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Abstract

A significant part of the liabilities of Norwegian insurance companies and annuity

providers consists of lifetime pension products. These pension products are subject to

what is referred to as longevity risk, i.e. the risk that individuals who receive pension

annuities live longer than anticipated. Insurance companies and annuity providers

are required to hold capital buffers today to cover for the uncertainty in future cash

flows. The calculation of the size of these buffers is regulated by a European-wide

framework known as Solvency II. The Solvency II framework proposes two solutions

for determining Solvency Capital Requirements (SCR); the Standard Formula and an

Internal Model. For longevity risk, the Standard Formula assumes a 20% reduction in

mortality rates, while the Internal Model is calculated based on the 99.5% Value-at-

Risk on a one-year time horizon. In this thesis, we compare the SCRs calculated by the

Standard Formula with the SCRs calculated by an Internal Model, based on mortality

projections from the Lee-Carter and the Cairns-Blake-Dowd mortality models. We

use a simplified pension product to quantify the difference in capital requirements for

Norwegian annuity providers.

We find that the 20% reduction of mortality rates following the Standard Formula

leads to higher SCRs than those based on the 99.5% VaR-approach using Internal

Models. Furthermore, we find that the Lee-Carter model outperforms the CBD-model

in terms of both describing historical Norwegian mortality rates, and in estimating

lower SCRs. This implies that insurers and annuity providers should develop Internal

Models based on a Lee-Carter model to minimize their SCRs. However, the implication

is somewhat offset by the costly process of developing Internal Models. This means that

approximations by the Standard Formula may be more expedient for smaller insurers.

Larger annuity providers, on the other hand, may benefit from an Internal Model

through both reduced capital requirements and a more detailed account of their risk

exposure.
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1 Introduction

A large number of countries experience significant changes in their population and might

undergo further changes in decades to come. Fertility rates decline while life expectancy

seems to continuously increase. This phenomenon is prevalent in western countries such

as Norway, where the standard of living is high and a large portion of the population can

afford to save for retirement. While the drastic increase in life expectancy is an incredible

feat of modern society, it poses a challenge to governmental institutions as the tax-bearing

population decreases, relative to the beneficiaries. Furthermore, public pension plans are

unlikely to be sufficient to bear the load of an aging population. This means that the

individual appeal and importance of other means of preparing for retirement, such as pension

insurance, becomes increasingly important. Many of these private pension contracts depend

on the random, and thus risky, life-expectancy of the annuity holder.

The uncertainty related to mortality development is known as longevity risk, i.e. the risk

that individuals who receive pension payouts live longer than expected. Insurers and annuity

providers might therefore pay pensions for longer periods than anticipated due to longevity

risk. This master thesis considers some of the implications of longevity risks for Norwegian

annuity providers in light of the Solvency II Directive implemented on January 1. 2016.
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Figure 1: Life expectancy at birth for Norwegian males and females. Source: SSB (2017)

From figure 1 we see that life expectancy for both genders has increased dramatically over

time. In the last 50 years, life expectancy at birth has increased with roughly 10 years for

both genders (SSB, 2017). We observe that the mortality gap between genders is narrowing.

It is not unlikely that the decrease in mortality development will continue as living standards

improve.

However, future mortality developments are uncertain. This uncertainty is divided into

mortality risk and longevity risk. Mortality risk refers to the short-term mortality risk.

Events such as a disease outbreak or a cold winter that could increase mortality rates are

examples of events which may incur short-term mortality risk. Longevity risk refers to the

long-term mortality changes. In the long term, mortality developments are highly uncertain

due to for instance new medical treatment, increased wealth, increased safety precautions,

and reductions in carcinogenic habits such as smoking. One could argue that there is a

biological constraint of life expectancy for humans, but how quickly the species reach the

maximum life expectancy is uncertain.

For annuity providers, the longevity risk is essential because it implies uncertainty in future

cash flows. This thesis defines annuity providers as companies that offer annuity products

such as pension insurance. The cash flows are uncertain because the number of years with

pension payouts depend on how many years the contract holder lives. To mitigate this risk,
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annuity providers must hold buffers today that cover uncertainty in the contract holder’s

future life expectancy. The size of the buffer will thus increase if future mortality rates

suddenly decline because the pension payouts will continue longer than anticipated.

The European Insurance and Occupational Pensions Authority (EIOPA) is a financial regu-

latory organ of the European Union. EIOPA replaced the Committee of European Insurance

and Occupational Pension Supervisors (CEIOPS) in 2010. EIOPA is part of the European

Union’s System of Financial Supervision. In 2009, CEIOPS proposed the Solvency II Di-

rective which is meant to harmonize EU insurance regulation and ensure that insurers hold

enough capital to prevent insolvency. The framework consists of 11 submodules that cover a

wide range of risks that insurers are exposed to. One of these is longevity risk. To maintain

solvency among annuity providers, the Solvency II Directive introduces a capital buffer that

all annuity providers must hold in case of unexpected risk development. This capital buffer

is known as Solvency Capital Requirement (SCR). The SCR needs to be large enough so that

a given insurer or annuity provider is able to cover all their liabilities one year in the future

with 99,5% probability. This entails that it should only occur once every 200 years that they

fail to uphold their commitments.

In order to determine the size of the SCRs for longevity risk, annuity providers may use

either the Standard Formula or an Internal Model. The Standard Formula approach assumes

a permanent reduction to all mortality rates across age, while the Internal Model calculates

the Value-at-Risk based on a one-year time horizon. The principle behind the Internal

Model approach differs from the stipulated reduction of mortality rates across all ages of

20% that the Standard Formula implies. The Standard Formula covers a range of risks by

approximation (CEIOPS, 2009). Such approximations are not necessarily accurate compared

to the individual annuity provider’s risk profile, which is why EIOPA recommend annuity

providers to develop internal models. Internal models are tailored to the individual insurance

company, and may thus provide a more accurate risk profile.

However, the process of developing an Internal Model is quite costly and time-consuming.

According to Jan Hagen with the Financial Supervisory Authority of Norway (Finanstil-

synet), there are currently no Norwegian insurance companies who use Internal Models to

assess longevity risk (Personal communication, 26.11.2018). This means that the Standard

Formula of calculating the SCR for longevity risk is the only method applied in Norway, de-

spite EIOPAs recommendations. The authorization of Internal Models is a complex process

which requires extensive consideration from Norwegian financial authorities. As they have

no previous experience on the matter, the process is complicated on their side as well.
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Annuity providers are incentivized to use the approach that reduces their capital require-

ments. This would be beneficial as the capital can then be invested elsewhere. However, how

much there is to gain from using either the Standard Formula or the Internal Model is un-

certain. This thesis aims to compare the Solvency Capital Requirements given the Standard

Formula’s shock method with Internal Model’s one-year Value-at-Risk approach, based on

two stochastic mortality models. The two stochastic mortality models we use are the original

Lee and Carter (1992)-model with some alterations, and the CBD-model proposed by Cairns

et al. (2006).

We thus examine the following two objectives in this thesis:

• Given Norwegian population data, how does the Solvency II Standard Formula compare

to an Internal Model in terms of Solvency Capital Requirements?

• Given two stochastic mortality models, how are Solvency Capital Requirements affected

by age and gender, and how do the stochastic mortality models compare to one another?

We find that the Standard Formula produces higher SCRs compared to the Internal Model

approach for both genders and all ages given Norwegian population data. We find that the

exact size of the SCR depends on the age-composition of the portfolios, and that the difference

between the Standard Formula and Internal Model increase with higher ages. Furthermore,

we find that the Lee-Carter model returns lower SCRs than the CBD-model, for both males

and females across all ages. Thus, we conclude that the assumed reduction in mortality

rates of 20% across all ages is too prudent and that annuity providers who rationally seek to

minimize the size of their SCR should implement an Internal Model. However, the process

is costly and time-consuming which partially explains why there are currently no Norwegian

insurers or annuity providers with approved internal models.

The thesis is structured in sections where section 2 elaborates on Solvency II and how the

capital requirements are determined. Section 3 presents relevant terms related to mortality

modeling and reviews relevant literature on the Standard Formula and the Internal Models.

The data set is described in section 4, followed by a more detailed account of the Lee-Carter

and CBD-model and how they are used to estimate future mortality rates in section 5 and 6.

Next, in section 7 we present the simplified pension product used to analyze SCRs between

models and portfolios. Section 8 describes Standard Formula approach and the required

steps on how to extract the 99,5% value-at-risk estimates. In section 9 we analyze the two

approaches using the simplified pension product. Lastly, we conclude our thesis and make

recommendations for further research in section 10.
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2 Solvency II & Capital Requirements

This section covers the technical provisions of the Solvency II framework and the implica-

tions for determining Solvency Capital Requirements. The section elaborates on the two

approaches for determining SCRs; the Standard Formula and the Internal Model based on a

one-year time horizon.

2.1 Solvency II & Longevity Risk

Annuity providers and insurers are exposed to a wide range of risks such as credit risk,

liquidity risk, operational risk, investment risk, mortality risk, and longevity risk. All these

risks that insurers takes on will have the potential to affect their solvency and financial

standing. An insurance company is considered solvent if it has the required capital reserves

to cover its liabilities and an additional buffer to cover against risk. EIOPA proposed the

Solvency II Directive as a means to harmonize EU insurance regulation, improve customer

protection and to offer more realistic modeling and assessment of the various risks that

insurance companies are exposed to (Börger, 2010). One particular aspect of Solvency II

that holds implications for insurance companies and annuity providers is the life expectancy

of annuity holders.

Pre-Solvency II, insurers’ capital requirements were determined as a fixed percentage of the

mathematical capital reserve, the risk capital. To mitigate the risks that follow increased life

expectancy, the Solvency II Directive now determines a risk-based Solvency Capital Require-

ment as the 99.5% Value-at-Risk of the available capital on a one-year time horizon. This

means that insurance companies are required to hold enough capital to cover any losses that

might occur over the next year with 99.5% probability.

Risks related to life expectancy and longevity are likely to become increasingly important as

the general life expectancy increases, and more so as the longevity of the insured increase.

Systematic mortality risk is the risk that mortality rates evolve differently than anticipated

(Cairns et al., 2006). Because there is no liquid market where longevity risks can be hedged,

nor diversified away, longevity represents a systematic risk.

