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Abstract

This article studies several variants of the location-routing problem using a coopera-

tive game-theoretic framework. The authors derive characteristics in terms of subaddi-

tivity, convexity, and non-emptiness of the core. Moreover, for some of the game variants,

it is shown that for facility opening costs substantially larger than the costs associated

with routing, the core is always non-empty. The theoretical results are supported by nu-

merical experiments aimed at illustrating the properties and deriving insights. Among

others, it is observed that, while in general it is not possible to guarantee core allocations,

in a huge majority of cases the core is non-empty.

Keywords: Collaborative logistics; Location-routing; Cooperative game theory; Cost

allocation

1 Introduction

Recent literature surveys by Guajardo and Rönnqvist (2016), Gansterer and Hartl (2018),

and Cleophas et al. (2018) reveal a considerable growth in the number of articles and applica-

tions of collaborative transportation. This literature positions collaborative transportation

as an important mechanism to reduce cost and negative environmental effects, and to in-

crease profits and service levels. In parallel, the literature on location-routing problems has

also grown considerably. The central problem in this literature is to locate facilities while

simultaneously finding routes to serve customers from these facilities. It has early been

recognized that tackling these decision problems separately may lead to suboptimal solu-

tions (Perl, 1987; Salhi and Rand, 1989). Reviews by Prodhon and Prins (2014), Drexl and

Schneider (2015), and Schneider and Drexl (2017) give account of a broad range of applica-

tions as well as a considerable progress in solution methods for location-routing problems.

∗Preprint for the Discussion Series of the Department of Business and Management Science, NHH Nor-

wegian School of Economics, August 2018. For an update on this article please contact the authors.
†Corresponding author. E-mail address: ondrej.osicka@nhh.no
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Recent emergence of dynamic on-demand warehousing (Sinha, 2016) emphasizes the poten-

tial in applicability even further as it introduces facility location decisions of an operational

(short-term) nature.

Cleophas et al. (2018) list the cooperative planning within location-routing problems

as one of future challenges in operations research. Despite the growing interest in both

collaborative transportation and location-routing, the integration of these two areas remains

fairly unattended by researchers. The only exceptions, to our knowledge, are van Oost

(2016), Quintero-Araujo et al. (2017), and Ouhader and Kyal (2017), which present promising

studies on the benefits of collaboration in location-routing. Besides the academic interest,

the intersection of these two areas motivates from practical situations, such as the installation

of urban consolidation centres for city logistics and the formation of strategic alliances. For

example, Paddeu (2017) recounts the case of the Bristol-Bath freight consolidation centre

from the perspective of its users and points to pricing and cost coverage as important factors

for success or failure. If a consolidation centre is located in the periphery of a city to serve

users in the city centre by shared routes, the users will naturally be concerned about the

cost of the service and how this compares to the non-shared solution. The location of the

centre may, therefore, play an important role in the willingness of users to adopt the shared

solution. Another example in practice is given by the alliance between Colgate-Palmolive,

GlaxoSmithKline, Henkel, and Sara Lee in France (Eyers, 2010). The alliance started in

2005 with cooperation on routing only, but subsequently led to a decrease in the number

of facilities of the alliance from four to only one. With these sharing practices emerging as

important mechanisms to improve operations, it turns important for firms to understand the

economic foundations for cooperation in location-routing.

In this article, we study several variants of the location-routing problem using a co-

operative game-theoretic framework. By defining a transferable utility game for each of

these variants, we are able to derive essential properties that characterize the behaviour of

cooperation in location-routing from a cost sharing perspective. In particular, this frame-

work is useful to answer whether incentives exist for all firms to align under a collaborative

location-routing approach.

The rest of the article is organized as follows. In Section 2, we briefly overview related

literature. Section 3 describes the main variants of the location-routing problem and de-

fines the corresponding cooperative games. In Section 4, we derive theoretical results for

these games. Section 5 summarizes numerical results obtained from experiments. Section 6

presents our concluding remarks.

2 Literature review

Horizontal cooperation in transportation and logistics has been recognized as an important

instrument to reduce costs, increase productivity, improve customer service, stabilize or im-
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prove the market position, among other benefits (Cruijssen et al., 2007a,b). Recent literature

surveys by Guajardo and Rönnqvist (2016) and Gansterer and Hartl (2018) reveal a consid-

erable growth in the number of articles and applications of collaborative transportation.

The vehicle routing problem tackles a question of how to perform tours to visit a group of

customers from one or more facilities using one or more vehicles. For a current state of this

literature, see for example Adewumi and Adeleke (2018). In the vehicle routing problems,

the horizontal cooperation can be found on several different levels in form of cooperation

of customers, carriers or shippers. For the customer level, the traveling salesman game and

the basic vehicle routing game are among the most studied. For their definitions, see for

example studies by Potters et al. (1992) and Göthe-Lundgren et al. (1996). These problems

focus on allocating costs of realized tours among the visited customers. When it comes to

the shippers and carriers, the collaborative vehicle routing problem has been introduced.

In the collaborative vehicle routing problem, the cooperating shippers and carriers pool

their customers and allow for visiting customers of different shippers within the same tour.

Gansterer and Hartl (2018) present a survey on this literature and acknowledge a usual

lack of distinction between a cooperation of shippers and a cooperation of carriers. They

suggest that it might be sometimes important to recognize a difference in the information

they possess. However, since the focus of this article is on centralized collaborative planning,

we assume that the shippers and carriers possess the same information and make decisions

jointly. Thus, their distinction is not needed and we refer to them simply as shippers.

