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“Essentially, all models are wrong, but some are useful”

George Box (1976)
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Abstract

The Norwegian aquaculture industry accounts for 6.5 percent of total exports from
Norway. The United Nations projects that by 2030 the world population will grow
to 8.5 billion people. In order to maintain food security, the supply of fish is critical.
Ectotherms such as Atlantic Salmon is highly dependent on the temperature of its
surroundings. Hence, it is important to estimate what the effects of climate change
will have on the Norwegian aquaculture industry.

The aim of this master thesis is to analyze how changes in seasonal temperature
may affect the Norwegian salmonid aquaculture industry. The existing bioeco-
nomic theory does not consider that mortality rates for salmon is temperature de-
pendent. The inclusion of temperature dependent mortality rates enables a more
realistic estimation of how the projected changes in temperature due to climate
change will affect the profitability of the Norwegian aquaculture industry. Mortal-
ity rates and price are estimated based on the empirical data obtained and used to
adjust the growth model estimated by Lorentzen and Hannesson (2006) analyzing
data from a controlled experiment executed by feed producers for the aquaculture
industry. By analyzing different scenarios for changes to the seasonal seawater tem-
peratures in Norway, I will estimate the value of adapting the decision variables to
the changes.

My findings suggest that within the range of projected changes the Norwegian
aquaculture industry will benefit from changes in seasonal temperature even with-
out it adapting to the changes. This is regardless of how temperatures are affected.
For increases in average temperature between 0.5 and 4 degrees Celsius the ben-
eficial effects ranges from 6.27 to 28.46 percent increase in the present value of all
future profits. For changes to the amplitude of temperature the beneficial effect
ranges from 1.34 to 8.63 percent, and for changes to both amplitude and average
the effect ranges from 7.44 to 23.36 percent.

By adapting to the changes, the beneficial effects of the projected changes is even
higher. The best adaptation to the scenario based changes to temperature is depen-
dent on how the temperature changes. The best response to increases in average
temperature is to shorten the rotation time, which yields additional values ranging
from 1.17 percent to 11.90 percent of the current value of the aquaculture industry
for adapting to the projected changes. The best response to increase in amplitude
is to start the rotation earlier, whilst the best response to increase in both amplitude
and average is to shorten rotation and to start the rotation later.
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1. Introduction

1.1 Motivation

The world’s estimated population will reach 8.5 billion people in 2030 according to
projections from the UN (2015). The increase in population is mostly driven by de-
veloping countries. Todays estimated global population is about 7.6 billion people
(World population clock live 2018). In order to meet projected demand for food, fu-
ture supply of fish is especially important (Béné et al., 2015). The projected climate
change by IPCC (2001) may put pressure on food suppliers, especially suppliers
of sea food. Salmon contains a higher amount of essential amino acids compared
to livestock, and slightly lower compared to poultry (Essential Amino Acid Content
in Red Meat 2018). Salmon has a higher food conversion rate compared to tradi-
tional agriculture livestock (Asche and Bjorndal, 2011). In addition, fish is a major
export article for Norway accounting for 6.5 percent of total exports (Utenrikshan-
del med varer 2018). Norway has deep fjords with steady currents and compared
to the world low, yet steady, seawater temperatures. As a result of the biological
factors for salmon, Norway has a comparative advantage with regards to farm-
ing salmon. Therefore, it is in the Norwegian government’s economic interest to
estimate how the projected climate change may affect production in Norwegian
aquaculture.

Worldwide, fisheries are over-exploited, fully-exploited or nearly fully exploited
(Brander, 2007; Worm et al., 2009), with few possibilities for growth in countries
with well regulated fisheries. In unregulated or poorly regulated fisheries, there is a
possibility for long run growth in production. In order to obtain production growth
in the sub-optimal managed fisheries however, there need to be less harvesting in
the short run. There has been shown a correlation between wealth and the amount
of regulation in a nation. Hence, there is reason to question whether poorly man-
aged fisheries are economically capable to suffer lower revenues in the short run.
In addition, size-dependent price for fish (Zimmermann and Heino, 2013) has led
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fishing activities to decrease the yield. The decrease in yield as a result of size-
dependent price for fish, occurs even in fisheries that traditionally have been con-
sidered well managed (Garcia et al., 2012). In order to maintain food security in
the future, a larger portion of the protein rich foodstuff may need to come from sea
food. Figure 1.1 shows a stacked form of the total value in billion NOK of unpro-
cessed or frozen fish from aquaculture and fisheries for the period 1980-2015. The
values from aquaculture are shown in green (top), whilst the values from fisheries
are shown in purple (bottom). In 2015 the value from aquaculture where almost 3
times larger than the value from traditional fisheries (Steinset, 2017). Economically
well managed fisheries have the largest sustainable output in terms of value. It is
possible with larger outputs in terms of volume (weight) for fisheries well managed
in accordance with an MSY-model. However, the MSY-solution is a sub-optimal so-
lution in terms of economic management. Aquaculture has more control of the
input factors compared to fisheries, which leads to a higher potential for growth in
output for aquaculture compared to fisheries. Hence, production from aquaculture
will be important for maintaining the world’s future food security.

FIGURE 1.1: The total value (in bn NOK) of unprocessed or frozen fish
from Norwegian aquaculture and fisheries for the period 1980-2015

(Steinset, 2017).

In the analysis I will focus on how increasing seawater temperature may directly
affect the value of Norwegian salmonid aquaculture. In Chapter 7 I will briefly dis-
cuss how increasing seawater temperature may indirectly affect the value of Nor-
wegian salmonid aquaculture.
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1.2 Research question

I will in this thesis answer the following research question:
"For the representative Norwegian fish farm, what is the estimated value of adapting its de-
cision factors in response to different scenarios for changes in seawater temperature?"

In order to answer the research question, I will introduce an extension to the bioeco-
nomic theory analyzing how temperature and weight affects mortality rates. This
extension will facilitate how changes to seasonal temperature affects the time de-
pendent total biomass of the fish farm. Additionally; by adjusting the price factor
in the model, the resulting analysis will better be able to reflect the actual market.
Based on the estimations for the present value of future profits I will analyze how
by adapting the rotation time and the time of release, fish farmers may increase the
estimated value of a change in temperature.

The analysis will be based on empirical estimations of a growth function and mor-
tality rates dependent on temperature, as well as average prices from the NASDAQ
Salmon Price indexes. The analysis will include scenario for changes in seasonal
temperature. The estimations for the growth function is from an external source
(LORENTZEN, 2008) based on controlled experiments, whilst the estimations for
the mortality rates are based on a data set from Norwegian aquaculture in the pe-
riod from 2009 to 2017.

1.3 Structure of the thesis

In Chapter 2 consist of a brief background of the biological factors for Atlantic
Salmon, climate change and its direct and indirect effects on Norwegian aquacul-
ture, and the current regulations in Norwegian aquaculture. The bioeconomic the-
oretical framework is introduced in Chapter 3, the literature review. In Chapter
4 i will describe how I have used the mathematical model on which the analysis
based. I will as well describe the data set form which the regression used to model
methodology for the regression and building of the model. Chapter 5 builds the
model for optimizing the value of the aquaculture. The results of the analysis is
presented in Chapter 6. In Chapter 7 will include a discussion about the limitations
of the model, and how the result may change by including other factors. Lastly, in
Chapter 8 I will conclude based on the results.
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2. Background

In this chapter I will provide some background information regarding: biological
factors for Atlantic salmon, climate change and its impact on aquaculture, and the
current regulation of the Norwegian aquaculture industry.

2.1 Biological factors for Atlantic salmon (Salmo salar)

2.1.1 Effects from the surroundings

Atlantic salmon is an ectotherm organism (Boeuf and Le Bail, 1999), and as such is
dependent on its surroundings for regulation of body temperature. Growth for the
individual salmon is highly dependent on temperature since the biochemical reac-
tions driving growth are dependent on temperature. The number of hours of day-
light and daylight intensity (Oppedal et al., 1997) are important factors for growth
and determining the sexual maturation of salmon. By using artificial light, farmers
may increase growth and delay sexual maturation (Endal et al., 2000). When the
salmon becomes sexually mature, its flesh deteriorates and becomes unmarketable
for human consumption (Asche and Bjorndal, 2011; Thyholdt, 2014). When be-
coming sexually mature the salmon will stop eating, and their current fat supply
sustains them. Energy can neither be destroyed nor created, it can only be trans-
ferred from one form to another. Hence, sexually mature salmon will have negative
growth for a while. Atlantic salmon is an anadromous fish, meaning that it can sur-
vive in different magnitudes of salinity. The optimal level of salinity with respect to
growth however, is between 20-30 parts per thousands (Lorentzen and Hannesson,
2006). seawater acidity affects chemical reactions and biological toxicity (Marion et
al., 2011). The pH scale is a logarithmic scale base 10, measuring acidity in aqueous
solutions. The optimal range of pH-values for salmon is between 6 and 8, slightly
acidic and slightly basic respectively1.