As the development of Internal Models is sophisticated and costly, CEIOPS determined

a scenario-based model which insurers may use to approximate their capital requirements

(Börger, 2010). The Standard Formula splits the total risk into several sub-modules for which

the individual SCRs are computed (Börger, 2010). Insurance companies are encouraged to
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develop internal stochastic models to more accurately assess their risks and subsequent capital

requirements. In the long term, one expects mostly small and medium-sized companies to

apply the standard model while larger insurers and annuity providers are expected to develop

Internal Models. Hence, a reasonable setup and calibration of the Standard Formula is

paramount to ensure financial stability of the European insurance market (Börger, 2010)

2.2 Technical Provisions

The Technical Provisions consists of the Best Estimate of Liabilities (BEL) and a Risk Margin

(RM) which are used to approximate market value of liabilities if one could sell them in an

open market. BEL is the expected market value of an insurers or annuity providers liabilities

when accounting for all relevant information from financial markets. The BEL is discounted

using the risk-free rate. The Risk Margin is a loading for non-hedgeable risk which “. . . shall

cover the cost of providing an amount of eligible own funds equal to the Solvency Capital

Requirement necessary to support the insurance and reinsurance obligations over the lifetime

thereof.”(CEIOPS, 2009). Together with the Best Estimate, they should be “equivalent to

the amount insurance and reinsurance undertakings would be expected to require in order to

take over and meet the insurance and reinsurance obligations” (CEIOPS, 2014). This means

that the Risk Margin needs to be large enough for another insurance company to ensure

proper closing of the existing portfolio of contracts in case of insolvency.

At time t one may define BELt as:

BELt =
∑
T≥1

EP
t [ ˆCFt]

(1 + it)t
(1)

where EP
t denotes the expectation under P given all available information at time t. EP

t [ ˆCFt]

thus represents the estimated value of premiums and payments at every contract year at

time-step t = 1, . . . , T , while it is the risk-free interest rate at time t. In the case of longevity

risk, mortality rates affect annuity providers’ calculations of BEL through the expected value

of cash flows. In a scenario with lower than expected mortality rates, the expected payout

period will be longer because the contract holder will have a higher probability of surviving

longer, thus increasing the size of the BEL.

The Risk Margin is computed via the Cost-of-Capital approach (CoC) which means that

it should cover the required return in excess of the risk-free rate on assets backing future
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Solvency Capital Requirements (Börger, 2010). EIOPA (2014), determines the RM to be:

RM =
∑
t≥0

× CoC × SCRt

(1 + it+1)t+1
(2)

CoC is the cost of capital and SCRt is the Solvency Capital Requirements at time t. it is

the annual risk-free rate at time zero, for maturity t.

As previously described, there are two methods of calculating the SCRs, either using the

Standard Formula or an Internal Model. For longevity risk, the Standard Formula’s SCR

depends on the BEL given a 20% shock-reduction in mortality rates. The BEL without the

shock is then subtracted, which gives us:

SCRStandardFormula = (BEL0|longevity shock)−BEL0 (3)

The SCR for the Internal Model is determined empirically by sample paths based on the

stochastic mortality models. Here, the one-year time horizon is simulated, and the 99.5%

worst case scenario is added back to the data set. The projected mortality estimates from

t = 1 will then estimate how a 1 in 200-year event may change the mortality predictions set

at t = 0. The SCR for the Internal Model is given by:

SCRInternalModel =
BEL1 − CF1

1 + i(0,1)
−BEL0 (4)

The BEL1 and the CF1 represent the Best Estimate of Liabilities and cash flows from

premiums and payouts at t = 1 given a 99.5% worst case scenario. BEL0 denotes the Best

Estimate of Liabilities given central mortality projections at t = 0, and i(0,1) the interest rate

from t = 0 to t = 1.
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3 Mortality Modeling

To determine SCRs related to longevity risk, one must determine the likelihood that a given

annuity holder is still alive at time t. This section covers relevant terms related to mortality

probabilities followed by a description of relevant methods to forecast mortality rates. Next,

we discuss different mortality models and which of these are applicable to the Norwegian

population.

3.1 Mortality Probabilities

When analyzing mortality in light of Solvency II and longevity risk, the probability that an

individual will survive t additional years is necessary to determine the expected cash flows,

and thus determine the SCR. The one-year death probability, or initial mortality rate, is

described by q
(g)
x,t which represents the probability that a person of gender g and age x at

time t will die during year t. The probability of a person surviving a year p
(g)
x,t is thus given

by:

p
(g)
x,t = 1− q(g)x,t (5)

The probability that a person survives this year and the next year, can thus be calculated

by multiplying the probability that he survives this year, by the probability that he survives

the next. Mathematically, this scenario can be written as p
(g)
x,0 ∗ p

(g)
x,1.

To calculate estimated cash flows, it is necessary to determine the probability that a contract

holder is still alive at time t. As described by Kaplan and Meier (1958), this can be expressed

through the cumulative survival probability, S
(g)
x,t , determined by:

S
(g)
x,t =

∏
t0≤t

p
(g)
x,t (6)

Here, the cumulative survival probability, S
(g)
x,t , equals the product of all yearly survival

probabilities, p
(g)
x,t . S

(g)
x,t represents a decreasing vector as time and age increase. The decrease

will be steeper for higher ages as the mortality rates are higher for individuals who near a

biological constraint.
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3.2 Mortality Projections

To generate mortality projections Booth and Tickle (2008) discuss the three general ap-

proaches to mortality forecasting. They are Expectation, Extrapolation, and Explanation.

In practice, the distinctions between these approaches are often not clear-cut, but we present

them in their general form.

Expectations is a subjective method of mortality modeling which to a large degree relies on

expert opinion. Expert opinions give grounds for assuming high and low scenarios where a

value is assumed for a future date with a specified path (Pollard, 1987). Otherwise, expert

opinion is used to adjust trends in age or cause-of-death specific trends (Waldron, 2005). For

US population data, expectation modeling has been found to forecast smaller reductions in

mortality than extrapolative methods, and observed mortality.

Extrapolation modeling in mortality forecasting assumes that future trends will be a contin-

uation of past trends. This is usually a sound assumption in mortality forecasting, although

there are exceptions where mortality rates have increased in certain age groups such as dur-

ing the AIDS-epidemic and wars. Extrapolative methods range from simple extrapolation

based on two factors, age-period, and age-cohort, to three-factor modeling including age, pe-

riod and cohort (APC). Cohort effects are “period effects that are differentially experienced

through age-specific exposures or susceptibility to that event” (Keyes et al., 2010). These

processes are independent of aging. This could, for instance, be age groups that were greatly

affected by disease or epidemics in a given time period. The age effect is a change in vari-

able values which occurs for all cohorts regardless of period (Blanchard et al., 1977). Period

effects are time-specific events that affect the population regardless of age and cohort. Time

series methods are prevalent in extrapolative forecasting. Time series modeling is stochastic,

allowing for calculation of a probabilistic prediction interval (Booth and Tickle, 2008).

Explanation modeling in mortality forecasting relies on structural or causal epidemiological

causes of death, such as known risk factors and disease (Booth and Tickle, 2008). These mod-

els often incorporate medical knowledge, behavioral information, and environmental change

to predict mortality. One example is the relationship between GDP per capita and mortality

(Preston, 2007), where lower GDP per capita is associated with higher mortality rates.

All three general approaches are prevalent in earlier literature, but the current general aca-

demic consensus is that extrapolative approaches are the most expedient for long-term fore-

casting (Booth and Tickle, 2008). For this reason, extrapolative methods will be the focus of

this master thesis. However, medical advancements, for instance, may invalidate long-term
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forecasts as they may affect time trends of mortality.

3.3 Stochastic Mortality Modeling

Stochastic mortality models are designed with different features in mind, and it is not given

that a model will have an equally good fit for different populations. Thus, we discuss prop-

erties of a selection of stochastic mortality models to determine which may be suitable for

an analysis of longevity risk for the Norwegian population.

3.3.1 Mortality Models

Stochastic mortality models extrapolate either the central rate of mortality or the initial

mortality rate (Plat, 2009). The central mortality is given by the number of deaths divided

by the associated exposure and can be described as:

mx,t =
Dx,t

Ex,t
=

Number of deaths during calendar year t aged x

Average population during calendar year t aged x
(7)

Recall that the initial mortality rate qx,t is the probability that a person at time t, age x dies

within the next year. The link between the central mortality rate and the initial mortality

rate is given by approximation:

qx,t ≈ 1− e−mx,t (8)

The perhaps most well-known stochastic mortality model which relies on central mortality

rates is the Lee-Carter model (1992):

ln(mx,t) = αx + βxkt (9)

Here, αx represents overall changes in mortality for age x. βx captures age-specific develop-

ments, while kt represents the time effect. Certain disadvantages of the single-factor model

have been discussed in academic literature such as in Cairns et al. (2009). They argue that

because it is a one-factor model, it results in perfect correlation between mortality improve-

ments for all ages. Furthermore, the model may give a poor fit to historical data if there are
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cohort effects in the data set. However, it is parsimonious with a proven track record and is

one of the most used mortality models in Europe to assess longevity risk. (EIOPA, 2017).

There is a wide range of academic literature that adds to the original Lee-Carter model such

as Lee and Miller (2001), Brouhns et al. (2002), Booth et al. (2002), Renshaw and Haberman

(2003), and De Jong and Tickle (2006). These adaptations of the original model often try to

solve one or more of the aforementioned issues with the model, but they are unable to solve

all the issues (Plat, 2009).

When fitting mortality models for large age ranges, one may observe cohort effects as humps

in the mortality projections over time (Plat, 2009). Cairns et al. (2009) observe that the

fitted cohort effects for Wales, England and the US seem to have a trend in the year of birth.

According to Plat (2009), this may suggest that the cohort effect compensates for a lack of

a second age-period effect while trying to capture the cohort-effect in the data. Cairns et al.

(2006) developed the Cairns-Blake-Dowd (CBD) model which because of multiple factors

obtain a non-trivial correlation structure while maintaining a relatively parsimonious model

structure. Furthermore, the model is particularly applicable for higher age groups, meaning

that it is pertinent to assess longevity risk in pension products.