For situations where the shippers already know where their potential customers would

be, but they do not have a facility from which to serve them, the facility location problem

becomes useful. The facility location problem aims to find the optimal location of facilities

such that each customer gets assigned to a facility. The optimality lies in minimizing the sum

of facility opening costs and connection costs. Computation of the connection costs differs

among various formulations of the facility location problem. For an overview of several

variants of the problem, see Laporte et al. (2015). Goemans and Skutella (2004) introduced

the cooperative facility location game to deal with a cooperative formulation of the problem

in which several shippers aim to get their customers assigned to a facility. By allowing the

customers to be connected to facilities of different shippers, this problem might allow for

substantial savings.

Perl (1987) and Salhi and Rand (1989) pointed out that tackling the decisions on facility

location and vehicle routing separately may lead to suboptimal solutions. With the aim

to connect these problems, the location-routing problem was addressed by a large stream

of literature since then, as documented in surveys by Nagy and Salhi (2007), Prodhon and

Prins (2014), Drexl and Schneider (2015), and Schneider and Drexl (2017). Among others,

these surveys discuss different variants of the location-routing problem such as, for exam-

ple, the standard location-routing problem (LRP), the capacitated location-routing problem

(LRP-C), and the location-routing problem with a limited number of facilities (LRP-L). The
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LRP is used in numerous applications as documented, for example, by Watson-Gandy and

Dohrn (1973), Or and Pierskalla (1979), Bruns et al. (2000), and Ambrosino et al. (2009)

for the cases of food and drink distribution, blood bank location, parcel delivery, and food

distribution, respectively. As claimed by Prodhon and Prins (2014), the LRP-C is nowa-

days addressed to a larger extent than the LRP. For example, Nambiar et al. (1981, 1989),

Gunnarsson et al. (2006), and Marinakis and Marinaki (2008) utilize the LRP-C in rubber

plant location, shipping industry, and wood distribution, respectively. The LRP-L arises

when some types of facilities cause nuisance and social rejection. A city taking this into

account could decide to impose a limit on the number of a certain type of facilities. For

instance, Caballero et al. (2007) deal with one such problem by using the LRP-L for location

of incineration plants for disposal of solid animal waste.

While a large number of articles in this literature stream have been devoted to develop-

ment of solution methods, very few have studied collaboration in location-routing. Among

the exceptions, Quintero-Araujo et al. (2017) use numerical experiments to compare the non-

cooperative and cooperative scenarios in the location-routing problem in terms of the total

cost and the total traveling-related CO2 emissions. For the location-routing problem variant

with two-echelons, Ouhader and Kyal (2017) analyze the cooperation based on three different

objectives, minimizing the total cost, minimizing the total amount of traveling-related CO2

emissions, and maximizing the number of created job opportunities (social impact). Through

numerical experiments, they observe how each objective separately affects the other mea-

sures. In literature on collaborative transportation problems, cooperative game theory is

commonly used to derive theoretical properties and investigate implications of the collabora-

tion. To our knowledge, our article is the first one studying cooperation in location-routing

problems from a cooperative game-theoretic perspective.

3 Location-routing problems and game definitions

In this section, we briefly present some of the main location-routing problem variants and

then formally introduce the definition of transferable utility games for these variants.

3.1 Location-routing problem variants

3.1.1 Standard location-routing problem

Our departing point is the standard location-routing problem (LRP). Its definition, as de-

scribed for example by Prodhon and Prins (2014), assumes a set of potential facility locations

and a set of customers (and their corresponding demands) to be given. The LRP then aims

at finding locations and routes that minimize the total routing costs, costs of using vehicles

and costs of opening facilities while assuring that all customers are visited and their demand

is satisfied.

4



Let G be the set of feasible sites of candidate facilities, I the set of customers to be served

and V = G ∪ I the set of all such nodes. Let K be a set of all vehicles available for routing

from the facilities (no facility has a specific fleet). Let cij be the cost of traveling from node

i ∈ V to node j ∈ V , a the cost of acquiring a vehicle, and fg the cost of establishing and

operating a facility at site g ∈ G. The number of units demanded by customer i ∈ I is di.

The capacity of one vehicle is q. To make the values comparable, they need to be normalized

with respect to a certain time period. This depends on a particular application in question.

Sometimes, for example, an annual average may serve the purpose.

The LRP can be formulated as an integer linear programming model. Let Xijk be a

binary decision variable which takes value 1 if vehicle k travels directly from node i to node

j, and zero otherwise (k ∈ K, i ∈ V , j ∈ V , such that i 6= j and at least one of these two

nodes belongs to I). Then, the model is formulated below.

min
Xijk,Zg

∑
i∈V

∑
j∈V

∑
k∈K

cijXijk +
∑
k∈K

a∑
g∈G

∑
j∈I

Xgjk

 +
∑
g∈G

fgZg

 (1)

s.t.
∑
k∈K

∑
i∈V

Xijk = 1 ∀j ∈ I, (2)

∑
j∈I

∑
i∈V

djXijk ≤ q ∀k ∈ K, (3)

∑
i∈V

Xipk −
∑
j∈V

Xpjk = 0 ∀p ∈ V, ∀k ∈ K, (4)

∑
g∈G

∑
j∈I

Xgjk ≤ 1 ∀k ∈ K, (5)

∑
i∈S

∑
j∈S

Xijk ≤ |S| − 1 ∀S ⊆ I : S 6= ∅, ∀k ∈ K, (6)

∑
j∈I

Xgjk − Zg ≤ 0 ∀k ∈ K, ∀g ∈ G, (7)

Xijk ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ V : i 6= j, {i, j} ∩ I 6= ∅, (8)

Zg ∈ {0, 1} ∀g ∈ G. (9)

Objective function (1) minimizes the sum of routing costs, the costs of using vehicles and the

costs of operating facilities. Constraints (2) state that each customer must be served by one

vehicle. Constraints (3) state that the capacity of vehicles must be respected. Constraints

(4) are flow conservation constraints. Constraints (5) express that no vehicle can depart from

more than one facility. Constraints (4) and (5) impose that every used vehicle has to come

back to the same facility it departed from. Constraints (6) eliminate sub-tours. Constraints

(7) ensure that a facility can be used if and only if this facility is open. Constraints (8) and

(9) state the binary nature of the variables.