1A pH-level of 7 is considered to be neutral. pH is based on the concentration of H3O
+-ions

(acidic) or OH−-ions (basic) in the solution.
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2.1.2 Natural survival strategy of the species

In Biology, one way of modelling reproduction strategies for organisms is in terms
of the r-K continuum (Pianka, 1970). Where r refers to the maximal intrinsic rate of
natural increase, and K refers to carrying capacity. In the models, the objective for
the organisms is to maximize the probability of successfully having offspring reach-
ing reproducing age. The organisms can control how many offspring the have, and
how much care are afforded each individual offspring. The constraining factors is
how much total care an organism is able to give its offspring, and energy used for
reproduction. Hence, the two endpoints of the model is the r-endpoint and the K-
endpoint. The r-endpoint the strategy where organisms maximizes the number of
offspring, and have little to no care for the offspring. TheK-endpoint is the strategy
where organisms have few offspring, and have a lot of care for each offspring. The
r-strategist typically have shorter lives and are reproductive at an earlier age, com-
pared to K-strategists (K and r Reproductive Strategies 2010). Due to shorter periods
between generations; under natural selection, the r-strategist may be better able to
quickly adapt to changing conditions in the environment. However, in order to
achieve a quicker adaptation an r-strategist has higher mortality rates in the short
run.

The species of Salmon can be classified as an r-strategist2 (K and r Reproductive
Strategies 2010). In other words, salmon produces a high number of progeny, but
with minimal care for the individual offspring. In aquaculture natural selection has
been substituted for selective breeding. Hence, the short run increase in mortality
rate as a result of changing environments will not naturally lead to better adapta-
tion in aquaculture as it will in nature. An adaptation to changing environments
in aquaculture must be a result of choices in the selective breeding process. When
performing selective breeding it is more difficult to achieve wanted traits when the
amount of wanted traits a larger (Asche and Bjorndal, 2011). In other words, in
order to adapt to changes in the environment breeders may have to select for traits
better suited for changing environments in stead of selecting for else wise more
profitable traits.

2No organisms is fully an r-strategist or a K-strategist. Rather, organisms are somewhere on the
continuum
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2.1.3 Feed additive

The flesh of wild salmon has a natural pink color due to a diet consisting of (among
other things) crustaceans. The aforementioned color is due to crustacean eating al-
gae containing the organic pigments, mainly the pigment astaxanthin. Farmed fish
do not get astaxanthin through their diet. Consumers have a significantly higher
willingness to pay for salmon with a natural coloration to the flesh compared to
salmon with paler flesh (Alfnes et al., 2006). In Europe, natural astaxanthin is clas-
sified as a food dye (Ambati et al., 2014). About 15 percent of the total feed costs
in conventional salmon aquaculture is from added synthetic astaxanthin (Guttorm-
sen, 2002). Hence, a large part of the value from aquaculture stems from adding
a substance in the diet of the farmed fish. A substance produced by international
pharmaceutical companies (Alfnes et al., 2006). In other words, the Norwegian
aquaculture industry is highly dependent on international trade.

2.1.4 Sea lice

Sea lice is a big problem in salmon aquaculture. Sea lice attaches to the gills of the
fish, sucking blood. How much damage occurs from this depends on how many
sea lice attaches to an individual salmon, and the age and weight of the salmon.
The degree of the damage ranges from weakened growth and immune system, to
mortal damage(Liu and Bjelland, 2014). Traditionally farmers treated the salmons
with chemicals. Due to sea lice developing a resistance, other delousing methods
has been tried out by fish farmers. One of the currently most popular methods are
using wrasse (Spør en forsker: Hvorfor er leppefisken så populær?).

2.2 Climate change

Climate is defined by Cambridge Dictionary as "the general weather conditions usually
found in a particular place" (2018). Changes in climate may include, but are not lim-
ited to; changes in temperatures, changes in humidity, changes in winds, changes
in currents, changes in salinity, and changes in acidity. Global climate change is
a process affected by the natural variations in earth’s axial tilt, the sun’s natural
variations in activity, changing amount of greenhouse gasses in the atmosphere,
changing amount of albedo-acting gasses, and more. Since the recording of global
temperature measurements started in the 19th, 17 out of the 18 warmest years have
occurred after the year 2001 (Long-Term Warming Trend Continued in 2017: NASA,
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NOAA 2018). One of IPCC (Change, 2001) predictions is that seawater temperature
will rise as an effect of the ongoing climate change.

2.2.1 Main points from IPCC’s report (2001)

Climate change in IPCC usage is not limited to change attributed directly to hu-
man activity, but includes natural variability in addition (Change, 2001). The main
points from the Assessment Report were as follows

i: Regional climate changes

There is high confidence that regional climate changes, temperature increases in
particular, affect many natural systems. The observational evidence comes from
all continents and most oceans. There are enlargement and increased number of
glaciers, decreasing ground stability in permafrost regions, and warming of lakes
and rivers in many regions affecting water quality. There are increases in algal,
plankton and fish abundance in high-latitude oceans. Oceans have become more
acidic since the uptake of carbon derived from human activities since 1750. In
terms of pH-levels, there has been an average decrease of 0.1 units in the worlds
oceans.

ii: Knowledge about future impacts

Water supplies stored in glaciers and snow cover are projected to decline over the
21st century. This would cause water stress in regions where currently one-sixth
of the world population lives. Terrestrial ecosystems are projected to have a peak
in net carbon uptake around mid century. Followed by a weakened or reversal in
carbon uptake, which would further amplify climate change. Increases in global
average temperature exceeding 1.5-2.5 degrees will lead to increased risk of extinc-
tion of approximately 20-30 percent of all animal and plant species. There will be
regional variation for the impacts of climate change. Aggregated and discounted,
the net impact will be negative and increasing over time as average temperatures
increases. Large-scale climate events, such as the melting of terrestrial ice on Green-
land, have a large potential to impact global climate negatively.

iii: Responding to climate change

There is a necessity for adaptation to unavoidable warming due to past emissions.
If atmospheric greenhouse gas concentrations remains at the same levels as for 2000,
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the unavoidable warming is projected to be around 0.6 degrees by 2100. More ex-
tensive adaptation than what is currently occurring needs to be done in order to
reduce vulnerability to future climate change. There are limits to adaptability, but
there are currently not clear what these limits are. Nor are the costs of more exten-
sive adaptation clearly estimated. Some adaptation will be positive in the short run,
but will be negligible in the long run if the current trend in climate change holds.
One way to reduce vulnerability to climate change is to adopt sustainable develop-
ment. However, climate change could hinder nations from achieving sustainable
development pathways.

2.2.2 Direct effect of climate change on aquaculture in Norway

An increase of sea temperature will lead to lower levels of oxygen and higher level
of CO2 in the sea (Brander, 2007). Oxygen is necessary for salmonid respiration,
whilst CO2 dissolved in water becomes carbonic acid (H2CO3) which lowers the
pH-level in the water. Water in liquid form will expand as a result of higher tem-
perature. At the macro level this expansion leads to higher sea levels. Locations
currently suited for aquaculture may be negatively affected due to erosion (Change,
2001) etc.

A higher probability for extreme weather events increases the risk for property
damage and escapement in aquaculture. This could mean a loss of the valuable
stock, but also extra costs as a result of required efforts to salvage the loss from
the weather events. Due to the scope of this thesis, the risk factor will not be a
part of the analysis. It should however be an important factor for the profit maxi-
mizing fish farmer, optimizing expected profits. Amacher, Ollikainen, and Koskela
(2009, p:267), argues that natural hazards decreases rents and the value of a stand in
forestry. Given that fish farming can be modelled as an optimal rotation problem,
natural hazard decreases rents and the value of the stock in aquaculture. For the
northernmost aquaculture facilities the melting of the polar ice may decrease salin-
ity in the water below the range in which salmonid species thrives. An sub-optimal
salinity will affect growth of salmon, reducing the value of the stock.

2.2.3 Indirect effect of climate change on aquaculture in Norway

Fisheries and marine ecosystems are dependent on factors such as temperature, pH,
and flows of currents. A change in the ecological factors may affect the expected
yield from fisheries negatively, directly and indirectly via the ecosystem (Brander,
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2007). Higher sea temperature may increase the jellyfish3 population, which may
damage the aquaculture industry by causing gill disorders and by fouling net pens
(Purcell, Baxter, and Fuentes, 2013). Due to decline in winter ice in the polar re-
gions polar bears will be able to hunt less seals (How do Polar Bears Hunt Seals?
2018). Hence, humans may face increased competition from seals for the fish stocks
in the northernmost parts of Norway. This could result in more expensive input
factors for the aquaculture, and it may lead to less competition from traditional
fisheries. The fish stocks will probably not be over-exploited, or decimated, since
the Norwegian government has implemented Individual Vessel Quotas (IVQs) as
a fisheries management system (Standal and Aarset, 2008). But with a lesser yield,
the supply of fish meal and fish oil will be more expensive. If fish meal is an essen-
tial input in aquaculture production, and only partial substitutable by other protein
sources, then the feeding costs in aquaculture will become more expensive (Asche
and Bjorndal, 2011). Fish meal has both higher protein content, and a different nu-
tritional structure compared to other protein meals.

Climate change may lead to fish stock shifts from one nation to another (Diekert and
Nieminen, 2017). This may shift a nation’s incentive from conservation of the stock,
to depletion of the stock. A shift in incentives may indirectly strain in international
relations if there are no binding agreements between the nation from which the
fish stock shifts and the nation the fish stock shifts from. If there are changes to
international trade due to climate changes, both the export of fish and the import
of input factors may be affected. If the access to the Asian markets are restricted,
salmon from Norwegian needs to be sold in the European market. This would drive
prices for salmon down. Norwegian aquaculture industry would probably have
difficulties remaining profitable if the access to the European markets were limited.
Roche Vitamins, based in Switzerland, is the largest producer of astaxanthin to the
aquaculture industry (Alfnes et al., 2006). Hence, one of the most important input
factors for fish farming in Norway are dependent on international trade.