Plat (2011) incorporated the beneficial elements from several of these proposed models. His

proposed model accounts for cohort-effects and it has enough stochastic factors so that it

has a non-trivial correlation structure. Furthermore, the model is suitable for full age-ranges

as it incorporates the same αx term as the original Lee-Carter model. Lastly, Plats model

follows the Currie (2011) structure so that it is robust. The Plat (2011) model quantifies the

central mortality rate mx,t as:

ln(mx,t) = αx + k1t + k2t (x̄− x) + k3t (x̄− x)+ + γt−x (10)

Where (x̄ − x)+ = max(x̄ − x, 0). The model has four stochastic factors but maintains a

relatively simple structure. The αx term, is similar to that of the original Lee-Carter model

as it ensures that the shape of the mortality curve for ages is true to the historical data. The

kt factors and the γt−x factor can be fitted using ARIMA processes. ARIMA processes are

described in section 5.1.3. The model accounts for cohort effects and it is a robust model

although it does have issues with lack of smoothing. Plat (2011) propose leaving out the

k3t term if fitting the model to higher age groups (60+) as the variable is meant to capture

dynamics of mortality at lower age groups that are more often affected by for instance drug

use, violence and diseases such as AIDS. Although the Plat model has several advantages,
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he does not pay sufficient attention to the plausibility of the mortality estimates. The model

lacks a term for old ages, and Börger et al. (2014) finds this parameter to be significant. This

is because the volatility of old ages where there are only a few observations is underestimated

when there is no old-age parameter (Börger et al., 2014). Furthermore, the Plat model is

specific in its goal to directly model the trend and its tail-distribution and it measures both

longevity risk and insurance risk (Richards et al., 2014).

To determine which models are the most suitable to assess longevity risk and compare SCRs

from the Standard Formula and an Internal Model, we require that the Internal Models work

within a Value-at-Risk framework based on a one-year time horizon.

3.3.2 One-year Time Horizon

The One-year risk for annuity providers is comprised of two modules where the first is the risk

that the next-year mortality rates will be different from the expected mortality rates, resulting

in higher payouts than expected. The second is that the one-year mortality rates will affect

expected mortality rates beyond the next year, leading to higher capital requirements than

expected. For insurance products exposed to longevity risk, the second module is the most

important. The first risk component is regular stochastic variation around the projection of

the best estimate (Plat, 2011). The second risk component relates to the risk of changes in

the projections of the Best Estimate of Liabilities for future years.

To best illustrate the importance of both risk components we may apply the classic example

of a cure for cancer. In a scenario where a cure for cancer is developed, it would not likely

affect next year’s mortality rates, as it would take time to distribute a cure to a large enough

number of people so that the mortality rates for the entire population would be affected.

However, one would expect a significant impact on future mortality rates. To quantify the

Value-at-Risk for longevity risk, one needs to include both risk components properly.

Stochastic spot models require sample-path simulation to empirically derive a distribution

for px,t (Richards et al., 2014). Recall that px,t is the probability of survival for age x at

time t. However, by using approximations, one may avoid the nested simulations with spot

models (Cairns et al., 2011). Nested simulations are simulations where the model compo-

nents themselves are dependent on stochastic simulations for different scenarios, which adds

complexity. Spot models account for anticipated changes in mortality by including an as-

sumption of future mortality trends. In most spot models, the trend-assumption is fixed, and

the scenarios of realized mortality are derived as random deviations from this fixed trend-
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assumption (Börger, 2010). Thus, liabilities at t = 1 will always be founded in the same

trend-assumption as that of t = 0. Spot models thus only account for the first component of

longevity risk, not the second. The issue of a fixed trend-assumption has been circumvented

in academic literature, see Cox et al. (2010), Biffis (2005) and Hári et al. (2008). Yet, Börger

(2010) argues that spot models are not directly applicable to the Solvency II framework.

Börger (2010) and Cairns et al. (2011) work with what is often referred to as forward stochas-

tic mortality models. Forward mortality models are models which produce multi-year survival

probabilities as their output (Richards et al., 2014). Forward models directly specify their

output as a distribution of survival probabilities, px,t. The advantages of forward models

are that they avoid the need for nested stochastic simulations and allow for simultaneous

evolution of realized mortality and changes in the trend parameters. Forward models usually

add complexity, but Börger (2010) argues that they are the most applicable to the Solvency

II framework.

Forward models are to some degree better suited for Value-at-Risk mortality modeling such

as the one necessary for internal Solvency II models. However, one may use spot models to

simulate the one-year Value-at-Risk central death rate, and this is also EIOPA’s suggested

method for annuity providers developing an internal model.

We find that the Lee-Carter and CBD-models are the most suitable models for this thesis.

These models are spot-models, but we circumvent the need for nested simulations. We

find that both models provide a better fit to the Norwegian population than the respective

alternatives. Furthermore, the models are parsimonious and well-suited and applicable in a

Value-at-Risk framework on a one-year time horizon. This is unsurprising as Lee-Carter and

CBD are the most widely used mortality models in Europe to assess longevity risk (EIOPA,

2017).
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4 Data

This thesis relies on empirical Norwegian mortality data acquired from the Human Mortality

Database. The Norwegian one-year death probabilities are available from years 1846-2014.

The exposures, deaths, and death-probabilities are given in gender-specific period tables.

Age x runs from 0 to 110+, and are measured at end-of-year dates. For our models, we set

the maximum age to 100 to avoid an issue where few samples of extraordinary age distort

the estimates with high volatility. This means that x ε X = {0, 1, . . . , 100}

Mortality models are quite sensitive, and while more data points usually provide better

estimates, we do not want our estimates to be affected by events such as World War II. This

is because such events can be seen as anomalies that do not represent the trend changes in

mortality which we attempt to measure. The mortality rates are higher in this period as a

high number of young men perished early. To obtain a more stable sample, we thus base our

modeling on data starting in 1970 so that t ε T = {1970, 1971, . . . , 2014}.

Gender g indicates whether the individual is male or female, such that g ε G = {M,F}. We

discriminate between men and women as the time-trend might differ significantly between

sexes. We thus have access to a data set consisting of (X × T ) matrices with exposure rates

and death rates by gender. mx,t follows the number of deaths over the exposure for all x ε X

and t ε T .

Figure 2 and 3 below illustrate the log mortality rates for Norwegian males and females

respectively, from 1900-2014. We observe the humps as World War I & II where especially

male mortality rates were affected. From the data, we observe linearity in the log-mortality

rates for both genders, especially in recent years. The colors indicate different log mortality

rates, ranging from 0 to -10, where red indicates a high death probability, and blue a low

death probability.
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Figure 2: Norwegian male log mortality as a function of age and years. Years run from 1900
to 2014, and ages from 0 to 100.

Figure 3: Norwegian female log mortality as a function of age and years. Years run from
1900 to 2014, and ages from 0 to 100.
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5 Lee-Carter

This section further discusses the Lee-Carter model and how variables are estimated. Fur-

thermore, the section covers how the model fits Norwegian mortality data, model calibration,

and a residual analysis.

5.1 Model Description

5.1.1 The Lee-Carter Model

The Lee-Carter model is a stochastic mortality model based on a factor analytic approach.

The Lee-Carter model employs empirical data to create stochastic mortality forecasts by

extrapolation. Lee and Carter (1992) assume that the one-year log mortality rates depend

on both age and time. The age-dependency is captured by α
(g)
x and β

(g)
x while k

(g)
t captures

the time-trend. x denotes the age of an individual. Genders are either male or female

g ε G = {M,F}, and time is denoted t ε T . The Lee-Carter model is given by:

lnm
(g)
x,t = α(g)

x + β(g)
x k

(g)
t + ε

(g)
x,t (11)

m
(g)
x,t describes the logarithmically transformed age-specific central rate of death. α

(g)
x is a

constant specific to every age x that captures the general pattern of mortality by age. β
(g)
x

defines the relative change in mortality by age, while k
(g)
t quantifies the evolution of mortality

over time as a one-dimensional and time-dependent process. ε
(g)
x,t is the error-term assumed

to be ε
(g)
x,t

i.i.d.
∼ N(0,Σ) (Lee and Carter, 1992).

Recall that the model is recommended by EIOPA (2017) and is favored for its parsimonious

model structure. However, the Lee-Carter model is a single-factor model with some inherent

drawbacks. One of these is that it gives a quite poor model fit if there is a cohort-effect in the

historical data. Furthermore, the average improvement of mortality for age x, captured by

the variable βx is proportionate to uncertainty in future mortality. This implies that future

changes in mortality cannot be seen independently of past changes. This is particularly

prevalent in higher ages, where the original model fails to predict significant improvements

in mortality. The predicted uncertainty in future mortality is lower at higher ages than what

has been observed. The model thus fails to emulate the observed volatility in mortality for

higher age groups.
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5.1.2 Maximum Likelihood Estimation

Lee and Carter (1992) proposed Singular Value Decomposition (SVD) as a means to estimate

the age- and time-dependent variables of their model. The method is similar to Ordinary

Least Squares (OLS)–estimation, in that it solves a minimization problem. This is done by

iteratively updating every parameter until the difference between the probability of the fitted

and saturated model is minimal under constraints that ensure identification.

However, SVD relies on the homoscedasticity assumption. This entails that all variables

have the same finite variance, i.e. the variance σ for all x ε X and t ε T is constant. As

pointed out by Brouhns et al. (2002), this assumption is not likely to hold because there is

reason to believe that the variance is not constant. The log-mortality rates should be more

volatile for older ages compared to younger ages. This seems reasonable, as for instance

improvements in medical treatment could greatly affect the older population. On the other

hand, events such as cold winters with a higher flue exposure could negatively affect the

short-term logarithmic mortality rates. Furthermore, the sample size in the older population

is relatively smaller, which could result in larger confidence intervals. Therefore, we will rely

on maximum likelihood estimation when determining the variables αx, βx and kt.

Brouhns et al. (2002) propose that the number of deaths Dx,t can be modeled as a Poisson

distribution

Dx,t ∼ Poissson(Ex,tmx,t) with mx,t = e(ax+βxkt) (12)

Recall that Ex,t denotes the exposure, mx,t the central mortality rate and αx, βx, and kt are

interpreted as in the classical Lee-Carter model.

Instead of resorting to SVD for estimating αx, βx and kt, Brouhns et al. (2002) propose

maximizing the log-likelihood, based on the following model:

L(α, β, k) =
∑
x,t

{Dx,t(αx + βxkt)− Ex,te(αx+βxkt)}+ C (13)

The maximization can be solved through generalized non-linear models using standard sta-

tistical software. L represents log-likelihood and C is a constant. We rely on this method

in our estimation and have implemented the generalized non-linear models through the gnm

R-package (Turner and Firth, 2018).
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5.1.3 Forecasting

The Lee-Carter model assumes that only kt varies with time, while αx and βx are held constant

over time. Variations in kt are estimated through ARIMA models. ARIMA modeling is one

of the most used approaches for forecasting time series. ARIMA models can be explained

through three classification parameters, p, d, and q. In the original paper from 1992, Lee

& Carter finds that a random walk with drift best describes kt (ARIMA 0,1,0) for the US

population from 1933-1987.