Note that in this formulation, constraints (2) and (3) imply that each customer needs to

be served by a single vehicle. In combination with constraints (7) this also means that the

whole demand of a customer needs to be satisfied from only one facility. Consequently, the
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problem might become infeasible if there is not enough vehicles to satisfy the total demand

or if a customer demands more than the capacity of the vehicles.

3.1.2 Capacitated location-routing problem

The capacitated location-routing problem (LRP-C) introduces an upper bound in the sup-

ply available at the facilities. The limited capacity of the facilities leads to the following

modifications of the model (1)–(9).

Parameter wg is added and defined as the capacity of facility g ∈ G. New binary decision

variable Fig takes value 1 if customer i is assigned to facility g, and 0 otherwise (i ∈ I,

g ∈ G). In addition to constraints (2)–(9), constraints∑
u∈V

Xguk +
∑
u∈V

Xuik ≤ 1 + Fig ∀g ∈ G, ∀i ∈ I, ∀k ∈ K (10)

need to hold. To make constraints (7) account for the limited capacity of the candidate

facilities, they are replaced by ∑
i∈I

diFig ≤ wgZg ∀g ∈ G. (11)

Constraints (10) state that each customer served by a vehicle departing from a certain

facility must be assigned to this facility. The term
∑

u∈V Xguk is equal to 1 if the vehicle k

departs from the facility g while
∑

u∈V Xuik is equal to 1 if this vehicle supplies customer

i. If both terms are equal to 1, it implies Fig to equal 1. Constraints (11) ensure that

the capacities of the facilities must be respected. At the same time, constraints (11) forbid

customers to be assigned to a facility which is not open.

To avoid infeasibility of the LRP-C, there need to be enough facility candidates with

large enough capacities such that each customer can be assigned to and fully supplied by

only one facility. Besides, as for the LRP, there need to be enough vehicles to satisfy the

total demand and customers cannot demand more than the capacity of the vehicles.

3.1.3 Location-routing problem with a limited number of facilities

The location-routing problem with a limited number of facilities (LRP-L) introduces an

upper bound in the maximum number of facilities that can be opened. If a condition that

only l facilities can be used takes place, the model (1)-(9) needs to be modified by introducing

the parameter l and adding the constraint∑
g∈G

Zg ≤ l (12)

which ensures that the total number of opened facilities is less or equal to the limit l.

The feasibility of the LRP-L is subject to the same conditions as in the case of the LRP,

that is, there need to be enough vehicles to satisfy the total demand and customers cannot

demand more than the capacity of the vehicles.
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3.2 Location-routing games

Our interest lies in a collaborative version of the location-routing problem. When shippers

collaborate, the overall problem opens opportunities to combine their customers within the

same tours and serve their demands from shared facilities. To model this situation, we use

a cooperative game-theoretic framework.

3.2.1 Standard location-routing game

The standard location-routing game (LRG) is defined as a transferable utility game by the

tuple (N,C) where N = {1, . . . , n} denotes the set of all players (shippers), S the set of

all subsets of N , and C : S → R the characteristic function. The characteristic function C

assigns to each coalition S ∈ S its optimal cost, that is, the optimal objective value of the

corresponding LRP (by convention, C(∅) = 0). Let In be the set of customers originally to

be served by a shipper n ∈ N . The corresponding LRP for computing C(S) is then the LRP

in which the set of customers to be served is I =
⋃
n∈S In.

3.2.2 Location-routing game extensions

Similarly, for the two other variants of the location-routing problem, the LRP-C and the

LRP-L, we define the capacitated location-routing game (LRG-C1) and the location-routing

game with a limited number of facilities (LRG-L1), respectively. The LRG-C1 introduces a

problem where each coalition solves a location-routing problem with capacitated facilities.

The LRG-L1 extends the standard location-routing game by assuming a limit on the number

of facilities that can be located by each coalition. These capacities and limits are independent

of the coalitions’ size or members and remain constant.

Unlike in other collaborative transportation problems (such as the collaborative vehicle

routing problem or the facility location game), in both the LRG-C1 and the LRG-L1, when

cooperation takes place, the original strategies before such cooperation are not necessarily

feasible. When two shippers use the same facility and operate on its full capacity in their

stand-alone strategies, this strategy is not possible once they cooperate. The same problem

occurs for the LRG-L1 if the shippers already use the maximum allowed number of facilities

in their stand-alone strategies. Therefore, we also formulate alternative models for the

capacitated location-routing game and the location-routing game with a limited number of

facilities as LRG-C2 and LRG-L2, respectively.

Let the LRG-C2 be defined as a transferable utility game in a similar way as the LRG-C1,

that is, for computation of each characteristic function value, the LRP-C is solved. Now,

however, these LRP-C’s differ not only in the sets of customers I =
⋃
n∈S In, but also in the

capacities wg =
∑

n∈S wgn where wgn denotes a partial capacity available at site g ∈ G if

shipper n ∈ N is in the coalition.