2.3 Regulation of the Aquaculture Industry

Since aquaculture can be considered to be the controlled form of fishing, I will start
this section regarding regulation with the regulation of inland fisheries in the time
before aquaculture emerged as an industry. I will then briefly describe how reg-
ulation of aquaculture has evolved over time. Lastly I will describe the current

3Especially the Lion’s mane jellyfish (Cyanea capillata) represents a risk for the aquaculture indus-
try.
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act regulation of aquaculture. The regulations discussed in Section 2.3 dictates the
operations of aquaculture, regulation regarding trade will not be discussed.

2.3.1 Pre-aquaculture

Laws regulating inland fishing has existed in Norway since the 13th century, grant-
ing riparian rights for fishing in rivers (Chutko, 2011). This entails that landowners
ajoined to rivers had rights to fish as long as they did not impede the flow of the
river. Since salmon has their spawning ground up river in the lakes where they
spawned themselves, it was far more efficient fishing salmon at the river compared
to fishing at sea. Conflicts regarding allocation of resources, lead to new laws regu-
lating fishing of salmon were adopted in the middle of the 19 th century. Increasing
use of fishing nets at the estuaries blocking the path up rivers for salmon, were
especially disconcerting for landowners up river. During the 1850s wealthy Brits
began regularly using Norwegian rivers for sport fishing as a recreational activity.
This lead to a very profitable practice of renting out fishing rights for landowners
up river, and a strong economic incentive for stricter regulation for fishing down
river.

2.3.2 Current regulation

The first regulation of the Norwegian aquaculture industry was implemented in
1973 (Asche and Bjorndal, 2011). The current act regulating (Fiskeridepartementet,
2008) was first implemented in 2008, by The Norwegian Ministry of Trade, Industry
and Fisheries ("Nærings- og fiskeridepartamentet”). It was last amended 19.04.2018. It
is a general act regulating aquaculture industry, with special regulations for: fish
for consumption, brood fish, crustaceans and molluscs, and cleaner wrasse. The act
regulates locations in seawater containing fish meant for consumption or breeding
needs to be fallowed for a minimum of 2 months after each production cycle (§4-
40). Other examples are the maximum allowable total biomass for each production
unit (§4-47), and maximum number of fish for each production unit (§4-47a).
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3. Literature review

3.1 Optimal harvest in aquaculture

The theory of optimal management of renewable resources is based on theory de-
veloped for forestry management. For a forestry the decision variable is time of har-
vest. Hence, we often call it the optimal rotation decision. Foresters and economists
argued whether the two school of thoughts for optimal solution was the maximum
sustainable yield solution or the optimal solution for a single rotation (Amacher,
Ollikainen, and Koskela, 2009).

In 1849 Martin Fautsmann argued that the optimal time for harvest in a forestry
with infinite rotations is when the marginal value of delaying the harvest of the
current stand is equal the sum of marginal costs of delaying the harvest. The sum
of the marginal costs of delaying harvest is the marginal cost of delaying the cur-
rent stand plus the marginal cost of delaying the future stands. This is commonly
referred to the Faustmann’s formula, though it was Max Pressler (1850) and Bertil
Ohlin (1923) 1 who showed it mathematically. Kirilenko and Sejo (2007) estimated
that the effects from climate changes on the profitability of forestry will vary de-
pending on regional climate changes, some will be positively affected, others will
be negatively affected. IPCC (2001) predicts that boreal forestry may benefit from
an increase in average temperature, whilst tropical forestry will likely be less prof-
itable.

The control of production process is substantially higher in profitable aquaculture
compared to fisheries (Asche, 2008), which leads to different decision factors for
fisheries and aquaculture. Asche argues that aquaculture is stock cultivation, which
is comparable to forestry and agriculture, and less so fisheries. Hence, the optimal
management of a aquaculture solves the optimal rotation time in accordance with
the Faustmann formula. The optimal rotation time according to the Faustmann
formula is when the growth rate of the biomass is equal to the sum of the real

1Ohlin worked it out independently of Pressler
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rate of return and the opportunity cost of the facility (Lorentzen and Hannesson,
2006).

A simplified version (Guttormsen, 2008) of the process of salmon aquaculture can
be described in with the following steps; (i) the farmer releases a certain amount of
recruits into the pen (ii) the fish is fed for a certain amount of time (iii) the farmer
decides when to harvest the fish. By vertical integration, the fish farmer may also
control the process of producing smolt (upstream) and slaughtering (downstream).
However, for simplification models are often made without the vertical integration
factor. This factor can later be added to obtain adjusted models.

3.1.1 Growth function for Atlantic Salmon in Norway

The growth function describes how an individual salmon’s growth evolves depend-
ing on the function’s variables. Lorentzen and Hannesson estimates (2006) that the
growth function for Atlantic salmon in Norway should take the form of a logis-
tic growth function based on laboratory studies. Thyholdt (2014) argues the same
based on regional empirical data from aquaculture plants from the South, Middle
and North of Norway. Both Lorentzen and Hannesson, and Thyholdt rejected the
Von Bertalanffy’s growth function, and rejected the exponential growth function for
describing the growth of Atlantic salmon. Growth depends on amount of daylight
in combination with temperature, modern aquaculture facilities uses artificial light
sources to stimulate growth (Asche and Bjorndal, 2011). Assuming the cost of pro-
viding light is negligible, i.e. optimal light is assumed provided at no cost, number
of hours of daylight will not be included in the model.

Further analysis will be based on Lorentzen and Hannesson’s (2006) model of logis-
tic growth for Atlantic salmon in the Norwegian salmon aquaculture. Due to simi-
larities between the decision factors in fish farming and forestry, the most common
way to model optimal time of harvest is by using the Faustmann formula.

3.2 Mortality as a function of temperature and weight

Lorentzen and Hannesson (2008), Thyholdt (2014) and Guttormsen (2008) treats
mortality as constant in their models. This is a somewhat reasonable simplification.
However, they recognize that in reality mortality rate is not constant with regards
to temperature. In fact, temperatures exceeding 20 degrees may inflict total loss of
the biomass due to mortality (Lorentzen and Hannesson, 2006). In the IMR’s report
(2018) they argue that mortality for salmon in Norwegian aquaculture is dependent
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on both the individual’s weight and the sea temperature. Since Salmon is both
an ectotherm and an r-strategist, it makes sense from a biological perspective to
model mortality rate as dependent on temperature and weight. By law (§2-16),
Norwegian aquaculture facilities are required to remove dead salmon from the pens
daily and treat the waste. The removal requires labor which leads to extra costs due
to mortality. However, the incurred costs from mortality in the aquaculture will be
treated as negligible in the further analysis, in part since I will not account for other
cost elements in the analysis. Hence; in the model, the loss incurred from mortality
will be strictly a result of the loss in potential sales.
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4. Methodology

In this chapter how the model were built from bioeconomic theory will be briefly
explained, the sources for the empirical data will be disclosed, and a explanation of
how results of the analysis were calculated. In Section 4.2 I will declare the source
of the data set for the regression analysis, and briefly explain what operations were
made on the data set in order to not include flawed observations

4.1 Building the model

In Chapter 5 I will describe which assumptions have been made in order to model
growth of salmon, number of salmons in the fish farm depending on time, when
and how harvesting can be conducted, as well as starting a new rotation.

4.1.1 Growth function

The growth function used in the analysis were derived by Lorentzen (2008) by refin-
ing the model he and Hannesson (2006) estimated from regression analysis of raw
data from controlled experiments by producers of feed for the aquaculture industry.
The controlled experiments measured growth for juvenile salmons at different, con-
stant temperature regiments. The different regiments were integer degrees in the
range from 1 to 18 degrees Celsius. Hence, for temperatures outside of the given
range the growth function may not be applicable. However, I will assume that the
growth function is valid for all projected temperatures.

The continuous model for number of fish in the fish farm will be presented in Sec-
tion 5.1, and I will show how it can be adjusted to a discrete model. The reason for
adjusting the model into a discrete version is that one of the assumptions in Chapter
5 is that fish farmers can only harvest at the beginning of any one month. The logis-
tic growth function (LORENTZEN, 2008) will then be presented and I will explain
the parameters and variables more closely. I will briefly comment on the assumed
starting weight and maximum weight of an individual salmon. In Section 5.2 I will
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introduce rotations in the model and explain how a rational fish farmer will act in
order to optimize the value of the aquaculture based on decision variables.

4.1.2 Prices

Prices in the model will be based on prices retrieved from the NASDAQ Salmon
Index (2018). The index includes weekly data from the period 2013-2018. Weekly
average kg prices depend on the weight class of the salmon sold. NASDAQ have
classified the weight classes as 1 kg ranges from 1-9 kg, e.g. one weight class is
4-5 kg. Salmon lighter than 1 kg is not included, and salmon heavier than 9 kg are
grouped together.