• p is the number of autoregressive terms

• d is the number of nonseasonal differences needed for stationarity

• q is the number of lagged forecast errors in the prediction equation

AR(p) : Xk = anXk−1 + a2Xk−2 + · · ·+ apXk−p + σεk (14)

MA(q) : Xk = σ(εk + b1εk−1 + · · ·+ bqεk−q) (15)

ARMA(p, q) : Xk = akXk−1 + · · ·+ apXk−p + σ(εk + b1εk−1 + · · ·+ bqεk − q) (16)

ARIMA(p, d, q) : Xk = d+ akXk−1 + · · ·+ apXk−p + σ(εk + b1εk−1 + · · ·+ bqεk − q) (17)

An AR(p) model uses the correlation between historical data to estimate future values. The

moving average (MA(q)) term captures more rapid changes in the data set. In mortality

forecasting, for instance, a short time period with increased mortality rates could be captured

by the MA(q) term. In western countries, however, mortality rates are likely to steadily

decline over time. This trend may be captured by the drift term p.

5.2 Model Fit

Next, the estimated Lee-Carter variables of the fitted model for Norwegian males and females

from 1970 to 2014 are discussed.
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Figure 4: Estimated αx, βx and kt based on the Lee-Carter model. The light blue lines and
the light red lines represent males and females, respectively

From the left figure, we observe the estimated αx values for ages 0 to 100. αx can be

interpreted as the average logarithmic mortality rates. We find that mortality falls sharply

from birth until age 10. From ages from 10 to 100 the logarithmic mortality rates steadily

increase. Interestingly, we observe the accident hump in the early twenties. This is the

phenomenon that young adults tend to take more risks which leads to higher mortality rates,

which is well documented. We observe the accident hump for both genders, although it is more

prevalent for males. Furthermore, we observe that males have higher death probabilities than

females throughout, which is what we would expect as female mortality rates have historically

been lower than male mortality rates.

βx represents how sensitive mortality rates across age x are to changes over time. From the

middle graph, we observe the greatest population benefits for ages 1 to 5. One explanation

of this could be linked to the reduction in sudden infant death syndrome (SIDS), which was

prevalent in the 1980s, but has since been dramatically reduced. Furthermore, we observe

high volatility in the βx variable when age is less than 60. This can be explained through

higher variations in the mortality rates for the younger Norwegian population. After age
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80, we observe that the sensitivity to changes over time is reduced. This is expected as

the sensitivity to changes over time will decrease after a certain threshold, due to biological

constraints.

Lastly, estimates of the variable kt is represented in the rightmost figure. Recall the inter-

pretation of kt as the overall changes in mortality over time. We observe a decreasing trend,

meaning that the general population experiences a decrease in mortality rates. We observe a

more rapid decline in male mortality rates compared to female rates. One explanation of this

could be the reduction in carcinogenic habits such as smoking, where a higher percentage of

males were exposed, relative to females.

5.3 Model Calibration

The purpose of this subsection is to find an appropriate ARIMA time series calibration for

kt in the Lee-Carter model.

We address whether a unit root is present in the time series. This can be statistically proven

by applying the augmented Dickey-Fuller test. This tests if a unit root is present in an

autoregressive model. This corresponds to the first main version of the Dickey-Fuller test,

described by:

yt = ρyt−1 + εt (18)

If ρ = 1, there is unit root present while εt denotes the error term. If unit root is present then

the series is non-stationary and must be differentiated. The null- and alternative-hypothesis

of the Dickey-Fuller test are:

H0 : ρ = 1 versus Ha : ρ 6= 1 (19)

The Dickey-Fuller test is applied on the kt series from the fitted model and the test-statistics

are 1.063 and 0.472 for males and females, respectively. The critical value of the Dickey-Fuller

test at a 5%-significance level is −1.95. The result of the test is that there is no statistical

evidence to reject H0. From this we can draw the conclusion that there is a presence of unit

root, and thereby use first differences. Equation 11 thus becomes:
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∆yt = (ρ− 1)yt−1 + ut = δyt−1 + εt (20)

We thus find that d in ARIMA(p, d, q) should equal 1. Next, we proceed by optimizing the

parameters p and q.

Earlier empirical research shows that different parameters p and q fits different populations.

For instance, Renshaw and Haberman (2006) found that an ARIMA(0,1,0) process best

describes the Dutch population, while Richards et al. (2014) used an ARIMA (3,1,3) process

to model the population in England and Wales.

To differentiate mortality models the Akaike Information Criterion (AIC), and the Bayesian

Information Criterion (BIC) are tools to conclude which model best fits the historical data.

Both tools estimate the relative quality of each model. Both AIC and BIC estimate the

information lost by a given model, where a low value indicates smaller losses of information

and thus the preferred model.

BIC = ln(n)k − 2 ln(L̂) (21)

AIC = 2k − 2 ln(L̂) (22)

N represents the number of observations, k the number of free parameters and L̂ the maxi-

mized likelihood.

Table 1: Lee-Carter ARIMA processes for kt. Log-likelihood, AIC and BIC are provided for
each ARIMA process. The processes are then ranked by BIC.

Log-likelihood AIC BIC Rank (BIC)
ARIMA Males Females Males Females Males Females Males Females

(0,1,0) -97.34 -97.12 198.68 198.23 202.25 201.8 (1) (3)
(0,1,1) -96.86 -93.52 199.71 193.05 205.07 198.4 (6) (1)
(1,1,0) -96.55 -93.82 199.1 193.64 204.45 198.99 (4) (2)
(1,1,1) -96.22 -93.46 200.43 194.92 207.57 202.05 (8) (5)
(1,1,2) -92.31 -93.45 194.62 196.9 203.54 205.82 (3) (7)
(2,1,0) -95.05 -93.39 198.1 194.78 205.23 201.93 (5) (4)
(2,1,1) -92.23 -93.3 194.45 196.6 203.37 205.52 (2) (6)
(2,1,2) -92.03 -93.29 196.06 198.58 206.77 209.29 (7) (8)

Table 1 shows that the original ARIMA(0,1,0) process performs well for Norwegian males

and that the ARIMA(0,1,1) model best fits the female population. As in Cairns et al. (2009),

21



the models are ranked by BIC, because AIC is often too liberal and prefers models that may

be too complex. Still, we find that BIC and AIC yield similar results.

Figure 5: kt forecasts for males on the left and females on the right. The grey shades represent
the 95% confidence interval

From Figure 5 we observe uncertainty in the estimated kt forecasts for males and females

based on the ARIMA processes previously described. We see that the male model indicates

larger uncertainty through wider confidence intervals. This is not surprising when analyzing

historic male mortality, which tends to be associated with higher uncertainty. Furthermore,

we see that the model predicts a more rapid decline in mortality rates for males than for

females. Recall from Figure 1 that the difference between male and female life expectancy

has narrowed, which is what we would expect from this model going forward. kt forecasts

for different ARIMA processes and mortality simulations are available in Appendix A.2 and

A.3, respectively.
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5.4 Model Analysis

Lastly, we do a residual analysis of the fitted model. The analysis indicate how well the

model accounts for the underlying model assumptions.

Figure 6: Residual plots of the fitted male Lee-Carter model. See Appendix A.4 for the
female residual analysis.

From figure 6 we observe no significant patterns. The first figure represents the residuals

for all age groups, and we observe no indication that the model predictions are exaggerated.

Furthermore, from the second figure, we observe homoscedasticity, meaning that the variance

seems constant throughout the time series. Lastly, the final figure attempts to uncover cohort

effects. The residuals seem to cluster in the center. This is, however, not an issue, as the

data set is only from 1970 to 2014. It is expected that the residuals are not as consistent for

the population born in the 1800s, as the number of observations are fairly limited within our

data set.
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6 CBD-model

6.1 Model Description

The Cairns-Blake-Dowd (CBD) model was introduced by Cairns et al. (2006). Recall that it

is a two-factor model and one of the most well-known variants of the Lee-Carter model. The

CBD-model looks at the linearity of the logit one-year death probabilities at higher ages. It

assumes that the logit function of the one-year death probabilities in a given year is a linear

function of age. The intercept and slope-parameters are thus treated as stochastic processes

across years. The original CBD-model has been expanded by, among others, Cairns et al.

(2009), who include a quadratic age term and a cohort effect term to create three variations

of the original model. A description of model 7 may be found in Appendix B.1. However, we

find that the original model has the best fit for Norwegian data among the CBD-variants.

The original CBD-model has the following structure:

logit qx,t = log
qx,t

(1− qx,t)
= β(1)

x k
(1)
t + β(2)

x k
(2)
t (23)

The model assumes simple parametric forms for β
(2)
x and β

(2)
x such that:

β(1)
x = 1, (24)

and

β(2)
x = (x− x̄) (25)

Here, x̄ = n−1
a

∑
i

xi is the mean age in the sample range so that

logit qx,t = k
(1)
t + k

(2)
t (x− x̄). (26)

The mortality index k
(1)
t can be interpreted as the mortality curve after a logit transformation.

Reductions in k
(1)
t coincide with improvement in mortality across all ages. The k

(1)
t index is

similar to Lee-Carter’s α, as it represents the general improvement in mortality over time.

The second mortality index, k
(2)
t , can be interpreted as the slope of the mortality curve across

all ages in a given year. An increase in k
(2)
t would result in mortality at lower ages improves

more rapidly than older ages, and vice versa. The k
(2)
t variable thus only accounts for changes
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across all ages other than the mean age of the data set. In this thesis, the mean age of the

CBD-model is set at 70, meaning that changes in k
(2)
t will have no effect on the mortality

rate of 70-year-olds.

The two-factor CBD-model does not have identification problems (Cairns et al., 2006). The

projections for future mortality rates are estimated as a bivariate random walk with drift for

k(1) and k(2). Both drift terms and correlation factors are estimated from the observed data.

The CBD-model is effectively a Gompertz-model (sigmoid curve) fitted for each year t. The

CBD-model is a two-factor model, compared to the single-factor Lee-Carter model, it does

not impose perfect correlation in mortality across ages (Pitacco et al., 2009). Because age

is modeled as a continuous variable, the CBD-model is limited when it comes to modeling

mortality for individuals aged less than 40 (Peters et al., 2012).

