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Abstract
We predict daily out-of sample directional movements of the constituent stocks of the Oslo

Stock Exchange Benchmark Index (OSEBX) using Long Short-Term Memory (LSTM) net-

works, benchmarked against other machine learning and econometric techniques. Our results

unambiguously show that the LSTM model outperforms all benchmark models in terms of pre-

dictive performance. When testing simple long trading strategies utilizing the predictions, we

find that the LSTM model outperform all other methods with a Sharpe ratio of 3.25 prior to

transaction costs from 1999 - 2017. In comparison, the OSEBX had a Sharpe ratio of 0.30 over

the same period. We find that the LSTM model seems to follow a short-term mean-reversion

strategy. While seeing somewhat diminishing excess returns in the last years, the excess returns

are still present in the three latest years, which differs from similar studies on other indexes

where the excess returns have been found to be absent in recent years. When total transaction

costs are implemented we see that the excess returns are lost in the bid-ask spread. Training the

model on spread-adjusted returns and imposing advanced strategies leads to a modest Sharpe

ratio of 0.37 over the whole period. Even though the trading performance after total transaction

costs is not statistically significant better than the OSEBX, we see that LSTM networks have

predictive properties that can make it a great tool and complement to other trading strategies.
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1. Introduction
The field of Artificial Intelligence (AI) has gone through a rapid development over the last

decades, hand in hand with the growth in available computing power. The recent development in

AI has been driven by Deep Learning techniques, already excelling in areas such as autonomous

vehicles, speech recognition and computer vision (Marr, 2018). Deep Learning techniques are

able to interpret complex data on a deeper level than humans. Google DeepMind’s AlphaGo

beat the world champion in the game of Go in 2016, a game that is extremely complex and

largely based on human intuition (Hassabis, 2016). The most promising use cases of Deep

Learning within finance include prediction, algorithmic trading and decision-support. However,

the Efficient Market Hypothesis (Fama, 1970) states that it is not possible to predict future

stock returns based on publicly available information. The hypothesis has been challenged since

its conception by evidence of inefficiencies such as momentum and mean-reversion, and faces

an even larger challenge with the rise of Deep Learning.

Long Short-Term Memory (LSTM) networks, a Deep Learning technique, are inherently suit-

able for financial time series predictions. Despite the technology having the potential to bring

promising contributions to the field, academic work on financial time series prediction is limited

compared to other sciences like physics or chemistry. This might be explained by two factors.

Firstly, it is notoriously difficult to backtest trading strategies and be able to separate between

strategies that will perform well in the future and those that will not (Lopez de Prado, 2018).

Secondly, if you find an anomaly in the financial markets you are much better served financially

keeping it to yourself than publishing it.

In the current literature on the topic, there is a gap between the research results and the

applicability to real-world trading. We will therefore contribute to bridge this gap and give

insights into how well such predictive models perform when actual transaction costs and real-

life considerations in the financial markets are taken into account.
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1.1 Problem definition

Based on the potential for Deep Learning in finance and the fast pace in the field, the scope of

this thesis will be to test predictive models on the constituent stocks of the Oslo Stock Exchange

Benchmark Index (OSEBX), which previously has not been explored in terms of Deep Learning.

We will evaluate the predictive performance of different models and see how it translates into

trading performance. By also putting emphasis on transaction costs and implementational

challenges, we aim at making the paper appealing to both academics and decision-makers in

the financial industry. Based on our motivation and choice of scope, our research can be divided

into two research questions:

1. How well does an LSTM network predict daily out-of-sample directional movements of

the constituent stocks of the OSEBX, and how does simple long trading strategies based

on LSTM predictions perform?

2. How does these results hold up when total transaction costs are taken into account and

more advanced trading strategies are implemented?

By exploring these topics we hope to give insights into how this promising technology can

improve predictive performance and be used by professionals in the financial industry in the fu-

ture. How our model would be implemented for real trading, from fetching live data to executing

trades, is out of scope for this thesis as the implementation would make the thesis too extensive.

Short strategies are also out of scope due to implementational issues regarding liquidity, lending

availability and transaction costs. Moreover, we want this thesis to be interesting for both the

technically advanced as well as those with financial knowledge. The implication of this is that

we elaborate on both financial theory and Deep Learning, while adding more detailed technical

explanations in our appendix.
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1.2 Literature review

Employing Deep Learning for stock return prediction is a relatively new topic, and to the best

of our knowledge it does not exist any literature on this topic on the Oslo Stock Exchange

(OSE). However, some research do exist on the use of machine learning and Deep Learning

for predicting stock prices and returns primarily on the US market. However, most of the

academic research only implements simple strategies and estimates performance based on rough

estimates of transaction costs. In this section we will sum up the main findings and research

done previously in this field and elaborate on research predicting stocks on the OSE.

We can find research back to 1993 of predictions of stock prices and returns using Deep Learn-

ing, where Galler and Kryzanowski (1993) correctly classified 72 percent of the one-year-ahead

stock returns either being positive or negative using financial ratios and macroeconomic vari-

ables. Olson (2003) used Deep Learning to forecast one-year-ahead Canadian stock returns

using accounting ratios as input values, and reported that their model outperformed traditional

regression techniques.

More recent, Huck and Krauss (2017) did a comparison of different machine learning techniques

for stock price prediction on the constituents of the S&P 500, where Deep Learning did not

outperform more traditional techniques. More interestingly the models performed particularly

good in situations of high market turmoil, e.g., the dot-com bubble and the global financial

crisis. In addition they found that returns after 2000 were significantly lower, and their opinion

was that this might be due to increasing use of machine learning following increased computing

power.

Fischer and Krauss came with more relevant literature in 2018 on Deep Learning, using LSTM

networks to predict out-of sample directional movements for the constituents of the S&P 500.

