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Abstract

The main objective of this thesis is to analyze whether there are arbitrage opportunities on

the Norwegian stock market. Moreover, this thesis examines statistical arbitrage through coin-

tegration pairs trading. We embed an analytic framework of an algorithmic trading model

which includes principal component analysis and density-based clustering in order to extract

and cluster common underlying risk factors of stock returns. From the results obtained we

statistically prove that pairs trading on the Oslo Stock Exchange Benchmark Index does not

provide excess return nor favorable Sharpe ratio. Predictions from our trading model are also

compared with an unrestricted model to determine appropriate stock filtering tools, where we

find that unsupervised machine learning techniques have properties which are beneficial for

pairs trading.
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Chapter 1

Introduction

1.1 Background

Has someone ever told you that there is no such thing as a free lunch? This is a knowledgeable

proverb expressing the idea that it is impossible to get something for nothing. In mathematical

finance, the term is used to describe the principle of no-arbitrage, which states that it is not

possible to make excess profit without taking risk and without a net investment of capital

(Poitrast, 2010). The recent development of modern technological novelties has aided the idea

of no-arbitrage because it has disrupted the economic infrastructure and the working conditions

in the financial markets. Two important interrelated technological shifts have been crucial to

this progress. First, advanced computer technology has enabled investors to automate their

trading through sophisticated trading algorithms. Second, stock exchanges have structured

themselves in a completely computerized way which makes access to capital easier than ever

(Avolio et al., 2002). These are all contributions which have led to increased market efficiency

and transparency and, one can wonder if the progress has come so far that it has created a

perfectly efficient market where the idea of no-arbitrage is, in fact, a striking reality?

Although this may be the new outlook, market inefficiencies may arise every now and then.

The problem is just to identify such rare situations before they disappear. On these premises,

financial institutions are now allocating huge resources to develop trading algorithms which
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can locate such scarce market inefficiencies. As a consequence, learning to understand these

algorithms can give you the skills to leverage market information in a way that disproves the

notion of no-arbitrage. Therefore, by understanding and analyzing the intersection between

trading algorithms and mathematical finance, might there be a free lunch after all?.

1.2 The Aim of this Thesis

In the attempt to investigate if there is a ”free lunch” in the market, we want to identify

stocks which have deviated from its relatively fundamental value. Moreover, we seek to develop

an algorithmic trading model capitalizing on the notion of statistical arbitrage. This will be

executed through the trading strategy known as pairs trading.

Pairs trading is a relative value statistical arbitrage strategy that takes a position in the spread

between two stocks which prices have historically moved in tandem (Gatev et al., 2006). More

specifically, one enters a long position in one stock and a short position in the other. Positions

are executed simultaneously. The spread between the two stocks forms a stationary process,

where trading signals are based on deviations from the long-term equilibrium spread. If the

spread deviates from its historical equilibrium, we act and capitalize on the temporary incon-

sistency in the belief it will revert back in the nearest future. Since stock prices are assumed to

follow a stochastic process, the strategy only needs to account for the relative price relationship

between the stocks. This implies that the long position is entered in the understanding that

the stock is relatively undervalued compared to the other and, must, therefore, be balanced by

a short position (Harlacher, 2016). Hence, pairs trading gives no indications that stocks are

mispriced in absolute terms because it bets on the relative relationship between two stocks to

be mean-reverting (Harlacher, 2016).

In the last decades, various scholars have demonstrated unique methods of constructing a pairs

trading strategy with declining profitability in recent time mainly due to improved technology.

Nevertheless, the vast majority of the documented studies have been carried out in the US equity

markets, thus leaving us with a scarce amount of research outside the region. This academic
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ambiguity has further triggered our interest to undertake a study aiming to acquire knowledge

on the profitability of such a strategy in Norway. To scrutinize the search of statistical arbitrage,

we implement techniques of unsupervised machine learning to effectively filter stocks. The Oslo

Stock Exchange Benchmark Index is the considered stock universe and has been used to measure

the performance from the period of January 2013 to December 2017. Thus, to see if algorithmic

pairs trading is profitable in Norway, we impose the following research question:

Can algorithmic pairs trading with machine learning generate excess return?

In the pursuit of the research question, we have constructed our research design as a four stage

process. The interrelated stages are i) data management, ii) stock filtering, iii) identifying

mean-reversion, and iv) trading setup and execution. Below is an outline of the study of these

stages.

The first stage of the research design encompasses the process of data sampling and manage-

ment, where we implement stock return and fundamental ratios. For the stock filtering process,

we embed three different methods of unsupervised machine learning techniques to find natural

clusters of common underlying risk factors. In the third stage, clustered stocks are tested for

cointegration as a mean to identify mean-reversion. For the last, we instrument trading signals

and thresholds for buy and sell.

1.3 Structure of Thesis

The thesis is organized as follows: Chapter 2 outlines the theoretical frameworks for this thesis.

In Chapter 3, we present our research design and the methodology used. In Chapter 4, we

present the empirical results obtained. From there, Chapter 5 discusses the results in light of

the theoretical frameworks. Last, in Chapter 6, we conclude our findings.
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Chapter 2

Theoretical Frameworks

2.1 The Efficient-Market Hypothesis

The ”free lunch” principle is supported by the Efficient-Market Hypothesis (EMH), which

states that transactions in an efficient market are at its correct value because all information

is reflected in the price (Fama, 1970). The theory thus provides a theoretical indication of the

outcome of our research question because one cannot exploit mispriced stocks when there are

none. Moreover, Jensen (1978) contributes to the definition by defining market efficiency as,

”A market is said to be efficient if it is impossible to make a profit by trading on a set of

information, Ωt”

From the definition, as outlined by Jensen (1978) and Fama (1970), market efficiency relies on,

i) the information set adapted, Ωt, and ii) the ability to exploit this information. The former

criteria postulate that market efficiency exists in three various forms on the basis of the infor-

mation set, namely the weak, semi-strong and strong. If Ωt only contains past information, the

EMH is at its weak form (Timmermann and Granger, 2004). The semi-strong form indicates

that the information set includes all past and present public information. Such information

includes fundamental data such as product line, quality of management, balance sheet compo-

sition and earning forecasts (Bodie et al., 2014). Last, if Ωt contains both public and private
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information, the EMH is in its strong form (Malkiel, 2005). For a more detailed description of

all forms of market efficiency, see Appendix 7.1.

For the second criteria, the EMH implies the idea of no-arbitrage. A situation where an

investor is not able to obtain excess return from the information set because it reflects all

relevant information. Moreover, Fama (1970) elevates the concept as,

E(P̃ j,t+1 | Ωt) = [1 + E(R̃j,t+1 | Ωt)]Pjt (2.1)

where E is the expected value, Pjt is the price of stock j at time t. Rj,t+1 is the stock return

defined by (Pj,t+1−Pjt)/(Pjt). The tildes indicates that P̃j,t+1 and R̃j,t+1 are random variables

in the given time, conditional on the information set Ωt. Equation (2.1) simply states that

the expected stock price at time t + 1 is a function of the expected return and the price at

time t. Fama (1970) then argues that this has a major empirical impact because it rules out

any possibility to expect excess returns. Because of this, the expected value should, therefore,

reflect the actual value and we can define,

Zj,t+1 = Rj,t+1 − E(R̃j,t+1 | Ωt) (2.2)

then,

E(Z̃j,t+1 | Ωt) = 0 (2.3)

where equation (2.3) is the excess market return of the stock at t + 1. Moreover, it is the

difference between the observed return and the expected return with the property that the

excess value is zero. Fama (1970) describes this condition as a fair game, an uncertain situation

in which the differences between expected and actual outcomes show no systematic relations

(Law and Smullen, 2008). If we describe α(Ωt) = [α1(Ωt)+α2(Ωt)+ ...+αn(Ωt)] as the amount

of capital invested in each of the n available stocks based on the information Ωt, Fama (1970)
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now argues that the excess market value at time t+ 1 is,

E(Ṽj,t+1) =
n∑
j=1

αj(Ωt)E(Z̃j,t+1 | Ωt) = 0 (2.4)

where the total excess market value is a fair game with a value of zero. This is because

rational investors are able to gather relevant information and thus, investors do not have any

comparative advantage. Hence, the expected value thus equals the observed value, meaning

that there is no such thing as a free lunch. As aforementioned, Fama (1970) outlines that

stock prices fully reflect all information. Some information is expected and some unexpected.

The unexpected portion of this information arrives randomly, and the stock price is adjusted

according to this new information. Fama (1970) outlines this as a random walk. He describes

successive price changes to be independent and identically distributed such that,

Pjt = Pj,t−1 + µt (2.5)

where µt is a white noise process with a mean of zero and variance σ2. This means, that under

the rubric of the EMH, Pjt is said to be marginal because the best forecast of all values Pj,t+1

is the current price Pt (Pesaran, 2010). The random walk model then becomes,

f(Rj,t+1 | Ωt) = f(Rj,t+1) (2.6)

with f indicating the probability density function. The model of the random walk is an impor-

tant concept for our research because it states that we cannot determine the precise return in

advance. Over the long run, stock returns are consistent with what we expect, given their level

of risk. However, in the short-run, fluctuations can affect the long-run prospect (Fama, 1970).

Nevertheless, there is empirical evidence that sheds doubts about the efficiency of markets and

the unpredictability of stock prices. Moreover, various scholars ample evidence of excess return

predictably caused by a long-term equilibrium between the relative prices of two financial time

series. Any deviations from this relative equilibrium state are coming from a temporary shock
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or reaction from the market and thus, creating arbitrage opportunities (Bogomolov, 2013). In

the 1980’s, Poterba and Summers (1988) documented this contrarian-strategy, which indicates

that underperforming stocks (losers) yielded substantially better returns than the overperform-

ers (winners). This was an indication of mean-reversion, an idea that the stocks would revert

back to its equilibrium form after an event. Moreover, the authors examined 17 different foreign

equity markets, analyzing the statistical evidence bearing on whether transitory components

justifies a large portion of the variance in common stock returns. They concluded that the

explanation of the mean-reverting behavior was due to time-varying returns and speculative

bubbles which caused stock prices to deviate from its fundamental values (Poterba and Sum-

mers, 1988).

Furthermore, mean-reversion can also be discovered in light of investment behavior. De Bondt

and Thaler (1985) conducted a market research on investment behavior, analyzing the links

between mean-reversion and overreaction in the market. Their hypothesis proclaimed that

individuals tend to put more effort on news pointing in the same direction, resulting in the

systematical mispricing of stock prices. This irrational behavior, as pointed out by De Bondt

and Thaler (1985), is ameliorated by successive price movements in opposite course to its correct

market value. Thus, acting on underpriced losers and overpriced winners yielded cumulative

abnormal returns over the investment period. Thus, discovering a substantial weak form of

market inefficiencies.

2.1.1 Pure Arbitrage vs. Statistical Arbitrage

We have now outlined the concept of the Efficient-Market Hypothesis where the idea of no-

arbitrage is a central element. We, therefore, deliberate in greater detail the concept of arbitrage

and its distinction from statistical arbitrage.

The concept of arbitrage, as outlined by Do and Faff (2010), is a strategic process that capitalizes

on inconsistencies in assets prices without any form of risk or net investment. The notion refers

to buying an asset in one market and simultaneously selling it in another at a higher price,

thus profiting from the temporary differences in the two prices. In more detail, Björk (1998)
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defines a pure arbitrage possibility as a self-financing portfolio h where the value process has

a deterministic value at t=0 and a positive stochastic value Vt at time t ≥ 0. If we let hi(t)

denote the number of shares in the portfolio, and Si(t) the price of a stock which trades in

continuous time, than the value of the portfolio will be,

Vt =
n∑
i=1

hi(t)Si(t) (2.7)

Then the portfolio
∑n

i=1 hi(t) is said to be self-financing if,

dVt =
n∑
i=1

hi(t)dSi(t) (2.8)

The derived equation indicates that when new prices S(t) are manifested at time t, one re-

balances the portfolio (Björk, 1998). The re-balancing consists of purchasing new assets through

the sale of old assets which already exists in the portfolio. Moreover, the self-financing portfolio

can consist of long and short positions in several risky assets which results in a zero initial cost.

This means that the portfolio is self-financing because there is no exogenous infusion or removal

of money (Lindström et al., 2015). On the premise of self-financing strategies, Björk (1998)

defines arbitrage as a portfolio h with a cumulative discounted value such that,

V h
0 = 0 (2.9)

P (V h
T ≥ 0) = 1 (2.10)

P (V h
T > 0) > 0 (2.11)

where equation (2.9) states that the portfolio is self-financed and has a zero initial cost. The

second property (2.10) states that there is a 100% probability of a portfolio value of zero or

greater. Furthermore, (2.11) expresses that there is always a probability of obtaining a dis-

counted cumulative terminal value of greater than zero. This means that arbitrage is considered

a risk-free profit after transaction costs (Björk, 1998).
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Nevertheless, in the financial markets, an investor looking for an arbitrage opportunity typically

engages in a trade that involves some degree of risk. In the specific case where these risks are

statistically assessed through the use of mathematical models, it is appropriate to use the term

statistical arbitrage (Lazzarino et al., 2018). Following the definition of Hogan et al. (2004), a

statistical arbitrage is where the overall expected payoff is positive, but there is a probability of

a negative outcome. Only when the time aspect approaches infinity and we repeat the process

continuously, the negative payoff will converge towards zero. Given a stochastic process of the

trading value on a probability space {Ω, F, P}, Hogan et al. (2004) outlines four conditions for

a statistical arbitrage portfolio,

V h
0 = 0 (2.12)

lim
t→∞

E[V h
t ] > 0 (2.13)

lim
t→∞

P (V h
t ) < 0 = 0 (2.14)

lim
t→∞

V ar[V h
t ]

t
= 0 if P (V h

t < 0) > 0, ∀t <∞ (2.15)

where the first property inherent in a zero initial cost strategy i.e it is self-financing (2.12).

Furthermore the strategy, in the limit, has a positive expected discounted cumulative cash flow

(2.13) and, a probability of a loss approaching zero (2.14). Last, the average variance (over

time) is converging to zero if the probability of a loss does not become zero in finite time (2.15).

The last equation is only employed if there is a positive probability of losing money, because

if P (V h
t < 0) = 0 , ∀t ≥ T with T < ∞, it describes the basic arbitrage as outlined by Björk

(1998). Hence, a statistical arbitrage will accumulative riskless profit in the limit.
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2.2 The Arbitrage Pricing Theory

In the second theoretical point of departure, we will outline the Arbitrage Pricing Theory (APT)

as a mean to discover the ”free lunch”. As first outlined by Ross (1975), the APT is based on

the idea that stock returns can be predicted using a linear model of multiple systematic risk

factors. Ross (1975) describes these factors as economic risk factors such as business cycles,

interest rate fluctuations, inflation rules etc. According to Ross (1975), the exposure of these

factors will affect a stocks risk and hence, its expected return. While pure arbitrage imposes

restrictions on prices observed at a specific point in time, the APT seeks to explain expected

returns at different points in time (Poitrast, 2010). Because of this, any deviation from the

theoretical optimum can be seen as a mispriced stock. As described by Vidyamurthy (2004)

and Harlacher (2016), the theory uncover the heart of pairs trading because stocks with the

same risk exposure will provide the same long-run expected return and, therefore, the APT

may serve as a catalyst to identify arbitrary opportunities.

This line of thinking will be the basis of our statistical arbitrage strategy. If we are able to

identify stocks with similar risk profile, any deviation from the APT expectation will be an

opportunity to capitalize on relative mispriced stocks. Moreover, Harlacher (2016) outlines the

relationship as presented in Figure 2.1, where the co-movement between two stocks only exists

due to their common relation to underlying factors.