Similarly, let the LRG-L2 be defined as a transferable utility game in which the LRP-L
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is solved for each characteristic function value computation. As opposed to the LRG-L1,

however, these LRP-L’s differ not only in the sets of customers I =
⋃
n∈S In, but also in

the limits on the number of facilities being computed as l =
∑

n∈S ln where ln stands for a

partial limit on the number of facilities.

As opposed to the LRG-C1 and the LRG-L1, in the LRG-C2 and the LRG-L2, the

capacities and limits are dependent on the coalitions’ size and members. The shippers are

associated with partial capacities or limits which may be utilized in any coalition by adding

up the partial capacities or limits of all its members.

All the formulations have their place in practice. The LRG-C1 can be used, for example,

if shippers may for some reason be associated only with facilities up to a certain capacity per

location. For situations where several facilities can be opened at each location, the LRG-C1 is

an appropriate model too. This reflects a case in which facilities consist of blocks of a certain

capacity and each shipper or coalition of shippers determines how many blocks to open. On

the other hand, in a single-commodity situation, if shippers for example have a maximum

supply available for each candidate facility, its value stands for the partial capacity of this

facility in the LRG-C2 formulation. If the facilities cause social rejection and shippers do

not want to be associated with more than a certain number of them, cooperation might not

increase the number and the LRG-L1 becomes the appropriate model. If, on the other hand,

there is an enforcement preventing a shipper from operating more than a certain number of

facilities, cooperation might allow the total limit to be a sum of the limits of all involved

shippers. Such situation requires the use of the LRG-L2.

4 Theoretical results

Cooperation does not necessarily guarantee beneficial outcomes for all parties. To assess

such issues, properties of subadditivity and convexity of a cooperative game come in useful.

Cooperative game (N,C) is considered subadditive if its characteristic function is subad-

ditive, i.e.,

C(S ∪ T ) ≤ C(S) + C(T ) ∀S, T ⊆ N : S ∩ T = ∅. (13)

If the subadditivity holds, no coalition is less profitable than some of its partitions. That is,

there is no loss involved in merging coalitions with respect to the total costs incurred.

The convexity of a cooperative game is a stronger property which requires submodularity

of its characteristic function, i.e.,

C(S ∪ T ) + C(S ∩ T ) ≤ C(S) + C(T ) ∀S, T ⊆ N, (14)

or equivalently (Schrijver, 2003),

C(S ∪ {i})− C(S) ≥ C(T ∪ {i})− C(T ) ∀i ∈ N, ∀S, T ⊆ N : S ⊆ T ⊆ N \ {i}. (15)

Studies of transferable utility games naturally lead to studies of cost allocations which

prescribe the costs to be paid by particular players within the cooperation. For a cooperative
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game of n players, the cost allocation is a vector (π1, . . . , πn) ∈ Rn. Conditions of efficiency,∑
j∈N

πj = C(N), (16)

and rationality, ∑
j∈S

πj ≤ C(S) ∀S ⊆ N, (17)

define a set of cost allocations known as the core as first introduced by Shapley (1955). A

vector in the core proposes a redistribution of total costs of the grand coalition N and is

said to be stable, as there are no incentives for any subset of players to deviate from the

collaboration. In the literature, this has been recognized as an essential condition to sustain

the cooperation in practice. It is hence desirable for a cooperative game to have a non-empty

core and it turns interesting to study whether a game admits or not allocations in the core.

4.1 Game-theoretic properties of the standard location-routing game

Theorem 1. The standard location-routing game is subadditive.

Proof. For the LRG, it is easy to see that for any disjoint sets S and T , the solution of a

LRP where customers of shippers in S and T are served using the same facilities, routes and

vehicles as in the separate problems for S and T is a feasible solution of the LRP for set

S∪T . The value of C(S) +C(T ) is therefore an upper bound on the optimal objective value

C(S ∪ T ) of the problem for S ∪ T and the LRG is hence subadditive.

Theorem 2. The core of the standard location-routing game can be empty.

Proof. Göthe-Lundgren et al. (1996) present an example to prove that the core of the basic

vehicle routing game can be empty. By adapting this example, we can prove that the core

of the LRG can be empty as well. Figure 1 illustrates the location of three customers (1,

2 and 3) and feasible sites of candidate facilities (A, B and C). Each customer is a client

of a different shipper which can hence be referred to by 1, 2 and 3 as well. The figure also

contains the transportation costs. The costs of establishing and operating a facility are equal

to one unit for each of the sites. The demand of each customer is of one unit. The capacity

of each vehicle is of two units. The cost of using a vehicle is set to zero. Calculating the

characteristic cost function for the singletons, we obtain C({1}) = C({2}) = C({3}) = 3.

The routing cost is equal to 2 and the facility opening cost to 1. The facility opened is one

of the two adjacent to the customer. For the two-player coalitions, C({1, 2}) = C({1, 3}) =

C({2, 3}) = 4.7 (routing cost of 3.7 and facility opening cost of 1). For the three-player

coalition, C({1, 2, 3}) = 7.7 (routing cost of 5.7 and facility opening cost of 2). From the

costs, we can notice there is an incentive for a two-player coalition. It is clearly more

beneficial than a non-cooperative state. In case of the three-player coalition, whichever the

cost allocation is, there will always be two shippers that could get better off by excluding

the third one. Hence, the core is empty.
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1
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Figure 1: A standard collaborative location-routing problem with an empty core (the circles

and diamonds represent customers and candidate facilities, respectively, and the arcs indicate

the traveling costs)

Corollary 3. The standard location-routing game is not necessarily convex.

Proof. According to Shapley (1971), the core of a convex game is not empty. Equivalently,

by contraposition, if the core of a game is empty, the game must be non-convex. Since the

core of the LRG can be empty, it follows that this game cannot be convex in general.