This was the first application of LSTM networks on stock return prediction and it is therefore

the most relevant literature for our thesis. The paper used an LSTM network benchmarked

against more traditional techniques, and found that their networks (LSTM) exhibited the high-

est predictional accuracy and that trading strategies based on the predictions outperformed the

other models with a Sharpe ratio before transaction costs of 5.8 from 1992-2015. However, the

LSTM network did not outperform after 2010, showing similar patterns as Huck and Krauss

(2017). The paper also aimed towards giving a glimpse into the black-box of Deep Learning

by shedding light on common patterns in traded stocks that were identified, and found that a
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large part of the predictions were based on mean-reversion.

Research on the performance of prediction models on the Oslo Stock Exchange (OSE) has

been very limited. Andersen and Mikelsen (2012) used a combination of machine learning

techniques to predict stock returns of the Oslo Benchmark Index (OBX) constituents and the

Dow Jones. They found that while the Dow Jones was highly efficient, the results on the OBX

showed inefficiencies with potential for exploitation. However, no trading system was found to

ouperform an efficient market portfolio after transaction costs.

Based on the motivation outlined previously and the research done within the field, our contri-

bution to the literature will be two-folded:

1. Firstly, we will add on previous research on LSTM networks as a prediction method by

testing the robustness on a new, smaller and less liquid stock universe (OSEBX). It is

thus interesting to see if there are differences in performance, as well as seeing whether

there are differences in the persistence of performance. Moreover, we will add on previous

work in terms of using deeper models, present data differently for the models and include

additional independent variables to see if it can improve performance.

2. Secondly, we will go further than previous research by taking a practitioners approach

and look at how total transaction costs will affect performance, as well as testing more

complex strategies to reduce transaction cost impact. Most academic research uses simple

long/short strategies and assumes a flat transaction cost ranging from 1.95 basis points to

10 basis points, not taking bid-ask spreads into account. We will account for the bid-ask

spread that represent a substantial part of the total transaction costs when trading on

the Oslo Stock Exchange, as well as compose more advanced strategies to counter the

high transaction costs. Hence, we will make the thesis more relevant for practitioners and

real-world application.
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1.3 Thesis structure

The thesis will start by briefly elaborating on the relevant financial and technical theory. Moving

on, chapter 3 will explain our choice of data, while chapter 4 outlines the theoretical methodology

behind the predictive models and trading strategies. Chapter 5 will include the analysis and

results of the prediction models and backtests of our trading strategies. In chapter 6 we take a

practitioners approach, taking total transaction costs into account and implementing advanced

strategies. Furthermore, a pragmatic discussion of the robustness of our models and challenges

associated with implementing this in practice will be done in chapter 7.
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2. Theory
In this chapter we will start by discussing the Efficient Market Hypothesis, before we will look

deeper into challenges related to implementation of trading strategies in terms of backtesting

and transaction costs. Lastly, we will give a brief introduction to Deep Learning, focusing on

Neural Networks and Long Short-Term Neural networks.

2.1 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) is an economic theory presented by Eugene Fama

(1970), suggesting that markets are efficient and all available information are taken into account

for all prices, implying that all prices are ”fair”. In 1991 Fama rephrased the theory to:

”Prices reflect information to the point where the marginal benefits of acting on information

(the profits to be made) do not exceed the marginal costs”

It is common to distinguish between three forms of the Efficient Market Hypothesis. The

weak form suggest that prices reflects all information from past prices, and thus implies that

technical analysis will not work. Semi-strong form suggest that prices reflects all publicly

available information, thus implying that fundamental analysis will not work. Hence, active

management is largely a waste of time and effort and it is hard to justify the costs associated

with it. Strong form suggest that prices reflect all available information relevant to the firm,

including information available only to company insiders (Fama, 1970).

There is a large body of evidence in the literature suggesting that the weak form and semi-strong

form of the theory holds. A strong case for the semi-strong from holding, is that the majority

of studies that analyze the performance of mutual funds find that mutual funds under-perform

their benchmarks. Malkiel (1995) looked at US equity mutual funds adjusted for survivorship

bias and found that on the aggregate level mutual funds underperformed index even gross of

expenses. Looking to the Oslo Stock Exchange, Fure (2014) found that 21 out of 22 mutual

funds did not generate a risk-adjusted return over the benchmark.

On the other hand, there is also a substantial amount of literature advocating why the EMH does
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not hold. Poterba and Summers (1987) found evidence of mean-reversion in stock prices, that

underperforming stocks yielded substantially higher returns than overperforming stocks. They

concluded that the mean-reversion behaviour was due to time-varying returns and ”price fads”

that caused stock prices to deviate from fundamental values. Jegadeesh and Titman (1993)

found evidence of stock prices exhibiting momentum, that strategies buying past winners and

selling past losers generated abnormal returns. Brodin and Abusdal (2008) found evidence that

momentum strategies generated an excess return not explained by systematic risk factors on

the Oslo Stock Exchange.

If the weak-form of the efficient market hypothesis holds, our technical approach will not be able

to generate a risk-adjusted return above the market portfolio. Hence, this paper will implicitly

test whether the weak-form EMH holds for the OSEBX constituents. We believe that certain

inefficiencies exist, as shown in the paragraph above, and that Deep Learning models can be a

suitable tool to uncover potential inefficiencies and exploit them.
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2.2 Trading implementation

2.2.1 Backtesting

Backtesting is the process of assessing the viability and performance of a trading strategy by

the performance on historical data. Backtesting is notoriously difficult, and a large subject in

and of itself. In 2014, a team of researchers at Deutsche Bank published a study identifying the

following seven basic errors frequenting backtests (Luo et al., 2014):

1. Survivorship bias: Using an investment universe only including current stocks.

2. Look-ahead bias: Using information that was not public at the moment that the simu-

lated decision would be made.

3. Storytelling: Making up a story ex-post to justify some random pattern.

4. Data mining and data snooping: Training the model on the testing set.

5. Transaction costs: Simulating transaction costs correctly is hard because you would

have to perform the trade to know them for sure.

6. Outliers: Basing a trading strategy on a few extreme outcomes that may never happen

again.