In greater detail, the APT structure the expected return of a stock in the following way,

ri = βo +
k∑
j=1

βi,jFj + ui (2.16)

where Fj can be seen as a factor, and βi,j as the risk exposure of that factor. The βo together

with ui are interpreted as the idiosyncratic part of the observed return. In addition to this

linear dependence structure as outlined by Harlacher (2016) and Ross (1975), there are other

assumptions pertaining to this model:
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Figure 2.1: Dependency structure of two assets with the same underlying factors

1. Assumption: E[ui] = 0, for all i

2. Assumption: E[ui(Fj − E[Fj]) = 0, for all i and Fj

3. Assumption: E[ui, uh] = 0, for all i and h with i 6= h

From the first assumption, the expected mean of the residual is zero. This follows that the

idiosyncratic risk is reflected in βo. This means that if we are to expect that the factors

are representing the systematic risk, then a stock with zero exposure to these factors should

generate the same expected return as the risk-free rate (Harlacher, 2016). Then it holds true

that βo is equal to the risk-free rate for all subsequent stocks, which again means that there

is no such thing as a free lunch. Put in another way, if you are not willing to have any risk

exposure, you cannot expect the stock return to be greater than the risk-free rate. Assumption

two and three states that since the dependency of the assets is through the risk factors, the

remaining part is created such that they are independent and uncorrelated from each other

(Harlacher, 2016). This ensures that there is no multicollinearity among the factors (James

et al., 2013).

Moreover, we can design the factors so that they are orthogonal to each other and to the

residual ui. This has the advantage of obtaining better parameter estimates (Shukla, 1997). In

addition, this will help us to not select ad hoc risk factors (Shukla, 1997). In matrix form, we
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can rewrite (2.16) as,

ri = βo + βTi Fj + ui (2.17)

where ui is a vector of random variables and Fj is a (k + 1) vector of random factors. If

we normalize the variables, we get E[Fj] = 0 and E[ui] = 0, then the factor model implies

E[ri] = βo. If this relationship truly exists with the underlying assumptions, Harlacher (2016)

outlines the variance and the covariance of the stocks as,

V ar(ri) = βTi V βi + σ2
i (2.18)

Cov(ri, rh) = βTi V βh (2.19)

with σ2
i = E[u2

i ], and V being a (k+ 1)× (k+ 1) matrix with the covariance factor changes. As

aforementioned, we will in this thesis utilize the APT to extract the underlying risk factors to

better seek arbitrage opportunities. Moreover, we will follow the line of thinking of Chamberlain

and Rothschild (1983) by using the principal component analysis to estimate and extract the

common underlying factors by composing the eigenvectors. This will be the initial foundation

when forming our research design for conducting a pairs trading strategy.

2.3 Pairs Trading

In the world of finance, pairs trading is considered the origin of statistical arbitrage (Avellaneda

and Lee, 2008). It is a statistical arbitrage strategy which matches a long position with a short

position of two stocks with relatively similar historical price movements. Even though there are

several approaches to pairs trading, this thesis will analyze pairs trading through the concept

of cointegration, as presented by Vidyamurthy (2004). Jaeger (2016) argues that cointegration

between two stocks implies that there is a weak form of market efficiency because it opens for

arbitrary situations based on historical information. This statistical relationship is, therefore,

necessary to explain why there can be a presence of pairs trading (Jaeger, 2016).
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If Yt and Xt denotes the corresponding prices of two stocks with the same stochastic process,

Avellaneda and Lee (2008) models the system on differentiated form as,

dYt
Yt

= dαt + β
dXt

Xt

+ dSt (2.20)

Where St is a stationary process and the cointegrated spread. This means that the spread

between the two stocks do not drift apart too much and in the ideal case, the spread has a

constant mean over time. If the spread deviates from its historical mean, we act and capitalize

on the temporary inconsistency. During trading, limits are set on the top and bottom of the

spread. If it ever goes below or above a particular normalized spread score, one will go long or

short in the spread. In more detail, by entering a long position in the spread, the investor buys

one unit of stock Yt and short β units of stock Xt, which implies that the spread St is below

the equilibrium average (Avellaneda and Lee, 2008). Consequently, an opposite position will

be entered if one goes short in the spread. This implies that one buy the relatively undervalued

stock and sell the relatively overvalued stock in such portion that the total position is non-

sensitive to overall market movements i.e the portfolio beta becomes zero (Harlacher, 2016).

Once a trading signal like this occurs, a reversion to the historical mean is expected. The

position will be closed when convergence is close to the mean (Kakushadze, 2014).

In light of the efficient-market hypothesis, if a cointegrated relationship between two stocks is

identified we can expect two outcomes: i) the relationship may cease to exists and the weak

form of market-efficiency holds true, which will result in a profit loss. This could be a result of

news or shocks related to any of the stocks, and the recovery of such an event might last longer

than the estimated trading period, or utmost, never at all. ii) The cointegrated relationship is,

in fact, true and we will trade in the spread levels (Jaeger, 2016), which will result in a rejection

of the weak-form of market efficiency.

In theory, pairs trading cannot be justified under the efficient market hypothesis. This needs

to be violated through a mean-reverting behavior of stock prices, which ensures a relative long-

term equilibrium between two stocks (Jaeger, 2016). The question is then if there are such
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violations of the efficiency of markets, and what have scholars and investors historically done?

2.3.1 Empirical Evidence of Pairs Trading

It was not until the work of Gatev et al. (1999) that the first empirical strategy of mean-reversion

was used on pairs trading. In the article, they employed a method named the distance approach,

a technique engaging in deviations between normalized prices. In their study, they back-tested

a pairs trading strategy on U.S equities, in the period of 1967 to 1997. Their strategy yielded

excess return of 11%, robust for any transaction costs. Notwithstanding, the article of Gatev

et al. (1999) extended the notion of its ancestors in that it deliberated the importance of mean

reversion for generating pairs trading profits. The same article was reproduced in 2006 where

they expanded the data period by five years, still with positive results.

Succeeding the study of Gatev et al. (2006), Do and Faff (2010) replicated the study by ex-

panding the sample period by seven years. With the growing popularity of pairs trading and

the technological advancement in the financial markets, they wanted to analyze whether the

strategy could still produce excess return. Do and Faff (2010) argued that the increased com-

petition among arbitrageurs would result in situations where even the smallest opportunity

would be exploited. In addition, the arbitrageurs would face risks such as fundamental risk and

synchronization risk which all work to prevent arbitrage. In their study, they revealed declining

profits of pairs trading over the sample period. This was because of fewer convergence prop-

erties, higher arbitrage risk, and increased market efficiency. However, consistent with Gatev

et al. (2006), Do and Faff (2010) claimed that pairs trading worked particularly well in time

of financial crisis. This aspect is further investigated by Acharya and Pedersen (2005) which

found that the profitability of pairs trading is negatively correlated with market liquidity.

In recent years, the advent of computer power and statistical methods has contributed to more

advanced methods to the field of pairs trading. Some of these are through various machine

learning techniques. The most cited article to include a principal component analysis (PCA)

in pairs trading was conducted by Avellaneda and Lee (2008). In their training period, they

used PCA as a mean to decompose and extract risk components, as a way to sort out the
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idiosyncratic noise. The strategy yielded excess returns but received critique since the authors

experimented with different threshold for entry and exit signals. PCA has also been used for

portfolio optimization, as described in Tan (2012) where he gained positive results in terms of

portfolio efficiency.
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Chapter 3

Research Design and Methodology

This chapter introduces the main data and methodology used in our research design. The first

sub-chapter gives a brief explanation of the different stages of our research design. Further

on, we present each stage process with its respective theoretical and methodical concepts. All

methodological work is conducted in the open source program Python and the python code for

each stage are presented in Appendix 7.4.

3.1 Overview of the Research Design

For our research design, our main goal is to create an algorithm suitable for an efficient pairs

trading strategy. To make our research design more transparent and easy to follow, we have

designed it as an interrelated four stage process. The figure below describes the process of the

different stages.

Stage 1-3 are stages which seeks to find valid and suitable stock pairs. Stage 4 is
the last stage process where we enter trading positions.

Figure 3.1: Overview of research design
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Stage one encompasses the process of data sampling and management. The data sample consists

of daily returns and fundamental ratios of all companies at The Oslo Stock Exchange Benchmark

Index. In this way, we can analyze price pattern and movements through the dimensions of

price data and fundamental ratios.

In the second stage, we have structured our data through different unsupervised machine learn-

ing techniques. This is done so we can extract and cluster common underlying risk factors of

stock returns. The first unsupervised method is a principal component analysis, a tool used

for dimensionality reduction and factor analysis. We then apply a density-based clustering

technique, a method for discovering unknown subgroups in the data. Last, we try to visualize

the data through t-Distributed Stochastic Neighbor Embedding.

In the third stage of the research design, we seek to find mean-reversion among stock pairs in

the clusters. This is done through the cointegration method, namely by following the procedure

of the Engle-Granger two-step approach.

For the last stage, we implement the trading procedure. By generating trading signals on rolling

z-scores, we test the strategy out-of-sample based on identified cointegrated stock pairs.
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3.2 Stage 1: Data Management

The first stage in our research design encompasses the process of data sampling and manage-

ment. The data set consists of daily historical closing prices adjusted for dividends and stock

splits. This is also the common practice in the pairs trading literature. We use adjusted closing

prices because corporate actions do not change the actual value to investors. This enables us to

examine historical returns in an accurate way and we avoid false trading signals, as documented

by Broussard and Vaihekoski (2012). Seeking to move beyond conventional return perspectives,

we have decided to bring fundamental accounting ratios into our analysis as insightful and sta-

bilizing indicators of mean-reversion. The fundamental ratios are: debt-to-equity, return on

invested capital and revenue growth. By implementing fundamental values, we can create more

robust clusters and stock pairs. The three fundamentals ratios are chosen due to its power of

revealing companies profitability and financial health.

The universe considered is The Oslo Stock Exchange Benchmark Index (OSEBX). The sample

period starts from January 2013 and ends in December 2017. During the sample period, we

consider the 67 stocks that are listed on the exchange today, yielding 2211 possible pairs to

trade. Since the index is revised semiannually, with changes implemented on 1 December and

1 June, the number of possible pairs will change during the sample period. Choosing OSEBX,

which comprises the most traded stocks in Norway, ensures an acceptable level of liquidity. The

liquidity in the stocks is an essential factor because pair trading strategy involves short-selling.

Moreover, we do not include stocks that were de-listed during the sample period for multiple

reasons. First, less liquid stocks may be difficult to short and add greater operational costs

(bid-ask spread). Second, it is easier to work with and structure stock-data that has the full

price-series. Last, stocks that have been listed for several years, are considered to be more solid

and will most likely be possible to trade in the nearest future.

All price-series data are gathered from Yahoo Finance and verified by comparison with data

from Bloomberg and Amadeus 2.0. The financial ratios are assembled from Bloomberg. In

addition to adjusting for stock splits and dividends, we have cleansed missing data by using

previous closing prices. We do this for facilitating an effortless back-testing.
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3.3 Stage 2: Stock Filtering

In the second stage of our research design, we seek to filter the stocks into clusters suitable for

pairs trading. We do this by extracting common underlying risk factors. In the process of stock

filtering, we will use three different unsupervised techniques within machine learning. These

are Principal Component Analysis, Density-Based Clustering, and t-SNE.

3.3.1 Machine Learning

The concept of machine learning refers to a set of tools for modeling, predicting and under-

standing complex datasets (James et al., 2013). The tools for understanding complex data

can be classified as supervised or unsupervised (James et al., 2013). Supervised learning is

defined as learning from examples, or past experiences. The notion is that for each variable,

xi i = 1, ..., n there is a comparable dependent variable yi. The objective of supervised learn-

ing is therefore to fit a model that accurately can predict the response of future observations.

Statistical models such as linear regression, logistic regression and support vector machines are

all examples of supervised learning techniques.

In contrast, unsupervised learning describes a situation were every variable, xi i = 1, ..., n

, has no associated response or dependent variable yi (James et al., 2013). In these types of

situations, it is not possible to fit a regression model (since there is no response variable to

predict). This is referred to as an unsupervised situation. Clustering and principal component

analysis are types of unsupervised learning.
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3.3.2 Principal Component Analysis

In the search of exploiting statistical arbitrage, we will search for stocks with the same sys-

tematic risk-exposure. This is because they will generate the same long-run expected return

according to the Arbitrage Pricing Theory (Ross, 1975). Any deviations from the theoreti-

cal expected stock return can therefore be seen as a mispriced stock and, help us to places

trades accordingly. In the process of extracting these common underlying risk factors for each

stock, we use the Principal Component Analysis (PCA) on stock returns as described by Jolliffe

(2002).

In the PCA process, we create new variables known as principal components. These are con-

structed in a way that the first component accounts for as much of the variance of the data as

possible. Then, the second component will try to explain as much of the remaining variability

as possible, and so forth (James et al., 2013). As described by Avellaneda and Lee (2008),

each component can be seen as representing a risk factor. Since the first component explains

the most variance of the underlying data, it can be said that this factor represents the largest

sources of systematic risk.

In the search for the principal components, we convert the stock-data to standardized returns

in line with the process of Avellaneda and Lee (2008), in the following matrix,

A = Yik =
Rik − R̄ik

σ̄i
(3.1)

where Rik represents the stock returns

Rik =
Si(to−(k−1)∆t) − Si(to−(k∆t))

Si(to−(k∆t))

k = 1, . . . ,M, i = 1, . . . , N (3.2)

In equation (3.2) we use historical closing prices of N stocks at OSEBX, going back M days,

where Sit is the adjusted closing price of stock i at time t and ∆t = 1/250 since we operate

with 250 trading days per year.
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Since PCA creates a new feature subspace that maximizes the variance along the axes, it makes

sense to standardize the data. Even though we have common units, their variances may be very

different, and scaling is therefore necessary (James et al., 2013). From matrix A, we compute

the correlation matrix,

ρij =
1

M − 1

M∑
k=1

YikYjk (3.3)

The reason we create a correlation matrix from the returns, and not from the raw price data, is

that a return correlation-matrix gives us a better understanding of price co-movements. From

the correlation matrix, we need to extract the eigenvectors and eigenvalues in order to create our

principal components. The eigenvectors determine the directions of the new feature space and

the eigenvalues of their variance (Raschka, 2017). There are two main forms of extracting the

eigenvalues and eigenvectors, namely through an eigendecomposition (see Puntanen S. (2011)

or through a Singular Value Decomposition (SVD). In our algorithm, the latter approach is

incorporated for greater computational efficiency (Sandberg, 2004). The SVD is a standard

tool in linear algebra and matrix analysis, see Goulb and Van Loan (1996) and Madsen et al.

(2004) for details on its computation and properties. Trough the SVD theorem, we decompose

our matrix A as follows,

A = USV T (3.4)

where U is an orthogonal matrix where the columns are the left singular vectors, S is a diagonal

matrix with singular values, and V is the transposed orthogonal matrix which has rows that

are the right singular vectors. By multiplying the matrix with the transposed matrix AT , we

get,

ATA = V S2V T (3.5)

The left-hand side of equation (3.5) is the same as our correlation matrix ρij. Since the cor-
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relation matrix ρij is symmetric to ATA, the columns of V now contains the eigenvectors of

ATA and the eigenvalues are the squares of the singular values in S. This tells us that the

principal components of matrix A are the eigenvectors of ρij, and by performing SVD on ATA,

the principal components will be in the columns of matrix V. Now, we project the eigenvectors

onto the original return series. This projection will result in a new subspace which corresponds

to our principal components,

Fj =
N∑
i=1

φjiRik (3.6)

We refer to the φji as the loadings of the principal components. Correlation between the original

variables and the factors is the key to understanding the underlying nature of a particular

factor (Goulb and Van Loan, 1996). We have notated the principal components as Fj for

connecting them to equation (2.16), which outlined expected stock returns as a linear model

of multiple systematic risk factors, as described in the Arbitrage Pricing Theory. However, the

factors from equation (3.6) cannot be interpreted as economic risk factors, but as new factors

which captures the underlying variance from the dataset. Moreover, the loadings make up the

principal component loading vector, which we constrain so that their sum of squares is equal

to one, ensuring non-arbitrarily large variance (James et al., 2013).

Determining the number of Principal Components

Since we are reducing the observations into principal components, we must analyze how much

of the information in the data is lost by projecting the observations into a new subspace (James

et al., 2013). We are therefore interested in knowing the proportion of variance explained (PVE)

by each principal component. As outlined by James et al. (2013) the total variance in the data

set is defined as,

p∑
j=1

V ar(Rj) =

p∑
j=1

1

n

n∑
i=1

R2
ij (3.7)
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and the variance of the mth component is

1

n

N∑
i=1

F 2
im =

1

n

N∑
i=1

(

p∑
j=1

φjmRij)
2 (3.8)

Therefore, the PVE of the principal component is given by

PV E =

∑N
i=1(
∑p

j=1 φjmRij)
2∑p

j=1

∑n
i=1R

2
ij

(3.9)

We use the PVE equation (3.9) as outlined by James et al. (2013) to determine the number

of principal components we want to use in our new subspace. Here, we want the number of

principal components to be as small as possible. That is, if we can capture the variation with

just a few components, it would bring a simpler description of the data. On the other hand,

to avoid any loss of information, we want to capture as much variation as possible. Meaning

that we must allow for many components. The question of how many principal components

one need is still inherently ambivalent, and will depend much on the specific area of application

and also on the data set used (James et al., 2013). Kim and Jeong (2005) outlines how the

components can be described in three parts:

1. The first principal component captures the greatest variance and thus, represents the

market risk.