FIGURE 4.1: Weekly average sales prices per kg in NOK for salmon
from 2013 to 2018, source: NASDAQ Salmon Index (2018)

Figure 4.1 shows how the weekly average kg prices in NOK for salmon have de-
veloped over time for the different weight classes. The y-axis shows the kg price
in NOK. The x-axis shows number of weeks after the starting point in 2013. The
kg price for the weight classes 1-2 kg and 2-3 is consistently less than the heavier
weight classes. For the weight class 1-2 kg, the kg price is most weeks less by a
clear margin. Not included in Figure 4.1 is the grouping of the weight classes 3-4
kg, 4-5 kg and 5-6 kg into the group weight class 3-6 kg which NASDAQ includes
in their index. We see from the sales distribution of the group weight class 3-6 kg
in Figure 4.2, that the group class 3-6 kg consistently makes up between 60 and 85
percent of total sales in the period. For this reason and the fact that prices are lower
for the weight classes 1-2 kg and 2-3 kg, I make a distinction between kg prices for
salmon in the weight classes: less than 1 kg, 1-2 kg, 2-3 kg and more than 3 kg. The
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kg prices used in the analysis are the average kg prices of the whole period for said
groupings. It is assumed that salmon less than 1 kg can not be sold, hence have a kg
price of 0 NOK. Prices for the different weight classes used in the model will be pre-
sented in Table 5.2 from Section 5.4. Because there is assumed no cost for attaining
new salmon at the start of the rotation, there would be possibilities for arbitration
is prices exceed 0 in the start of the rotation. In reality there could be possible to sell
fish less than 1 kg to other fish farmers, but with no chance of arbitration.

FIGURE 4.2: Sales distribution for weight classes 3 − 4 kg, 4 − 5 kg,
5 − 6 kg and total distribution for 3 − 6 kg from 2013 to 2018, source:

NASDAQ Salmon Index(2018)

4.2 Regression, mortality rate

The regression in Section 6.1 will be based on anonymized data given by Lars Helge
Stien from IMR upon request. The original data were used in IMR’s "Risk report for
Norwegian aquaculture" (2018) to analyze how temperature affects mortality rates in
Norwegian salmon aquaculture.

Using four heatmap-graphs, figure 4.3 shows the self-reported mortality rates from
Norwegian aquaculture facilities in the period 2009-2016 (Grefsrud et al., 2018). The
x-axis shows average temperature of the seawater in degrees Celsius the previous
month, and the y-axis shows the average weight of the fish the previous month.
The report date of the mortality rates was the first day of the month. Figure 4.3
seem to show a possible effect on mortality rate seawater temperature. In Section
6.1 I will estimate a function for monthly mortality rate for fish in Norwegian aqua-
culture.
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FIGURE 4.3: The relationship between mortality rate in Norwegian
salmon aquaculture, and sea temperature and the average weight of

fish, source: IMR (2018)

Points with negative weight, and weight equal to 0 kg were dropped from the anal-
ysis. They were dropped because neither negative nor no weight is a possibility.
Observations with monthly mortality rates of 10 percent, or higher, were consid-
ered to be outliers caused by other factors than temperature. The assumption is
that these high mortality rates were caused by non-included factors such as out-
breaks of algae or sea lice etc. A total of 724 observations out of 50 998 observations
were dropped from the analysis.

4.3 NPV calculations

In Section 6.2 I will present scenarios for changes to the temperature function (5.27),
and show how the affect the seasonal temperatures. I will then present the results
for NPV and how fish farmers can possibly add value by changing their decision
variables. The results will be presented for each scenario individually and sum-
marized at the end. In order to calculate the results for the NPV s for the different
scenarios I used Microsoft Excel. The figures showing the results for the NPV s
under different scenarios were made in Excel.
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FIGURE 4.4: Scatter plot of mortality rates in Norwegian Salmon aqua-
culture (IMR) over time with the corresponding linear regression.
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5. Model

In this chapter I will in Section 5.1 describe the assumptions that were made in order
to build the model for NPV in Section 5.2. The function used to project the seasonal
temperatures is introduced in Section 5.3. Finally, I will present the parameter val-
ues used in the model in Section 5.4.

5.1 Model assumptions, and building the model

An assumption needed is that the fish farmers maximizes the present value of the
future cash flows from the aquaculture. In order to simplify the model, we assume
no feeding costs, and no harvesting costs. This simplification It is fairly easy to ad-
just the model by adding the cost elements. Harvest will be assumed to be a binary
choice, i.e. either the fish farm harvests all salmon in the period, or no salmon in
the period. Another assumption is that the numbers of year classes in a fish farm
at any given time is restricted to one year class. This is in accordance with Nor-
wegian regulations on aquaculture plants (Regulations on the operation of aquaculture
plants (NOR)2008). Hence, we assume one simultaneous rotation, and harvesting
decisions to be binary.

Recruitment is in the model assumed determined either by technological or legal
restrictions, and recruitment is assumed constant throughout the analysis. Assum-
ing a constant mortality rate M , we have that the number of fish in the pen at time
t can be expressed in a continuous expression as

N(t) = N0e
−

∫ t
0 M(u)du

Where N(t) is the number of fish at the farm at time t. The recruitment is the num-
ber for fish for at the start of the rotation, it is common practice to denote the re-
cruitment as R in optimal rotation problems (Asche and Bjorndal, 2011). M(u) is
the mortality function. The mortality function may be multivariate hence, the nota-
tion of u. Several prior studies assume that mortality rate is constant, i.e. M(u) =M
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(LORENTZEN, 2008; Guttormsen, 2008; Thyholdt, 2014). This leads to the former
expression to be rewritten as

N(t) = Re−Mt (5.1)

When using a discrete expression for describing mortality rate, we have that in the
first period after the release the number of fish is equal to the number of fish that
survived the previous period. This is equivalent to saying the number of fish from
the previous period times the share of fish that survived the previous period. The
share of fish that survived the previous period is equal to 1 minus the share of fish
that did not survive the previous period.

N1 = N0 · (1−m0) = R(1−m0)

N2 = N1 · (1−m1) = R(1−m0)(1−m1)

...

Nt = R(1−m0)(1−m1) · · · (1−mt−1) = R ·
k=t−1∏
k=0

(1−mk) (5.2)

Here
∏

is the product of all terms from k = 0 til k = t−1. When assuming constant
monthly mortality rate we have that the number of fish can be described as the
following discrete function

Nt = N0(1−m)t (5.3)

Where m is the fixed discrete monthly mortality rate.

The growth function for Norwegian salmon in aquaculture used in this thesis is
based a logistic growth function estimated by Lorentzen and Hannesson (2006).
They estimated the growth function based on raw data from controlled experiments
organized by producers of feed for the aquaculture industry. In the controlled ex-
periment, daily percentage increases in weight for juvenile salmon were measured
given different, constant temperature regimes.

The logistic growth function estimated at different temperatures is expressed as

w(t) =
1

α + β · γt
(5.4)
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In equation (5.4) α and β are biological parameters independent of temperature,
whilst γt is a temperature dependent parameter. The temperature dependent pa-
rameter γ can be calculated the following way

γ = e−z·S+D1·x1+D2·x2 (5.5)

Where S is the temperature of seawater in the pen, and z is the estimated param-
eter. D1 and D2 are dummy variables dependent on temperature of seawater. The
dummy variables are for 17 degrees and 18 degrees respectively, with x1 and x2 as
the associated estimated parameter values.

D1 =

{
1, if S ≥ 17

0, if S < 17
, D2 =

{
1, if S ≥ 18

0, if S < 18

From equation (5.4) we have that weight depend on t, and that γ is raised to the
power of t. From equation (5.5) we have that γ is dependent on seawater tempera-
ture, S. Combining equation (5.4) and equation (5.5), we have that weight depends
on both time and seawater temperature

w(t, S) =
1

α + β · (e−zS+D1x1+D2x2)t
(5.6)

Using the facts that
eA > 0, ∀ A

e−A < 1, ∀ A > 0

We can from equation (5.5) infer that γ is greater than 0 and less than 1.

z · S +D1x1 +D2x2 > 0 =⇒ 0 < γ < 1 (5.7)

The discrete version 1 of the logistic growth model substitutes the continuous vari-
able γt by the discrete variable

∏t,

wt =
1

α + β ·
∏t (5.8)

where
∏t is the product of the discrete γ∆t’s from period 1 until period t and 1.

∏t
= γ

1
12
1 · γ

1
12
2 · · · γ

1
12
t (5.9)

1For derivation of the discrete version see Lorentzen (2006)
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Since
∏

at period 0 is equal to 1, the weight at period 0 is given as

w0 =
1

α + β
(5.10)

Hence, from equation (5.10) we see that the biological parameters α and β deter-
mines the weight of the start of the rotation.

By taking the limit when t tends to infinity of equation (5.4) we can find what the
theoretical maximum weight of an individual salmon according to the model

lim
t→∞

wt = lim
t→∞

1

α + β ·
∏t (5.11)

The parameters α and β are biological parameters not dependent on time. From
equation (5.7) we have that

∏
is greater than 0 and less than 1. Hence, we can

simplify equation (5.11) as follows

lim
t→∞

1

α + β ·
∏t =

1

α + β · limt→∞
∏t (5.12)

=⇒ 1

α + β · 0
=

1

α
(5.13)

Hence, from equation (5.13) we see that the biological parameter α determines an
asymptotic weight. This simply means that there is a maximum weight for an in-
dividual fish. The fish farmers’ objective is to maximize the discounted value of all
future cash flow from the fish farm. Hence, (5.13) and (5.10) serves more as indica-
tions that equation (5.6) is a realistic growth function, rather than give an intuition
regarding optimal rotation time.