7. Shorting: Typically requires finding a lender, and the cost of lending and amount avail-

able is generally unknown.

Even though the backtest avoids these basic errors, the case is still that the flawless backtest

does not exist. A key issue is the fact that backtesting is done ex-post, and the issue of selection

bias therefore becomes prominent. If the researcher tests enough different strategies on the past,

some of them are likely to yield good results due to overfitting to the past, and the past will

not repeat itself (Lopez de Prado, 2018) . Hence, good performing backtests does not guarantee

good performance in the future.

2.2.2 Transaction costs

Of the seven mentioned basic errors, one of the most prominent is the simulation of transaction

costs. In order to know certainly which transaction costs would have occurred, one would
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have to travel back in time and actually perform the trades. Total transaction costs can be

decomposed into (Arne Ødegaard, 2009):

• Direct transaction costs: Commissions

• Indirect transaction costs: Price impact and implementation shortfall

Where direct transaction costs represents the commissions paid to the broker. Price impact is

the difference between the last traded price when you execute the trade, and the actual price

that is paid. Implementation shortfall involves the opportunity cost if you place an order that

does not immediately go through, and the market starts drifting. Thus, you might end up not

getting the stock you want and your portfolio composition and returns suffer. It is therefore a

trade-off between price impact and implementation shortfall, you can choose to buy the stock at

the decision time and fill the order at the current ask orders and avoid implementation shortfall,

or you can place an order in between the bid-ask spread to reduce the price impact while being

subject to implementation shortfall (Arne Ødegaard, 2009).

Most academic papers on the subject of deep learning predictions trade day-to-day on adjusted

closing prices, only accounting for the direct transaction costs typically assumed to be 5 basis

points (Fischer & Krauss, 2018) (Huck & Krauss, 2017) (Avellanda & Lee, 2008). However,

doing this underestimates the total transaction costs as a result of a substantial price impact

in terms of the bid-ask spread. Ødegaard (2009) found the median relative bid-ask spread on

the Oslo Stock Exchange (OSE) to be 200 basis points for the period 2000-2008. If a trading

strategy rebalances the portfolio daily, it is clear that the price impact taking the bid-ask spread

into account will reduce the profitability substantially.

2.3 Deep Learning: Neural networks

Deep Learning is a subset of machine learning, which in turn is a subset within artificial intel-

ligence (AI). Arthur Samuel coined the phrase machine learning in 1959, and defined it as ”the

ability to learn without being explicitly programmed”. The main purpose of machine learning is

to learn the general structure of the underlying data, so that we can produce predictions about

future unseen data. Deep Learning is a subset of machine learning that mainly employs neural

networks that are able to learn complex data structures. Neural networks have been around for

a long time, but due to being very computer intensive their potential has only recently been
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realized. They are inspired by the biological neural networks that constitute the human brain,

hence the name.

2.3.1 Network structure

Similar to a linear regression, data is structured into independent variables x, explaining the

dependent variable y. The dependent variable might be continuous (regression) or categorical

(classification). One example might be to predict housing prices (continuous dependent variable)

using independent variables such as size, neighborhood, number of bedrooms and so on. Where

a linear regression would go directly from the independent variables (and estimated coefficients)

to predicted dependent variable, a neural network adds complexity and non-linearity to be able

to understand complex data structures.

Figure 2.1: Traditional illustration of a neural network.

The basic units of a neural network are called neurons and connections with corresponding

weights. Neurons are shown as circles in figure 2.1 and contains a numeric value. All the

neurons are attached to each other by connections that have a specific weight. The neurons in

the input layer (shown as circles in figure 2.1) contains the values of the independent variables

for one observation. Furthermore, the network has l hidden layers where the value of each

neuron in a hidden layer is calculated based on all the neurons in the previous layer and weights

connecting them (Goodfellow, Bengio, & Courtville, 2016). Finally, the neuron(s) in the output

layer takes their value based on the neurons in the last hidden layer and the weights in the

connections to the output neuron(s), and these output neuron values will be the predictions
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(Chollet, 2017). Hence, a linear regression can be viewed as a neural network with only an

input layer and output layer, where the estimated coefficients are the weights.

2.3.2 Components of the network

The data in the network flows through each neuron by a connection (shown as a line in figure

2.1). Every connection has a specific weight (w) by which the flow of data is regulated (Shubham

Panchal, 2018). Each neuron (xl,f ) in the hidden layers and output layer gets their value by

taking the product of all the neurons in the previous layer Xl−1 and the weights connecting them

Wl−1, as well as adjusting for a bias, b (Chollet, 2017). The process of going from independent

variables to calculating the predictions in the output layer is called forward propagation. The

network learns by adjusting the parameter space Θ consisting of the weights and the biases.

xl,f =
∑
f=1

(wl−1,f ∗ xl−1,f ) + bl,f (2.1)

The value of xl,f can be anything ranging from minus infinity to infinity. This value is simply

a linear combination of weights and neuron values. The input signal xl,f from equation 2.1 is

thus converted to an output signal g(xl,f ) through a non-linear activation function g, allowing

the neural network to understand non-linear data.

2.3.3 How the network learns

At the end of a forward propagation, the output layer’s predicted value ŷ is compared to the real

y value, and a loss function L is computed. The loss function determines the distance between

the predicted values ŷ and the real values y, and thus explains how accurate the predictions

are. The network learns by going through the observations of the data set multiple times

and minimizing the loss function L by changing the parameters Θ (weights and biases) of the

network. Efficient training of a neural network is thus reliant on a large data set with many

observations to be able to learn.

L(ŷ, y) = L(f(x,Θ), y) (2.2)
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The partial derivatives of the loss function with respect to the network parameters Θ is calcu-

lated between each forward propagation for an observation to find how much each parameter

contributed to the loss function. The parameters are then adjusted according to their partial

derivatives.

To summarize, we first forward propagate to get predicted values and calculate the loss function,

before finding the partial derivative of each parameter with respect to the loss function and

adjust the parameters accordingly. Forward propagating through all the observations in the

data set and adjusting the weights along the way is characterized as one epoch, and in order to

find the optimal parameters it is often necessary to perform multiple epochs.