2. The succeeding number of principal components represent synchronized fluctuations that

only happens to a group of stocks.

3. The remaining principal components indicates random fluctuations in the stocks.

On this basis, we need to determine the number of components which enables us to capture

part 1 and 2 but leaving out part 3. In the study of Avellaneda and Lee (2008), they selected

the number of components that explained 55 percent of the total variance and argued that it

would perform better than a predefined number of components. Others, such as Bai and Ng

(2002) advocate a penalty function of selected factors to penalize for potential overfitting.

23



In this thesis, the number of components will be determined by the point at which the marginal

proportion of variance explained from each principal component is small and insignificant, a

technique known as elbowing, as described by James et al. (2013). It is worth noticing that

this technique is ad hoc. Furthermore, we do not conduct all the PCA steps by hand, but as

an integrated algorithm in Python. For further details on Python coding, see Appendix 7.4.2.

3.3.3 Density-Based Spatial Clustering of Applications with Noise

After the extraction of the principal components, we now seek to cluster the components,

combined with the fundamental ratios, into regions of high density. This will help us to discover

any hidden patterns, as we cluster stocks together with similar risk profiles. This process is done

through the clustering technique Density-Based Spatial Clustering of Applications with Noise

(DBSCAN), a technique developed by Ester et al. (1996). We use DBSCAN, as an alternative

to K-nearest neighbors, because it does not require a predefined number of clusters in advance

as described in Trana et al. (2012).

In DBSCAN, the goal is to identify dense regions, which can be measured by the number

of objects close to a given point (Ester et al., 1996). The concept is based around density

reachability, where a point q is density reachable by another point p if the distance between the

points is below a certain threshold e, and p is enclosed by sufficiently many points (Raschka,

2017). The DBSCAN algorithm consists therefore of two main parameters. The first parameter,

e, reflects the radius of the neighbors around a given data point. The second parameter, minPts,

represents the minimum number of points we want to have in our cluster. By definition, q is

considered to be density-reachable by p if there exists a progression of p1, p2, . . . , pn, such that

p1 = p and, pi+1 is directly density-reachable from p1 (Ester et al., 1996). As a general rule,

the parameter of minPts can be derived from the number of dimensions (D) in the data set, as

minPoints ≥ D + 1. However, the variable must at least contain three points, otherwise, the

technique would yield the same as hierarchical clustering (Ester et al., 1996). For e, one must

balance the choice between outliers and number of clusters formed.

The process of DBSCAN starts with an arbitrary data point, where the e-neighbors are gath-

24



ered. If the amount complies with minPts, a cluster is formed. Otherwise, it is classified as

noise. Then iterate the process until all density-connected clusters are formed. The exact

Python code is given in Appendix 7.4.2.

3.3.4 t-Distributed Stochastic Neighbor Embedding

Once we have clustered our data, we need to find a way to visualize it. The problem at hand

is that we are dealing with a data set consisting of numerous dimensions and observations.

Computers have no problem processing that many dimensions. However, we humans are limited

to three dimensions utmost. Therefore, we seek to reduce the number of dimensions into a

two-dimensional set, in a way that we can gain confidence in the DBSCAN output. We will

do this by using the nonlinear dimensionality technique known as t-Distributed Stochastic

Neighbor Embedding (t-SNE), as first introduced by van der Maaten and Hinton (2008). The

unsupervised statistical learning algorithm is appropriate for embedding high-dimensional data

in low-dimension visualization (Derksen, 2006).

We refer to the original high dimensional data set as X, where a data point is a point xi. For

our new (low) dimensional data set, we referred to this as Y, with a map point yi. In the t-SNE

process, we still want to conserve the structure of the data. In more detail, if two data points

are close together we also want the corresponding map points to be close too. Therefore, let

|xi − xj| to be the distance among the data points, and |yi − yj| the gap within the map points.

We can now define the conditional probability of the data points as,

pj|i =
exp

(
− |xi − xj|2 /2σ2

i

)∑
k 6=i

exp
(
− |xi − xk|2 /2σ2

i

) (3.10)

The equation tells us how close the data points xi and xj are to each other, given a Gaussian

distribution with variance σ2. This means that the probability distribution is constructed in

such a way that similar objects have a high probability of being picked, while non-similar

objects have a low probability of being chosen (Jaju, 2017). From this, we generate the joint
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probabilities,

pij =
pj|i + pi|j

2N
(3.11)

We also define a similar matrix of our map points,

qij =
exp(|yi − yj|2)∑

k 6=i

exp(|yi − yk|2)
(3.12)

The distribution of the map points is based on the same idea as earlier but uses a different distri-

bution. The conditional probability of the low dimensional data set is based on t-distribution.

The main difference between the two conditional probabilities is that pij is fixed, while qij

depends on the map points. The objective now is the minimize the distance between the two

probabilities. This is because we want the data points to yield comparable map points. The

minimization process depends on the mismatch between the similarity of data and map points,

that is pij − qij.

The process is done through the Kullback-Leiber divergence with a gradient descent,

KL(P ||Q) =
∑
i,j

pij log
pij
qij
. (3.13)

The equation tells us that if two map points are distant to each other whereas the corresponding

data points are not, they will be drawn together (Derksen, 2006). The same will happen if they

are nearby, they will be repelled. The process iterates until a final mapping is procured and

the equilibrium is attained. From this, it creates a visualization of the clusters formed in a two-

dimensional plane. For further mathematical computation, see van der Maaten and Hinton

(2008). For Python coding, see Appendix 7.4.2.
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3.4 Stage 3: Identifying Mean-Reversion

In the third stage of our research design, we seek to find mean-reversion among stocks in the

clusters discovered in the previous stage. This will be identified by cointegration. Below is a

description of the elements regarding cointegration.

3.4.1 The Cointegration Approach

In this thesis, the cointegration approach for pairs trading has been chosen, following the

framework of Vidyamurthy (2004).

Stationarity

A time series is stationary when the parameters of the underlying data do not change over

time (Wooldridge, 2009). Wooldridge (2009) describes stationary as a stochastic process xt ∈

{t = 1, 2...} where every moment in time, the joint distribution of (x1, x2, ..., xm) is the same as

the joint distribution of (x1+h, x2+h, ..., xm+h) for all integers h ≥ 1. The definition is referred

to as a strict stochastic stationary process. Nevertheless, a weaker form of stationarity is more

commonly applied in finance due to its practical application on data samples. On this basis,

this thesis will engage in a weak stochastic stationary process. The process is weak stationary

if, for all values, the following is true:

• E(Yi(t)) = µ (Constant mean)

• var(Yi(t)) = σ2 (Constant variance)

• cov(Yi(t), Yi+s(t) = cov(yt, yi−s(t)) = γ (Covariance depends on s, not t)

The weak form of a stochastic stationary process needs to have constant mean and variance.

The most important feature is that the process has a constant mean. If the spread between

the stock pair deviates from the mean, we can capitalize by trading on this. Furthermore,
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Wooldridge (2009) outlines that the covariance only concentrates on the first two moments of

a stochastic process. Hence, the structure does not change over time.

Non-stationary time series is referred to as random walks or random walks with a drift (Wooldridge,

2009). Random walks slowly wander upwards or downwards, but with no real pattern, while

random walks with a drift show a definite trend either upwards or downwards. As a rule of

thumb, non-stationary time series variables, which stock price series often are, should not be

used in regression models, in order to avoid spurious regression. However, most time series can

be transformed into a stationary process. This is done by differencing the time series, in such a

way that the values projects change and not absolute values. If a time series becomes stationary

after d times, it is referred to as an I(d). If Yi(t) and Xi(t) are non-stationary I(1) variables,

and a linear combination of them Si(t) = Yi(t)−βXi(t)−α is a stationary I(0) process (i.e. the

spread is stationary), then the set of Yi(t) and Xi(t) time series are cointegrated (Wooldridge,

2009).

Cointegration

Cointegration implies that Yi(t) and Xi(t) share similar stochastic trends, and since they both

are I(1) they never diverge too far from each other. The cointegrated variables exhibits a long-

term equilibrium relationship defined by Yi(t) = α+βXi(t) + Si(t), where Si(t) is the equlibrium

error, which represents short-term deviations from the long-term relationship (Wooldridge,

2009).

For pairs trading, the intuition is that if we find two stocks Yi(t) and Xi(t) that are I(1) and

whose prices are cointegrated, then any short-term deviations from the spread mean, Si, can be

an opportunity to place trades accordingly, as we bet on the relationship to be mean reverting.

When testing the spread for cointegration, we define the spread as,

Si(t) = Yi(t)− βXi(t) + αi (3.14)
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When testing for cointegration, the Engle-Granger two-step method has been used1.

• Two steps in the Engle-Granger method:

1. Estimate the cointegration relationship using OLS.

2. Test the spread for stationarity

The Augmented-Dickey-Fuller (ADF) test2 is used to verify cointegration. Below is the general

formulation of the ADF test:

∆Si(t) = α + βt+ γSi(t−1) + δ1∆Si(t−1) +
k∑
i=1

θi∆St−i + εt, (3.15)

In our approach, the model of order 1 has been kept for all stock pairs. In addition, the ADF

statistics depends on whether an intercept and/or a linear trend are included (MacKinnon,

2010). The pairs trading strategy involves taking positions in the stock themselves, therefore

the intercept term is excluded. Thus, the ADF formulation we use is the following:

∆St = γSt−1 + θ∆St−1 + εt (3.16)

The null hypothesis is that there is no cointegration, the alternative hypothesis is that there

is a cointegrated relationship. If the p-value is small, below 5%, we reject the hypothesis that

there is no cointegrated relationship.

• Test: γ coefficient p-values:

– If γ p-value < 0.05: stationary time series with 95% of statistical confidence.

– if γ p-value > 0.05: time series non-stationary with 95% of statistical confidence.

1For a detailed description of the method, see (Engle and Granger, 1987)
2For detailed information see (Dickey and Fuller, 1979)
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3.5 Stage 4: Trading Setup and Execution

In the final stage of our research design, we seek to execute the trading algorithm and evaluate

the results. As stated in several studies, the general rule is to trade the positions when they

exceed a certain threshold. In this thesis, we have followed a similar trading procedure as

proposed by Caldeira and Moura (2013) and Avellaneda and Lee (2008).

3.5.1 Trading Signals and Execution

In the trading strategy, we focus on the spread-process Si(t) (3.14), but as aforementioned

neglecting the intercept term αi. This is because we only take position in the stocks themselves,

Yi(t) and Xi(t) accordingly. As described by Perlin (2009), a z-score is generated,

Zi =
Si(t)− Si
σeq,i

(3.17)

where,

Si =
1

w

i−1∑
j=i−w

Si(t) (3.18)

The z-score tells us the distance from the equilibrium spread in units of the equilibrium standard

deviation. The z-score is used for generating trading signals and positions. In this thesis, we

will utilize a rolling z-score to capture shifts in the spread. According to Reverre (2001) the

length of the rolling-window should be short enough to be reactive to shifts and long enough

to appear reasonably efficient in stripping noise out. On this basis and the fact that we are

trading on a six months basis, we have settled on a 10-day rolling z-score (w=10). Once 10

days of information is gathered, the trading algorithm begins. On that basis, we analyze if the

z-score is inside or outside the trading thresholds. This means that the portfolio is re-balanced

with 10 days of historical data.
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The trading strategy is described as follows,

• Long Spread Trade:

– Enter long position: Previous (Z-Score > - 2) −− > Current (Z-Score < -2).

– Exit long position: Previous (Z-Score < +1) −− > Current (Z-Score > -1).

• Short Spread Trade:

– Enter short position: Previous (Z-Score < + 2) −− > Current (Z-Score > +2).

– Exit short position: Previous (Z-Score > +1) −− > Current (Z-Score < + 1).

We enter a trade position when the z-score exceeds ±2 and closes the position when it drops

below +1, and above −1 which is similar to Gatev et al. (2006), Andrade et al. (2005) and

Do and Faff (2010). The reason for trading within these thresholds are as follows: when the

z-score is far away from its equilibrium, we have reason to believe it will drift back again to

its equilibrium (because the spread was stationary in the past). On the other side, closing the

trade when the score passes the lower bound also makes sense since most stocks have some

sort of deviations. The portfolio is rebalanced every day to maintain the desired level of asset

allocation from our rolling z-score. If two stocks in a pair suddenly drift in opposite directions,

the portfolio can end up with significant risk exposure. We, therefore, rebalance our portfolio

as a mean to ensure that the portfolio is close to market-neutral, as documented by Do and

Faff (2010). For algorithmic development, see Appendix 7.4.4.

3.5.2 Training and Testing Periods

When testing a trading algorithm on historical data, it is crucial to reserve a time period for

testing purposes because it gives us an opportunity to see how the model would have performed

in a real-life situation. That is why we have divided the sample period into training (in-sample)

and testing (out-of-sample) periods.
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In this thesis, we use a one year window for the training period and six months for the testing

period. This sums up to eight training and testing periods in total. The length of training

and backtesting periods is similar to the approach done by Caldeira and Moura (2013). When

deciding the duration of the training and testing periods, there is no finite answer. One should

make sure that the training period is long enough to determine if a cointegrated relationship

exists between the stocks. Similarly, the testing period should be long enough for trading

opportunities to occur.

The first training period is the year of 2013. Immediately after this period, the first test period

starts, where we use the parameters computed in 2013. This continues on a rolling basis,

meaning that pairs we trade are changed twice per year. Below is a description of the training

and testing procedure, adapted from Andrade et al. (2005).

The figure shows the timing of training and testing periods. In the training period, valid
mean-reverting stock pairs are identified. In the testing period, the trading strategy is

executed.

Figure 3.2: Overview of training and testing periods
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3.5.3 Transaction costs

In order to correctly assess the performance of the pairs trading strategy, the impact of transac-

tion costs must be taken into consideration. According to Thapa and Sunil (2010), transaction

costs are decomposed into commission, fees, and slippage. However, since we are trading on

adjusted closing prices, we can disregard any slippage fees. Using the price model of Nordnet,

one of the largest trading platforms in Norway, the commission is settled at 4.9 basis points

(BPS) and fees at 0.25 BPS (Nordnet, 2018). In pairs trading, the simultaneous opening of a

long- and short position means transaction costs are occurring twice, thus commission is settled

at 9.8 BPS and fees at 0.5 BPS.

In addition, we have included short-sale rental costs as mentioned in Caldeira and Moura (2013).

In the Norwegian equity market, the annual short fee rate is 450 BPS (Nordnet, 2018). There

are 250 trading days per year, which gives us a daily shortage fee of 1.8 BPS. From the training

period analysis, we estimated an average trading position to last four days. This gives us an

average shortage fee of 7.2 BPS for each position. However, since shortage fees are only paid

when closing a position, this cost should not be included when entering a position. Thus, we

divide the shortage fee by two to represent the average trading cost1. This gives a rental fee of

3.6 BPS per trade. Assuming a continuation of this property for the testing periods, the total

transaction cost is 13.9 BPS (0.139%) per trade for every stock pair.

In this thesis, we have decided to disregard the fixed costs of NOK 250 per short position

(Nordnet, 2018) and tax implications. The fixed costs are in this model insignificant to the

overall returns and, taxes will be pertaining any profit no matter what the revenue stream.

Total transaction costs are presented in the table below.