6.2 Model Calibration

Similar to the Lee-Carter model, the choice of ARIMA model is important because it will

vary between populations. The CBD-model can be described through independent ARIMA

models, where the ARIMA processes for k
(1)
t and k

(2)
t differ. Like in the Lee-Carter model, we

distinguish the different ARIMA processes by applying the AIC and BIC standards. We find

that for k(1) and k(2) an ARIMA(2,1,1) and ARIMA(1,1,0) process best fits the males, while

an ARIMA(1,1,0) and ARIMA(0,1,1) best fits for females. A full analysis of the ARIMA

process can be found in Appendix B.2.
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Figure 7: Forecasted CBD variables. Here represented by β
(1)
t , β(2), k

(1)
t and k

(2)
t

Figure 7 shows the CBD variables for males. We observe that k(1)’s downward slope returns

fairly slim confidence intervals. This comes as a result of low volatility in the recent reduction

in mortality rates. On the other hand, k
(2)
t is steadily increasing with large confidence

intervals. Recall that an increase in k
(2)
t represents that the younger population benefit more

from mortality improvements compared to the older population. The large confidence interval

can be explained by the high uncertainty within the death rates of the older population.

6.3 Model Analysis

Next, we analyze the goodness of fit for the CBD-model. This gives an indication of how well

the model is able to explain the historical data, and thus give an indication of how reliable

the forecasts are.
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Figure 8: Residual analysis of the CBD-model for Norwegian males. See Appendix B.4 for
female residual plots.

From the leftmost figure, we do not see the plots as an unambiguous cloud. This is an

indication that the fitted lines fail to correctly explain logarithmic mortality for a large portion

of the Norwegian population. Furthermore, the second graph indicates heteroscedasticity,

where the residuals seemingly increase as time passes. Heteroscedasticity generally produces

consistent, but not efficient predictions. Lastly, the third graph does not produce an even

picture of the residuals. We see that the residuals are dependent on the year of birth. This can

be explained through different predictions of the older and younger mortality improvements.

From the goodness of fit analysis, we see indications that the CBD-model is less suited for the

Norwegian population. The extensions of the CBD-model, model 7 and 8 produced similar

residual outputs. It seems evident that Norwegian annuity providers should rely on other

means of mortality predictions. Still, it is of interest to continue forward with the model, as it

provides good indications of model risk. Annuity providers that rely on Internal Models will

be subject to model risk, which is typically present when decisions rely on a single model’s

outputs. This will be prevalent for assessing longevity risk as a company will only rely on

one mortality model when implementing an Internal Model. Testing more than one model

could thus emphasize the importance of selecting an appropriate mortality model.
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7 Pension Products

If social security and employment-based are insufficient to provide a desired retirement, one

needs to rely on private savings. One way to do this is by acquiring pension insurance with

an annuity provider. The principle behind pension insurance is that the annuity holder pays

a premium over a given period. The annuity provider is then free to manage these funds as

their own until the annuity holder reaches retirement age and the funds are paid back to the

insured as annuities. These payments continue until the contract runs out, or the client dies.

Premiums and payments are thus dependent on the life expectancy of the annuity holders.

A normal pension insurance plan occurs in two phases; a payment phase and payout phase.

These phases are mathematically illustrated below:

E(PV π
0 ) = −π

xr−x−1∑
τ=0

dτSx+τ,t+τ and E(PV ρ
0 ) = ρ

inf∑
τ=xr−x

dτSx+τ,t+τ (27)

Here, x denotes the annuity holders current age, while xr is the retirement age. In Norway,

the normal retirement age is 67 years. The policy premium π is the yearly sum paid by the

annuity holder from the contracts beginning to attained retirement age xr. These premiums

are discounted by dτ at time τ based on the risk-free rate.

Recall that Sx,t represents the cumulative survival probability of the contract holder at age

x, at time t. Sx+τ,t+τ thus represents the likelihood that the contract holder will still be alive

when age is x+ τ at time t+τ . When the annuity holder reaches retirement age, xr, a yearly

payment denoted ρ is made to the annuity holder. These payouts are similarly discounted

and multiplied by survival probabilities to get the present value of the sum of payouts.

The present value of the insurance plan depends on the contractual year. If x < xr the

contract is in the payment phase, while in the opposite case where x > xr, the contract is in

the payout phase where payouts in the form of pensions will be paid to the annuity holder.

In the former case, E(PV ρ
0 ) > E(PV π

0 ) and the insurance policy will represent a liability to

the annuity provider.

In this thesis, we assume pension insurance contracts end when the annuity holder dies. When

put together, the equation (28) represents the sum present value of the pension insurance

contract:
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E(PV0) = −π
xr−x−1∑
k=0

dkSx+k,t+k + ρ
inf∑

k=xr−x

dkSx+k,t+k (28)

Where k represents the contract time and runs from 0 to infinity because there is no the-

oretical maximum length of the contract, however, Sx+k,t+k will tend towards zero as the

probability of survival decrease for higher ages.

Insurance premiums and payouts are usually determined by setting ρ based on the individual

customer profile and then solve for π. This is accomplished by setting equation 28 equal to

zero and solve for π:

π =

ρ×
inf∑

k=xr−x
dkSx+k,t+k

xr−x−1∑
k=0

dkSx+k,t+k

(29)

The variable π is referred to as an equivalence prize and denotes the premium which the

client must pay for the present value of the contract to be equal to zero.

8 Standard Formula and Internal Model Methodology

In this section, we elaborate on how to calculate the mortality rates based on the Standard

Formula and the Internal Model. Recall that mortality projections are necessary to compute

the estimated cash flows from the pension contracts. The methods are applied to the Lee-

Carter and the CBD-model in section 9.

8.1 Standard Formula

The Standard Formula approach to calculating the SCR for longevity risk sets the SCR

based on the change in BEL given a one-off permanent shock to mortality rates. This shock

is meant to represent the sudden decrease in mortality rates, similar to the one in 200-year

scenario. The longevity shock as stipulated in the Standard Formula is a permanent reduction

of mortality rates of 20% for all ages (EIOPA, 2014). This shock is meant to represent a

systematic change in mortality rates, which means that it does not account for sample risk

(Börger, 2010).
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The simplified approach to the Standard Formula given a reduction in current and future

mortality rates can be described as

mShock
x,t = mx,t × (1− f) (30)

where mx,t is the central mortality projection and f is the shock to current and future

mortality rates. Recall that central mortality rates are given by the average number of

people who died at time t at age x, divided by the number of people age x alive at time t.

EIOPA (2014), specifies that the shock factor, f , is 20%.

The Standard Formula to longevity risk differs from the Value-at-Risk approach, described

in section 8.2, in that it assumes a 20% reduction to mortality rates for all age groups. This

could lead to mortality rates that are too low for young ages, and thus capital requirements

that seem too low. Furthermore, because of the general 20% reduction in mortality, the

capital requirements seem excessive for ages 70 and up. However, an insurers portfolio is

likely to consist of different age groups and for certain groups, the shock-approach may be

expedient. For new and growing annuity portfolios, the shock-approach seems reasonable

according to Richards and Currie (2009).

Börger (2010) argues that the shock approach has structural shortcomings, given the too

low capital requirements for young annuity holders, and too high capital requirements for

older annuity holders. He suggests that the shock factor should be age-dependent with more

stress to younger ages, and less towards older ages. However, in a scenario with a balanced

portfolio, one might argue that the difference in capital requirements for younger and older

ages would offset one another. Whether this would work in practice is entirely dependent on

the profile of the liabilities by age in the portfolio.

8.2 Internal Model

8.2.1 Methodology

In this section, we elaborate on the Value-at-Risk framework as it is considered by the

Norwegian Financial Authorities. According to Jan Hagen with the Norwegian Financial

Supervisory Authorities (Finanstilsynet), the method generally allows complete modeling

freedom (Personal communication, 26.11.2018). The only requirement is that the model

must fulfill the calibration target of a 99.5% VaR over a one-year time horizon.
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Richards et al. (2014) provide a one-year framework for determining the Value-at-Risk ap-

plicable to Solvency II. Their approach differs from those of Börger (2010) and Plat (2011)

as they attempt to model the trend and its tail-distribution directly. Richards et al. (2014)

present a more general framework that is applicable to a wider range of stochastic projection

models. The framework has a sole focus on longevity trend risk in annuities and pension

payouts.

In short, we find the Value-at-Risk by employing a stochastic mortality model to simulate

one additional year of mortality rates. To estimate how the central projection might change

on a one-year horizon, this process is repeated several times over to generate a data set of

projected one-year mortality rates. Among the simulated one-year projected mortality rates

we find the sample path with the 99.5% lowest mortality rates. This one-year projection is

then fed into the original model. Lastly, a central projection is estimated based on mortality

rates from tlow to thigh+1. A more detailed recounting of the method follows.

We employ a data set consisting of ages from xlow which corresponds low years, to xhigh,

which corresponds to high years. The data set runs from years tlow to thigh, i.e. 1970 to 2014.

This data set includes the deaths at each age and in each year Dx,t and the corresponding

exposures in the population, Ex,t. For this process, we require the exposures at the beginning

of the year t(high+1). As in Richards et al. (2014), we assume that the exposure, Ex,t, is equal

for thigh and thigh+1.

Next, we employ a statistical model to fit the data set. The model provides output for the

central mortality rate ln mx,t where x is age in years and t is time in calendar years. The

projections from this model can be used to calculate life-expediencies and annuity factors at

different ages.

We use the statistical model to simulate paths for the data ln mx,thigh+1
. This is one year

additional to our data set. These simulated paths may contain either volatility and uncer-

tainty, or both. However, on a one-year time horizon, volatility is most likely the source of

uncertainty and should thus be included (Richards et al., 2014). See section 8.2.2 for further

analysis on the risk assessment. We find the approximate binomial probability of death in

year thigh+1, qx,thigh+1
, by approximation of q ≈ 1− e−mx,t .

The next step is to simulate the number of deaths in the year additional to our data set

thigh+1 for every age. We do this as a binomial random variable where population counts

are the Ex,thigh+1
and the binomial probabilities are the approximation of q ≈ 1 − e−mx,t .

This provides the simulated death counts at each age. We repeat this process 10000 times
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to form a data set with 10000 simulated mortality rates for thigh+1 at all ages. Next, we find

the sample path with the 99.5% lowest mortality rates by ranking them based on how many

deaths each path will generate. From the 10000 simulated paths, the path with the 50th

lowest number of deaths is chosen.

Next, we append the simulated path to the original data, leaving us with what a single

simulation of the 99.5% lowest mortality data would be in one year. The statistical model is

refit to the combined data set before recalculating the life expediencies and annuities.