2.3.4 Long Short-Term Memory Networks

Recurrent Neural Networks (RNNs) can be thought of as multiple copies of the same neural

network over time where each network passes a message to its successor (Olah, 2015). RNNs are

thus able to capture dependencies over time and sequences, and have shown incredible success

within areas such as speech recognition, language modelling and translation (Olah, 2015).

Long Short-Term Memory (LSTM) networks are a type of RNN especially suited to learn long-

term dependencies in data structures due to what is called memory cells, making them suitable

for financial times series such as stock returns. The name Long Short-Term Memory can be

decomposed into two parts: the long-term memory is due to the learned parameters (weights

and biases) that changes slowly, while the short-term memory refers to the memory cells that

changes at each time step (Hochreiter & Schmidhuber, 1997). For a detailed explanation of how

RNNs and LSTMs work, see appendix A.
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3. Data
We use market data on the constituents of the Oslo Stock Exchange Benchmark Index (OS-

EBX) from 1 January 1996 until 31 December 2017. Constituents of the index have been

determined semiannually for the period, and we obtain historical lists of constituents through

correspondence with the Oslo Stock Exchange. We eliminate survivorship bias by combining

these constituent lists into a binary matrix indicating whether the stock was a constituent of

the index at any given date. We then download the dividend-adjusted daily closing stock prices,

the daily closing bid and ask prices and the daily trading volumes of all stocks listed on the Oslo

Stock Exchange through Norwegian School of Economics’ stock database ”Børsprosjektet”. All

stocks that had never been constituents of the OSEBX was dropped from the data set, using

ISIN number as identifier. Detailed data on stocks such as market capitalization, turnover and

beta values are obtained through Thomson Reuters Datastream. Additional independent vari-

ables such as government bond yields and foreign exchange rates are downloaded from Norges

Bank.

Table 3.1: Summary statistics from data set.

OSEBX Summary Statistics

Minimum number of constituents in period 52 (H1 2004)

Maximum number of constituents in period 81 (H1 2008)

Average number of constituents in period 63

Total number of constituents in period 235

Largest constituent, share of index (2018) Equinor, 28 %

Smallest constituent, share of index (2018) Targovax, 0.02 %

Annualized return (1999-2017) 10.1%
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In order to add on previous academic work within deep learning, mostly on the highly liquid

and efficient S&P 500 Index, we choose the Oslo Stock Exchange as it is less liquid and likely to

be less efficient. The OSEBX Index is chosen as it is a broad index consisting of the most liquid

equities listed on the Oslo Stock Exchange (Oslo Stock Exchange, 2018). From table 3.1 we see

that the OSEBX has contained between 52 and 81 constituents, with a relative high turnover

with a total of 235 constituents over the period. We also see that the index is dominated by

some large companies, with Equinor representing 28 percent of the total market cap. In order

to fully leverage our predictive models, we sought to obtain time series for a period as long as

possible. Our time range is thus chosen as this was the maximum time period that data on

constituents was accessible. From 1983 to 1996 the broad index of Oslo Stock Exchange was

named the Total Index (TOTX), and Oslo Stock Exchange does not have digital records of the

historical constituents of this index (correspondence with Oslo Stock Exchange).

Software and hardware

Data preparation, data handling and performance analysis is performed in Python, a program-

ming language for general-purpose programming. Our deep learning networks are developed

with the package Keras, on top of Google’s Tensorflow library. We also use the package Scikit-

learn for all our benchmark models. Our LSTM networks are trained on GPUs through Google

Cloud Platform in order to overcome the issues regarding computing power intensity. All bench-

mark models are trained on CPUs.
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4. Methodology
Throughout the chapter we will explain the methodology behind the prediction models, trading

strategies and performance evaluation. Our approach is inspired by the work of Fischer and

Krauss (2018) which did similar work on the S&P 500 constituents, and we also approach the

problem as a binary classification problem. The predictive models predict the probability that

a stock will out-perform the cross-sectional median return the following day. Deeper technical

explanation can be found in the appendix B.

4.1 Dependent and independent variables

The primary independent variable for the predictions are a sequence of the last 240 stock returns

(from t-240 to t), while the dependent variable is a binary variable showing whether the stock

outperformed the cross-sectional median return the following day (t+1). The lookback period

of 240 days is chosen due to previous literature and has proven to work well with the type of

models we are using (Fischer & Krauss, 2018).

Our initial data set is a 2-dimensional matrix where each row shows the stock price for a given

stock at a given day. The price of a stock can thus be represented as Pt,s, where t is the date

and s is the stock. Simple returns, our primary independent variable, can thus be calculated as

follows:

Rt,s =
(Pt,s − Pt−1,s)

Pt−1,s
(4.1)

Using the returns, Rt,s, we create our binary dependent variable:

Bt,s = 1 if Rt,s ≥ median(Rt) (4.2)

Bt,s = 0 if Rt,s < median(Rt) (4.3)

For the more advanced models we add independent variables supplementing the simple returns.

These variables are 50-days moving average price, 200-days moving average price, daily traded

volume, bid-ask spread of the corresponding stock returns and the macroeconomic variables

3-year government bonds, 10-year government bonds and the USD/NOK foreign exchange rate.
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The macroeconomic variables are chosen as they are likely to have impact on the constituent

stocks of the OSEBX. For some models, we denoise certain independent variables through

a wavelet transformation, which remove much of the noise in the time series and makes it

smoother. The goal of denoising is to make it easier for the model to interpret the signals better

(Palaniappan, 2018).

4.2 Study periods

We divide our data set into study periods that will be used for training and testing of our

models. This is to make sure that the model is trained on selected time periods as the market

conditions have been changing over our full time period. When performing deep learning, it is

important that the model is trained on specific observations (training set) before it is tested on

observations (test set) that it has not yet seen (otherwise the model would know the answers).