Commission Fees Rental Total cost

9.8 0.5 3.6 13.9

Table 3.1: Total transaction costs per trade for all stock pairs expressed in BPS

1450 BPS annually rental cost/250 trading days) * 4 days average position)/2 = 3.6 BPS
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3.5.4 Performance Measures and Hypothesis Testing

The return metric used is the nominally change in NOK of each stock pairs over the testing

period. All stock pairs that were identified as cointegrated, will make up an equally weighted

portfolio. In addition, the risk is defined as fluctuations in stock pairs returns measured by its

standard deviation. This allows us to apply the Sharpe ratio (SR), as defined by,

SRi =
Ri −Rf

σi
(3.19)

with Ri denoting the return of a stock pair, and Rf the risk-free rate. The risk-free rate is

incorporated as 10-year Norwegian government bond with 1,95 % p.a as of 18.04.2018 (Norwe-

gian Central Bank, 2018). The standard deviation of a pair is denoted with σi. The Sharpe

ratio is measuring the risk premium per unit of risk (Bodie et al., 2014)

Apart from Sharpe ratio, we also present the measure of alpha, α, as obtained from the Capital

Asset Pricing Model (CAPM). The theory states that one can only obtain excess return if one

is willing to take risk. As according to Markowitz (1953), this can only be acquired by bearing

systematic or market risk. The theory describes the relationship between risk and reward as,

E[Ri]−Rf = βi(E[Rm]−Rf ) (3.20)

where βi = Cov(Ri,Rm)

σ2
M

and E[Rm] denotes the expected market return. The βi denotes the

covariance between our stock pair and the market, over the market variance. This tells us

that βi describes the systematic risk captured by our stock pair. So, on the basis of CAPM, it

gives us a relationship between the expected excess return and risk premium. Knowing this,

we rearrange (3.20) to obtain the alpha,

αi = E[Ri]−Rf − βi(E[Rm]−Rf ) (3.21)

The alpha tells us how much better or worse our pairs trading strategy performed relative to

its benchmark i.e how well it performed relative to other securities with similar risk exposure.
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That is why this metric can be used to determine whether our strategy is able to generate excess

return. On this premises, to see if there are arbitrage opportunities, we impose the following

hypothesis:

H0: There are no arbitrage opportunities

H1: There are arbitrage opportunities

We will utilize a one sample t-test to conclude whether there is arbitrage and to see if the

strategy provided excess return. Since we are concerned with positive excess return only, we

will employ a one-sided t-distribution.
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3.6 Research Design Review

After a detailed description of our research design, a short summary of the main parts is

presented in Table 3.2.

Stage 1: Data Management Reasoning

Historical adjusted closing prices converted to
return series from January 2013 to December
2017. Fundamental ratios: ROIC, Debt-To-
Equity & Sales Growth
All data gathered from Yahoo Finance and
Bloomberg.

1.1 Adjusted closing prices are used to
avoid false trading signals

1.2 Fundamental ratios and daily returns
series are included to analyze co-
movement through several dimensions.

1.3 Financial ratios to reveal companies
profitability and financial health.

Stage 2: Stock Filtering Reasoning

In order to identify valid stocks, we restrict
our research design to extract common un-
derlying factors of stock returns.
This is done through the unsupervised tech-
niques PCA and DBSCAN. Last, we visualize
the clusters through t-SNE.

2.1 PCA: Extract common underlying risk
factors of stock returns.

2.2 DBSCAN: Cluster the components,
combined with the fundamental values.

2.3 t-SNE: Visualize the clustered data.

Stage 3: Identifying Mean-Reversion Reasoning

Use cointegration as a mean to identify mean-
reversion and weak stationarity. Following
the Engle-Granger two-step procedure with
5% significant level.

3.1 Cointegration may demonstrate signs of
mean-reversion in the future.

3.2 The Engle-Granger procedure is well
known in statistics and econometrics.

3.3 No-intercept included because we are
only taking positions in the stocks.

Stage 4: Trading Setup and Execution Reasoning

Conducting the trades out-of-sample with
eight test periods. A 10-day rolling z-score is
created for the generation of trading signals
and positions. All z-score parameters are up-
dated daily. Long/short positions if z-score
exceeds ± 2, close if z-score passes ± 1.

4.1 A 10-day rolling window is used to
avoid look-ahead bias. A daily re-
balancing through an updated z-score.

4.2 Trading signals are estimated from
training periods

Table 3.2: Review of the Research Design
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Chapter 4

Results

4.1 Determining the Number of Principal Components

The result from the PCA is presented in Figure 4.1. The figure describes the results from

training period 1. In the screen plot to the left, we can see the proportion of variance explained

by each of the principal components. On the right, we can see the cumulative proportion of

variance explained.

Along the y-axis is the proportion of variance explained, as explained by equation (3.9). Re-

member that we standardized our data in the stock filtering process, which means that each

variable has a mean of zero and variance of one. Because they have been standardized, each

variable contributes to one unit of variance to the total variance in the data.

From Figure 4.1, we can see that the first five components explain roughly 40 % of the total

variance, while 33 of the components (of the 50 total) is necessary to capture 95% of the variance.

Not surprisingly, the proportion of variance explained exhibits a logarithmic relationship with

the number of components which means that the marginal explanation of each component is

diminishing. This is because each component can be seen as representing a risk factor and it is

natural to think that different risk factors have different impact of the variance. Furthermore,

the first component is similar to the market risk (Avellaneda and Lee, 2008). For further

visualization of the first principal component, see Appendix 7.5.
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From training period 1. In the screen plot to the left, we can see a plot illustrating the
proportion of variance explained by each of the principal components. On the right, we can

see the cumulative proportion of variance explained.

Figure 4.1: Determining the number of principle components

On the left side of Figure 4.1, we can see the proportion of variance explained from each

principal component. From the figure, we can spot that the insignificant drop is around 12

components. Here is the elbow1. By settling 12 components, we are able to capture 75% of

the variance explained. The same number of components have been chosen for the remaining

periods, because of diminutive changes of variance explained across the training periods.

1Using the elbowing technique as explained in chapter 3.3.2
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4.2 Cluster Discovering

Upon cluster analysis, we projected the new PCA subspace together with the financial ratios

into regions of high density. The radius of each clusters e, where settled to 1.5. After trial

and error, this number was chosen to find the point which minimized the maximum distance

to all cluster points. For the minimum number of points, we settled minPts to 3. This was

chosen because we wanted to ensure that stocks with similar risk profile was clustered together.

Although the number of clusters will vary by the choice of e and minPts, these values are chosen

for all periods to be consistent.

On the whole, we identified one or two clusters for every training period. The clusters did,

however, differ in size and content from each training period. When visualizing the clusters,

the t-SNE algorithm was implemented on the DBSCAN output, providing us with Figure 4.2.

For a detailed description of all clusters formed, see Appendix 7.3.
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(a) clusters training period 1 (b) cluster training period 2

(c) cluster training period 3 (d) cluster training period 4

(e) cluster training period 5 (f) cluster training period 6

(g) cluster training period 7 (h) clusters training period 8

Purple indicates cluster 1, red indicates cluster 2.

Figure 4.2: Clusters formed in all training periods
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Analyzing the clusters in detail, we can see from Figure 4.3 and Table 4.1 the clustered stocks

from training period 1. Cluster 1 is distinguished with the purple color, cluster 2 in red, and

stocks that do not fit into a cluster are represented by the faded dots. From Table 4.1, we can

see that cluster 1 is a combination of various stocks with similar risk exposure. From cluster

2, we obtained the stocks: DNB SpareBank 2 and Storebrand, all of whom are large financial

banks in Norway.

For a detailed description of every cluster from all training periods, see Appendix 7.3.

Cluster visualization on DBSCAN output through t-SNE for training period 1.
Cluster 1 in purple and cluster 2 in red.

Figure 4.3: Visualization of clusters formed from training period 1

Stocks in cluster 1 Stocks in cluster 2
BAKKA, GJF, KOG, MHG, NHY, OLT, ORK, PGS,
SALM, SCHA, SDRL, SNI, STL, SUBC, TEL, TGS,
VEI, WWI, WWB, WWL, YAR.

DNB, SRBANK, STB

Table 4.1: Stocks in clusters from training period 1
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4.3 Summary of the Results

4.3.1 Summary of the Results Without Transaction Costs

Table 4.2 displays the overall results from our pairs trading strategy without transaction costs.

The returns, standard deviation and Sharpe ratio are semi-annualized figures. This is because

each testing period is six months. In the last three columns, the performance measures are from

the Oslo Stock Exchange Benchmark Index (BM). In the last row of the table, the measures

are annualized. For a detailed description of every test period, see Appendix 7.2.2.

Period Nb Pairs Rp σp SRp RBM σBM SRBM

1 7 5.17% 3.62% 1.163 12.97% 7.79% 1.54
2 4 -2.16% 6.75% -0.46 -7.46% 12.68% -0.66
3 12 2.63% 3.19% 0.52 8.59% 10.31% 0.74
4 1 -2.61% 5.45% -0.66 -3.11% 14.24% -0.29

5 5 4.51% 7.32% 0.48 0.00% 17.87% -0.03
6 7 1.08% 2.96% 0.04 11.82% 9.47% 1.15
7 13 0.29% 3.07% -0.22 1.02% 7.90% 0.01
8 11 5.89% 5.17% 0.95 15.51% 7.18% 2.02

Total1 60 3.64% 2 6.81% 0.25 10.42% 16.18% 0.52

Table 4.2: Summary statistics of portfolio without transaction costs

Over the investment horizon, our pairs trading strategy yielded a 3.64% compounded annualized

return and a standard deviation of 6.81% p.a. By comparison, an investment in the OSEBX

over the same period would have provided a return of 10.42% p.a on average with a volatility

of 16.18%. An investment in the benchmark clearly outperformed the pairs trading strategy.

The cumulative returns of the strategy and OSEBX are visualized in Figure 4.4.

1All numbers in the bottom row are annually figures
2Calculated as annually geometric mean: 1.1538

1

( 1
4 ) − 1 = 0.0364

3Sharpe Ratio is calculated in semiannually terms, we use 6-months risk-free rate: rf = (1 + 0.0195)
1
2 − 1
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Figure 4.4: Value development for pairs trading strategy and benchmark index

From Table 4.2, our trading strategy obtained an overall positive Sharpe ratio of 0.25, which

means that the strategy’s risk premium is increasing by 0.25 per unit of risk. However, the

Sharpe ratio of OSEBX (0.52) is superior.

To answer our research question on whether our pairs trading strategy could generate excess

return, we imposed the following hypothesis on the alpha metric:

H0: There are no arbitrage opportunities

H1: There are arbitrage opportunities

Our aim is either to accept or reject the null hypothesis in order to determine whether or not

our strategy provided excess return in form of arbitrage. The decision rule for the t-test is based

on a one-sided t-test. This is because we are only interested in analyzing positive excess return

and, therefore, we executed a one-sided t-test. In Table 4.3, we have the following output:
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Period α Coefficient1 t P-value

1 6.12% 1.76 0.04
2 -2.87% -0.43 0.34
3 2.27% 0.71 0.24
4 -3.73% -0.67 0.25

5 3.55% 0.52 0.30
6 0.33% 0.10 0.46
7 -0.68% -0.19 0.42
8 7.39% 1.48 0.07

Total 1.94% 0.63 0.27

Table 4.3: One-tailed t-test on portfolio alpha without transaction costs

From Table 4.3, we can see all the alpha-coefficients from every test period. Looking at the

average alpha for the entire period, it states that we obtained an annualized positive alpha of

1.94%. At a first impression, this means that our strategy yielded excess return. However, by

looking at the p-value of 0.27 and using a confidence interval of 95%, we fail to reject the null

hypothesis in favor of the alternative. The alternative hypothesis is in contrast to the null,

stating that the pairs trading strategy did yield excess return. Even though our alpha was

positive, we cannot conclude that this was due to our research design. Furthermore, a crucial

assumption regarding hypothesis testing is whether our data is normally distributed. From

Figure 4.5, we can see that the daily return is close to normally distributed.

1The alpha coefficients represent the ± excess return from each training period and are obtained from the
CAPM-equation. The t-statistics are based on the average daily alpha in each period.
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Figure 4.5: Daily return distribution over the sample period

Even though we did not generate excess return, the results obtained from our pairs trading

strategy suggest that the risk-exposure is close to zero as presented in Table 4.4. Three out of

eight betas have a p-value below 5%, which means they have a genuine effect on the dependent

variable. This is also the case for the overall portfolio beta, which has a p-value of 4%. Never-

theless, with an overall portfolio beta of -0.03, our pairs trading strategy bears little systematic

risk. From Table 4.4, we can see the summary statistics from all the betas during the eight

testing periods, including the overall portfolio beta.

Period β Coefficient t P-value

1 -0.16 -3.72 0.00
2 0.03 0.70 0.48
3 -0.08 -2.58 0.01
4 -0.04 -1.31 0.19

5 0.01 0.26 0.79
6 -0.02 -0.59 0.56
7 -0.04 -1.23 0.22
8 -0.17 -2.51 0.01

Total -0.03 -2.12 0.04

Table 4.4: Two-tailed t-test on portfolio beta
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4.3.2 Summary of the Results with Transaction Costs

As discussed earlier in the previous chapter, the inclusion of transaction costs is of great im-

portance. Our pairs trading strategy has multiple trades every month. Thus, transaction costs

have a huge impact on the results obtained. Table 4.5, presents the summary statistics when

we deduct for transaction costs.

Period Nb Pairs Rp σp SRp RBM σBM SRBM

1 7 3.66% 3.62% 0.75 12.97% 7.79% 1.54
2 4 -3.54% 6.80% -0.66 -7.46% 12.68% -0.66
3 12 1.00% 3.18% 0.01 8.59% 10.31% 0.74
4 1 -3.28% 5.44% -0.78 -3.11% 14.24% -0.29

5 5 2.86% 7.32% 0.26 0.00% 17.87% -0.03
6 7 -0.65% 3.00% -0.54 11.82% 9.47% 1.15
7 13 -1.20% 3.07% -0.71 1.02% 7.90% 0.01
8 11 4.23% 5.16% 0.63 15.51% 7.18% 2.02

Total 60 0.69% 6.82% -0.07 10.42% 16.18% 0.52

Table 4.5: Summary statistics of portfolio with transaction costs

Once the deduction of transaction costs was implemented, the strategy yielded a compounded

annualized return of 0.69% with a corresponding Sharpe ratio of -0.07. A negative Sharpe ratio

implies that we obtained a negative risk premium per unit of risk.

Correspondingly, we also tested whether the strategy was able to generate excess return with

transaction costs. Table 4.6 indicates the t-statistics of the portfolio alpha with transaction

costs. With the inclusion of transaction costs, the annualized alpha is -1.01%. Moreover,

the annualized alpha displays a p-value of 0.41 and, therefore, we fail to reject the same null

hypothesis in favor of the alternative. This means that our pairs trading strategy were not able

to generate excess return when deducted for transaction costs.
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Period α Coefficient t P-value

1 4.61% 1.35 0.09
2 -4.25% -0.65 0.26
3 0.53% 0.22 0.41
4 -4.41% -0.79 0.21

5 1.89% 0.30 0.38
6 -1.40% -0.46 0.32
7 -2.16% -0.68 0.25
8 5.73% 1.15 0.13

Total -1.01% -0.22 0.41

Table 4.6: One-tailed t-test on portfolio alpha with transaction costs

Last, we display the cumulative return for all periods. This includes the pairs trading strategy

with and without transaction costs, but also with the comparison of the benchmark index. This

is presented in Figure 4.6.

Figure 4.6: Strategy with and without transaction costs compared to benchmark
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4.3.3 Comparing the Strategy with an Unrestricted Model

In order to verify our research design, we will compare it to an unrestricted model. As empha-

sized throughout this thesis, PCA and DBSCAN are implemented prior to the identification of

mean-reversion. We thus created a restricted model with the intention of extracting and clus-

tering stocks with similar risk exposure, in the belief they would be more suitable for a pairs

trading strategy. For the unrestricted model, we have disregarded any sort of stock filtering

and tested all stock combinations for cointegration. The results are presented in Table 4.7 and

Figure 4.7.