5.2 Multiple rotations, with no costs

Fish farmers with optimal rotation time maximizes NPV of all future rotations.
When modelling the NPV we assume that the farmers will with regular time in-
tervals receive the value of harvesting. The received value needs to be discounted
according to the discounting factor and time. For continuous models the discount-
ing needs to be continuous, whilst discrete models can use continuous and discrete
discounting. Hence, when not accounting for costs the NPV of the aquaculture
can been viewed as an infinite geometric series of the values of infinite amounts
of harvests that farmers receive with regular intervals. We could model the NPV
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as a finite geometric series, but since the difference is relatively small2 we will use
infinite series. This is because the purpose of the model is to offer insight of the
value of adapting, not reflect an actual valuation of adapting. An assumption in the
model is that the setting time of the stock is the same for all periods. There are no
restrictions for when fish farmer can start a new rotation, other than the demand
for non-simultaneously year-classes.

The value of each harvest is dependent on the price for salmon and the biomass
of the stock. Further, the biomass of the stock is dependent on how much each
individual fish weigh, and how many fish still lives this far into the rotation.

Vt = pi ·Bt = pi · wt ·Nt (5.14)

Where Vt is the value of a rotation. Bt is the total biomass of the rotation at time t,
pi is the kilogram price of salmon depending on which weight class the salmon is
at during time t, wt is the weight of an individual salmon at time t, and Nt is the
number of fish in the pen at time t.

The net present value of the aquaculture is the discounted values of all future in-
comes. This can be described as a geometric series, described as

NPV = Vt · e−rt + Vt · e−2rt + Vt · e−3rt + . . . (5.15)

Multiplying both sides by ert

NPV ert = Vt + Vte
−rt + Vte

−2rt + . . . (5.16)

Subtracting the first expression (5.15) from the second expression (5.16) yields

(ert − 1)NPV = Vt (5.17)

Dividing by (ert − 1) we get

NPV =
Vt

ert − 1
(5.18)

By substituting Vt with the expression in (5.14) we have that

NPV =
pi · wt ·Nt

ert − 1
(5.19)

2See (A.2) for calculations for how many rotations are needed for the difference to be negligible
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Hence, the rational fish farmer will choose rotation time t such that it that maxi-
mizes equation (5.19). In a continuous model the time variable is continuous, and
optimal time of harvest can be calculated. For a discrete model the time variable is
discrete, and optimal time of harvest must be chosen among a set of possible times
of harvest. In this thesis, the model used will have the set of possible times of har-
vest is the beginning of each month, t∗ ∈ [0, 1, . . . , 40]. Where t = 40 is used as a
sufficiently large upper limit.

Equation (5.19) can be rewritten using equation (5.8) to substitute for wt. Which
yields

NPV =
piNt

(α + β ·
∏t)(ert − 1)

(5.20)

Where NPV can be described as a multivariate function, with time and tempera-
ture as variables. From a combination of equations (5.5) and (5.9) we can see that
variable affecting the growth of salmon in (5.20) is dependent on temperature. In
Section 6.1 I will show that the monthly mortality rate is dependent on temperature,
which means that Nt in (5.20) is dependent on temperature.

5.2.1 Faustmann’s formula

In order to link equation (5.20) to the theoretical foundation derived by Faustmann
and Ohlin, we need to go back to the continuous model with constant mortality
rate. In order to find the optimal rotation time we need to derive the discounted
value of all future profits by time

max
t

(
π(t) = V (t)e−rt + V (t)e−r2t + . . .

)
(5.21)

Where π is the sum of all the discounted future profits, NPV earlier in the model.
By using the sum of the geometric series from equation (5.18) and subsituting V (t)

for pw(t)N(t) we get

max
t

(
π(t) =

pw(t)N(t)

ert−
=
pw(t)Re−Mt

ert−

)
(5.22)

By setting the derivative equal to 0, we get

(pw′(t)Re−Mt − pw(t)MRe−Mt)(ert − 1)− rertpw(t)Re−Mt

(ert − 1)2
= 0 (5.23)
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Since a fraction can only be equal to 0 if the numerator is equal to 03, we have that

pw′(t)Re−Mt(ert − 1)− pw(t)MRe−Mt(ert − 1)− rertpw(t)Re−Mt = 0 (5.24)

Dividing (5.24) by pRw(t)e−Mt(ert − 1) we get

w′(t)

w(t)
−M − r

(
ert

ert − 1

)
= 0 (5.25)

Rearranging the terms yields and adding and subtracting by 1 in the numerator

w′(t)

w(t)
=M + r

(
ert − 1 + 1

ert − 1

)

=⇒ w′(t)

w(t)
=M + r

(
ert − 1

ert − 1
+

1

ert − 1

)

=⇒ w′(t)

w(t)
=M + r +

r

ert − 1
(5.26)

Where w′(t)/w(t) is the relative growth rate of the fish, M + r is the opportunity
cost of not selling the fish, and r/(ert − 1) is the alternative cost of keeping the fish
in cages not substituting for younger faster growing fish. The left hands side of
equation (5.26) is the marignal value of delaying harvest, whilst the right hand side
of the equation is the marginal cost of delaying harvest.

5.3 Temperature as a cosine function

When sunlight hits Earth, the sunlight can either be absorbed or reflected. If sun-
light is absorbed, it increases the energy of the system into which the sunlight is
absorbed. This can lead to higher temperature in the absorbing system. Due to the
earth’s axial tilt, the amount of sunlight Norway receives per day can be described
as a cosine function, with the period of one year. The average temperature in Nor-
way is high compared to other places with the same latitude. The reason for higher
average temperature in Norway is the Gulf Stream. Hence, temperature in Norway
can be approximated to a cosine function with respect to time.

S(t) = φ · cos
(
2π(t− ψ)

T

)
+ ω (5.27)

3Nothing can be equal to infinity! If the denominator could be equal to infinity, the nominator
would not have to be equal to 0 and this reasoning would be flawed
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Where S is the expected seawater temperature at time t. The amplitude φ is the
range between the coldest and warmest expected seawater temperature. T is the
period of the function and π is a mathematical constant. Time t is the variable of the
function. The adjustment factor ψ shifts the function horizontally and is estimated
according to when the start of the rotation is relatively to the warmest month. The
yearly average seawater temperature is denoted as ω.

Lorentzen (2008) described seawater temperature as a sine function. But since
sin (v) = cos

(
π
2
− v
)

the main difference is how the adjustment factor is calculated.
A cosine function without adjustment starts at the maximum value, whilst a sine
function starts at the middle value without adjustment. Hence, for ψ > 0 the ad-
justment factor for a cosine function is the number of time units to the right the
maximum is relative to the starting time. For sine functions the adjustment factor
is less intuitive. For this, reason I chose to use a cosine function rather than a sine
function.

Different locations in Norway will have different parameter values. Daily, even
hourly, temperature fluctuations are expected. Hence, equation (5.27) is supposed
to describe expected temperature. In the further analysis the temperature function
is describing expected temperature for the aquaculture facility in Lista (LORENTZEN,
2008).

Some of the energy the environment absorbs from sunlight will be emitted as in-
frared radiation due to black body radiation 4. Green house gasses in the atmo-
sphere is able to reflect infrared radiation back towards Earth. Hence, we will as-
sume that in periods with more sunlight, more infrared radiation may be reflected
back to earth compared to periods with less sunlight. In other words, we assume
that the projected climate change is more likely to increase the amplitude parame-
ter, rather than decrease the amplitude parameter. Hence, in the following scenarios
only increasing, or constant, amplitude scenarios will be included. IPCC (2001) ar-
gues for an increase in average sea temperature in the North Atlantic in their report.
Hence, only positive shifts, or no shift, in average temperature will be included in
the scenarios.

We will assume that the changes in the average and the amplitude for the tem-
perature function are instantaneously. However, gradual changes in averages and
amplitudes are more realistic.

4Stefan-Boltzmann law for black body radiation derived in 1879
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5.4 Parameters

The parameters values for the growth function in Table 5.1 are based on Lorenzten
(2008). Lorentzen and Hannesson (2006) estimated the parameters through regres-
sion analysis of raw data from laboratory tests conducted by feed producers for the
aquaculture industry.

α β z x1 x2

0.11 5.32 0.388 0.73399 1.7005

TABLE 5.1: Parameter values for growth function of Atlantic salmon.
(LORENTZEN, 2008)

Prices that are used for the different weight classes in Table 5.2 are the average
prices for the period 2013 − 2018 (NASDAQ, 2018). The share of fish that are har-
vested in the weight classes between 3− 6 kg is steadily around 60 to 85 percentage
of the total amount of fish sold5.

Weight class Less than 1 kg 1-2 kg 2-3 kg 3+ kg

Price in NOK 0 38.29 45.34 51.66

TABLE 5.2: Price in NOK per kg salmon for different weight classes of
salmon (source: NASDAQ (2018))

The expected seawater temperature function is based on the temperature function
for the aquaculture facility located in Lista, Norway (LORENTZEN, 2008). The
function implies that expected temperature ranges from 3.66 degrees Celsius to
13.14 degrees Celsius.