Each study period contains 1000 trading days of stock returns which is split into 750 training

days and 250 test days. The training observations are used to decide the parameters of the

LSTM network, while the test observations are used for out-of sample predictions and testing

of trading strategies. To avoid testing on the same data set twice, each study period starts

250 days after the previous study period as illustrated in figure 4.1. By doing so we end up

with a total of 19 periods as our data set contains 5500 observations and we loose the first 750

observations to training in the very first study period. We thus end up with a non-overlapping

prediction period from 29th December 1998 to 27th November 2017.

Figure 4.1: Graphical illustration of how the study periods roll over the complete data set.

A neural network learns certain parameters on it’s own, while the researchers determines certain

hyper-parameters. The last 20% of the training observations are used as a validation set. A

validation set is necessary because optimizing hyper-parameters based on the same data we use

for predictions would lead to selection bias and much better results than we can expect in the
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future (Lopez de Prado, 2018).

Standardizing the data

The returns are standardized based on the mean and standard deviation only from the training

set to avoid look-ahead bias. If n denotes the study period, we thus standardize as follows:

Rn
t,s =

(Rn
t,s − µntrain)

σntrain
(4.4)

The data set contains some missing values arising due to stocks being de-listed or listed during

the study period length of 1000 days. Any missing values present in the data set after stan-

dardization are replaced by zeros, as the LSTM network is unable to predict in the presence of

any missing values among the independent or dependent variables.

4.3 Training the network

The aim of having such an extensive data set is to be able to train our model sufficiently enough

to learn possible patterns in the stock returns. We train the model independently on all 19 study

periods to generate predictions independently in each study period. We first obtain a list of all

stocks that were constituents of the OSEBX at the last training day of the study period - as

these are the only stocks that we will perform predictions on.

Our model then classifies each observation as either 1 (outperform median) or 0 (underperform

median) and calculates the probability that the observation belongs to class 1. We apply the

loss function binary cross-entropy which calculates not only how accurate the predictions are,

but how far the predicted probabilities are from the true value (1/0). Based on the results, the

model will adjust the parameters of the network in order to minimize the loss function. The

model will iterate through the process until it has reached an optimal choice of parameters.

Overfitting is when a predictive model learns the detail and noise in the training data to such an

extent that it negatively impacts the performance of the model on new data (Brownlee, 2016).

Unfortunately, overfitting is an overhanging threat when dealing with financial data (Lopez de

Prado, 2018), and we therefore apply several methods to avoid this outlined in section B of the

Appendix.
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4.4 Selected models

We have a total of seven models that are evaluated in the next chapter. Three are benchmark

models and four are LSTM variations. The models differ both between what type of model,

training approach and hyper-parameters employed. Overview of hyper-parameters can be found

in section B of the Appendix.

Benchmark models

Logistic regression

Logistic regression is a widely used econometric technique that is suited to predict a binary

dependent variable (1/0). Due to its simplicity and widespread adoption within econometrics,

we use it as a bottom line benchmark for the other models. The model calculates the logarithm

of the odds for an observation belonging to class 1 as a linear combination of the indepen-

dent variables. The logarithm of the odds are converted to the probability of the observation

belonging to class 1 using a logistic function, hence the name (Cox, 1958).

Random forest (RAF)

Decision trees are a machine learning technique that splits the data into subsets (branches)

based on learned conditions to be able to classify observations. Shortcomings of decision trees

include overfitting to the data as well as finding locally optimal solutions. A random forest

consist of multiple decision trees, where the average of the predictions of the decision trees are

used as the predictions of the random forest. Hence, random forests reduce the risk of overfitting

and locally optimal solutions.

Support vector machine (SVM)

Support vector machines plot the observations as points in a multidimensional space and seeks

to use a mathematical method to separate observations of the two classes. The model essen-

tially plots a boundary in the multidimensional space that maximizes the distance between

the boundary and the closest observation from each class on both sides of the boundary. The

vectors from the closest observation on each side to the boundary is called the support vectors,

hence the name of the method. One of the key advantages of the model is the ability to create

non-linear boundaries, thus being able to classify non-linearly separable classes.
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LSTM variations

LSTM individually trained

This model trains on each stock separately before it moves on to the next stock within each

study period. The advantage of individual training is that the model learns the patterns specific

to the given stock, while the disadvantage is that the number of observations are drastically

reduced.

LSTM trained on all stocks

This model trains on all stocks simultaneously within each study period. Hence, it does not

learn patterns specific to each stock, but patterns represented by all stocks. A key advantage

is that this yields more observations for training.

Stacked LSTM

Same as LSTM trained on all stocks, but this model uses two LSTM layers in the network,

making the model deeper and increasing the number of parameters. Advantages are that the

model might uncover more complex patterns than the one-layer model.

LSTM with additional independent variables

Same as LSTM trained individually, but we add independent variables that we believe might

be able to help further explain the stock return performance. The variables used are simple

returns, bid-ask spread, volume, moving averages of stock returns and the USD/NOK foreign

exchange rate.
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4.5 Predictive performance

To evaluate the performance of the predictive models we apply several performance measure-

ments. The first measurement is the directional accuracy, which is the fraction of observations

correctly classified. Directional accuracy can be calculated as follows:

Directional accuracy =
correct predictions

total predictions
(4.5)

Moving on we also calculate positive accuracy and negative accuracy, which explains how likely

it is that an observation will actually be positive (negative) when we predict that it is positive

(negative):

Positive accuracy =
correct positive predictions

total positive predictions
(4.6)

Recall is also a relevant measurement, representing how robust the predictive model is. Recall

explains how many of the actual positive observations that we predicted to be positive:

Recall =
correct positive predictions

total positive observations
(4.7)

The F1 score is the harmonic mean between positive accuracy and recall, e.g. how precise and

robust the model is.

