City Parking - Solution

A plot of average amount collected weekly for each shift follows.

We see that Shift 2 is below Shift 1 most of the time, with large differences for the latter collections. This becomes more apparent if we could zoom in parts of the plot. Alternatively we may plot the averages for each consecutive year for each shift:

Average amount per collection

We see that the yearly averages of Shift 2 are considerably below that of Shift 1 in 1984 and the last two years 1987 and 1988.

The differences are not likely to be due to chance alone, which will be confirmed by formal testing as follows:

We see that the hypothesis of equal mean amount for the two shifts is clearly rejected ($\mathrm{P}=0.000$). One could alternatively perform a two-sample non-parametric test (Mann Whitney). This gives a similar negligible P -value. Looking closer at the data it is clear that observations at Christmas and Easter are outliers, but their removal does not affect $P=0.000$. Since they are few they do not matter much anyway.

The estimated mean difference of 10846 multiplied by 149 provides the estimate of the total amount embezzled of 1616048 mill. NOK. If we take the lower confidence limit 5071 literally, we can set a lower limit on the amount embezzled of about 750000 with a 97.5% guarantee of catching the true amount above it. Is this justified or can we do better?

Concerning the assumptions for computing exact P -values and trustworthy confidence limits: Data for each shift over the range 1983-1988 hardly pass a common normality test (P -values for the Anderson-Darling statistic being $\mathrm{P}=0.070$ and $\mathrm{P}=0.031$ respectively). This is caused by the non-constant levels over time seen from the plot (also mentioned in the case description). This inflates the variances within groups, as well as the pooled variance, having the consequence of too small t-value and too wide confidence intervals. Note that the MannWhitney test is not really better justified. Although we get misleadingly wide confidence interval for its 97.5% guarantee, but the statistical significance is not ruined.

Let us therefore look at the data year for year (see plot above).

We may handle the holiday weeks separately, but this will not affect the estimates very much. We see that the total estimate obtained by aggregation over the years is about the same as above.

We now look at the t-tests separately for each year, after having removed observations for Christmas and Easter, as well as a period of strike in 1986, see computer output at the end.

The following conclusions are obtained: The hypothesis of equal mean amount for the two shifts is clearly rejected for the last two years ($\mathrm{P}=0.000$), but not for any of the others at 5% significance level. For the second year (1984) $\mathrm{P}=0.090$ (two-sided), so it is rejected on 10% level, but not on the 5% level. Whether the context justifies using the one-sided $P=0.045$ should be discussed (we think not). For the separate years the normality tests are passed, except for 1984 Shift 2 and 1987 Shift 1.

The corresponding, hopefully more realistic, confidence limits on the total amount may also be obtained by aggregation over years. Assuming independence between years we can obtain standard error of the total by taking the square root of the sum of squares of the standard error for each year, weighed by the number of Shift 2 weeks in that year. The standard error for each year, typically computed by pooling sum of squares deviation for each shift may be recovered from standard computer output. This computation gives a standard error of about 56000 which gives a more realistic lower limit of 1504000 with about 97.5% guarantee of catching the true amount above it.

Although an improvement over the first analysis, this analysis assumes constant levels within each year, but we may have a seasonal pattern. There are different ways to overcome this. One is as follows: Create a sequence of "matched pairs" from subsequent amounts, collected by different shifts. Then analyze the differences between the amounts within each pair. This allows the level of parking income to vary over time. However, formal inference statements now require that the expected amounts taken away are approximately constant over time. This may of course a questionable assumption, but less so than the ones taken for the analysis above. Note that the pairing can be done two ways; pair a Shift 2 observation with its forward or backward neighbour. Analysis will show that the average of these differences does not differ much. and are about 11000 with corresponding standard error of about 2000 . Projecting this to the 149 collections of Shift 2 gives the total estimate of about NOK 1630000 , not much different from the take away estimate above. The corresponding standard error is about 25000 . Taken together this gives a lower limit of 1580000 with a 97.5% guarantee. In any case a conservative claim is that the take away is at least NOK 1.5 mill. (5 standard error down the tail).

Note. Autocorrelation in the differences may shrink the computed standard error and thus give a unrealistic high lower limit. This can be checked and does not seem to be the case.