Moreover, in the problem of Figure 1, taking coalitions S = {1}, T = {1, 2} and i = 3,

the left-hand side of inequality (15) is 4.7−3 = 1.7 while the right-hand side is 7.7−4.7 = 3,

thus the inequality is violated and this is an example of a non-convex game.

4.2 Game-theoretic properties of the location-routing game extensions

Theorem 4. The LRG-C1 is not necessarily subadditive or convex.

Proof. A counter-example is illustrated in Figure 2. Again, we consider each customer being

assigned to a different shipper. The costs of establishing and operating facilities are equal

1

2 3

4A B

1

1

1 1

1

1

2

Figure 2: A non-subadditive capacitated location-routing game (the circles and diamonds

represent customers and candidate facilities, respectively, and the arcs indicate the traveling

costs)

to one unit for site A and six units for site B. Both candidate facilities have a maximum

capacity equal to one unit. The demand for each customer is of one unit. The capacity of

each vehicle is of two units. The cost of using a vehicle is set to zero. For coalition S = {1, 2},
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facility A is opened and C(S) = 4. For coalition T = {3, 4}, facility A is opened as well and

C(T ) = 8. However, for S ∪ T , both facilities are opened and C(S ∪ T ) = 13 which causes

that C(S∪T ) � C(S)+C(T ) and the subadditivity (as well as convexity) does not hold.

Theorem 5. The LRG-L1 is not necessarily subadditive or convex.

Proof. Considering the same example (Figure 2) for the location-routing game with a limited

number of facilities, but now with omitting the maximum capacities, introducing a limit of

l = 1 on the number of facilities and having the costs of establishing and operating facilities

equal to 1 for both A and B, leads to C(S) = 4, C(T ) = 4 and C(S ∪T ) = 11. Hence, again

C(S ∪ T ) � C(S) + C(T ) and the subadditivity and convexity properties do not hold.

Theorem 6. The core of the LRG-C1 and the LRG-L1 can be empty.

Proof. Clearly, if each facility offered a maximum capacity that could accommodate all

customers in the game, the LRG-C1 would reduce to the LRG. Similarly, if the limit on the

number of facilities l was equal or higher than the number of all potential facility sites, the

LRG-L1 would reduce to the LRG. Therefore, the example in Figure 1 could be used to show

a possibility of an empty core in the LRG-C1 and the LRG-L1 as well as for the case of the

LRG.

Theorem 7. The LRG-C2 and the LRG-L2 are subadditive.

Proof. For both the LRG-C2 and the LRG-L2, it is easy to see that for any disjoint sets

S and T , the solution where customers of shippers in S and T are served using the same

facilities, routes and vehicles as for the separate problems for S and T is a feasible solution

for set S∪T . The value of C(S)+C(T ) is therefore an upper bound on the optimal objective

value C(S ∪ T ) and subadditivity is hence satisfied.

Theorem 8. The core of the LRG-C2 and the LRG-L2 can be empty.

Proof. For illustration of the possibility of an empty core, the same reasoning as in the case

of the LRG-C1 and the LRG-L1 could be used. That is, large enough capacities and large

enough limits on the number of facilities would reduce the LRG-C2 and the LRG-L2 to the

LRG which, as shown in the example of Figure 1, can have an empty core.

Corollary 9. The LRG-C2 and the LRG-L2 are not necessarily convex.

Proof. As in the proof of Corollary 3, the posible emptiness of the core consequently leads

to non-convexity.

All the aforementioned results are summarized in Table 1 along with the property satis-

faction of some of the collaborative transportation problems outlined in Section 2, namely

the collaborative vehicle routing problem (CoopVRP) and the facility location game (FLG).
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In both the CoopVRP and the FLG, as defined for example by Zibaei et al. (2016) and Goe-

mans and Skutella (2004), respectively, it is easy to see that the subadditivity is generally

satisfied. Clearly, when the facilities’ capacities are unconstrained, a combination of any

non-cooperative solutions forms a feasible solution in the cooperative formulation. On the

other hand, Goemans and Skutella (2004) show for the case of the FLG that the convexity

is not generally satisfied and the core can be empty. For the case of the CoopVRP, the trav-

eling salesman game can be reformulated as a special case of the CoopVRP with vehicles of

a large capacity and shippers each serving one customer and possessing one facility located

in the same position for all shippers. Then, Potters et al. (1992) show that the convexity

is not generally satisfied and the core can be empty. In Table 1, checkmarks show that

the respective property holds for any instance of the problem. If a checkmark is missing,

this property might be satisfied for particular instances, but does not hold in general. The

Table 1: Properties of different variants of the location-routing games, the collaborative

vehicle routing problem, the facility location game, and the transportation game

subadditive convex non-empty core

LRG X - -

LRG-C1 - - -

LRG-L1 - - -

LRG-C2 X - -

LRG-L2 X - -

CoopVRP X - -

FLG X - -

TG X - X

results might suggest that all collaborative transportation problems allow for an empty core.

To avoid such misinterpretation, without its definition, we also include the transportation

game (TG) introduced by Samet et al. (1984). It is an example of a game which is always

subadditive and has a non-empty core, but is not necessarily convex (Sánchez-Soriano et al.,

2001).

4.3 Impact of the facility costs

The facility opening costs, fg in the model (1)–(9), play an important role in the location-

routing games. They stand for all costs necessary to establish and operate a facility. In

what follows, we will show that, if the facility opening costs are substantially larger than

the traveling costs and the costs of using vehicles, the core of the LRG is guaranteed to be

non-empty.
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Theorem 10. For any traveling and vehicle-related costs, there exists K ∈ R such that, if

fg ≥ K for all g ∈ G, the core of the respective standard location-routing game is non-empty.