F1 = 2 ∗ positive accuracy ∗ recall
positive accuracy + recall

(4.8)

Lastly we have binary cross-entropy (BCE), which we use as our loss function when training

our networks. The key conceptual difference between accuracy and binary cross-entropy is that

binary cross-entropy takes into account not only whether our predictions were correct or not,

but also how correct they are (penalizes the difference between predicted probability and real

outcome). Since our trading strategies are based on the predicted probabilities, this loss function

is better suited for our purpose than directional accuracy alone (Lopez de Prado, 2018). Binary

cross-entropy can be calculated as follows:

BCE = − 1

N

N∑
n=0

(ynlog[pn] + (1− yn)log[1− pn]) (4.9)

Where N is the number of observations, yn is the true class of observation n and pn is the

predicted probability of observation n.
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4.6 Trading performance

4.6.1 Simple strategies

We apply different long trading strategies based on the predictions and measure the cumulative

return over time. Only applying long strategies is a conscious choice, due to short strategy

implementation issues such as liquidity, lending availability and transaction costs.

Before transaction costs

We instruct the model to buy K stocks at close-price each day, and adjust the portfolio accord-

ingly. The stocks selected are the K stocks with the highest predicted probabilities to beat the

cross-sectional median return the following day. The portfolio value, prior to transaction costs,

can therefore be computed as follows:

Vt = Vt−1 +

K∑
k=0

(Vt−1 ∗ wt−1,k ∗ rt,k) (4.10)

Where Vt is the value of the portfolio at time t, k refers to one out of K stocks, wt−1,k is the

weight of each stock k at time t − 1 such that the product of Vt−1 and wt−1,k is the monetary

value of the capital invested in stock k at close-price on day t − 1. In general, we use equal

weights for all the stocks held in the portfolio. From close-price at day t− 1 until close-price at

day t, the actual return, rt,k, for stock k is computed and multiplied with the capital invested

at time t− 1 to get the monetary return for this stock. The sum of these returns added to the

portfolio value at time t− 1 amounts to the portfolio value at time t.

Due to Oslo Stock Exchange updating the constituent lists semi-annually, some of our predic-

tions will be for stocks that are no longer available for trading. If one of the top K stocks

are not available for trading, the portfolio will then invest more in the other K − 1 stocks as

opposed to keeping the funds as cash.

After direct transaction costs

The direct transaction cost used is the lowest commission cost offered to private investors at

the Oslo Stock Exchange at 2.9 basis points (round-trip of 5.8 basis points) (Nordnet, 2018).

In order to qualify for this commission rate you need to perform 40 trades per month, and the

minimum cost is 39 NOK - meaning that trades need to be above 134 482 NOK to achieve

a commission of 2.9 basis points. Our strategies are likely to fulfill the trading frequency

requirement, and we assume that trade sizes would be large enough to make the cost 2.9 basis
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points. The portfolio value after direct transaction costs is thus calculated as follows:

Vt = Vt−1 +
K∑
k=0

(Vt−1 ∗ wt−1,k ∗ (rt,k − x ∗ pt,k) (4.11)

Where x represents the one-way direct transaction cost, and pt,k is a variable deciding how

much transaction costs should be applied to stock k at time t. If we did not have to buy the

stock (already holding it) at time t-1, and did not sell it at time t, pt,k takes a value of 0. If

we had to buy the stock at t-1, but did not have to sell it at time t, pt,k takes a value of 1.

Similarly, if we did not have to buy the stock at time t-1 but sold it at time t, pt,k takes a value

of 1. If we both had to buy the stock at time t − 1 and sell it at time t, pt,k takes the value 2

(round-trip transaction).

Accounting for bid-ask spread

Thirdly, we also include indirect transaction costs in the form of the bid-ask spread. We create

a matrix of the relative bid-ask spread at market close at time t for all stocks s, and divide it

by 2 to get the ”one-way” spread (st,k) we would have to cross to either buy or sell a stock.

The portfolio value is then calculated as follows:

Vt = Vt−1 +
K∑
k=0

(Vt−1 ∗ wt−1,k ∗ (rt,k − (x+ st,k) ∗ pt,k) (4.12)

4.6.2 Advanced strategies

When we also include the indirect transaction cost in the form of the bid-ask spread, the

transaction costs heavily affect portfolio performance. We thus implement more sophisticated

strategies in order to increase profitability, reduce the turnover as well as limiting trading in

illiquid stocks with high bid-ask spreads.

Bet sizing

Many of the strategies we produce follows the academic standard of keeping the weights wt−1,k

equal for all K stocks. We also follow Lopez de Prado (2018) and implement bet sizing to

utilize the differences in the certainty of our predictions to improve profitability. We first rank

all the constituent stocks by their predicted probabilities of beating the cross-sectional median

the following day. We then standardize the probabilities, select the K stocks with the highest

probabilities and calculate their weight by re-scaling the standardized probabilities so that the

sum of all weights add up to one. This technique allows us to invest more in the stocks that
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we are more certain of outperforming the median, and less in those stocks where the degree of

uncertainty is higher.

Constraining strategies

We also add different constraints to reduce the turnover and trading of illiquid stocks. K stocks

are first selected based on their predicted probabilities of beating the cross-sectional median

return the following day, and thereafter stocks are removed if they do not fulfill the given

constraint. We implement five different constraints:

• Volume: Limiting the strategy to only invest in stocks that have had an average trading

volume by value over the last 10 days that is above a certain percentile of the volume

distribution of all stocks in the period.

• Monthly trading: In order to reduce turnover, we rebalance the portfolio every 20th

trading day.

• Probability threshold: A clear weakness of the simple long strategy is that it does not

consider general developments in the market. Thus, during a bear-market we still invest

even though it may be likely that even the top K stocks will underperform a cash position.

Hence, we include a threshold for the predicted probability, so that the probability has to

be above a certain threshold before we invest in the stock.

• Spread threshold: We remove stocks from the K initially selected if their average bid-

ask spread over the last 10 days is above a selected threshold.