The model assumes zero-sum immigration/emigration, and that immigrants share the same

life expectancy as the Norwegian population. This assumption is essential because the num-

ber of deaths in thigh+1 is calculated based on the exposure from thigh. This is not necessarily

a realistic assumption. Western countries are experiencing surges of immigration from coun-

tries with lower GDP per Capita and life expectancy which could reasonably affect the life

expectancy in the receiving country. This is something that annuity providers will need to

factor in depending on their portfolio, but for the purpose of this thesis, the assumption is

reasonable.

8.2.2 Risk assessment of the VaR approach

As briefly stated in section 8, the VaR approach is subject to two types of risk, trend risk and

volatility (Richards et al., 2014). Trend risk is risk associated with the general development of

mortality rates, whether they increase or decrease long-term. This uncertainty is as parameter

risk, as it is linked to uncertainty in the parameters of the mortality model. Volatility, on the

other hand, is not a parameter risk, but uncertainty additional to the trend risk. Volatility is

risk associated with temporary fluctuations around the trend component. This risk could be

associated with for instance extreme weather, crop failures, or a disease outbreak. It is thus

a short-term risk, and it would make intuitive sense that it is of less importance for annuity

providers with longer horizons. Still, volatility plays an important role in the Value-at-Risk

framework.

The difference between trend risk and volatility can be illustrated by a drift model with

mortality index k in year t + 1. The relationship with the previous year’s index may be

described as

kt+1 = kt + C + εt+1 (31)
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Where kt is the mortality index as in the Lee-Carter model at time t, and C is a drift constant.

εt ia the independent, and identically distributed error term with zero mean variance σ2
ε . Of

the three parameters that are estimated, the trend risk lies in the uncertainty of the drift

constant denoted σC . A simulation should be able to exclude or include any one of the three

parameters independently. Distinguishing between the parameters is essential to annuity

providers to adequately address the one-year uncertainty.

The drift model is a simple and restricted subset of a full ARIMA model for kt (Richards

et al., 2014). This means that there is a noise process, but that kt+1 is related to one or more

earlier values as an autoregressive moving average. Thus, there will be more parameters to

estimate with each of them with a standard error corresponding to σC . As in the simple drift

model, σ2
ε is the volatility while trend risk is associated with the standard error of ln m̂x,t.

This risk stems from the uncertainty in the ARIMA parameter estimates.

An interesting point about the Value-at-Risk approach and longevity risk is that longevity

risk is a long-term risk primarily characterized by parameter risk. However, when simulating

mortality on a one-year horizon, the uncertainty is to a large degree made up by volatility.

There are several ways in which the one-year volatility may be affected. First, a shorter

observation period will create more uncertainty, thus a larger variance. On a one-year horizon,

the effect may cause the model to overestimate the central projections following the one in

200 year event. Second, sample size will play a large role if for instance higher age groups

are not well represented in the data set. With an Internal Model, insurers may be tempted

to rely on their own portfolio as model inputs. This, in turn, may increase model volatility

and again, the VaR approach might represent an even worse case than the 99.5% scenario.

9 Application

This section describes how the mortality models are applied to the Solvency II framework

to determine SCRs. We use a simplified pension product to compare the two options for

determining SCRs. The capital requirements from the Standard Formula and the Internal

Model are then compared. The SCRs are based on mortality forecasts from the Lee-Carter

and the CBD-model described in section 5 and 6.
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9.1 Simplified Pension Product

The simplified pension product used in this analysis falls within the category of guaranteed

products, similar to those offered by Norwegian insurers. It replicates a product where the

annuity holder pays a premium until retirement, followed by pension payouts until they

die. The product is affected by longevity risk because of uncertainty related to future cash

flows, and the fact that future mortality rates will influence today’s estimation of discounted

liabilities.

The pension product is defined by the pension payouts, premiums, and the retirement age.

For simplicity and a predominant focus on longevity risk, we disregard individual risk as-

sessment of policyholders, such as level of education, city, family history etc. Therefore,

payouts are equal for all annuity holders and are set at 1000 NOK. The payouts will thus

only vary in correlation with mortality. The premiums depend on the number of years until

the Norwegian retirement age of 67 years.

The cash flows are discounted as suggested by the Financial Supervisory Authority of Norway.

Recall from section 2.2 that the technical provisions should use an interest curve that reflects

the risk-free rate. Norwegian financial authorities refer to the risk-free rates provided by

EIOPA. The simplified product runs for a longer period than the rates currently available

and are thus kept constant when EIOPA rates no longer apply. More information on the

discount factors can be found in Appendix C.

9.2 Projected Mortality Rates

Next, we compare the projected mortality rates for the Standard Model and the Internal

Model. We begin with the projected mortality rates based on Lee-Carter projections before

we analyze projections from the CBD-model. Recall that the Best Estimate of Liabilities and

thus the SCRs rely on future cash flows, which for longevity risk are estimated based on the

probability that the contract holder is still alive. To analyze how the estimated cash flows

are affected by mortality rates, we thus examine the projected mortality rates of individuals

at age 85, because the cumulative probability of survival will be drastically reduced in these

age groups.
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Figure 9: Lee-Carter male mortality rates at age 85. The graph displays observed mortality
rates and include central mortality projections. The black line is the Lee-Carter central
mortality projection and the blue line represents the Internal Model based on a VaR approach
on a one-year time horizon. The red line represents Standard Formula and the 20% shock to
Lee-Carter mortality rates.

From figure 9, we unsurprisingly observe that the central Lee-Carter mortality estimates for

Norwegian males at age 85 are higher than those of the Standard Formula and the Internal

Model. Recall that the Standard and Internal Models represent how mortality rates change

based on a one in 200 year worst case scenario. This illustrates the long-term effects on

mortality projections from a single year of significantly reduced mortality rates.

The Lee-Carter model projects decreasing mortality rates. Thus, the 20% shock reduction in

mortality rates has a greater impact on higher rates early in the projection. The graph does

not allow us to make predictions of the effects on the simplified portfolio because not all ages

are represented. However, the low initial mortality projections from the Internal Model may

indicate that the Standard Formula could result in higher SCRs than those from the Internal

Model.
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Figure 10: CBD male mortality rates at age 85. The graph displays observed mortality
rates and include central mortality projections. The black line is the CBD central mortality
projection and the blue line represents the Internal Model based on a VaR approach on a
one-year time horizon. The red line represents Standard Formula and the 20% shock to CBD
mortality rates.

From the CBD-model we observe similar effects as in the Lee-Carter Model. As the projec-

tions continue we observe that the Standard and Internal model projections converge and

eventually cross. It is interesting that the CBD central mortality estimates are lower than

those of the Lee-Carter model. This leads to smaller mortality decreases from the Standard

Formula shock. Comparing the CBD mortality rates to the Lee-Carter mortality rates, we

also observe that the Internal Model for CBD projects lower mortality rates, both initially

and over time. This can be explained by the larger variance embedded in the CBD-model,

as seen in Appendix B.3, simulated mortality rates based on variations in k1t and k2t .
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9.3 Results

9.3.1 Best Estimate of Liabilities

The Best Estimate of Liabilities of the simplified portfolios has been calculated by applying

the formulas described in section 2.2. In short, the cumulative probability of survival is mul-

tiplied by the cash flows. BEL0 is the discounted sum of cash flows using the interest rate

as suggested by EIOPA. The Best Estimate of Liabilities at time zero is denoted BEL0. The

BEL based on Lee-Carter and CBD-projections are then determined for portfolios with differ-

ent age compositions. Next, the BEL given the Standard Formula (BELSF ) and BEL given

an Internal Model (BELIM) are calculated based on the mortality assumptions described in

section 8. From this, we find that the BELIM is consistently lower than the BELSF . This

is because the cumulative survival probabilities of the Internal Models are lower than those

of the Standard Formula.

Table 2: Best Estimate of Liabilities. BEL0, BEL
SF , and BELIM for the Lee-Carter and

CBD mortality models, calculated for simplified portfolios consisting of 50, 60, 70, and 80
year old Norwegian males and females.

Best Estimate of Liabilities, Males
Lee Carter Cairns-Blake-Dowd

Portfolio age BEL0 BELSF BELIM BEL0 BELSF BELIM

Age = 50 5284 5738 5492 6285 6815 6560
Age = 60 8739 9399 9000 9797 10580 10166
Age = 70 10289 11087 10523 11344 12281 11780
Age = 80 5856 6630 6020 6821 7705 7247

Best Estimate of Liabilities, Females
Lee Carter Cairns-Blake-Dowd

Portfolio age BEL0 BELSF BELIM BEL0 BELSF BELIM

Age = 50 6153 6556 6382 7192 7656 7429
Age = 60 10060 10639 10360 11110 11810 11431
Age = 70 11930 12646 12272 12814 13690 13194
Age = 80 7234 7982 7513 8018 8894 8392

Because the contracts are in the payment phase until retirement age, we find that the BEL0

increases until age 67 before it decreases with age. Furthermore, there is significant variation

in the BEL0 between the Lee-Carter and the CBD-model. Recall that the interpretation of

BEL0 is what you could sell your liabilities for in an open market at time 0. This is interesting

because this means that the true BEL at time = 0 is highly dependant on the mortality model.
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The difference between BEL0 from the Lee-Carter projections and the BEL0 from the CBD

projections is between 10% and 19%, depending on ages in this simplified pension product.

Furthermore, we find that the BEL is higher for the CBD-model than the Lee-Carter model,

regardless of Standard or Internal model. This is because the CBD-model produces lower

central mortality projections than the Lee-Carter model. However, this does not necessarily

infer that the Lee-Carter model is preferable to the CBD-model. First, the Solvency Capital

Requirements need to be determined.

9.3.2 Solvency Capital Requirements

Table 3: Solvency Capital Requirements. SCRSF and SCRIM for the Lee-Carter and CBD
mortality models. The SCRs are calculated for simplified portfolios consisting of 50, 60, 70,
and 80 year old Norwegian males and females.

Solvency Capital Requirement, Males
Lee Carter Cairns-Blake-Dowd

Portfolio age SCRSF SCRIM SCRSF SCRIM

Age = 50 454 207 530 275
Age = 60 659 260 782 368
Age = 70 798 254 937 436
Age = 80 774 164 884 426

Solvency Capital Requirement, Females
Lee Carter Cairns-Blake-Dowd

Portfolio age SCRSF SCRIM SCRSF SCRIM

Age = 50 403 229 465 238
Age = 60 579 300 700 322
Age = 70 716 342 876 380
Age = 80 748 279 876 374

From table 3, we find that the Internal model consistently returns lower Solvency Capital

Requirements than the Standard Formula for all ages. Recall that SCR for the Standard

Formula can be calculated as the difference between BELSF and BEL0. Furthermore, the

difference between the Internal Model and the Standard Formula seemingly increase with

age. This is especially prevalent for the Lee-Carter mortality projections where the BELSF

is relatively stable when age increases.