Proof. Solving the model (1)–(9) for the grand coalition N results in an optimal objective

value of C(N). This cost could be allocated to the shippers for example such that each of

them is allocated the same cost, that is,

πj =
C(N)

|N |
∀j ∈ N. (18)

This allocation clearly satisfies the efficiency condition (16).

It would be feasible to open only the least costly facility and serve all customers from

this facility. Denoting the opening cost of this facility by fg∗ = ming∈G fg and any (not

necessarily minimal) routing costs and costs of using vehicles needed to serve all customers

by utilizing only this facility by V RCg∗ , the total cost would be at least as large as C(N),

C(N) ≤ fg∗ + V RCg∗ , (19)

and hence

πj ≤
1

|N |
(fg∗ + V RCg∗) ∀j ∈ N. (20)

Then, for any proper subset S ⊂ N ,∑
j∈S

πj ≤
|S|
|N |

(fg∗ + V RCg∗) ≤
|N | − 1

|N |
(fg∗ + V RCg∗) . (21)

If the facility costs are substantially larger than the traveling costs and the costs of using

vehicles, for example

V RCg∗ ≤
fg∗

|N | − 1
, (22)

(21) then implies ∑
j∈S

πj ≤ fg∗ ∀S ⊂ N. (23)

Since each coalition S ⊂ N needs to locate at least one facility and fg∗ is the minimal cost

associated with this, then ∑
j∈S

πj ≤ C(S) ∀S ⊂ N. (24)

In combination with satisfaction of the efficiency condition, this means that all rationality

conditions (17) are satisfied and (π1, . . . , π|N |) belongs to the core. Hence, the core is non-

empty.

V RCg∗ is not dependent on the value of fg∗ . It is then easy to see that any K such that

V RCg ≤
K

|N | − 1
∀g ∈ G (25)

guarantees a non-empty core and proves the Theorem 10.

This result for the LRG can be generalized to the LRG-L1 and the LRG-L2 as well.

However, in the case of the LRG-C1 or the LRG-C2, due to their capacities, it is not always

feasible to locate only one facility and the same argument cannot be used.
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5 Numerical results

To illustrate the theoretical results and explore the satisfaction of the properties that do

not hold in general, we have conducted a numerical experiment. We also address here the

problem of how to split the savings by applying cost allocation methods frequently used in

the literature.

All presented models and methods are implemented and solved using AMPL/Gurobi

7.5.0.

5.1 Experiment design

We have generated 10,000 instances, all of them containing nine sites of candidate facilities

and three shippers, each of them having two or three customers.

Given a square 100×100, the coordinates x and y of the customers and facility candidates

follow a uniform distribution between 0 and 100. The transportation cost cij between two

nodes is the Euclidean distance between the two nodes. Each shipper is randomly assigned

two or three customers. The demand dj for each customer follows a uniform distribution

between 10 and 100 and the vehicle capacity q follows a uniform distribution between 100 and

200. The fleet is homogeneous. The cost of using a vehicle a is the same for all vehicles and

ranges between 10 and 200 and each facility opening cost fg follows a uniform distribution

between 100 and 300.

In the case of the LRG-L1, the limit on number of facilities l takes value 1, 2 or 3. The

partial limits on number of facilities ln in the LRG-L2 equal either 1 or 2. For the LRG-C1,

the facility capacities wg range from 100 to 500, whereas for the LRG-C2, the partial facility

capacities wgn range from 35 to 200. Generation of the values of wgn in this way implies

that for some coalitions there might be customers whose demand cannot be satisfied from

only one facility. In such case, the LRG-C2 would not yield a feasible solution. We observe

only two instances in which this happens. For further analysis, we exclude those and take

into account only the instances with feasible solutions.

In the non-cooperative case, the facility opening costs range from 12 % to 67 % of the

total costs, the costs of using a vehicle from 3 % to 64 % and the routing costs from 12 % to

65 %. Respective histograms are shown in Figure 3. Overall, the experiment covers a wide

range of how the costs are distributed.

5.2 Game properties

Regarding the properties of subadditivity, convexity and core-emptiness, results of the exper-

iment are shown in Table 2. All instances of the LRG, LRG-C2 and LRG-L2 are subadditive

which confirms the theoretical results from Section 4. There is only a slight change in the

results when it comes to the LRG-C1 and the LRG-L1 in which only 2.7 % and 0.2 % of the

instances respectively end up as non-subadditive. We observe a huge majority of instances
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Figure 3: Histograms of facility opening costs, costs of using vehicles, and routing costs as a

percentage of the total costs incurred in a case of no cooperation taking place

having a non-empty core. Nevertheless, only less than a third of the instances end up being

convex. There are no substantial differences among the models. Only, in the case of the

LRG-C1, satisfaction of the properties is generally slightly lower than in the other models.

Table 2: Satisfaction of properties in location-routing games

subadditive convex non-empty core

LRG 100 % 30.5 % 99.3 %

LRG-C1 97.3 % 22.7 % 92.6 %

LRG-L1 99.8 % 30.3 % 99.1 %

LRG-C2 100 % 26.1 % 99.7 %

LRG-L2 100 % 30.4 % 99.3 %

By definition, in the instances with an empty core, no cost allocation can satisfy the

efficiency condition (16) and the rationality conditions (17) at the same time. By requiring

the efficiency, it can be measured what violation of the rationality constraints is inevitable.