• Turnover: When rebalancing the portfolio, we check which predicted probabilities our

current holdings has for the following day. If our current holdings are part of the top

K ∗ multiplier stocks the following day, we do not sell this stock. If it is not part of

the top K ∗ multiplier stocks, we replace it with the stock with the highest predicted

probability for the following day that is not a part of the current portfolio. Here, K is the

chosen number of stocks to hold as a baseline and multiplier is a parameter we determine.
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5. Analysis and results

In this section, we start by comparing the predictive performance of our models before evaluating

the performance of trading strategies relying on our predictive models. Trading performance

is first evaluated without transaction costs, before taking direct transaction costs into account.

All performance evaluation is based on the performance on the out-of sample test set, consisting

of 4 750 consecutive trading days, starting 29 December 1998 and ending on 27 November 2017.

5.1 Predictive models

We have seven predictive models that are considered for test set comparisons. Three of the

models are econometric and machine learning models that serve as benchmarks for the other

four LSTM variations. See methodology chapter and appendix B for deeper explanation of

intuition and architecture of the models:

• Logistic (benchmark): Logistic regression, trained on each stock.

• RAF (benchmark): Random forest, trained on each stock.

• SVM (benchmark): Support vector machine, trained on each stock.

• LSTM i: LSTM, one layer, trained on each stock.

• LSTM a: LSTM, one layer, trained on all stocks.

• LSTM d: Stacked LSTM with two layers, trained on all stocks.

• LSTM f: LSTM, one layer, trained on each stock with six independent variables (returns,

bid-ask spread, volume, USD/NOK, moving averages of stock returns)
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5.2 Predictive performance

Table 5.1: Different measurements of predictive performance for all models

Logistic RAF SVM LSTM i LSTM a LSTM d LSTM f

Positive predictions share 0.5479 0.658 0.6254 0.6725 0.8147 0.8408 0.4867

Directional accuracy 0.5034 0.5232 0.5153 0.5286 0.528 0.5317 0.5161

Positive accuracy 0.5087 0.5328 0.5282 0.5361 0.5295 0.5307 0.5371

Negative accuracy 0.497 0.5046 0.4937 0.5131 0.5216 0.5367 0.4962

Recall1 0.5507 0.6742 0.6353 0.6933 0.8296 0.8581 0.5027

F1 score2 0.5289 0.5952 0.5769 0.6047 0.6464 0.6559 0.5194

Binary cross entropy3 0.7673 0.7274 0.6958 0.6938 0.6923 0.6917 0.7662

1 The fraction of correct positive predictions among all the actual positive observations.

2 The harmonic mean between positive accuracy and recall.

3 How far the predicted probabilities are from the true value.

We see that the directional accuracy of all models are above 50%, which is better than a random

guess. However, we see that the LSTM d performs the best with accuracy of 53.17% while our

least sophisticated benchmark model, the logistic regression, shows an accuracy of 50.34%.

Except positive accuracy, the LSTM d model performs the best on all measurements, including

binary cross entropy which is an important measurement for trading performance because it

is the only measurement taking into account how far the predicted probabilities are from the

true outcomes, which are the probabilities used to determine portfolio composition later on.

We observe that the LSTM models perform quite similar, with the LSTM f standing out with

a much higher binary cross-entropy. Surprisingly small differences in accuracy scoring have

enormous effects on the portfolio performance, which we will see later on.

An important question is whether or not our models’ predictive performance is statistically

significant better than just choosing stocks at random. If that were the case we might as well

stop right away and try a different approach. If the accuracy was indeed 50%, we could model

the number of correctly classified stocks X as a binomial distribution, approaching a normal

distribution due to the large number of observations:

X ∼ B(n = 273750, p = 0.5, q = 0.5) −→ X
appr.∼ N (µ = n ∗ p, σ =

√
npq) (5.1)
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We find a probability of 5.8e-240 (≈0) that our LSTM d model has a true accuracy of 50%.

We can therefore conclude that this model is statistically significant more accurate than just

choosing stocks by random. Doing the same calculation for the logistic regression, we find a

p-value of 0.0005, meaning that it is also statistically significant more accurate than a coin toss

at a 5% confidence level. All other models are statistically significant better than a coin toss at

any reasonable significance level.

5.3 Trading performance

While predictive performance measured by metrics such as accuracy and binary cross entropy

are important, what really matters for our intended purpose is how trading strategies perform

on the basis of those predictions. Hence, we backtest simple long trading strategies based on

the predictions from our considered models. We will start by not considering transactions costs,

before we move forward with our best performing model and see how it performs after direct

transaction costs.

5.3.1 Before transaction costs

All our predictive models produce a probability that a given stock will have a return greater

or equal to the cross-sectional median of all constituent stocks one day ahead. The constituent

stocks are then ranked based on their probabilities, and an investment portfolio of the K stocks

with the highest probabilities are constructed. At every time t, all funds are invested in K stocks

with each stock having the same weight (1/K), which means that the portfolio is rebalanced

frequently.
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Table 5.2: Trading performance of all models (K = number of stocks in portfolio)

Annualized Logistic RAF SVM LSTM i LSTM a LSTM d LSTM f

K = 5

Return -0.0168 -0.064 0.1364 0.6342 1.0595 0.8255 0.9453

Standard deviation 0.3732 0.3604 0.2641 0.2876 0.3163 0.3490 0.3872

Sharpe ratio -0.1321 -0.2678 0.3936 2.0926 3.2468 2.2726 2.3573

Max drawdown1 0.9304 0.9661 0.7022 0.4805 0.5805 0.5964 0.6221

VaR 5%2 -0.6306 -0.6568 -0.2979 0.1613 0.5392 0.2516 0.3084

K = 10

Return -0.0095 -0.0566 0.0822 0.5265 0.7592 0.6173 0.7043

Standard deviation 0.2968 0.2968 0.2143 0.2318 0.2544 0.2801 0.3057

Sharpe ratio -0.1417 -0.3001 0.232 2.1309 2.8562 2.088 2.1972

Max drawdown 0.8878 0.9312 0.6584 0.5032 0.6144 0.6253 0.6419

VaR 5% -0.4977 -0.5447 -0.2702 0.1452 0.3407 0.1566 0.2014

OSEBX had an annualized return of 10.10%, std of 22.7%, Sharpe ratio of 0.30 and maximum drawdown of 64.1%.