Unrestricted Model Restricted Model

Period Nb Pairs R σ SR β α Nb Pairs R σ SR β α

1 26 2.10% 3.66% 0.31 -0.12 2.57% 7 5.17% 3.62% 1.16 -0.16 6.12%
2 9 -22.48% 78.05% -0.30 -0.17 -24.88% 4 2.16% 6.75% -0.46 0.03 -2.87%
3 30 6.24% 9.91% 0.53 -0.13 6.26% 12 2.63% 3.19% 0.52 -0.08 2.27%
4 35 -5.71% 8.82% -0.90 -0.16 -7.33% 1 -2.61% 5.45% -0.66 -0.04 -3.74%

5 40 -5.29% 19.14% -0.41 -0.16 -5.41% 5 4.51% 7.32% 0.48 0.01 3.55%
6 60 19.68% 9.12% 1.83 0.05 18.17% 7 1.08% 2.96% 0.04 -0.02 0.33%
7 85 2.09% 6.95% 0.16 0.05 1.18% 13 0.29% 3.07% -0.22 -0.04 -0.68%
8 41 2.44% 5.62% 0.26 -0.10 2.92% 11 5.89% 5.17% 0.95 -0.17 7.39%

Total 326 -3.07% 24.91% -0.20 -0.27 -2.73% 60 3.64% 6.81% 0.25 -0.03 1.94%

Table 4.7: Summary statistics of Unrestricted and Restricted model without transaction costs

In comparison, the number of stock pairs is over five times greater for the unrestricted model.

This is no surprise, as we have penalized our restricted model with stern criteria through

unsupervised machine learning techniques. Even though the unrestricted model created more

stock pairs, the risk exposure is larger. This can be seen from the overall portfolio beta of -0.27

and standard deviation of 24.91%.

In the unrestricted model, the strategy yielded a negative annualized return of -3.07%, roughly

six percentage point below the annualized return of the restricted model. This resulted in

a negative Sharpe ratio of -0.20. Moreover, the annualized alpha was -2.73%. Once tested

through a t-test, we again fail to reject the null hypothesis in favor of the alternative. Thus,
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we can conclude that the unrestricted model did not produce any excess return.

Figure 4.7 outlines the strategy comparison between the restricted and unrestricted model.

Figure 4.7: Restricted and Unrestricted model comparison

4.4 Empirical Summary

The number of principal components was settled at 12 in every training period. This allowed

us to capture about 75% of the variation in the dataset. The principal components, combined

with fundamental ratios, was then clustered in regions of high density where stocks with similar

risk exposure where clustered together. This resulted in one or two clusters in every period.

From the results obtained, we were not able to statistically prove that the pairs trading strat-

egy was able to generate excess returns from arbitrage. This was the result both with and

without transaction costs. An unrestricted model was designed as a comparison to the original

(restricted) model. Results showed that the returns where almost six percentage points under

the restricted model. Moreover, this model was also not able to generate excess return.
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Chapter 5

Discussion

In this chapter, we will try to reconnect the empirical findings with the outlined theoretical

frameworks. The main theoretical frameworks are the efficient-market hypothesis, the arbitrage

pricing theory, and pairs trading. We have therefore structured the discussion in this manner.

5.1 The Efficient-Market Hypothesis

The first theoretical point of departure was the efficient-market hypothesis (EMH), which stated

that the value of a transaction is at its correct value because all of the information is fully

reflected in the price (Fama, 1970). Moreover, the theory outlines the concept of no-arbitrage,

stating that stock prices follow a random walk and, as a consequence, one cannot exploit

mispricing of stocks. Our empirical results support this theory. The purpose of t-testing the

alpha of the portfolio was to determine if our statistical arbitrage strategy were able to generate

excess return on the Norwegian stock market. Even though we obtained an alpha of 1.94%,

we failed to reject the null hypothesis in favor of the alternative and the alpha was therefore

not statistically significant. Thus, our findings are in line with Fama (1970) and the EMH.

This means that changes in stock prices cannot be reflected in algorithms, while excess return

is gained as luck rather than an outcome of a correct prediction (Degutis and Novickyt, 2014).

Furthermore, our study leads to the questioning of exactly how efficient the Norwegian stock
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market was during our sample period. As aforementioned, Fama (1970) outlines three kinds of

market efficiency based on the information set, namely the weak, semi-strong and strong. The

strong form postulates that all information, both public and private is reflected in the stock

price. It is hard to argue for the latter because this implies that stock prices also includes inside

information. Because of this uncertainty, the Norwegian stock market cannot be described as

having a strong market efficiency. On the contrary, we can conclude that the OSEBX is

an example of the weak-form efficiency since we were not able to generate excess return on

historical data. The question is whether we can characterize it to be on the semi-strong form,

where stock prices reflect both past and present public information. Bodie et al. (2011) argues

that the semi-strong form is where all investors do not interpret the information in the same way,

possibly leading to adverse situations from technical or fundamental analysis. We will, therefore,

conclude that the Norwegian stock market is at a semi-strong form because even though we

were not able to generate an overall positive portfolio alpha, there where some periods with

positive significant results, which gives indications that there are arbitrage opportunities every

now and then.

Looking at the empirical results from a broader perspective, we can see that investing in

an actively managed portfolio will not outperform the market. Since we conclude that the

Norwegian stock market is (semi-form) efficient, there is no incentive to spend resources to

gather information and trade on it. Looking at the evidence, there is not much research in

favor of active management. Some studies reveal that active management before cost may give

the same return as passive investing. However, when deducting for costs associated with active

management, it turns out that passive management gives the highest return (Fama and French,

2010), which is consistent with our results.
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5.2 The Arbitrage Pricing Theory

Having discussed the results in light of the EMH, the second theoretical point of departure

was the Arbitrage Pricing Theory. In our pairs trading strategy, we sought to extract common

underlying risk factors of stock returns in the understanding that these could lead to more

robust cointegrated stock pairs. This was because the APT uncovered the heart of pairs trading

because it stated that stocks with similar risk exposure would yield the same return and, as

a consequence, one could use the APT theory as a catalyst to find mispriced stocks and place

trades accordingly (Harlacher, 2016).

In the pursuit of extracting the underlying risk factors, we used the principal component anal-

ysis to avoid ad hoc choices of factors. Nevertheless, in PCA, the components obtained are

uninterpretable because completely new variables are created in a new subspace. This means

that we have to trust that our research design is conducted in an adequate manner without

any form of misspecifications. Moreover, when deciding the number of factors (principal com-

ponents), we looked for the point at which the eigenvalues dropped and became insignificant,

namely an ad hoc choice of the number of factors. This could, therefore, bias our results in a

way that we captured too much or too little of the explained variance. Because almost half of

the cointegrated pairs ceased to exist out-of-sample, it gives us an indication that the number

and nature of the extracted factors were collected on false premises.

Notwithstanding, when we compared our strategy against the unrestricted model, it gives us

confidence that PCA and DBSCAN were able, to a certain degree, to filter out stocks suitable

for pairs trading. In the words of Avellaneda and Lee (2008), PCA decomposes and extract

risk components, as a way to sort out the idiosyncratic noise. Clearly, this is evident in the

restricted model when comparing it to the unrestricted model. Under those circumstances, we

can infer that the cointegrated relationship between the stocks in the unrestricted model has

further disintegrated out-of-sample compared to our restricted model. In this regard, we have

reason to believe that filtering out stocks by using unsupervised machine learning techniques and

including financial ratios are in fact beneficial when designing a statistical arbitrage strategy.

52



5.3 Pairs Trading

The last theoretical point of departure, was the empirical evidence of pairs trading. During our

investment horizon, a total of 60 pairs were traded, 35 of which ended with positive returns.

This proves that almost half of all pairs diverged more than desired out-of-sample and nega-

tively affected the overall performance. This confirms the unfavorable profits due to diverging

properties and advances in technology as documented by Do and Faff (2010). There may be

various reasons for declining profits, but we will outline three distinct motives presented in

previous literature, which we believe is relevant to our strategy.

1. First, a disintegration between two cointegrated stocks can be due to a structural shock or

break, as first outlined by Hamilton (1992). This means that the stocks are still inherently

cointegrated, but with different parameter values which our model is not able to capture.

2. Second, De Bondt and Thaler (1985) argue that stock returns have a tendency to reverse

itself over the long run. They call it the reversal effect, an effect in which losers rebound and

winners fade back. Thus, if our testing periods are too short, we may not be able to generate

profit from stock pairs that take longer to converge back to their long-term mean.

3. Last, the original article of Gatev et al. (1999), which has been in circulation for a long

time, may have contributed to a great enthusiasm for the use of pairs trading strategies among

sophisticated investors. Increased competition coupled with the development of technology,

might have vanished the profitability away.

In the light of pairs trading as a relative value investment, the strategy may, therefore, have

seen its glory days. As more and more investors use similar strategies and chase the same price

discrepancies, such mispricing will be eliminated more quickly, thus leading to lower returns.

Therefore, it does not come as a surprise that we were not able to achieve excess return.

As presented in the results, we found that our pairs trading strategy is close to market neutral

with an overall portfolio beta of -0.03, which is in accordance with Gatev et al. (2006). On

the contrary, we saw great fluctuations in the OSEBX over the sample period. This is likely
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to be linked with the historical volatility in oil prices. Since the Norwegian stock market is

heavily exposed to the oil and gas industry, it is reasonable to assume that the high alteration

in the oil and gas industry was probably rippling over to other sectors, resulting in negative

repercussions and skepticism among equity investors at the OSEBX at the beginning of the

sample period.

Nevertheless, our pairs trading risk-exposure remained stable throughout the turmoil. It also

generated higher returns than the OSEBX in three out of the first five testing periods. This is

to some extent consistent with what we mentioned in the empirical evidence of pairs trading.

Namely that the strategy works particularly well in times of uncertainty and financial crises.

During such adverse situations, there is usually a shortage of liquidity which can cause stock

prices to deviate from its fundamental value. Stocks which usually follows the same stochas-

tic process can suddenly diverge because liquidity is of dire constraints in the market. Such

situations can be a good opportunity to increase pairs trading activities. By conducting pairs

trading in these situations, one can take the role as an intermediary or liquidity provider. This

is because we buy the underperforming stock and sell the stocks that do relatively well. Thus,

we can see that the return from our pairs trading strategy was negatively correlated in times of

financial turmoil, as outlined by Acharya and Pedersen (2005). From these findings, we believe

pairs trading can be used as a mean to hedge systematic risk, especially in times of financial

distress.

Although Do and Faff (2010) found declining profit in pairs trading, we hoped that the per-

formance of our strategy would match the results obtained by Avellaneda and Lee (2008) and

Avalon et al. (2017), which found favorable results with the use of unsupervised machine learn-

ing techniques. However, the studies of both (Avellaneda and Lee, 2008) and (Avalon et al.,

2017) were conducted on the S&P 500. This is considered to be the most liquid and traded stock

market in the world. It is, therefore, natural that such a strategy would yield different results

on the Norwegian stock market. A market with more homogeneous companies. Conducting

the algorithmic trading model as presented in this thesis may, therefore, be more beneficial for

a larger stock universe. With a larger stock universe, PCA and DBSCAN would most likely

result in a larger number of clusters, which again could provide more robust stock pairs.
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5.4 Discussion Summary

Based on our analysis, the results are in accordance with the efficient-market hypothesis (EMH).

Even though we obtained a relative market-neutral strategy with a beta close to zero, we were

not able to gain a statistically significant excess return on the Norwegian stock market. With the

rise of algorithmic trading and advanced computerized systems to analyze stock movements,

we hoped to capitalize on market inefficiencies and asymmetric information on which such

technology could bring. On the contrary, because of the improved technological novelties, it

seems that the market is more efficient than we sought out. This means that the efficient-

market hypothesis relevancy is more present than ever and, as a consequence, we can conclude

that there is no such thing as a free lunch.
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Chapter 6

Conclusion

6.1 Summary

At the beginning of this thesis, we outlined the idea of no-arbitrage saying that there is no

such thing as a free lunch. Determined to use statistical algorithms to find a free lunch on the

Norwegian stock market, we imposed the following research question:

Can algorithmic pairs trading with machine learning generate excess return?

Our main purpose was, therefore, to establish and create a pairs trading algorithm to capitalize

on market inefficiencies. In the seek of the research question we used three unsupervised

machine learning techniques to extract and cluster stocks with the same underlying risk factors.

Thereafter, we identified cointegration among the stocks and placed trades accordingly. Based

on the empirical results obtained, we can draw the following conclusion:

1. There seems not to be any arbitrage opportunities on the Norwegian stock market.

2. The stock market is efficient in the semi-strong form.

3. Pairs trading is a market-neutral strategy with almost no exposure to systematic risk

4. Unsupervised machine learning techniques have properties which are beneficial for a pairs

trading strategy
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We found that the strategy is close to market neutral with a statistically significant beta value

of -0.03. Notwithstanding, with the implementation of transaction costs, the strategy only

obtained an alpha of -1.02% and return of 0.69% p.a. Thus, we statistically concluded that

pairs trading do not generate excess return on the Norwegian stock market in the sample period

from January 2013 to December 2017. This is in line with the efficient-market hypothesis.

Nevertheless, our strategy outperformed an unrestricted model based solely on cointegration.

This reveals that extracting common underlying factors of stock returns and cluster them into

regions of high density have properties that are beneficial for selecting stocks for a pairs trading

strategy. On these premises, we can, therefore, inform and verify: there is no such thing as a

free lunch.

6.2 Limitations and Future Work

One of the limitations of our research is that we have applied our research design on the

Norwegian stock market over a relatively short period of time. We only conclude that there

seems not to be any arbitrage on the Norwegian stock market in the given period. Longer or

other sample periods could have provided different conclusions. Second, we concluded to use

the same parameters in the machine learning algorithms for all periods. This could have biased

our results as periods most likely changes throughout time.

Furthermore, during our pairs trading analysis, we identified aspects which can be considered

in future work. We will outline the five aspects which we believe are the most relevant.

First, the strategy could be examined over a longer period or in two different decades. This

could potentially give us an indication if there is declining profitability of pairs trading on the

Norwegian stock market.

Second, since our strategy relies on cointegrated stocks in-sample, they may lose this relation-

ship out of sample. As a result, adding adaptive trading rules could be taken into account.

Adding a stop-loss function to our algorithm could probably make the strategy more robust.
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Third, we assume that all stocks at the OSEBX are possible to short. This is not necessarily

always the case in real life due to the liquidity in the stock themselves. Therefore, adding

liquidity requirements to the model could be investigated in greater detail.

Fourth, in our thesis, we used adjusted closing prices since this is the common practice in

the pairs trading literature. Implementing intra-day prices instead of closing prices would

potentially give a more realistic view of the trade executions and transaction costs.

Last, the use of machine learning in pairs trading was very useful compared to an unrestricted

model. However, it did not help us to achieve excess returns. It would, therefore, be interesting

to see if other techniques would have provided better results. This could be through the use of

the supervised techniques Support Vector Machines or Neural Networks. In greater detail, these

techniques allow us to categorize unlabeled data and is one of the most widely used clustering

algorithms in industrial applications.
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Chapter 7

Appendices

7.1 The different forms of market efficiency

Market Efficiency Assumption Arbitrage opportunity

Strong efficiency Public and private information No arbitrage
reflected in stock prices

Semi-strong Public and past information Only on non-public
efficiency reflected in stock prices information

Weak efficiency Historical prices On fundamental and
reflected in stock prices inside information

Source: Rosenius and Sjőholm (2013)

Table 7.1: Different forms of market efficiency
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7.2 Returns, Volatility and Sharp ratio

7.2.1 Return and volatility calculation

The Portfolio Return for each period is calculated as follows:

Rport =
N∑
i=1

ωiRi, (7.1)

where wi represent the weight allocated to each stock pair and Ri represents the realized pair

return.

The Portfolio Volatility for each period is calculated as follows:

σ2
p ∗ days =

N∑
i=1

N∑
j=1

ωicov(i, j)ωj ∗ days =
N∑
i=1

N∑
j=1

ωiσi,jωj ∗ days, (7.2)

where σp represents the standard deviation of the portfolio in each period.