Amplitude Average Adjusting factor Period

Symbol φ ω ψ T
Value 4.74 8.40 1 12

TABLE 5.3: Values used in the temperature functions for the aquacul-
ture located in Lista, Norway (LORENTZEN, 2008)

5See Figure (4.2)
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6. Results

In the following chapter I will present the results of the regression analysis in Sec-
tion 6.1. I will discuss why I have used one the regressions, whilst the others are
not as relevant. In Section 6.2 I will explain what the scenarios entails in form of
changes, and I will present the result for how the changes affect NPV and the po-
tential value of adapting to the changes.

6.1 Regressions, mortality rate

In order to see whether there might be a time trend in the data, we have a regres-
sion with mortality rate as the dependent variable and month as the independent
variable. As shown in Table 6.1 there seem to be a clear correlation between month
and mortality rate. Hence, in the regression used to model mortality rate, month
should be added as a control variable. The observations span multiple rotations. To
include month as a variable would mean that we expect the time trend to be valid
across rotations. This may be accurate if the surroundings for the pens, or the pens
themselves, used for fish farming leads to increasing mortality rates with multiple
rotations. In Norway there are clear regulations concerning cleaning between rota-
tions in fish farming. As a result, month will be regarded as a control variable for
the regression. But month will not be included as a variable in the model.

m̂ = β̂1Month+ β̂0 (6.1)

The linear regressions of mortality rate with regards to average temperature and
weight are statistically significant, see Table 6.2. Though for the different peri-
ods the coefficient for the weight component is both positive (for month< 36 and
month> 72) and negative (for 36 <month≤ 72), see Table 6.3. This combined with
Figure 4.3, which shows mortality rates for different combinations of temperatures
and weights, I argue that we should introduce non-linear variables.
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Mortality rate

Month 0.000962∗∗∗

(4.54)

Constant 0.836∗∗∗

(60.33)

N 50 275

t statistics in parentheses
∗p < 0.05,∗∗ p < 0.001,∗∗∗ p < 0.001

TABLE 6.1: Regression of mortality rate in Norwegian salmon aqua-
culture facilities (2009-20017) with month as an independent variable

Mortality rate

Weight 0.0000337∗∗∗

(11.50)

Average temperature 0.0390∗∗∗

(22.83)

Month 0.000250
(1.17)

Constant 0.454∗∗∗

(22.04)
N 50 275

t statistics in paranthesis
∗p < 0.05,∗∗ p > 0.01,∗∗∗ p < 0.001

TABLE 6.2: Regression for whole period with mortality rate as depen-
dent variable, weight average temperature, and month as independent

variables.

Mortality rate
for month≤ 36

Mortality rate for
36 <month≤ 72

Mortality rate
for month > 72

Weight −0.000108∗∗∗
(−17.38)

0.0000393∗∗∗

(9.15)
0.000128∗∗∗

(25.72)

Avg temp 0.0371∗∗∗

(11.15)
0.0393∗∗∗

(15.53)
0.0409∗∗∗

(13.65)

Constant 0.812∗∗∗

(23.79)
0.356∗∗∗

(13.35)
0.297∗∗∗

(9.19)
N 13 595 18 603 18 077

t statistics in paranthesis
∗p < 0.05,∗∗ p > 0.01,∗∗∗ p < 0.001

TABLE 6.3: Regressions with mortality rate as the dependent variable.
The independent variables are weight and average temperature. The

regressions are for different periods.
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From a biological analysis we have that there is an optimal range for mortality rate
with regards to temperature (Lorentzen and Hannesson, 2006). This is true for most
(all) living beings, but especially true for ectotherms. Hence, the regression should
include a second order term for temperature as well as the first order term. We can
deduce that heavier salmon is older compared to lighter salmon. Since harvest is
before sexual maturation, age should equate to lower mortality rates. Though the
decreasing effect on mortality rate due to age should itself be diminishing. Hence,
some form of logarithmic transformation of the weight variable should be included
in the regression. Lastly, I will argue that there should be an interaction term of
weight and temperature. This is based on assumption that heavier (sturdier) fish
handles more extreme temperature better than lighter fish do. As mentioned earlier,
month should be added as a control variable.

Mortality rate

Average temperature −0.101∗∗∗
(−11.74)

(Average temperature)2 0.00566∗∗∗

(12.88)

ln(Weight) −0.201∗∗∗
(−23.75)

Weight·Temp 0.0000137∗∗∗

(27.22)

Month 0.000921∗∗∗

(4.33)

Constant 2.391∗∗∗

(32.33)
N 50 275

t statistics in parenthesis
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

TABLE 6.4: Linear regression with non-linear variables for mortality
rate in Norwegian salmon aquaculture (2009− 2018)

Estimated monthly mortality rate can be expressed as equation (6.2). In this equa-
tion the variable month has not been included, as we assume that the observed
time trend for increasing mortality will not hold. Assuming the opposite would
conclude that no fish would be able to survive a single month in Norwegian aqua-
culture. The estimated monthly mortality rate is given in percentages.

m̂month = −0.101 · S + 0.00566 · S2 − 0.201 ln (w) + 1.37 · 10−5 · (w · S) + 2.390 (6.2)
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By partial derivation we can assess both; how a degree change in temperature, and
a gram increase in weight, would affect monthly mortality rate ceteris paribus.

Partial derivation with regards to temperature yields

∂m̂month

∂S
=

∂

∂S

(
0.101 · S + 0.00566 · S2 − 0.201 ln (w) + 1.37 · 10−5 · (w · S) + 2.390

)

=⇒ ∂m̂month

∂S
= −0.101 + 0.01132S + 1.37 · 10−5w (6.3)

Partial derivation with regards to weight yields

∂m̂month

∂w
=

∂

∂w

(
0.101 · S + 0.00566 · S2 − 0.201 ln (w) + 1.37 · 10−5 · (w · S) + 2.390

)

=⇒ ∂m̂month

∂w
= −0.201

w
+ 1.37 · 10−5S (6.4)

From equation (6.3) and equation (6.4) we see that the heavier the fish, the effect
of increasing the temperature one degree on monthly mortality rate. By setting
equation (6.3) equal to 0 we can find the estimated optimum for mortality with
regards to temperature

−0.101 + 0.01132S + 1.37 · 10−5w = 0

S =
0.101− 1.37 · 10−5w

0.01132
= 8, 916− 0.0012w (6.5)

Hence, from equation (6.5) we see that the optimal seawater temperature with re-
gards to mortality rates are 8.92 degrees for a weightless fish and decreasing 1.2
degrees for every kg increase.

6.2 Scenarios for changes in temperature of sea water

in Norway

The postulated changes used in the analysis are shown in Table (6.5). The changes
will be the basis for the scenario-based analysis in Scenario I, Scenario II, Scenario
III. In Scenario I the postulated changes affect average temperature. In Scenario
II the postulated changes affects the amplitude of the temperature, in other words
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the difference between the coldest and the warmest months. In Scenario III the
postulated changes affect both average temperature and the amplitude of tempera-
ture.

Change 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

TABLE 6.5: Changes in used in the scenario-based analysis in Scenario
I, Scenario II, and Scenario III

When there are no changes in the temperature function (5.27), the optimal rotation
time is 16 months. Since the recruitment were not based on actual data, the nominal
value of the NPVs is not as relevant as the relative values of NPVs. Hence, all NPV
are stated as a fractional value of the current NPV with optimal rotation time. In
mathematical terms

NPVrelative =
NPV j

t −NPV i
t∗

NPV i
t∗

(6.6)

Where j can be any scenario, whilst i is the current situation i.e. without changes.
And t is any possible rotation time, t∗ is the optimal rotation time under the cur-
rent situation with no change in temperature. NPVrelative is the fractional value of
current optimal NPV .

In all scenarios the additional value fish farmers may achieve by adapting to the
postulated changes were estimated. Fish farmers may adapt by changing the month
of harvest and by changing in which month to start the rotation. The additional
value of adapting to the postulated changes were measured in terms of percentage
of the NPV gained by the postulated change, and not changing time of harvest or
month of starting the rotations. In figures 6.3, 6.6, and 6.9; the term "Fixed" refers
to not changing time of harvest or starting time of new rotations, the term "Setting
fixed" refers to choosing the optimal time of harvest not changing the starting time
of new rotations, and the term "Not fixed" refers to changing both time of harvest
and starting time of new rotations.

6.2.1 Scenario I: Increases in average temperature

In Scenario I the changes from Table (6.5) will affect the average temperatures.
Which means that equation (5.27) can be rewritten as

S = φ · cos
(
2π(t− ψ)

T

)
+ (ω + ω∆) (6.7)
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Where ω∆ is the change in average temperature due to climate change.

FIGURE 6.1: Seawater temperature for different changes to average
temperature

Figure 6.1 shows the seasonal temperatures from June one year to June the follow-
ing year for different changes to average temperature. As well it shows lines for
the degrees 17 and 18, which are the decisive temperatures for when the dummy
variables affecting growth function (5.8). Note that in order to get a better overview,
only integer changes were assessed in Figure 6.1. We can see that a 4 degree increase
in the average temperature, will lead to an affected growth during the months of
July, August, and September due to a too high temperature. For Scenario I, we see
that every point of projected temperature are shifted upwards the same degree as
the increase in average temperature.

