	1 2					

Analysis of Variance for Amount_, using Adjusted SS for Tests

Source Year_ Shift_ Year_*Shift_ Error Total	5 7.9792 1 743700 5 769707 264 5.7265	2E+10 7.98 07598 7955 74591 7697 5E+10 5.72	35E+10 1. 625725 79 074591 15	5967E+10 55625725 39414918	73.61 36.68	0.000
Term	Coef	SE Coef	Т	P		
Constant	143647	889	161.62	0.000		
Shift_						
	5382.7	888.8	6.06	0.000		
Year_						
1983	-12192	1950	-6.25	0.000		
1984	21916	1950	11.24	0.000		
1985	19213	1950	9.85	0.000		
1986	7332	2021	3.63	0.000		
1987	-19693	1950	-10.10	0.000		
Shift_*Year_						
1 1983	-6048	1950	-3.10	0.002		
1 1984						
1 1985						
	-3700					
	5939					
1 1907	5555	1950	5.05	0.003		

Two-Sample T-Test and CI: Deviation from trend versus Shift (4)

Shift	N	Mean	StDev	SE Mean
1	147	4374	15190	1253
2	147	-4317	14531	1199

Difference = mu (1) - mu (2) Estimate for difference: 8691 95% CI for difference: (5279, 12104) T-Test of difference = 0 (vs not =): T-Value = 5.01 P-Value = 0.000 DF = 291

Descriptive Statistics: Difference within pairs by Shift (5)

Variable	Shift	Ν	N*	Mean	StDev	SE Mean
DIFF	1	148	4	10968	22397	1841
	2	146	5	-11119	24686	2043

Case 15: City Parking © Jostein Lillestøl NHH, Bergen