7.2.2 Return, Volatility and Sharpe Ratio for each stock pair

Period 1 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

BAKKA-GJF 0.31% 11.84% -0.06 -1.35% 11.93% -0.19
GJF-MHG -1.73% 3.00% -0.90 -2.82% 3.02% -1.25
KOG-MHG 5.09% 12.33% 0.33 3.36% 12.29% 0.19
KOG-SALM 6.07% 3.26% 1.56 4.90% 3.32% 1.18
KOG-TEL 8.45% 6.43% 1.16 7.25% 6.41% 0.98
MHG-TEL 14.23% 7.06% 1.88 12.5% 7.01% 1.64
MHG-WWIB 3.79% 9.46% 0.30 1.80% 9.39% 0.09

Portfolio 5.17% 3.62% 1.16 3.66% 3.61% 0.75

Table 7.2: Equal weighted portfolio period 1
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Period 2 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

AKER-OLT -23.00% 22.09% -1.08 -24.71% 22.21% -1.16
MHG-OLT 0.66% 5.52% -0.06 -0.18% 5.58% -0.21
OLT-ORK 10.16% 12.73% 0.72 8.64% 12.73% 0.60
WWI-WWIB 3.52% 4.49% 0.57 2.08% 4.56% 0.24

Portfolio -2.16% 6.75% -0.46 -3.54% 6.80% -0.66

Table 7.3: Equal weighted portfolio period 2

Period 3 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

AFG-TEL 11.95% 10.58% 1.04 10.11% 10.51% 0.87
ATEA-GSF 38.35% 19.82% 1.89 35.31% 19.83% 1.73
ATEA-OLT -1.79% 8.64% -0.32 -3.54% 8.53% -0.53
ATEA-TEL -3.45% 16.43% -0.27 -4.78% 16.40% -0.35
ATEA-YAR 6.54% 5.20% 1.07 5.08% 5.11% 0.80
GSF-OLT -2.29% 10.16% -0.32 -4.04% 10.16% -0.49
GSF-TEL 3.18% 9.20% 0.24 1.47% 9.22% 0.05
GSF-VEI -4.97% 7.66% -0.78 -6.02% 7.61% -0.92
OLT-TEL -4.41% 11.05% -0.49 -5.72% 11.02% -0.61
OLT-YAR 5.61% 6.11% 0.75 4.14% 6.20% 0.51
TEL-VEI -16.92% 11.36% -1.57 -18.53% 11.42% -1.71
WWI-WWIB -0.26% 3.48% -0.35 -1.50% 3.54% -0.70

Portfolio 2.63% 3.19% 0.52 1.00% 3.18% 0.01

Table 7.4: Equal weighted portfolio period 3
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Period 4 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

WWI-WWIB -2.61% 5.45% -0.66 -3.28% 5.44% -0.78

Portfolio -2.61% 5.45% -0.66 -3.28% 5.43% -0.78

Table 7.5: Equal weighted portfolio period 4

Period 5 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

GSF-ORK 8.58% 8.89% 0.86 7.38% 8.89% 0.72
GSF-VEI 11.51% 8.18% 1.29 9.37% 8.14% 1.03
SALM-SCHA 20.39% 9.48% 2.05 18.90% 9.45% 1.90
SCHA-VEI -18.72% 27.94% -0.70 -20.06% 27.87% -0.75
SNI-WWI 0.80% 13.60% -0.01 -1.29% 13.65% -0.17

Portfolio 4.51% 7.32% 0.48 2.86% 7.32% 0.26

Table 7.6: Equal weighted portfolio period 5
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Period 6 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

EKO-OLT 3.56% 6.00% 0.43 1.57% 5.90% 0.10
GJF-XXL -10.72% 5.71% -2.06 -11.96% 5.81% -2.23
NHY-VEI 6.87% 7.51% 0.78 5.39% 7.53% 0.59
SNI-TGS -0.53% 9.21% -0.16 -2.59% 9.32% -0.38
STB-VEI 0.54% 6.08% -0.07 -1.13% 6.07% -0.34
STB-XXL 13.22% 10.24% 1.20 11.03% 10.29% 0.98
VEI-XXL -5.38% 8.54% -0.74 -6.83% 8.70% -0.90

Portfolio 1.08% 2.96% 0.04 -0.65% 3.01% -0.54

Table 7.7: Equal weighted portfolio period 6

Period 7 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

AFG-ENTRA -3.01% 5.47% -0.74 -4.39% 5.40% -0.99
ATEA-TEL 4.80% 13.25% 0.29 2.51% 13.15% 0.12
BAKKA-EKO -6.01% 16.36% -0.43 -7.42% 16.25% -0.52
EKO-ENTRA 15.52% 16.82% 0.86 13.93% 16.81% 0.77
EKO-MHG 4.53% 10.18% 0.35 2.81% 10.11% 0.18
EKO-NHY -23.12% 24.39% -0.99 -24.31% 24.44% -1.03
ENTRA-OLT -0.48% 3.09% -0.47 -1.58% 3.15% -0.81
EPR-GJF -2.25% 5.71% -0.62 -4.43% 5.67% -0.95
EPR-XXL 6.21% 4.42% 1.19 4.75% 4.38% 0.86
GJF-TEL -2.38% 5.77% -0.58 -4.27% 5.82% -0.90
GJF-XXL -3.30% 5.24% -0.82 -4.64% 5.23% -1.07
MHG-NHY 4.80% 7.98% 0.48 3.79% 7.85% 0.36
ORK-XXL 8.84% 6.59% 1.19 7.65% 6.44% 1.04

Portfolio 0.29% 3.07% -0.22 -1.20% 3.07% -0.71

Table 7.8: Equal weighted portfolio period 7
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Period 8 Without costs With costs
Pairs Rp σp SRp Rp σp SRp

AFG-EPR 54.75% 23.51% 2.29 52.19% 23.54% 2.18
AFG-TEL -0.59% 5.67% -0.28 -1.97% 5.71% -0.51
AKERBP-STL -5.80% 14.92% -0.45 -6.83% 14.88% -0.52
EPR-NPRO -0.46% 15.30% -0.09 -1.58% 15.42% -0.17
KOG-TEL -2.90% 4.50% -0.86 -4.37% 4.60% -1.16
NOD-NOFI 0.72% 7.75% -0.03 -0.95% 7.71% -0.25
NOFI-VEI 3.09% 13.05% 0.16 0.55% 13.03% -0.03
OLT-TEL 3.06% 5.06% 0.41 1.36% 5.11% 0.08
SCHB-VEI 5.59% 44.97% 0.10 3.84% 45.00% 0.06
STL-YAR 3.38% 2.55% 0.94 2.23% 2.52% 0.50
WWI-WWIB 3.93% 3.79% 0.78 2.07% 3.77% 0.29

Portfolio 5.89% 5.17% 0.95 4.24% 5.16% 0.63

Table 7.9: Equal weighted portfolio period 8
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7.3 Clusters formed

(a) clusters training period 1 (b) cluster training period 2

(c) cluster training period 3 (d) cluster training period 4

(e) cluster training period 5 (f) cluster training period 6

(g) cluster training period 7 (h) clusters training period 8

Purple indicates cluster 1, red indicates cluster 2.

Figure 7.1: Clusters formed in all training periods
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Cluster period 11

ATEA BAKKA GJF KOG MHG

NHY OLT ORK PGS SALM

SCHA SDRL SNI STL SUBC

TEL TGS VEI WWI WWIB

WWL YAR STB STL DNB

Cluster period 2

AFG AKER ATEA BAKKA EKO

EVRY GJF KOG MHG NHY

NPRO OLT ORK SALM SCHA

SDRL SNI STL SUBC TEL

TOM VEI WWI WWIB WWL

YAR

Cluster period 3

AFG AKER ATEA BAKKA EKO

GJF GSF KOG NHY NPRO

OLT ORK SALM SNI STB

STL TEL TOM VEI WWI

WWIB WWL YAR

Cluster period 4

AFG AKER ATEA EKO GJF

KOA GSF KOG NHY NPRO

OLT ORK SNI STB STL

TEL TGS TOM VEI WWI

WWIB WWL YAR

Cluster period 5

AKER ATEA BAKKA BWLPG EKO

ENTRA GJF GSF KOA KOG

MHG NHY NPRO OLT ORK

SALM SCHA SNI TEL TOM

VEI WWI WWIB WWL XXL

YAR

Cluster period 6

AFG AKER ATEA BAKKA BWLPG

EKO ENTRA EPR GJF GSF

KOA KOG MHG NHY NPRO

OLT ORK SALM SCHA SCHB

SNI STB STL SUBC TEL

TGS VEI WWI WWIB XXL

YAR

Cluster period 7

AFG ATEA BAKKA EKO ENTRA

EPR GJF GSF KOG MHG

NHY NPRO OLT ORK SALM

SCHA SCHB STB TEL VEI

XXL YAR

Cluster period 8

AFG AKER AKERBP ATEA B2H

ENTRA EPR GJF HEX KIT

KOA KOG NHY NOD NOFI

NPRO OLT ORK SCHA SCHB

SNI STB STL SUBC TEL

TOM VEI WWI WWIB XXL

YAR BAKKA LSG MHG SALM

1Stocks in purple are in cluster 1, stocks in red in cluster 2
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7.4 Python Code

The Python code that follows are only a fraction of the entire code. The code below are for training

and testing period 1 only. However, the same procedure are repeated for subsequent periods.

7.4.1 Stage 1: Data Management

# Importing L i b r a r i e s and modules

import matp lo t l i b . cm as cm

import matp lo t l i b . pyplot as p l t

%matp lo t l i b i n l i n e # We use Jupyter Notebook . Otherwise , use p l t . show ( )

import numpy as np

import pandas as pd

import seaborn as sns

from s k l ea rn . c l u s t e r import KMeans , DBSCAN

from s k l ea rn . decomposit ion import PCA

from s k l ea rn . mani fo ld import TSNE

from s k l ea rn import p r e p r o c e s s i n g

from stat smode l s . t sa . s t a t t o o l s import c o i n t

from stat smode l s . t sa . s t a t t o o l s import a d f u l l e r

import s ta t smode l s . r e g r e s s i o n . l i n ea r mode l as rg

from sc ipy import s t a t s

# Importing our re turn and fundamentals datase t

s t o ck s = pd . r ead c sv ( ’OSEBX. csv ’ , i n d e x c o l=’ Date ’ , sep=’ ; ’ )

benchmark = pd . r ead c sv ( ’ Benchmark . csv ’ , i n d e x c o l=’ Date ’ )

benchmark = benchmark [ ’ Adj Close ’ ]

benchmark = benchmark [ ’ 2014−01−01 ’ : ’ 2014−06−30 ’ ]

fundamentals = pd . r e a d e x c e l ( ’ Fundamentals . x l sx ’ , sheetname=’ 2013 ’ )

# Training per iod :

t r a i n i n g 1 = s tock s [ ’ 2013−01−01 ’ : ’ 2013−12−31 ’ ] . dropna ( a x i s =1)

# Create ing an array o f d a i l y r e tu rn s

r e turns1 = t r a i n i n g 1 . pct change ( ) [ 1 : ] # Skip the f i r s t row (NaN)
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7.4.2 Stage 2: Stock Filtering

In this section we use unsupervised machine learning techniques in order to filter out stocks that are

suitable for pairs trading. We have followed the notebook written by (Larkin, 2017), and modified it

to our needs.

Principal Components Analysis

pca = PCA( n components = 12) # nr . o f components i s s e t to 12

pca . f i t ( r e turns1 ) # Extract the common under ly ing f a c t o r s f o r each stock

pca . e x p l a i n e d v a r i a n c e r a t i o . cumsum( ) # determine nr . o f components

p r i n t ( ’The shape o f the array a f t e r PCA i s : ’ , pca . components .T. shape )

# We add the three fundamental f a c t o r s to the model

ex t rac t ed data = np . hstack (

( pca . components .T, fundamentals [ ’ROIC ’ ] . va lue s [ : , np . newaxis ] , fundamentals [ ’

DEBT/EQUITY ’ ] . va lue s [ : , np . newaxis ] , fundamentals [ ’SALES GROWTH’ ] . va lue s [ : , np .

newaxis ] )

)

ex t rac t ed data = p r e p r o c e s s i n g . StandardSca ler ( ) . f i t t r a n s f o r m ( ex t rac t ed data )

p r i n t ( ’The shape o f the array i s now : ’ , ex t rac t ed data . shape )

Density-Based Spatial Clustering of Applications with Noise

c l u s t e r i n g = DBSCAN( eps =1.5 , min sample=3) # eps can be changed . min sample >=3

c l u s t e r i n g . f i t ( ex t rac t ed data ) c l u s t e r g r o u p = c l u s t e r i n g . l a b e l s 3

n c l u s t e r s = len ( s e t ( c l u s t e r g r o u p ) ) − (1 i f −1 in c l u s t e r g r o u p e l s e 0)

p r i n t ( ”\ nClus te r s d i s cove r ed : %d” % n c l u s t e r s ) # p r i n t s the number o f

c l u s t e r e s

c l u s t e r e s = c l u s t e r i n g . l a b e l s # Clustered = array o f va lue s >= −1

# c l u s t e r e d s e r i e s i s s to r ed as a pandas s e r i e s object , where the s to ck s are the

rows .

c l u s t e r e d s e r i e s = pd . S e r i e s ( index = t r a i n i n g 1 . columns , data = c l u s t e r s . f l a t t e n ( )

)

c l u s t e r e d s e r i e s a l l = pd . S e r i e s ( index = t r a i n i n g 1 . columns , data = \ c l u s t e r e s .

f l a t t e n ( ) ) # The l i s t c a l l e d c l u s t e r e s i s added .
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c l u s t e r e d s e r i e s = c l u s t e r e d s e r i e s [ c l u s t e r e d s e r i e s != −1]

c l u s t e r l i m i t = 50 # Limits the number o f s t o ck s in each c l u s t e r

counts = c l u s t e r e d s e r i e s . va lue count s ( )

t i c k e r c o u n t r e d u c e d = counts [ ( counts>1) & ( counts<=c l u s t e r l i m i t ) ]

p r i n t ( ” C lu s t e r s formed : %s ” % len ( t i c k e r c o u n t r e d u c e d ) )

p r i n t ( ” Pa i r s to eva luate : %s ” % \( t i c k e r c o u n t r e d u c e d ∗( t i cke r count r educed −1)

) . sum ( ) )

t-Distributed Stochastic Neighbour Embedding

# t−SNE i s a t o o l to v i s u a l i z e high−dimens iona l data .

c l u s t e r s t s n e = TSNE( l e a r n i n g r a t e =200 , p e r p l e x i t y =19) . f i t t r a n s f o r m (

ex t rac t ed data )

# Determining the layout

p l t . f i g u r e (1 , f a c e c o l o r=’ white ’ , f i g s i z e =(8 ,6) , )

p l t . c l f ( ) # Clear the cur rent f i g u r e

p l t . s c a t t e r (

c l u s t e r s t s n e [ ( c l u s t e r g r o u p !=−1) , 0 ] ,

c l u s t e r s t s n e [ ( c l u s t e r g r o u p !=−1) , 1 ] ,

s =150 ,

alpha =1,

c=( c l u s t e r g r o u p [ c l u s t e r g r o u p !=−1]) ,

cmap=cm. rainbow

)

p l t . s c a t t e r (

c l u s t e r s t s n e [ ( c l u s t e r e d s e r i e s a l l ==−1) . values , 0 ] ,

c l u s t e r s t s n e [ ( c l u s t e r e d s e r i e s a l l ==−1) . values , 1 ] ,

s =150 ,

alpha =0.1

)

p l t . x t i c k s ( f o n t s i z e =15)

p l t . y t i c k s ( f o n t s i z e =15)

p l t . t i t l e ( ’ t−SNE of a l l Stocks with DBSCAN Clus t e r s Noted ’ , f o n t s i z e =20) ;

p l t . x l a b e l ( ’X−t sne ’ , f o n t s i z e =15)

p l t . y l a b e l ( ’Y−t sne ’ , f o n t s i z e =15)
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7.4.3 Stage 3: Identifying Mean-Reversion

The function ”cointegrated−stocks” is written by Mackenzie and Margenot (2018) and modified to

our needs.