When comparing the capital requirements for males and females, we find that the SCRSF for

females increase with age throughout. For males, on the other hand, the capital requirements
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peak at ages around 70, before they decline. This is because females are expected to live

longer than males, and the cumulative survival probability is still high in the 70-80 age range.

When comparing the Lee-Carter model to the CBD-model we find that the increase in SCRs

across age for the Standard Formula are relatively similar. However, we find that the CBD-

model returns roughly 15% higher capital requirements. Comparing the Internal Models,

however, we notice that the Lee-Carter Model outperforms the CBD-model with regards to

minimizing SCRs, especially at high ages. For 80-year-old males, the Internal Model capital

requirement is 2.6 times higher for the CBD-model compared to the Lee-Carter model. This

is because the CBD-model predicts lower mortality rates for higher ages, compared to Lee-

Carter.

Overall, this leads us to conclude that the Internal Model is superior to the Standard Formula

for both genders and mortality models. Furthermore, we find that the Lee-Carter-model is

superior to the CBD-model for all ages if one seeks to minimize SCRs, regardless of approach.

This is in line with EIOPAs expectations and part of the purpose of Solvency II. By developing

Internal Models, insurers will have lower capital requirements and gain a better understanding

of their risk exposure, and Solvency II incentivizes this.

9.3.3 SCR as a percentage of Best Estimate of Liabilities

To better quantify the differences between the mortality models and the two approaches, we

compare the relative percentages. As briefly discussed, the true BEL0 is highly uncertain

as the deviation in BEL0 for the two mortality models is between 10% and 19% for ages 50

to 80. We thus wish to identify the Solvency Capital Requirements as a percentage of the

Best Estimate of Liabilities. We obtain this estimate by dividing the SCRSF and SCRIM

by BEL0. We compare the Standard Formula and the Internal Model using the Lee-Carter

and the CBD-model.
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Figure 11: SCR as a percentage of BEL0 using the Lee-Carter mortality model. The red
and blue lines represent SCRSF and SCRIM as a percentage of BEL0, respectively. The
solid lines represent Norwegian male mortality rates, while the dashed lines refer to female
mortality rates.

From Figure 11 we find that the Standard Formula yields higher SCRs as a percentage of

BEL0 for all ages compared to the Internal Model. The turning point at age 67 can be

explained through the different payment phases. For the ages after retirement, all cash flows

are payouts to the contract holder. The size of both BEL0 and the SCRs are reduced after

retirement, but SCR as a percentage of BEL0 increases.

We find that the relationship between the Standard Formula and Internal Model diverge

early and that the difference continues to increase with age. This is caused by the linearity of

the 20% shock that the Standard Formula stipulates. Because expected mortality increases

with age, the reduction of mortality rates followed by the shock becomes increasingly large.

The sudden increase in gap size between the two approaches is thus because mortality rates

are expected to increase drastically from around age 70. By age 80, the difference in SCRs

between models for males is roughly 10% as a percentage of BEL0. It seems evident that

the shock is indeed too prudent, and that the higher age groups lead to larger buffers than
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the younger population.

Comparing males and females, we find that for the Standard Formula, the capital require-

ments are roughly 2-3% lower for females throughout. This is because males have higher

death probabilities and the aforementioned effect of the shock approach, where the shock has

a greater impact on higher mortality rates. For the Internal Model, the SCRs as a percentage

of BEL0 are nearly coincidental until around age 67. The SCRs for females then makes up a

larger portion of the BEL0. This is because the Lee-Carter model projects relatively lower

mortality rates with the VaR approach for females compared to males.

Figure 12: SCR as a percentage of BEL0 using the CBD-model. The red and blue lines rep-
resent SCRSF and SCRIM as a percentage of BEL0, respectively. The solid lines represent
Norwegian male mortality rates, while the dashed lines refer to female mortality rates.

Figure 12 illustrates the comparison between the Standard Formula and the Internal Model

based on the CBD-model. We find similar results as with the Lee-Carter model. The Stan-

dard Formula yields consistently higher SCRs as a percentage of BEL0 than the Internal

Model for all ages and both genders. There is an expected and noticeable increase in differ-

ence between the two methods from around age 67. However, the gap is less dramatic than in

the Lee-Carter model. This is because the CBD-model yields lower mortality projections for
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the Internal Model, and thus a reduced gap between the Standard Formula and the Internal

Model.

Interestingly, the SCR as a percentage of BEL0 for females is consistently lower than for

males for both the Standard Formula and the Internal Model. This is because there is less

uncertainty associated with female mortality estimates, ref appendix B.3. The 1 in 200 year

worst case scenario then has a relatively smaller impact on the SCR as a percentage of BEL0.

9.3.4 Standard Formula compared to Internal Model

Furthermore, we wish to elaborate on the differences in SCRs from the Standard Formula

and Internal Model. This has two purposes. First, to quantify the difference in capital

requirements between the Standard Formula and the Internal Model. Second, to compare

the Lee-Carter mortality model to the CBD mortality model.

To assess this, we examine the difference between the SCRSF and the SCRIM as a percentage

of BEL0. ∆ SCR may be expressed as:

∆SCR = SCRSF − SCRIM (32)

The difference between the SCRs represents the benefit of using an Internal Model compared

to the Standard Formula. To compare this metric across the Lee-Carter and CBD mortality

models, we divide ∆SCR by BEL0.
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Figure 13: Difference in SCR between Standard Formula and Internal Model as a percent-
age of BEL0 for Norwegian Males using the CBD and Lee-Carter models. The green line
represents Lee-Carter and the yellow represents CBD.

We find that the ∆SCR is strictly positive. This is because both Internal Models consistently

produce lower capital requirements compared to the Standard Formula. We observe that the

benefit of using an Internal Model is roughly 4-5% ofBEL0 until retirement, before drastically

increasing. This is because the 20% decrease in mortality rates highly affects older ages.

Comparing the Lee-Carter to the CBD-model, we see that for Norwegian males, the benefit

of using an Internal Model is consistently greater for the Lee-Carter Model. It is interesting

that the gap between the models steadily increases after retirement age at 67. This is because

the mortality rates projected by the CBD-model, in general, tend to project lower mortality

rates for older ages, compared to the Lee-Carter Model.
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Figure 14: Difference in SCR between Standard Formula and Internal Model as a percentage
of BEL0 for Norwegian Females using the CBD and Lee-Carter models. The green line
represents Lee-Carter and the yellow represents CBD.

In Figure 14 we see that for Norwegian females, the benefit of developing an Internal Model

is roughly 2-3% of BEL0 until retirement age. After retirement age, the benefit steadily

increases towards 10-15%. Comparing the Lee-Carter to the CBD-model, we see that ∆SCR

as a percentage of BEL0 is roughly the same for both mortality models until age 83. This

is because the difference between SCRSF and SCRIM is greater for the CBD-model than

the Lee-Carter model as a percentage of BEL0. Then the Lee-Carter becomes the preferred

model. However, the SCRs in absolute terms are lower for the Lee-Carter model throughout.

We have thus found that Internal Models return lower capital requirements for Norwegian

males and females than the Standard Formula. For ages 40-67, the difference varies between

2.5% and 5%, and increases to between 10% and 18% when age nears 90. In terms of

relative SCRs as a percentage of BEL0, the Lee-Carter model is strictly better for males,

while for females, the CBD-model is preferable until age 83, before the Lee-Carter model

is favorable. However, when considering SCRs in absolute terms, the Lee-Carter model is

always preferable. These findings are consistent with previous literature on other European

populations. For further readings, we refer to Börger (2010) and Richards et al. (2014).
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10 Conclusion

This thesis has answered the research question of how annuity providers’ Solvency Capital

Requirements are affected by applying either the Standard Formula or an Internal Model

when assessing longevity risk. Based on two stochastic mortality models we compared the

Standard Formula from the Solvency II framework with an Internal Model based on a Value-

at-Risk approach on a one-year time horizon. The mortality models used in this thesis are

the Lee-Carter model with some adaptations and the original Cairns-Blake-Dowd model.

We based the analysis on Norwegian mortality data collected from the Human Mortality

Database. To compare the methods for calculating the capital requirements, we used a

simplified pension product, similar to those offered by Norwegian insurers.

From the results, we conclude that the Standard Formula with its 20% reduction in mortality

rates results in SCRs that are higher than those estimated by the Internal Models. This means

that annuity providers are incentivized to develop Internal Models as they would rationally

seek to minimize their SCRs to free capital for other investments. However, it is worth noting

that the Standard Formula accounts for more risks than longevity risk alone. The Standard

Formula accounts for deviations in the mortality trend, meaning that some level of adverse

selection often found with annuity holders is covered.

The Internal Model, on the other hand, does not cover such risks, merely uncertainty in the

trend development. Yet, we find the Standard Formula to exaggerate the size of its mortality

shock assumption, and that if mortality development follows either the Lee-Carter estimates

or the CBD-estimates, annuity providers should develop Internal Models. Furthermore, we

find that factors such as the age and gender composition of a portfolio affects the mortality

estimates and thus the size of the SCRs. If a portfolio consists of older annuity holders, the

size of the SCR will be relatively larger when determined by the Standard Formula, than for

any of our two Internal Models. Our findings are in line with what Börger (2010) concludes;

that a mortality shock of 20% is too prudent from an annuity providers perspective.

However, the individual annuity providers’ need for developing Internal Models will likely

differ. One might argue that development of Internal Models is beneficial as it may give

annuity providers better assessment of their risk exposure. This could, in turn, create a

better understanding of how to mitigate the longevity risk. Furthermore, insurers with large

portfolios may benefit from developing Internal Models, while smaller insurers may find

it too costly. Our results indicate that the Standard Formula provides prudent, but not

unreasonable mortality estimates and Solvency Capital Requirements.
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We have thus found that the Solvency II Standard Formula produces low mortality estimates,

and thus generates larger Solvency Capital Requirements. Our findings imply that annuity

providers benefit from developing Internal Models. However, the process is time-consuming

and costly which may outweigh the benefit for smaller annuity providers.