From Figure 6.2 we see that the NPV of the fish farm is consistently higher for higher
temperatures. E.g. an increase in average temperature of 2 degrees Celsius leads to
a strictly larger NPV compared to the NPV for an increase of 1 degree Celsius for
any give rotation time. Weight for the individual fish is according to equation (5.8)
asymptotic with regards to time. Hence, the NPVs of all the postulated changes
in average temperature will with time converge towards no value. Furthermore if
the fish farm has a fixed rotation time, it is increasingly better off with increasing
average temperatures. The fish farm may, however increase its NPV by changing
its rotation time depending on actual change in average temperature.

Figure 6.3 shows that in the event of increases in average temperature equal to
0.5 degree or 1 degree there is no additional value of changing the rotation time
from the current optimal rotation time. For temperature increases equal to or larger
than 1.5 there are with regards to increase in temperature increasing values from
adapting the rotation time to a new optimal rotation time. There are no extra benefit
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FIGURE 6.2: Effects of changes in average temperature (degrees Cel-
sius) on the NPV of the infinite rotations. The effects are compared to

current NPV for optimal harvest choice

FIGURE 6.3: The additional value of changing harvest time and chang-
ing setting time for the aquaculture to different changes in average

temperature.

of choosing a different starting month once the fish farmers have adapted to the new
optimal time of harvest, which holds for all postulated changes.
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6.2.2 Scenario II: Increases in temperatures amplitude

In Scenario II the postulated changes from Table 6.5 will affect the amplitude of the
seasonal temperature. Which means that equation (5.27) can be rewritten as

S = (φ+ φ∆) · cos
(
2π(t− ψ)

T

)
+ ω (6.8)

Where φ∆ is the change in the amplitude of temperature due to climate change.

FIGURE 6.4: Seawater temperature for different changes to the ampli-
tude of temperature

Figure 6.4 shows the seasonal temperatures from June one year to June the fol-
lowing year for different changes to the amplitude of temperature. In addition,
the temperatures 17 and 18 degrees are highlighted in the form of straight lines.
These temperatures are the decisive temperatures for the dummy variables. Note
that only integer changes were assessed int Figure 6.4, whilst in the analysis ex-
pected temperatures for all changes were used to project monthly mortality rates
and growth paths. For a increase in amplitude by 4, the month of August is ex-
pected to be warm enough that growth are affected by the dummy variable. We can
also note that in the months November and May the projected temperatures are the
same, regardless of the change in amplitude. This is due to the cosine component of
equation (6.8) being equal to 0, meaning that S = ω. The maximum and minimum
values for temperatures are vertical shifts from the current projected temperature
equal to the shift in amplitude.
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FIGURE 6.5: Effect on the present value of infinite rotations mea-
sured compared to today’s present value for optimal harvest choice

by changes in amplitude of temperature

From Figure 6.5 we see that there are small differences between the NPVs for dif-
ferent changes in amplitude, almost regardless of the different time of harvest. One
interesting thing to note is that for the larger postulated increases in amplitude,
there are a positive effect on NPV for shorter (5-7 months) rotations as well as for
the longer periods (longer than 14 months). Whilst for a harvest time of 10 months
the NPV of the largest postulated change in amplitude is the lowest. The current
situation with no change in amplitude has a lower NPV (or as low as the lowest)
compared to all the different changes in amplitude for all times of harvesting, other
than 10 months.

From figure 6.6 we see that for all possible changes in amplitude, there are no ben-
efits of adapting the time of harvest, whilst for changes in amplitude from 0.5 to
1.5 there are benefits of changing the starting time of the rotations. However, these
benefits are all less than 0.6 percent of the new NPV due to change in amplitude.
The value of adapting was by starting the rotation in May in stead of in June.
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FIGURE 6.6: The value of changing harvest time and setting time for
the aquaculture to different changes in amplitude for the temperature

function.

6.2.3 Scenario III: Increases in average temperature and tempera-

ture’s amplitude

In Scenario III the postulated changes from Table 6.5 affects average temperature
and the amplitude of seasonal temperature. Which means that equation (5.27) can
be rewritten as

S = (φ+ φ∆) · cos
(
2π(t− ψ)

T

)
+ (ω + ω∆) (6.9)

Where φ∆ is the change in the amplitude of temperature due to climate change, and
ω∆ is the change in average temperature.

Figure 6.7 shows the seasonal temperatures from June one year to June the fol-
lowing year for different changes in average temperature and of the amplitude of
temperature. In addition the decisive temperatures with regards to the dummy
variables, 17 and 18 degrees are included in the figure. We see that in the month
of February temperatures coincide for all projected changes. Whilst for August, the
warmest month, projected temperature shifts upwards with the sum of the increase
in amplitude and the increase in average. If the average and amplitude changes by
2 or more, the negative effect on growth from the high temperature occurs in the
month of August. The negative effect is double for the changes of 2.5 or more, i.e.
both dummy variables is equal to 1. Not included in the model is that if the changes
are 3.5 there will be average seawater temperature above 20 degrees in August. If



Chapter 6. Results 38

FIGURE 6.7: Seawater temperature for different changes to average
temperature and amplitude of temperature

the change is 4 the expected average temperature in the months of July, August,
and September will exceed 20 degrees. This may lead to a physical breakdown for
the salmon, which mean a collapse of the stock. The possibility of a collapse of the
stock is however not included in the calculations of NPVs.

FIGURE 6.8: Effect of Scenario III on NPV for fish farmers with infinite
rotations. Effect measured compared to NPV for present optimal value

From Figure 6.8 we see that there NPV will be positively affected by changes to
average temperature and amplitude. Within the range of changes from Table 6.5
there is a strictly positive effect with increasing changes. We can as well see that
the positive effect is comparatively larger by changing for the current situation to
an increase of 1, than a change from 1 to 2.
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From Figure 6.9 we can see that there are relatively small values by adapting to the
changes. If the changes in amplitude and average is 2.5 or less the added value
is from changing the rotation time, there are no additional value of changing the
staring time of the rotation. For changes of 3 or 3.5 there is no value from changing
the rotation time, the only added value comes from changing the starting time of
the rotation. For a change of 4 for the average and amplitude there is both a posi-
tive effect from changing the rotation time as well as changing the starting time of
rotation.

FIGURE 6.9: The values of changing harvest time and setting time for
the fish farmer in Scenario III.

6.2.4 Summarizing the results, Scenarios

The analysis from the sections 6.2.1, 6.2.2, and 6.2.3 projects a strictly beneficial
effect of climate for the Norwegian aquaculture. The analysis varied concerning
how much the value added from adapting to climate change. There was a positive
effect from adapting. However, the effect were not strictly positive for Scenario
II. I.e. there were some changes to amplitude that were no value of adapting the
rotation time or the staring time of the rotation.

For Scenario I the beneficial value of a change in average temperature ranges from
6.27 percent to 28.46 percent of the optimal NPV for the current situation. The
beneficial value increased with regards to change in average temperature. I.e. a
change in average of 4 degree yields the highest beneficial value. The value of
adapting was due to decreasing the rotation time.
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For Scenario II the beneficial value of a change in the amplitude of temperature
ranges from 1.34 percent to 8.63 percent. The beneficial value of a change in the
amplitude of temperature increased with regards to change in amplitude up to a
change of 3.5. A change of 4.0 would yield the third highest beneficial value. The
value of adapting was due to starting a month earlier, i.e. starting the rotations in
May.

For Scenario III the beneficial value of a change in both the average temperature
and the amplitude of the temperature ranges from 7.44 percent to 23.26 percent.
The least change yielded the lowest value, whilst the largest change yielded the
highest value. However, there was not a strict increase of value with regards to
change within the range of change. E.g. a change of 2.0 yields a higher value than a
change of 2.5. The value of adapting was from decreasing the rotation time, and for
changes equal to or larger than 3 starting a month later, i.e. starting the rotations in
July.

Hence, the best way to adapt is highly dependent on what kind of changes that
will occur. As a result, the aquaculture industry needs to stay informed on the
latest projections for climate change in order to optimize the net present value of its
future cash flows.
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7. Discussion

7.1 Non-included variables and parameters

There are multiple variables and parameters that has not been included in the
model. Examples of non-included variables are taxes, cost of feeding, pH-levels,
salinity, harvest costs, sea level, and flow of current.

In (A.1) non-distortionary taxes (like Capital gain taxes) are shown to be a scal-
able factor that does not affect the optimal solution. Hence, non-distortionary taxes
is not necessary to include in the model. Distortionary taxes such as Payroll tax,
Property taxes, Sales taxes, etc. has not been included, due to the scope of the the-
sis.

It is difficult to estimate the effect from the projected climate change on salinity, flow
of current, cost of feeding, and pH-levels. Salinity, flow of current, and pH-levels
are important factors for the growth and mortality rates for salmons, and as such
should be a part of the complete analysis for the regulating government.

7.2 Limitations of the model

The model does not account for changes in salinity or pH-level due to climate
change, and how they could affect they value of the aquaculture. Lorentzen (2006)
and Thyholdt (2014) argues in their papers that the projected temperature increase
will lead to higher NPV for aquaculture located in the north of Norway. However, it
is likely that due to the geographical location the north of Norway will have a larger
change in salinity compared to southern regions as a result of melting polar-ice.
How the pH-levels will change is difficult to project in any part of the country, due
to both change in volume and change in the amount of CO2 in the atmosphere. A
temperature rise would lead to sea water expanding its volume. Hence, more CO2

in the atmosphere could lead to lower, higher or unchanged pH-levels. Looking at
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the decline in coral reefs (Brander, 2007) and the fact that coral reefs are more vul-
nerable to lower pH-levels, may lead one to infer that the pH-levels in sea water are
in fact decreasing. The decrease in pH-levels may however be temporary. A large
change in pH-levels will negatively affect the value of Norwegian aquaculture, both
a large decrease and a large increase. Fish farms may have counter-measures, e.g.
using chalk to neutralize acidic water. However, any counter-measure could prove
to be costly.