# The func t i on below i s copied from https : //www. quantopian . com/ l e c t u r e s /

in t roduct i on−to−pa i r s−t rad ing . I t i s modi f i ed to our need

# This func t i on takes one ob j e c t ( data ) . The ob j e c t that w i l l be added l a t e r , i s

the p r i c e data o f a l l c l u s t e r d s to ck s .

de f c o i n t e g r a t e d s t o c k s ( data ) :

n = data . shape [ 1 ] # g ive us the number o f s t o ck s in c l u s t e r

s co r e mat r i x = np . z e ro s ( ( n , n) ) # c r e a t e an n∗n array o f z e r o s

pva lue matr ix = np . ones ( ( n , n) ) # t h i s array w i l l be updated with

c o i n t e g r a t i o n p−va lue s

keys = data . keys ( ) # s t o r e the t i c k e r symbol o f s t o ck s

p a i r s = [ ] # c r e a t e an empty l i s t

# The f o r loop below i s a nested for−loop . When pass ing in a data object , the

f i r s t for−loop w i l l i t e r a t e through a l l s tock which be longs to a c l u s t e r . The

nested for−loop does the same , except i t jumps one column to the r i g h t in

the data frame .

f o r i in range (n) :

f o r j in range ( i +1, n) :

S1 = data [ keys [ i ] ]

S2 = data [ keys [ j ] ]

# Desc r ip t i on o f the c o i n t func t i on : Uses the augmented Engle−Granger two− s tep

c o i n t e g r a t i o n t e s t .

r e s u l t = co i n t ( S1 , S2 , trend=’ nc ’ ) # no i n t e r c e p t inc luded .

s co r e = r e s u l t [ 0 ] # s t o r e r e s u l t index [ 0 ]

pvalue = r e s u l t [ 1 ] # s t o r e p−value

s co r e mat r i x [ i , j ] = va lue s from sco r e and p−value are s to r ed in a

matrix .

pva lue matr ix [ i , j ] = pvalue

i f pvalue < 0 . 0 5 : # I f p−value below 5%, add pa i r to ” p a i r s ” l i s t

p a i r s . append ( ( keys [ i ] , keys [ j ] ) )

r e turn score matr ix , pvalue matr ix , p a i r s
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# Create an empty d i c t i o n a r y c o n s i s t i n g o f the t r e e f o l l o w i n g keys : pa i r s , p−

va lue matr ix and sco r e mat r i c s , where va lue s are a l i s t o f s tock p a i r s in

tup le s , an array o f p−va lue s and s co r e r e s p e c t i v e l y .

c l u s t e r d i c t i o n a r y = {}

# The for−loop i t e r a t e trough a l l s t o ck s in c l u s t e r s and e x t r a c t the s tock p a i r s

that has a p−value below 5%

f o r i , wh i ch c lu s t in enumerate ( t i c k e r c o u n t r e d u c e d . index ) :

s t o c k t i c k s = c l u s t e r e d s e r i e s [ c l u s t e r e d s e r i e s == whi ch c lu s t ] . index # An

index l i s t o f a l l s t o ck s in c l u s t e r

s co re s , pvalues , p a i r s = c o i n t e g r a t e d s t o c k s (

t r a i n i n g 1 [ s t o c k t i c k s ]

)

c l u s t e r d i c t [ wh i ch c lu s t ] = {}

c l u s t e r d i c t [ wh i ch c lu s t ] [ ’ s co r e mat r i x ’ ] = s c o r e s

c l u s t e r d i c t [ wh i ch c lu s t ] [ ’ pva lue matr ix ’ ] = pvalues

c l u s t e r d i c t [ wh i ch c lu s t ] [ ’ p a i r s ’ ] = p a i r s

p a i r s d i s c o v e r e d = [ ] # Create an empty l i s t

# Run a f o r loop that extend the l i s t to in c lude a l l p a i r s .

f o r c l u s t in c l u s t e r d i c t . keys ( ) :

p a i r s d i s c o v e r e d . extend ( c l u s t e r d i c t [ c l u s t ] [ ’ p a i r s ’ ] )

p r i n t ( ’The f o l l o w i n g p a i r s w i l l be traded in t h i s per iod : ’ )

p a i r s d i s c o v e r e d

# Output from the p r in t statement above : The f o l l o w i n g p a i r s w i l l be traded in

t h i s per iod :

[ ( ’BAKKA’ , ’GJF ’ ) ,

( ’GJF ’ , ’MHG’ ) ,

( ’KOG’ , ’MHG’ ) ,

( ’KOG’ , ’SALM’ ) ,

( ’KOG’ , ’TEL ’ ) ,

( ’MHG’ , ’TEL ’ ) ,

( ’MHG’ , ’WWIB’ ) ]

p a i r s d f = pd . DataFrame ( t r a i n i n g 1 [ [ ’BAKKA’ , ’GJF ’ , ’KOG’ , ’MHG’ , ’TEL ’ , ’SALM’ , ’WWIB

’ ] ] )

sns . p a i r p l o t ( p a i r s d f , s i z e =1.5

# Output from sns . p a i r p l o t :
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Figure 7.2: Linear relationship between filtered stocks
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# V i s u a l i z i n g a stock pa i r and c o i n t e g r a t i o n p−value

A1 = t r a i n i n g 1 [ ’MHG’ ]

A2 = t r a i n i n g 1 [ ’WWIB’ ]

p l t . f i g u r e ( f i g s i z e =(10 ,6) )

(A1/A1 . i l o c [ 0 ] ) . p l o t ( )

(A2/A2 . i l o c [ 0 ] ) . p l o t ( c=’ g ’ )

p l t . y l a b e l ( ’ Cumulative re turn ’ , f o n t s i z e =15)

p l t . t i t l e ( ’ Stock Pair ’ , f o n t s i z e =15)

p l t . l egend ( )

score , pvalue , = c o i n t (A1 , A2 , trend=’ nc ’ )

p r i n t ( ’ Co integrat i on : p−value : ’ , ”%.2 f ” %pvalue )

# Output from code s e c t i o n above :

Co integrat i on : p−value : 0 .04

Figure 7.3: MHG-WWIB stock pair

Check if individual price series are non-stationary

S1 adf = a d f u l l e r (A1)# Augmented Dickey−F u l l e r un i t root t e s t

S2 adf = a d f u l l e r (A2)# Augmented Dickey−F u l l e r un i t root t e s t

# Check i f p r i c e s e r i e s o f s tock S1 (MHG) i s non−s t a t i o n a r y

# The same code i s done on S2 (WWIB) .
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pr in t ( ”S1 Pr i c e s Augmented Dickey−F u l l e r Test : ” . upper ( ) )

p r i n t ( ”” )

l a b e l s = [ ’ADF Test S t a t i s t i c ’ , ’p−value ’ , ’#Lags Used ’ , ’Number o f Observat ions

Used ’ ]

f o r value , l a b e l in z ip ( S1 adf , l a b e l s ) :

p r i n t ( l a b e l+’ : ’+s t r ( va lue ) )

i f S1 adf [ 1 ] <= 0 . 0 5 :

p r i n t ( ” Strong ev idence aga in s t the n u l l hypothes i s ” )

p r i n t ( ” r e j e c t the n u l l hypothes i s . Pr i ce s e r i e s has no un i t root and i s

s t a t i o n a r y ” )

e l s e :

p r i n t ( ”Weak ev idence aga in s t n u l l hypothes i s ” )

p r i n t ( ” time s e r i e s has a un i t root ” )

p r i n t ( ” i n d i c a t i n g i t i s non−s t a t i o n a r y ” )

# Checking i f s e r i e s are I (1 )

S 1 d i f f = A1 − A1 . s h i f t (1 )

S 1 d i f f [ np . i snan ( S 1 d i f f ) ] = 0

S 2 d i f f = A2 − A2 . s h i f t (1 )

S 2 d i f f [ np . i snan ( S 2 d i f f ) ] = 0

S 1 d i f f a d f = a d f u l l e r ( S 1 d i f f )

S 2 d i f f a d f = a d f u l l e r ( S 2 d i f f )

# Ordinary Least Square − OLS

OLS = rg .OLS(A1 , A2) . f i t ( )

beta = OLS. params [ 0 ]

spread = A1 − beta ∗ A2

OLS. summary ( )
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# Output from OLS r e g r e s s i o n on the spread :

Figure 7.4: Engle-Granger first step

spread ad f = a d f u l l e r ( spread , r e g r e s s i o n=’ nc ’ )

p r i n t ( ”Augmented Dickey−F u l l e r Co−I n t e g r a t i o n Test on spread ” )

p r i n t ( ”” )

l a b e l s = [ ’ADF S t a t i s t i c ’ , ’p−value ’ , ’#Lags Used ’ , ’Number o f Observat ions Used ’ ]

f o r value , l a b e l in z ip ( spread adf , l a b e l s ) :

p r i n t ( l a b e l+’ : ’+s t r ( va lue ) )

i f sp r ead ad f [ 1 ] <= 0 . 0 5 :

p r i n t ( ” Strong ev idence aga in s t the n u l l hypothes i s ” )

p r i n t ( ”Spread has no un i t root and i s s t a t i o n a r y ” )

e l s e :

p r i n t ( ”Weak ev idence aga in s t n u l l hypothes i s ” )

p r i n t ( ”Spread has a un i t root , i n d i c a t i n g i t i s non−s t a t i o n a r y
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Augmented Dickey-Fuller Test on spread

ADF Statistic: -2.06360186303

p-value: 0.037411835533

Lags Used : 0

Number of Observations Used: 248

Strong evidence against the null hypothesis, spread has no unit root and is stationary

7.4.4 Stage 4: Trading Setup and Execution

In this section the trading algorithm is created. The steps in the trading setup are done for all stock

pairs.

# S l i c i n g out f i r s t t e s t i n g per iod and a pa i r that are c o i n t e g r a t e d .

pa i r1 = s tock s . l o c [ ’ 2014−01−01 ’ : ’ 2014−06−30 ’ , [ ’MHG’ , ’WWIB’ ] ] . dropna ( )

pa i r1 . columns = [ ’ S1 ’ , ’ S2 ’ ]

# Creat ing re turn columns f o r each stock in pa i r1

pa i r1 [ ’ S1ret ’ ] = pa i r1 [ ’ S1 ’ ] . pct change (1 )

pa i r1 . i l o c [ 0 , 2 ] = 0

pa i r1 [ ’ S2ret ’ ] = pa i r1 [ ’ S2 ’ ] . pct change (1 )

pa i r1 . i l o c [ 0 , 3 ] = 0

Creating the rolling z-score

# OLS − Regres s ion

lm pai r1 = rg .OLS( pa i r1 [ ’ S1 ’ ] , pa i r1 [ ’ S2 ’ ] ) . f i t ( )

pa i r1 b1 = lm pai r1 . params [ 0 ]

# Creat ing a new column c a l l e s ’ p a i r s p r e a d ’

pa i r1 [ ’ p a i r s p r e a d ’ ] = pa i r1 [ ’ S1 ’ ] − pa i r1 b1 ∗ pa i r1 [ ’ S2 ’ ]

# Ca l cu l a t i on the r o l l i n g 10−day covar iance

r o l l i n g p a i r c o v = pa i r1 . l o c [ : , [ ’ S1 ’ , ’ S2 ’ ] ] . \

r o l l i n g ( window=10) . cov ( pa i r1 . l o c [ : , [ ’ S1 ’ , ’ S2 ’ ] ] , pa i rw i s e=True )
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# S l i c e mult i index dataframe to s i n g l e index dataframe o f pa i r ed s tock s

covar iance

idx = pd . I n d e x S l i c e

r o l l i n g p a i r c o v = r o l l i n g p a i r c o v . l o c [ idx [ : , ’ S1 ’ ] , ’ S2 ’ ]

# Converting Date and stock index in to date index , by making stock at index

l e v e l 1 in to a new column

r o l l i n g p a i r c o v = r o l l i n g p a i r c o v . r e s e t i n d e x ( l e v e l =1)

# Ca l cu l a t ing the 10−day r o l l i n g var iance

r o l l i n g p a i r v a r = pa i r1 [ ’ S2 ’ ] . r o l l i n g ( window=10) . var ( )

# ROLLING BETA

pa i r1 [ ’ r o l l i n g p a i r b 1 ’ ] = r o l l i n g p a i r c o v [ ’ S2 ’ ] / r o l l i n g p a i r v a r

# CALCULATION OF THE 10−DAY ROLLING SPREAD:

pa i r1 [ ’ r o l l i n g p a i r s p r e a d ’ ] = pa i r1 [ ’ S1 ’ ] − pa i r1 [ ’ r o l l i n g p a i r b 1 ’ ] ∗ pa i r1 [ ’

S2 ’ ]

10-day rolling z-score

# CALCULATION OF THE 10−DAY ROLLING Z−SCORE:

pa i r1 [ ’ r o l l i n g Z s c o r e ’ ] = ( pa i r1 [ ’ r o l l i n g p a i r s p r e a d ’ ] − \

pa i r1 [ ’ r o l l i n g p a i r s p r e a d ’ ] . r o l l i n g ( window=10) . mean

( ) ) / \

pa i r1 [ ’ r o l l i n g p a i r s p r e a d ’ ] . r o l l i n g ( window=10) . s td

( )
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Trading Signals Algorithm

# TRADING SIGNALS ALGORITHM

# Z−s co r e the day be f o r e

pa i r1 [ ’ r o l l i n g Z s c o r e (−1) ’ ] = pa i r1 [ ’ r o l l i n g Z s c o r e ’ ] . s h i f t (1 )

# Z−s co r e two days be f o r e

pa i r1 [ ’ r o l l i n g Z s c o r e (−2) ’ ] = pa i r1 [ ’ r o l l i n g Z s c o r e ’ ] . s h i f t (2 )

pa i r1 [ ’ p a i r s i g n a l ’ ] = 0

p a i r s i g n a l = 0

# The for−loop below i s exp la ined in s e c t i o n 3.5.1−Trading s i g n a l s and execut ion

f o r i , r in enumerate ( pa i r1 . i t e r r o w s ( ) ) :

i f r [ 1 ] [ ’ r o l l i n g Z s c o r e (−2) ’ ] > −2 and r [ 1 ] [ ’ r o l l i n g Z s c o r e (−1) ’ ] < −2:

p a i r s i g n a l = −2

e l i f r [ 1 ] [ ’ r o l l i n g Z s c o r e (−2) ’ ] < −1 and r [ 1 ] [ ’ r o l l i n g Z s c o r e (−1) ’ ] > −1:

p a i r s i g n a l = −1

e l i f r [ 1 ] [ ’ r o l l i n g Z s c o r e (−2) ’ ] < 2 and r [ 1 ] [ ’ r o l l i n g Z s c o r e (−1) ’ ] > 2 :

p a i r s i g n a l = 2

e l i f r [ 1 ] [ ’ r o l l i n g Z s c o r e (−2) ’ ] > 1 and r [ 1 ] [ ’ r o l l i n g Z s c o r e (−1) ’ ] < 1 :

p a i r s i g n a l = 1

e l s e :

p a i r s i g n a l = 0

pa i r1 . i l o c [ i , 10 ] = p a i r s i g n a l

# TRADING POSITIONS : 1 = LONG SPREAD TRADE, −1 = SHORT SPREAD TRADE

pa i r1 [ ’ p o s i t i o n ’ ] = 0

p o s i t i o n = 0

f o r i , r in enumerate ( pa i r1 . i t e r r o w s ( ) ) :

i f r [ 1 ] [ ’ p a i r s i g n a l ’ ] == −2:

p o s i t i o n = 1

e l i f r [ 1 ] [ ’ p a i r s i g n a l ’ ] == −1:

p o s i t i o n = 0

e l i f r [ 1 ] [ ’ p a i r s i g n a l ’ ] == 2 :

p o s i t i o n = −1

e l i f r [ 1 ] [ ’ p a i r s i g n a l ’ ] == 1 :

p o s i t i o n = 0

e l s e :

p o s i t i o n = pa i r1 . l o c [ : , ’ p o s i t i o n ’ ] [ i −1]

pa i r1 . i l o c [ i , 11 ] = p o s i t i o n
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# V i s u a l i s i n g t rad ing p o s i t i o n s .