A summary of the results so far (rounded to nearest thousand)

Analysis	Estimated mean amount taken	Lower limit for 97.5\% guarantee
Overall (very naïve)	1616000	756000
Yearly (naïve)	1616000	1504000
Matching pairs	1657000	1608000

The calculations above are admittedly crude, and may be improved by even more sophisticated methods. However, they are probably sufficient for the intended purpose. In practice one could defend beyond any doubt an amount of at least 1.5 mill. NOK, which is 5 times (instead of 2) the standard error down from the matching pair estimate.

It is felt that a two-factor analysis of variance will not provide new insight. As expected the computer output (3) shows a highly significant difference between the shifts after the differences between years are accounted for, and it also shows a significant interaction between shift and year, i.e. the shift differences are not uniform over the years. Looking at the residuals they fail the normality test, mainly due to a long left tail for both shifts, which may be partly due to some holidays not accounted for. We may want to perform a non-parametric test using shift as
treatment and year as block. Common software may not include this, but test results will not differ anyway. The parametric ANOVA-model may also be basis for estimation of the total difference and corresponding confidence limits. Note however that the model assumes constant within year means, and is not likely to provide the kind of narrow limits as the "matched pair" approach.

Computer output

Two-Sample T-Test and CI: Amount vs Shift (1)

Shift	N	Mean	StDev	SE Mean
1	149	147207	24344	1994
2	149	136362	26269	2152
Difference = mu (1) - mu (2)				
Estimate for difference: 10846				
95% CI for difference:	$(5071,16620)$			
T-Test of difference $=0($ vs not $=):$	T-Value $=3.70$	P-Value $=0.000 \quad$ DF $=294$		

Two-Sample T-Test and CI: Amount83 versus Shift83 (2a)

Shift83	N	Mean	StDev	SE Mean
1	24	130789	12283	2507
2	24	132120	7420	1515
Difference = mu (1) - mu (2)				
Estimate for difference: -1330				
95\% CI for difference: (-7265, 4605)T-Test of difference $=0$ (vs not $=$) (T-Value				

Two-Sample T-Test and CI: Amount84 versus Shift84 (2b)

Shift84	N	Mean	StDev	SE Mean
1	24	170256	17334	3538
2	24	160869	20117	4106

Difference = mu (1) - mu (2)
Estimate for difference: 9388
95\% CI for difference: (-1530, 20305)
T -Test of difference $=0$ (vs not $=$): T-Value $=1.73 \mathrm{P}$-Value $=0.090 \quad \mathrm{DF}=45$

Two-Sample T-Test and CI: Amount85 versus Shift85 (2c)

Shift85	N	Mean	StDev	SE Mean
1	24	164263	18052	3685
2	24	161456	14162	2891
Difference $=$ mu (1) - mu	(2)			
Estimate for difference:	2807			
95\% CI for difference:	$(-6638,12252)$			
T-Test of difference $=0$	$($ Vs not $=):$	T-Value $=0.60$	P-Value $=0.552 \quad$ DF $=43$	

Two-Sample T-Test and CI: Amount86 versus Shift86 (2d)

Shift87	N	Mean	StDev	SE Mean
1	23	134507	11814	2463
2	24	112632	12806	2614
Difference $=$ mu (1) - mu	(2)			
Estimate for difference:	21876			
95\% CI for difference:	$(14637,29114)$			
T-Test of difference $=0$	$($ vs not $=):$	T-Value $=6.09 \quad$ P-Value $=0.000 \quad$ DF $=44$		

Two-Sample T-Test and CI: Amount88 versus Shift88 (2f)

Shift88	N	Mean	StDev	SE Mean
1	21	138449	18069	3943
2	21	111091	16428	3585
Difference $=$	mu (1) - mu	(2)		
Estimate for difference:	27358			
95\% CI for difference:	$(16580,38137)$			
T-Test of difference $=0$	$($ vs not $=):$	T-Value $=5.13 \quad$ P-Value $=0.000 \quad$ DF $=39$		

General Linear Model: Amount_ versus Year_; Shift_ (3)

Factor	Type Levels Values							
Year_	fixed	6	1983	1984	1985	1986	1987	1988
Shift_	fixed	2	1	2				

Analysis of Variance for Amount_, using Adjusted SS for Tests

Two-Sample T-Test and CI: Deviation from trend versus Shift (4)

Descriptive Statistics: Difference within pairs by Shift (5)

Variable	Shift	N	N^{*}	Mean	StDev	SE Mean
DIFF	1	148	4	10968	22397	1841
	2	146	5	-11119	24686	2043