In this thesis, we have employed two stochastic mortality models to compare SCRs with the

standard model. It would be interesting to investigate further if different stochastic models

would yield different results for different populations. Furthermore, our thesis’ comparisons

are based on a single simplified annuity product, which may be representative for a single

genre of annuity products. However, most insurance companies offer several differentiated

products which are affected by longevity risk and mortality risk. These may include death

insurance where a payout is made after the annuity holders’ death. Further investigation

of the effects of mortality development on these products would be interesting. Lastly, our

estimates are based on Norwegian data for the entire population, which is not necessarily

representative for the specific insurance portfolios. Thus, estimation based on portfolio spe-

cific data would be highly relevant to the topic of quantifying the benefits of developing an

Internal Model.
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Appendices

A Lee-Carter

A.1 Single Value Decomposition

In their origional paper, Lee and Carter (1992) proposed Singular Value Decomposition

(SVD, Appendix A.1) as a means to estimate the age- and time-dependent variables of their

model. The method is similar to Ordinary Least Squares (OLS)– estimation, in that it

solves a minimization problem. This is done by iteratively updating every parameter until

the difference between the probability of the fitted and saturated model is minimal under

constraints that ensure identification. Alternatively, one could use other estimation methods

such as Maximum Likelihood or Weighted Least Squares. An in-depth description of these

methods can be found in Wilmoth (1993).

Due to the lack of regressors in the Lee-Carter model, it cannot be treated as a simple

regression model where the error terms are independent and identically distributed with

zero-mean variance. OLS would suggest minimization of

∑
x

∑
t

{ln mx,t − αx − βxkt} (33)

even though one cannot estimate αx and βxkt with only ln mx,t-observables and no regressors.

To cope with this potential issue, Lee and Carter (1992) use Singe Value Decomposition

(SVD) to estimate the model. The model is thus subject to constraints so that
∑
x

βx = 1 and∑
t

kt = 0. This is done to avoid any transformations of the parameters, as a transformation

of any constant, C would result in identification problems. Lee and Carter (1992) used SVD

to estimate the model and the constraints on
∑
x

βx = 1 and
∑
t

kt = 0 suggest that αx denotes

the average of lnmx,t over time t, because

∑
t

ln mx,t =
∑
t

{αx + βxkt + εx,t = (t+ 1)αx + βx
∑
t

kt +
∑
t

εx,t (34)

Here, t represents the observation time period measured in years from 1970-2014, under the
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assumption that
∑
x

βx = 1 and
∑
t

kt = 0. When rearranging the above equation (34) we find

that estimate of αx is given by

α̂x =
1

t+ 1

∑
t

ln mx,t (35)

Lee and Carter (1992) show that the observables can be arranged so that

ln mx,t − α̂x =
r∑
i=1

ρiUx,iVt,i (36)

Here, r = rank [ln mx,t − α̂x] and ρi for i = 1, 2, . . . , r represents the singular vectors in

increasing order while Ux,i and Vt,i are the matching left and right singular vectors. Lee

and Carter (1992) proved that SVD [ln mx,t − α̂x] ≈ ρ1Ux,1Vt,1 and so that β̂x = Ux,1 and

k̂t = ρ1Vt,1.

There are three formal steps required to estimate the variables as described by Lee and

Carter (1992). The first step is to apply the SVD-methodology followed by adjusting the

k̂t-estimates so that there is equality between the number of deaths implied by the model

and the observed number of deaths in a given time-period. This is ensured by replacing k̂t

with k̃t such that

∑
x

Dx,t =
∑
x

{Ex,te(α̂x+β̂xk̃t)} (37)

This step is done to reduce differences between the observed number of deaths and the number

of deaths implied by the model. k̂t’s are likely to result in incorrect future mortality rates

if not adjusted. Lastly, the Box-Jenkins methodology is employed to estimate the dynamics

of the inferred factor k̃t. The Box-Jenkins methodology uses ARIMA models to select an

appropriate fit of a time series and consequently uses the fitted model to create forecasts.

A.2 kt Forecasts

kt forecasts for different ARIMA processes for males and females are presented below.
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(a) Male ARIMA(0,1,0) (b) Female ARIMA(0,1,0)

(c) Male ARIMA(0,1,1) (d) Female ARIMA(0,1,1)

(e) Male ARIMA(1,1,0) (f) Female ARIMA(1,1,0)

(g) Male ARIMA(1,1,1) (h) Female ARIMA(1,1,1)
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A.3 Simulated Mortality Rate Forecasts

Next, we present simulated forecasts for 85 year old Norwegian males and females. This is

based on variations in the kt from ARIMA(0,1,0) and ARIMA(0,1,1) processes for males and

females, respectively.

Figure 15: Lee-Carter simulated forecast for males at age 85. 50 simulations are displayed

Figure 16: Lee-Carter simulated forecast for females at age 85. 50 simulations are displayed
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A.4 Female Residual Plots

Figure 17: Female residual plots of the fitted Lee-Carter model

From figure 17 we observe no significant patterns. As with the males, the female model seems

to fit the historical data well.

In the first figure we observe the residuals for all age groups, and we observe no indication that

the model predictions are exaggerated. We do, however, observe high deviations for infants,

and see that the model fails to consistently predict infant mortality rates. Furthermore, from

the second figure we observe homoscedasticity, meaning that the variance seems constant

throughout the time series. Lastly, recall that the last figure figure attempts to uncover

cohort effects. The residuals seem to cluster in the center. As with males, however, this is

not an issue as the data set is only from 1970 to 2014. It is expected that the residuals are

not as consistent for the population born in the 1800’s, as the number of observations are

fairly limited within our data set.
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B CBD

B.1 CBD: Model 7

The original CBD-model has been expanded by, amongst others, Cairns et al. (2009), who

include a quadratic age term and a cohort effect term to create three variations of the original

model. There are three expanded models of the original CB- model. In mortality modeling

literature, the CBD-model is often referred to as model 5. The expansions are thus called

model 6, 7 and 8. Of the models 6-8, model 7 had the best fit to the Norwegian population.

As described by Cairns et al. (2009), the model is defined as

logit q(t, x) = k
(1)
t + k

(2)
t (x− x̄) + k

(3)
t ((x− x̄)2 − σ̂x2) + γ

(4)
t−x (38)

where as in the CBD-model, x̄ is the mean age in the sample, and σ̂x
2 is the mean value of

the quadratic age term (x− x̄)2.

Moreover, parameter constraints on the cohort parameter γ
(4)
t−x is applied to ensure model

identification.

∑
c

γc = 0,
∑
c

cγc = 0,
∑
c

c2γc = 0, (39)

The constraints ensures that γ
(4)
t−x fluctuates around 0 and has no linear and quadratic cur-

vature (Cairns et al., 2009).

B.2 ARIMA processes

We wish to provide our analysis of the bivariate ARIMA processes in the CBD-model. In

the following tables, we provide evidence that ARIMA(2,1,1) and ARIMA(1,1,0) fits k
(1)
t and

k
(2)
t best for males respectively, and that ARIMA(1,1,0) and ARIMA(0,1,1) fits k

(1)
t and k

(2)
t

best for females, respectively.
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Log-likelihood AIC BIC Rank (BIC)
ARIMA Males Females Males Females Males Females Males Females

(0,1,0) 107.71 113.49 -211.42 -222.98 -207.85 -219.41 (2) (5)
(0,1,1) 108.44 116.79 -210.87 -227.58 -205.52 -222.23 (6) (2)
(1,1,0) 108.92 117.36 -211.84 -228.74 -206.48 -223.39 (4) (1)
(1,1,1) 109.29 117.42 -210.59 -226.83 -203.45 -219.7 (8) (4)
(1,1,2) 113.01 117.97 -216.01 -225.93 -207.09 -217.01 (3) (8)
(2,1,0) 110.38 117.47 -212.77 -226.95 -205.63 -219.81 (5) (3)
(2,1,1) 113.67 118.38 -217.33 -226.76 -208.41 -217.84 (1) (7)
(2,1,2) 114.01 120.31 -216.02 -228.62 -205.32 -217.91 (7) (6)

Log-likelihood AIC BIC Rank (BIC)
ARIMA Males Females Males Females Males Females Males Females

(0,1,0) 234.9 232.59 -465.8 -461.17 -462.23 -457.61 (8) (3)
(0,1,1) 239.64 239.14 -473.28 -472.29 -467.92 -466.93 (2) (1)
(1,1,0) 241.23 238.12 -476.46 -470.25 -471.1 -464.9 (1) (2)
(1,1,1) 241.23 239.29 -474.46 -470.48 -467.32 -463.45 (3) (3)
(1,1,2) 242.8 239.65 -475.6 -469.31 -466.67 -460.39 (5) (5)
(2,1,0) 241.23 238.67 -474.46 -469.35 -467.32 -462.21 (3) (4)
(2,1,1) 241.23 239.29 -472.45 -468.59 -463.54 -459.66 (6) (6)
(2,1,2) 242.89 239.66 -473.77 -467.32 -463.07 -456.61 (7) (8)

B.3 Simulated Mortality Rate Forecasts

Next, we provide a simulation of forecasted mortality rates from the CBD-model for 85 year

old Nowegian males and females. From the graphs below, we observe more volatility than

what we have seen from the Lee-Carter model. This is especially prevalent for Norwegian

males, where 50 projections show much uncertainty. As shown in section 9, however, the

central projections seem to follow a more conservative pattern. From the high variance it is

not surprising that the Value-at-Risk from a one-year time horizon produce lower mortality

estimates compared to the Lee-Carter model. This is because a worst case scenario in next

year’s mortality rates will have more affect when the model predicts higher uncertainty.
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Figure 18: Lee-Carter simulated forecast for males at age 85. 50 simulations are displayed

Figure 19: Lee-Carter simulated forecast for males at age 85. 50 simulations are displayed
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B.4 Female Residual Plots

Figure 20: Residual analysis of the CBD-model

From the first figure we see that the female CBD residuals follow a distinct pattern. This is

a clear indication that fitted line fails to correctly explain logarithmic mortality at a large

portion of the Norwegian population. Furthermore, the second graph indicates heteroscedas-

ticity, where the residuals seemingly increase as time passes. Heteroscedasticity generally

produces consistent, but not efficient predictions. For females, the heteroscedasticity is not

as cleear as for the male model analysis. Lastly, the third graph does not produce an even pic-

ture of the residuals. We see that the residuals are dependent on the year of birth. This can

be explained through different predictions of the older and younger mortality improvements.

58



C Risk-Free Interest Rates

Lastly, we provide the risk-free interest rates used in this master thesis. These are used

to calculate technical provisions for (re)insurance obligations. In line with the Solvency

II Directive, EIOPA publishes these rates on a monthly basis. The ones presented below

represent the Norwegian risk-free interest rates from November 2018.

Figure 21: Norwegian Risk-free interest rates from EIOPA (2018).
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