Black dots show the holding position (long, short or no position)

Figure 7.5: Trading Positions

# STRATEGY WITH AND WITHOUT TRANSACTION COSTS:

pa i r1 [ ’ s p r ea d r e tu rn s ’ ] = pa i r1 [ ’ S1ret ’ ] − \

pa i r1 [ ’ r o l l i n g p a i r b 1 ’ ] ∗ pa i r1 [ ’ S2ret ’ ]

# Strategy Without Trading Costs

pa i r1 [ ’ r e turn ’ ] = pa i r1 [ ’ s p r ea d r e tu rn s ’ ] ∗ pa i r1 [ ’ p o s i t i o n ’ ]

# Strategy With Trading Costs (0.139% Per Trade )

pa i r1 [ ’ p o s i t i o n (−1) ’ ] = pa i r1 [ ’ p o s i t i o n ’ ] . s h i f t (1 )

pa i r1 [ ’ c o s t ’ ] = 0

co s t = 0

# Adding t r a n s a c t i o n co s t whenever the z−s co r e c r o s s e s our t rad ing s i g n a l s

f o r i , r in enumerate ( pa i r1 . i t e r r o w s ( ) ) :

i f ( r [ 1 ] [ ’ p a i r s i g n a l ’ ] == −2 or r [ 1 ] [ ’ p a i r s i g n a l ’ ] == −1 or \

r [ 1 ] [ ’ p a i r s i g n a l ’ ] == 2 or r [ 1 ] [ ’ p a i r s i g n a l ’ ] == 1) \
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and r [ 1 ] [ ’ p o s i t i o n ’ ] != r [ 1 ] [ ’ p o s i t i o n (−1) ’ ] :

c o s t = 0.00139

e l s e :

co s t = 0.000

pa i r1 . i l o c [ i , 15 ] = co s t

pa i r1 [ ’ r e t w c o s t ’ ] = pa i r1 [ ’ r e turn ’ ] − pa i r1 [ ’ c o s t ’ ]

# V i s u a l i z i n g the trend o f the s tock pa i r :

pa i r1 [ np . i snan ( pa i r1 ) ] = 0

pa i r1 [ ’ Cumulative re turn ’ ] = np . cumprod ( pa i r1 [ ’ r e turn ’ ]+1) − 1

pa i r1 [ ’ Cumulative re turn with c o s t s ’ ] = np . cumprod ( pa i r1 [ ’ r e t w c o s t ’ ]+1) − 1

pa i r1 [ ’MHG return ’ ] = np . cumprod ( pa i r1 [ ’ S1ret ’ ]+1) − 1

pa i r1 [ ’WWIB return ’ ] = np . cumprod ( pa i r1 [ ’ S2ret ’ ]+1) − 1

pa i r1 . p l o t ( y=[ ’ Cumulative re turn ’ , ’ Cumulative re turn with c o s t s ’ , ’MHG return ’ , ’

WWIB return ’ ] , f i g s i z e =(10 ,6) )

p l t . t i t l e ( ’ Pa i r s Strategy Cumulative Returns ’ )

p l t . l egend ( l o c=’ upper l e f t ’ )

# Output :

Figure 7.6: MHG-WWIB Pair Return
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# Saving the dataframe f o r MHG−WWIB pa i r : This w i l l be done f o r a l l s tock p a i r s .

pa i r1 . t o c s v ( ’MHG−WWIB 10 ’ )

Creating a Portfolio of pairs

In this section we show how we have created an equally weighted portfolio of all pairs formed in period

1. In addition, performance measures are calculated. Again, the same steps are done for subsequent

periods.

Pair1 = pd . r ead c sv ( ’BAKKA−GJF 10 ’ , i n d e x c o l=’ Date ’ )

Pair2 = pd . r ead c sv ( ’GJF−MHG 10 ’ , i n d e x c o l=’ Date ’ )

Pair3 = pd . r ead c sv ( ’KOG−MHG 10 ’ , i n d e x c o l=’ Date ’ )

Pair4 = pd . r ead c sv ( ’KOG−SALM 10 ’ , i n d e x c o l=’ Date ’ )

Pair5 = pd . r ead c sv ( ’KOG−TEL 10 ’ , i n d e x c o l=’ Date ’ )

Pair6 = pd . r ead c sv ( ’MHG−TEL 10 ’ , i n d e x c o l=’ Date ’ )

Pair7 = pd . r ead c sv ( ’MHG−WWIB 10 ’ , i n d e x c o l=’ Date ’ )

P a i r 1 r e t = Pair1 [ [ ’ r e turn ’ ] ]

P a i r 2 r e t = Pair2 [ [ ’ r e turn ’ ] ]

P a i r 3 r e t = Pair3 [ [ ’ r e turn ’ ] ]

P a i r 4 r e t = Pair4 [ [ ’ r e turn ’ ] ]

P a i r 5 r e t = Pair5 [ [ ’ r e turn ’ ] ]

P a i r 6 r e t = Pair6 [ [ ’ r e turn ’ ] ]

P a i r 7 r e t = Pair7 [ [ ’ r e turn ’ ] ]

P a i r 1 r e t c = Pair1 [ [ ’ ret w com ’ ] ]

P a i r 2 r e t c = Pair2 [ [ ’ ret w com ’ ] ]

P a i r 3 r e t c = Pair3 [ [ ’ ret w com ’ ] ]

P a i r 4 r e t c = Pair4 [ [ ’ ret w com ’ ] ]

P a i r 5 r e t c = Pair5 [ [ ’ ret w com ’ ] ]

P a i r 6 r e t c = Pair6 [ [ ’ ret w com ’ ] ]

P a i r 7 r e t c = Pair7 [ [ ’ ret w com ’ ] ]

# Importing data o f OSEBX f o r comparison

benchmark = pd . r ead c sv ( ’ Benchmark . csv ’ , i n d e x c o l=’ Date ’ )

benchmark = benchmark [ ’ Adj Close ’ ]

benchmark = benchmark [ ’ 2014−01−01 ’ : ’ 2014−06−30 ’ ]
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benchmark cum = ( ( benchmark/benchmark [ 0 ] ) )

# Creat ing / Concatenating a return Pandas DataFrame f o r a l l p a i r s ( with and

without t r a n s a c t i o n c o s t s )

P o r t f o l i o r e t = pd . concat ( [ Pa i r1 r e t , Pa i r2 r e t , Pa i r3 r e t , Pa i r4 r e t , Pa i r5 r e t ,\

Pa i r6 r e t , P a i r 7 r e t ] , a x i s =1)

Port ret com = pd . concat ( [ P a i r 1 r e t c , P a i r 2 r e t c , P a i r 3 r e t c , P a i r 4 r e t c ,

P a i r 5 r e t c ,\

P a i r 6 r e t c , P a i r 7 r e t c ] , a x i s =1)

# Changing the column names f o r c l a r i t y and a n a l y s i s purposes :

P o r t f o l i o r e t . columns=[ ’BAKKA−GJF ’ , ’GJF−MHG’ , ’KOG−MHG’ , ’KOG−SALM’ , ’KOG−TEL ’ , ’MHG

−TEL ’ , ’MHG−WWIB’ ]

Port ret com . columns = [ ’BAKKA−GJF ’ , ’GJF−MHG’ , ’KOG−MHG’ , ’KOG−SALM’ , ’KOG−TEL ’ , ’

MHG−TEL ’ , ’MHG−WWIB’ ]

# V i s u a l i s i n g the cumulat ive r e tu rn s f o r a l l p a i r s

Port cumret = np . cumprod ( P o r t f o l i o r e t +1)−1

Port cumret c = np . cumprod ( Port ret com +1)−1

Port cumret . p l o t ( f i g s i z e =(12 ,8) , t i t l e=’ Pa i r s Cumulative r e tu rn s 2013 ’ )

Port cumret c . p l o t ( f i g s i z e =(12 ,8) , t i t l e=’ Pa i r s Cumulative r e tu rn s 2013 with

commisions ’ )

# Period returns , v o l a t i l i t y and sharpe r a t i o f o r each pa i r

num pairs = len ( P o r t f o l i o r e t . columns )

p r i n t ( ’ Numbers o f p a i r s in t e s t per iod 1 are : ’ , num pairs )

p r i n t ( ’ \n ’ )

p a i r s r e t u r n s = Port cumret . i l o c [−1]

p r i n t ( ’ Pa i r s Return Without Commisions : ’ )

p r i n t ( p a i r s r e t u r n s )

p r i n t ( ’ \n ’ )

p a i r s r e t c o m = Port cumret c . i l o c [−1]

p r i n t ( ’ Pa i r s Return With Commisions : ’ )

p r i n t ( p a i r s r e t c o m )

pr in t ( ’ \n ’ )
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Figure 7.7: Pairs cumulative returns from period 1

P a i r s s t d = P o r t f o l i o r e t . s td ( ) ∗122∗∗0.5

p r i n t ( ’ Pa i r s Standard Dev iat ions : ’ )

p r i n t ( P a i r s s t d )

p r i n t ( ’ \n ’ )

Pa i r s s td com = Port ret com . std ( ) ∗122∗∗0.5

p r i n t ( ’ Pa i r s Standard Dev iat ions with Commisions : ’ )

p r i n t ( Pa i r s s td com )

pr in t ( ’ \n ’ )

Pa i r s Sharpe = ( p a i r s r e t u r n s −0.0097)/ P a i r s s t d

p r in t ( ’ Pa i r s Sharpe−Ratio Without Commisions ’ )

p r i n t ( Pa i r s Sharpe )

p r i n t ( ’ \n ’ )

Pa i r s Sharpe = ( p a i r s r e t c o m −0.0097)/ Pa i r s s td com

pr in t ( ’ Pa i r s Sharpe−Ratio With Commisions ’ )

p r i n t ( Pa i r s Sharpe )

p r i n t ( ’We w i l l have equal we ight ing in each pa i r ’ )

We ight s in each pa i r = 1/ num pairs # A l l o c a t i o n to each pa i r :
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pr in t ( ’ Weight in each pa i r are : ’ , ”%.4 f ” % Weight s in each pa i r )

# Creat ing a l i s t o f equal weights

weights =[ We ight s in each pa i r ]∗ num pairs

weights = np . array ( weights )

# PORTFOLIO RETURNS:

p r i n t ( ’ P o r t f o l i o Return Without Commisions : ’ )

p o r t r e t = np . sum( weights ∗ p a i r s r e t u r n s )

p r i n t ( ”%.4 f ” % p o r t r e t )

p r i n t ( ’ \n ’ )

p r i n t ( ’ P o r t f o l i o Return With Commisions : ’ )

por t re t com = np . sum( weights ∗ p a i r s r e t c o m )

pr in t ( ”%.4 f ” % port re t com )

pr in t ( ’ \n ’ )

# PORTFOLIO VARIANCE:

p r in t ( ’ P o r t f o l i o Variance Without Commisions : ’ )

po r t var = np . dot ( weights .T, np . dot ( P o r t f o l i o r e t . cov ( ) ∗ 122 , weights ) )

p r i n t ( por t var )

p r i n t ( ’ \n ’ )

p r i n t ( ’ P o r t f o l i o Variance With Commisions : ’ )

port var com = np . dot ( weights .T, np . dot ( Port ret com . cov ( ) ∗ 122 , weights ) )

p r i n t ( por t var )

p r i n t ( ’ \n ’ )

# PORTFOLIO VOLATILITY:

p r in t ( ’ P o r t f o l i o V o l a t i l i t y Without Commisions ’ )

p o r t v o l = np . s q r t (np . dot ( weights .T, np . dot ( P o r t f o l i o r e t . cov ( ) ∗ 122 , weights ) ) )

p r i n t ( p o r t v o l )

p r i n t ( ’ \n ’ )

p r i n t ( ’ P o r t f o l i o V o l a t i l i t y With Commisions ’ )

port vo l com = np . s q r t (np . dot ( weights .T, np . dot ( Port ret com . cov ( ) ∗ 122 , weights

) ) )

p r i n t ( port vo l com )

pr in t ( ’ \n ’ )
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# SHARPE RATIO:

p r in t ( ’ Sharpe−Ratio Without Commisions : ’ )

SR = ( po r t r e t −0.0097) / p o r t v o l

p r i n t (SR)

p r in t ( ’ \n ’ )

p r i n t ( ’ Sharpe Ratio With Commisions : ’ )

SR = ( port ret com −0.0097) / port vo l com

pr in t (SR)

# For−loop f o r p o r t f o l i o without commisions :

f o r p a i r s d f in ( Pa i r1 r e t , Pa i r2 r e t , Pa i r3 r e t , Pa i r4 r e t , Pa i r5 r e t , Pa i r6 r e t ,

P a i r 7 r e t ) :

p a i r s d f [ ’Normed Return ’ ] = np . cumprod ( p a i r s d f [ ’ r e turn ’ ]+1)

# For−loop f o r p o r t f o l i o with commisions :

f o r p a i r s d f 2 in ( P a i r 1 r e t c , P a i r 2 r e t c , P a i r 3 r e t c , P a i r 4 r e t c , P a i r 5 r e t c ,

P a i r 6 r e t c , P a i r 7 r e t c ) :

p a i r s d f 2 [ ’Normed Return ’ ] = np . cumprod ( p a i r s d f 2 [ ’ ret w com ’ ]+1)

# For−loop f o r p o r t f o l i o without commisions :

f o r p a i r s d f , a l l o in z ip ( ( Pa i r1 r e t , Pa i r2 r e t , Pa i r3 r e t , Pa i r4 r e t , Pa i r5 r e t ,

Pa i r6 r e t , P a i r 7 r e t ) , we ights ) :

p a i r s d f [ ’ A l l o c a t i o n ’ ] = p a i r s d f [ ’Normed Return ’ ]∗ a l l o

# For−loop f o r p o r t f o l i o with commisions :

f o r p a i r s d f 2 , a l l o 2 in z ip ( ( P a i r 1 r e t c , P a i r 2 r e t c , P a i r 3 r e t c , P a i r 4 r e t c ,

P a i r 5 r e t c , P a i r 6 r e t c , P a i r 7 r e t c ) , weights ) :

p a i r s d f 2 [ ’ A l l o c a t i o n ’ ] = p a i r s d f 2 [ ’Normed Return ’ ]∗ a l l o 2

a l l p a i r s i n p o r t = [ P a i r 1 r e t [ ’ A l l o c a t i o n ’ ] , P a i r 2 r e t [ ’ A l l o c a t i o n ’ ] , P a i r 3 r e t [ ’

A l l o ca t i o n ’ ] , P a i r 4 r e t [ ’ A l l o c a t i o n ’ ] ,\

P a i r 5 r e t [ ’ A l l o c a t i o n ’ ] , P a i r 6 r e t [ ’ A l l o c a t i o n ’ ] , P a i r 7 r e t [ ’

A l l o ca t i o n ’ ] ]

po r t f o l i o cum = pd . concat ( a l l p a i r s i n p o r t , a x i s =1)

a l l p a i r s i n p o r t 2 = [ P a i r 1 r e t c [ ’ A l l o c a t i on ’ ] , P a i r 2 r e t c [ ’ A l l o c a t i on ’ ] ,

P a i r 3 r e t c [ ’ A l l o c a t i on ’ ] , P a i r 4 r e t c [ ’ A l l o c a t i on ’ ] ,\

P a i r 5 r e t c [ ’ A l l o c a t i on ’ ] , P a i r 6 r e t c [ ’ A l l o c a t i on ’ ] ,

P a i r 7 r e t c [ ’ A l l o c a t i on ’ ] ]
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port fo l io cum com = pd . concat ( a l l p a i r s i n p o r t 2 , a x i s =1)

po r t f o l i o cum [ ’ Total P o r t f o l i o ’ ] = por t f o l i o cum . sum( a x i s = 1)

port fo l io cum com [ ’ Total P o r t f o l i o ’ ] = port fo l io cum com . sum( a x i s = 1)

# V i s u a l i s i n g the p o r t f o l i o performance :

port fo l io cum com [ ’ Total P o r t f o l i o ’ ] . p l o t ( f i g s i z e =(12 ,8) , l a b e l=’ Return with

c o s t s ’ )

po r t f o l i o cum [ ’ Total P o r t f o l i o ’ ] . p l o t ( f i g s i z e =(12 ,8) , l a b e l = ’ Return ’ )

benchmark cum . p l o t ( l a b e l = ’OSEBX’ )

p l t . t i t l e ( ’ Testper iod 1 : Benchmark vs . St rategy ’ )

p l t . l egend ( )

# Output :

Figure 7.8: Portfolio - period 1

# Calcu l a t ing the s t r a t e g y beta

benchmark da i ly re t = benchmark cum . pct change (1 ) # cumulat ive re turn to d a i l y

re turn

df3 = pd . concat ( [ po r t f o l i o cum [ ’ Dai ly Return ’ ] , benchmark da i ly re t ] , a x i s =1)

df3 . dropna ( i n p l a c e=True )

cov = df3 . cov ( ) ∗ 122

cov with market = cov . i l o c [ 0 , 1 ]

market var = benchmark da i ly re t . var ( ) ∗ 122

St ra t egy be ta = cov with market / market var
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pr in t ( ’ Beta f i r s t per iod : ’ )

p r i n t ( S t ra t egy be ta )

# Ca l cu l a t ing return c o r r e l a t i o n c o e f f i c i e n t

np . c o r r c o e f ( df3 [ ’ s t r a t e g y return ’ ] , df3 [ ’OSEBX return ’ ] )

array ( [ [ 1 . , −0.06885147] ,

[−0.06885147 , 1 . ] ] )

7.5 First principal component vs. OSEBX

Figure 7.9: First principal components vs. OSEBX
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