The logistic growth function is based on raw data from different, constant temper-
ature regimes. Hence the growth function may not account for how fluctuations in
temperature affects growth.

In the analysis the effect on NPV for Norwegian fish farmers were the only mea-
surement for value. For regulators and governments this is an incomplete informa-
tion set. The externalities from aquaculture will likely be affected climate changes.
The externalities from fish farming could affect tourism dependent industry, fish-
ing industry etc. In accordance to traditional economic theory the fish is treated as
a commodity, and the life of the fish is regarded as having no value of its own. As
a side note, the assumption that the life of salmon does not have any inherit value,
could be disputed on ethical grounds.

The model assumes that the feeding of salmon and pen sizes are non-restrictive. In a
realistic optimization problem feeding and pen sizes should be treated as (possibly
binding) constraints.

7.2.1 Prices

The assumption that prices can have discrete jumps depending on to which weight
class they belong may not be a valid assumption. In which case a continuous func-
tion for price per kg with regards to weight should have been used as an alterna-
tive. In his article Guttormsen (2008) argues that the relative kilogram prices are
seasonally dependent, including this may further improve my analysis. Because
of Norwegian aquaculture’s market share one may argue that there is a theoretical
possibility for price control through market power. Historically this has not proved
to be successful, and Norway has even been fined by the EU for illegally dumping
prices (Asche and Bjorndal, 2011).
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7.2.2 Mortality rate

The growth function used in the analysis were based on laboratory experiments,
which yielded good estimations for how different temperatures affected growth.
The function for monthly mortality rate was based on reported mortality rates in
Norwegian aquaculture. Fish farmers would likely actively try to minimize mor-
tality when higher temperatures incur. Efforts to minimize mortality could be suc-
cessful but would likely be costly. Hence, the model could estimate too large prof-
itability for higher temperatures. In this case the costs of climate change would be
underestimated, and the value of adapting to changes would be larger than previ-
ously estimated.

Furthermore, since the controlled experiments were conducted for the range from
1 degree to 18 degrees, the growth function is not necessarily valid for tempera-
tures outside of this range. Temperatures outside of this range includes some of the
changes from Scenario III. The observations from the data set used in the regression
analysis were the monthly mortality rates exceeded 10 percent may have been due
to a physiological breakdown in salmons due to too high temperatures.

In order to comply with laws and regulations, the data for mortality rates in Nor-
wegian aquaculture had to be anonymized before I received the data. There could
be systematically different mortality rates based on locations, companies, and other
factors. In order to estimate a more correct function for mortality rates the regres-
sion would need to control for the location-based effects. By controlling for e.g.
locations the constant factor for the estimated monthly mortality rate may have
been too big, whilst the estimated parameter values for temperature and weight
dependent factors may have been too small. The effects of climate change on the
value of Norwegian aquaculture may be underestimated as a result.

The data set for mortality rates showed the average temperature for the previous
month. There are no data for how much temperature fluctuated within each month.
As ectotherms salmons do not have well regulated body temperatures, and the
daily (hourly) temperature are more significant for mortality than averages. Hence,
the regression may have underestimated the effect of higher temperatures with re-
gards to mortality rates.

7.3 Assumption that infinite rotations is possible

When comparing the NPV for a finite amount of rotation and the NPV for an infinite
amount of rotations, we see from equation (A.1) that the number of finite rotations
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needed to approximate the infinite rotations case is almost negligible. As stated
in the Literature review the purpose of the model is to provide insight into how
changes in temperature may affect value, the precise effects were less emphasized.
Thus, in order to have a more concise model infinite rotations were used.

7.4 Indirect effects of temperature change

Higher sea water temperatures is one of multiple results from the energy increase
due to the increase of greenhouse gasses in the atmosphere. Other results of the en-
ergy increase is changes to weather patterns. One of the weather patterns that may
change is precipitation. The amount of precipitation in certain geographical loca-
tions may change drastically. This could lead to lower production for the producers
of feed to the salmon industry, resulting in larger costs for the fish farms. Since
wind and currents behave according to fluid dynamics, it is difficult to estimate
how they may be affected by changes in temperature. Precipitation is a result of
often complex wind and current systems. Hence, even if the expected costs remain
the same the risk of change in costs can be treated as increasing. A higher risk in
costs would lead to shorter rotation times for the profit maximizing agent. Shorter
rotation times leads to lower a decrease in the value of aquaculture, compared to
the optimal solution with no increase in risk of costs.

A more energetic climate system will lead to more frequent, more powerful, or both
more frequent and more powerful storms compared to the current situation. Pens
are currently made to endure a lot of energy in forms of powerful waves. But they
will over time degrade and there is a need to change or repair pens in order to
counteract escapements. Escapements can be doubly costly since the fish farmers
may lose revenue and may need to reimburse other industry. More frequent storms
will mean that the wear and tear on the pens will be larger. Leading to higher
costs. More powerful storms increase the risk of destruction of the pens, leading to
possible escapements. Fish farmers may protect the pens by moving them. But the
assumption is that any location is chosen as a part of an optimization. I.e. the act of
moving the pens can be costly as it is labor demanding and may lead to sub-optimal
growth for the salmon.

Since many countries may be affected by the projected climate changes to a higher
degree than Norway, international politics may dictate that international trade de-
creases. This in order to lessen the amount of greenhouse gasses emitted. Large
parts of the current production is exported, and by limiting the geographic mar-
ket the demand may be severely decreased. Lower demand leads to lower prices,



Chapter 7. Discussion 45

which leads to lower profits. Hence, the indirect effects of climate change may have
a bigger impact on the value of Norwegian aquaculture compared to the direct ef-
fects.



46

8. Conclusion

I have in this thesis aimed at estimating for the representative Norwegian fish farm
the value of adapting to changes in the seasonal temperatures projected as a result
of climate change. I adjusted the bioeconomic theory by including variable mor-
tality rates and kilogram price dependent on weight, which enabled me to have a
more realistic modeling of the total biomass and in an aquaculture and its value. By
using scenarios for changes in temperature, combined with

The analysis shows that changes to temperature within the range of the scenarios
are all estimated to be beneficial to the value of Norwegian aquaculture. The value
of the benefits from the scenario-based changes are dependent on what aspect of the
temperature the changes affect. The highest values was if the changes only affected
average temperatures, whilst the lowest values were when only the amplitude were
changed. The value of adapting to changes were as well the highest for when only
the average changed, and the lowest when the amplitude changed. For the scenario
with increasing average temperature the best adaptation were to decrease the rota-
tion time. The best adaptation to an increase in amplitude were to start the rotation
earlier. For the scenario with increases in both average temperature and amplitude
of temperature the best adaptations were to decrease the rotation time and start the
rotation later.

Furthermore, the beneficial value of the projected changes is less certain when both
the amplitude of temperature and the average temperature changes. In combina-
tion with the fact that the best adaptation is dependent on which of the scenarios
occurs, Norwegian aquaculture needs to be informed about the most recent climate
projections in order to maximize the net present value of its profits.
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A.1 Assumption of infinite rotations

The present value of an finite rotation

n∑
n=1

V (t) · e−nrt =
n∑
n=0

V (t)e−rnt − V (t) =
V (t)(1− e−r(n+1)t)

1− e−rt
− V (t)

= V (t)

(
1− e−(n+1)rt − 1 + e−rt

1− e−rt

)
= V (t)

(
1− enrt

ert − 1

)
Hence, the finite rotation as a percentage of the infinite rotation is, assuming that
tn = t∞

V (t)
(

1−e−nrt

ert−1

)
V (t)

(
1

ert−1

) = 1− enrt

For it to be greater or equal to a certain percentage x we have

1− e−nrt ≥ x

1− x ≥ e−nrt

ln (1− x) ≥ −nrt

nrt ≥ ln (1− x)−1

n ≥ − ln (1− x)
rt∗

(A.1)

For r = 0.05, t = 1.33 and x = 99% we need at least n rotation

n ≥ − ln 0.01

0.05 · 1.33
≈ 69

A.2 Taxes

When including non-distortionary taxes (tax rate τ ) as a parameter

max
t

∞∑
n=1

(1− τ)V (t)e−nrt = max
t

[(1− τ) · V (t)

1− e−rt
]
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=⇒ (1− τ) · V
′(t)(1− e−rt)− V (t)(−re−rt)

(1− e−rt)2
= 0

=⇒ V ′(t)(1− e−rt) + V (t)re−rt = 0

Multiplying entire equation by ert

V ′(t)(ert − 1) + V (t)r = 0

V ′(t)(ert − 1) = −V (t)r

Dividing both sides of the equation by V (t)(ert − 1)

V ′(t)

V (t)
=
−r

ert − 1

Expanding the fraction on the RHS by (−1) we get

V ′(t∗)

V (t∗)
=

r

1− ert∗
(A.2)
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