For this, the strong ε-core can be utilized. The strong ε-core, as introduced by Shapley and

Shubik (1966), is a set of all optimal solutions of (π1, . . . , π|N |) to problem

min
πj ,ε

ε (26)
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s.t.
∑
j∈N

πj = C(N), (27)

∑
j∈S

πj ≤ C(S) + ε ∀S ⊆ N, (28)

πj ∈ R ∀j ∈ N, (29)

ε ∈ R, (30)

where ε represents the maximal violation of the rationality constraints. For all variants of the

location-routing game, the average maximal violation is rather low and ranges from 0.91 %

to 1.70 % of the respective C(N).

5.3 Impact of the facility costs

As discussed in Section 4.3, for the LRG, LRG-L1, and LRG-L2, the core is non-empty

when the facility costs reach a certain size. We investigate this by generating new sets of

instances with the only change being in the facility cost values. In the new instances we

generate the facility opening costs as multiples of the original facility opening costs, that is,

for a multiplier of 0, all facility opening costs equal zero, for a multiplier of 1, the results

are the same as in Table 2, for a multiplier of 2, all facility opening costs are doubled, and

so on. The results for the LRG are reported in Table 3. We can see that the results confirm

Table 3: Impact of the facility costs on properties of the LRG

facility cost

multiplier
subadditive convex non-empty core

LRG 0 100 % 41.4 % 97.1 %

LRG 1 100 % 30.5 % 99.3 %

LRG 2 100 % 32.0 % 99.9 %

LRG 3 100 % 32.9 % 100 %

LRG 4 100 % 33.5 % 100 %

LRG 5 100 % 33.9 % 100 %

the theoretical findings and the core becomes non-empty already for a multiplier of 3. As

expected, the results are very similar for the case of the LRG-L1 and the LRG-L2. However,

we do not observe similar behavior in the LRG-C1 and the LRG-C2.

5.4 Impact of the vehicle cost

The cost of using a vehicle, a in model (1)–(9), stands for not only the usage of the vehicle as

it might suggest. All kinds of costs regarding the tours, but not dependent on the distance

traveled, should be included. This covers loading and unloading costs, driver-related costs,
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vehicle maintenance costs, and so on. The cost of using a vehicle might hence differ sub-

stantially across applications. Therefore, it is worthwhile to investigate how the properties

of the location-routing games are affected by the magnitude of this cost.

For the LRG, when we compare instances resulting with an empty core with those re-

sulting with a non-empty core, we can see a substantial difference between the average costs

of using a vehicle. This average is 164 for the empty-core instances and 104 for the non-

empty-core instances. We investigate this issue further by generating new sets of instances

in the same way as for the facility costs analysis. Now, the new sets of instances differ only

in the cost of using a vehicle. The results are provided in Table 4. We can notice that

Table 4: Impact of the vehicle cost on properties of the LRG

vehicle cost

multiplier
subadditive convex non-empty core

LRG 0 100 % 28.1 % 100 %

LRG 1 100 % 30.5 % 99.3 %

LRG 2 100 % 30.7 % 97.3 %

LRG 3 100 % 30.8 % 96.4 %

LRG 4 100 % 30.7 % 95.8 %

LRG 5 100 % 30.7 % 95.7 %

the proportion of instances with a non-empty core decreases as the cost of using a vehicle

increases. This indeed supports the observation of different average costs of using a vehicle.

Similar effects can be observed in the case of the LRG-C1, LRG-L1, LRG-C2, and LRG-L2.

5.5 Cost allocations

Regardless of the core emptiness or non-emptiness, in practice, a unique cost allocation often

needs to be specified to assess the contribution of different cooperating parties. With a focus

on collaborative transportation, Guajardo and Rönnqvist (2016) recognized the Shapley

value (Shapley, 1953), the nucleolus (Schmeidler, 1969) and proportional methods to be

some of the most preferred allocation methods used in literature.

It turns interesting to investigate whether the allocation methods result in allocations

that are rational, that is, satisfy constraints (17). This relates to suitability of different allo-

cation methods for the location-routing game. Besides the Shapley value and the nucleolus,

we investigate the lexicographic equal profit method known as EPML (Frisk et al., 2010;

Dahlberg et al., 2017), and two proportional methods, the first of them proportional to the

stand-alone costs of each shipper and the second one to the total demand of each shipper’s

customers. All these allocation methods by definition satisfy the efficiency condition (16).

Additional satisfaction of the rationality conditions hence means that the respective cost
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allocation belongs to the core. Such an analysis is therefore meaningless for the instances

with an empty core in which all allocations would end up as non-rational. We investigate

how often the particular allocation methods satisfy the rationality conditions in the instances

with a non-empty core. The results are presented in Table 5.

Table 5: Rationality satisfaction by various cost allocation methods

Shapley

value
Nucleolus EPML

Cost

prop.

method

Demand

prop.

method

LRG 97.0 % 100 % 100 % 79.7 % 67.7 %

LRG-C1 84.4 % 100 % 100 % 60.5 % 53.1 %

LRG-L1 96.9 % 100 % 100 % 79.3 % 67.4 %

LRG-C2 95.9 % 100 % 100 % 83.7 % 80.3 %

LRG-L2 97.0 % 100 % 100 % 79.7 % 67.7 %

The nucleolus and the EPML excel in the rationality satisfaction, which is not surprising

as they are defined to belong to the core if it is not empty. In a huge majority of the

instances, the rationality is also satisfied by the Shapley value. The proportional methods do

not perform that well. Nevertheless, in the computation of the Shapley value, the nucleolus,

and the EPML, the cost associated with each possible coalition needs to be determined.

This becomes an obstacle when the number of shippers increases as the number of coalitions

grows exponentially. The proportional methods, on the other hand, do not face this problem

and might therefore be a preferred option. In case of seeking a proportional method, from

Table 5 we can suggest the allocation proportional to the stand-alone costs to be the one

to choose. In fact, we observe that the cost proportional method performs better in all the

location-routing game variants.

As already mentioned, in the instances with an empty core, no allocation method can

satisfy all the rationality conditions. To propose a similar allocation quality measure, a

modification of the strong ε-core model (26)–(30) becomes useful. If, for a given allocation

(π1, . . . , π|N |), the model is formulated as

min
ε
ε (31)

s.t.
∑
j∈S

πj ≤ C(S) + ε ∀S ⊆ N, (32)

ε ∈ R, (33)

the optimal solution of ε represents the maximal violation of the rationality constraints

(17). Table 6 shows the average maximal violation as a percentage of the respective C(N)

for various cost allocation methods (the EPML is not included because it is defined only

for games with a non-empty core). The results support the previous findings with the
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Table 6: Average maximal violation of rationality constraints by various cost allocation

methods in instances with an empty core

Shapley

value
Nucleolus

Cost

proportional

method

Demand

proportional

method

LRG 2.5 % 1.1 % 5.3 % 7.3 %

LRG-C1 3.5 % 1.7 % 5.5 % 7.7 %

LRG-L1 2.7 % 1.2 % 5.6 % 7.3 %

LRG-C2 3.2 % 0.9 % 5.3 % 7.3 %

LRG-L2 2.5 % 1.1 % 5.3 % 7.3 %

nucleolus having the lowest average maximal violation of the rationality constraints. This,

ranging from 0.9 % to 1.7 %, outperforms the Shapley value, the cost proportional method,

and the demand proportional method in all the location-routing game variants. Among the

proportional methods, the cost proportional method again performs better in all the variants.

5.6 Savings

From the results of the LRG, it can be seen that the savings of the shippers can be substantial,

as shown in Figure 4. The histogram shows percentage savings when the grand coalition is

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

500

1,000

Figure 4: Histogram of percentage savings of the grand coalition with respect to the sum of

the stand-alone costs

formed as opposed to a non-cooperative case represented as a sum of the stand-alone costs.

These cost savings range from 6 % to 62 % with an average of 32 %. The main source of the

savings is that less facilities are often needed when the grand coalition forms. The facility

opening costs are on average reduced by 63 %.

Although it might seem counter-intuitive, we observe 14 % of instances where the total

routing cost increases in comparison to the non-cooperative solution as seen in Figure 5.

The intuition for this is that, since collaboration aims at reducing the overall costs (which

include routing costs, facility opening costs and costs of using vehicles), it is possible that

in some situations the selection of a reduced number of facilities might offset the increase in

costs due to larger distance traveled. On average, however, the routing costs are reduced by
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16 %.

−80 % −60 % −40 % −20 % 0 % 20 % 40 % 60 % 80 % 100 %
0
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Figure 5: Histogram of percentage difference of the grand coalition’s routing cost with respect

to the sum of the stand-alone routing costs

The transportation is commonly recognized as one of the main contributors of CO2

emissions (Ballot and Fontane, 2010). The increase in the traveled distance might thus lead

to negative environmental effects. As this is accompanied by a change in facility selection,

it is difficult to draw general conclusions. However, shippers pursuing collaboration should

be aware of this possible side effect.

6 Concluding remarks

Horizontal cooperation is receiving more and more attention across transportation and lo-

gistics processes. The location-routing problem is no exception with companies cooperating

on both locating their facilities and serving their customers. While there exists evidence of

successful cooperation in practice (Eyers, 2010; Paddeu, 2017), the literature lacks general

assessment of benefits coming from horizontal cooperation in location-routing problems.

In this article, we have introduced the standard location-routing game, a collaborative

formulation of the standard location-routing problem. For both the capacitated location-

routing problem and the location-routing problem with limited number of facilities, we have

defined two alternative formulations of their collaborative versions. In three of these prob-

lems, we have shown the subadditivity property to hold in general. However, in the other

two, the subadditivity is not always satisfied. Moreover, none of the problems guarantees

the convexity or a non-empty core. Nevertheless, for the standard location-routing game

and the location-routing game with limited number of facilities, we have shown that, when

the facility opening costs are substantially larger than the traveling costs and the costs of

using vehicles, the core is guaranteed to be non-empty.

Although it is not possible to guarantee core allocations in general, with a numerical

experiment, we have shown that the core allocations exist in a huge majority of our instances.

The results have also supported the findings of the effect of facility opening costs on the core

emptiness. As the facility opening costs increase, the likelihood of a non-empty core increases.

On the other hand, with the costs of using vehicles, we have observed the opposite effect. As

the vehicle costs increase, the likelihood of a non-empty core decreases. It is important to

note that the core emptiness does not necessarily outrule the cooperation. Often, regardless
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of the emptiness or non-emptiness of the core, it is preferred to pursue the cooperation and

choose a unique cost allocation. We have tested the performance of various cost allocation

methods. With respect to the stability, the results have shown dominance of the nucleolus

and the lexicographical equal profit method. The latter is however not defined for the cases

with an empty core and cannot thus be used under any circumstances. The Shapley value

has shown a fairly good performance as well, followed by the cost proportional method and

the demand proportional method.

The focus of this article was on exploration of the properties of location-routing games.

While the numerical experiment was conducted in small instances that can be solved to

optimality, an interesting avenue for future research is to explore location-routing games

where the approximate solutions, instead of the optimal ones, are taken into account. In

fact, large-scale instances often occurring in practice are commonly solved with heuristic

approaches (Schneider and Drexl, 2017). It is worthwhile to investigate whether different

solution approaches preserve the same properties.
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