Sharpe ratio calculated using average risk-free rate of 3.25% annually (3-year Norwegian Government Bond).

1The maximum loss from a peak to a trough for the portfolio, before a new peak is attained.

2Annual value at risk. There is a 5% probability of realizing a return lower than this number during a year,

computed using annualized return and standard deviation.

From table 5.2 we can conclude that the simple LSTM model trained on all stocks (LSTM a)

seems to generally outperform all the other models. We see that the model has the highest return

and Sharpe ratio for all portfolio sizes. When looking at the risk characteristics, LSTM a also

performs well against the other LSTM models except showing higher risk in terms of maximum

drawdown and standard deviation than the LSTM i.

Returns are generally higher for the low K portfolio, which seems reasonable as we then invest

where our predictive models are most confident. When looking at the Sharpe ratio, we see that

this is highest for the K = 5 portfolio for all Deep Learning techniques employed (except for the

LSTM i model). The higher return of the low K portfolio comes at a cost in terms of increased

risk. We get a higher standard deviation due to the lack of diversification and the high impact

that occurs every time we miss on an investment. This pattern is true across all models and

the standard deviation range from 21.4% for the SVM model with 10 stocks, up to 38.7% for

the LSTM f model with 5 stocks.

32



An interesting finding is the fact that the LSTM models does not show a higher maximum

drawdown than the OSEBX (64.1%), which we might have expected for a more volatile portfolio.

For this metric we can not observe the same pattern across portfolio sizes. Despite portfolios of

10 stocks being more diversified, the maximum drawdown does not seem to be systematically

lower for these portfolios. The same applies for the annual value at risk, where we cannot

observe systematic differences across portfolio sizes. However, we do observe that the LSTM

models have significantly better value at risk, much due to the fact that the return is extremely

high for these models before accounting for transaction costs.

Figure 5.1: Trading performance before transaction costs (K = 5)

A graphical inspection of figure 5.1 tells the same story in terms of portfolio return as discussed.

We observe that all models have been highly correlated to each other and the OSEBX index

itself as we would expect when trading with the same selection of stocks. The LSTM model

with additional independent variables outperformed all others from 1999 until 2011, while the

simple LSTM model trained on all stocks outperformed from 1999 to 2012 and going forward.

We can also note that all strategies based on the LSTM models have outperformed the OSEBX

overall, while the other machine learning and econometric technique based strategies have under-

performed or performed marginally better than the benchmark.

An interesting finding is that strategies relying on the LSTM model trained with additional

independent variables (LSTM f ) perform much better than we would expect based on the

accuracy scoring in table 5.1. The model performs better in terms of Sharpe ratio than the
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regular LSTM network (LSTM i) and the model with two layers (LSTM d), despite having

a lower accuracy and higher binary cross entropy. Furthermore, it is interesting to note that

the model showing the best trading performance (LSTM a) was not among the best predictive

performers in the preceding section.

5.3.2 After direct transaction costs

In the preceding sections we saw that the model trained on all stocks (LSTM a) with K = 5

outperformed all the other models before transaction costs measured by the Sharpe ratio. In

this section, we therefore evaluate the performance of this model after direct transaction costs.

Whereas it might be easy to obtain good results prior to transaction costs, it is the results after

transaction costs that really matters. We therefore apply a direct transaction cost of 2.9 basis

points (round-trip cost of 5.8 basis points) to every trade performed, whenever we would need

to buy or sell a stock.

From figure 5.2 we see that annualized return is reduced by 27 percentage points, which might

seem lower than expected from the transaction cost of 2.9 basis points. This is because transac-

tion costs are only applied when buying or selling stocks, and the portfolio does not rebalance all

the stocks at every time step. The transaction cost will have the effect of reducing the expected

return, but will not affect the analysis from the previous section further due to the fact that

this is subtracted after the model have been trained, and does not change its behavior.

As the stock markets are likely to have changed after the financial crisis in 2008, an important

step of evaluating the model is to analyze the performance for the period before and after the

financial crisis.
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Figure 5.2: Trading performance after direct transaction costs (K = 5)

Full period 1999-2008 2009-2017 2015-2017

Annualized LSTM a OSEBX LSTM a OSEBX LSTM a OSEBX LSTM a OSEBX

Return 0.8914 0.1010 0.9488 0.0644 0.8141 0.1414 0.2601 0.1233

Standard deviation 0.3159 0.2266 0.3286 0.2416 0.3001 0.2084 0.2486 0.1671

Sharpe Ratio 2.7189 0.3022 2.7888 0.1319 2.6045 0.5226 0.9157 0.5434

Max drawdown 0.5972 0.6410 0.5972 0.641 0.3317 0.2879 0.1806 0.2209

VaR 5% 0.3718 -0.2717 0.4084 -0.3331 0.3205 -0.2013 -0.1488 -0.1516

35



For the period from 1999 to the end of 2008, we observe a clear out-performance of the LSTM

model over the OSEBX benchmark. The performance from 2009 until the end of our testing

period is still strong, while not performing as strongly as in the preceding period.

Exploring this further, wee see from the table in figure 5.2 that the performance over the last

three years is much lower than in the preceding years with a Sharpe ratio of 0.92 compared

to 2.72 for the whole period. The volatility is somewhat lower for this period, so the Sharpe

ratio decrease is driven by the reduced annualized return. Moreover, the maximum drawdown

of 59.7% over the whole period occurs during the financial crisis in 2008, which is lower than

the OSEBX maximum drawdown of 64.1% for the same period.

We see that the relatively modest direct transaction cost makes a large impact on the annualized

return due to the frequency of the trading. We test how high the transaction cost could have been

before the LSTM model would have a Sharpe ratio similar to the benchmark OSEBX (0.30),

and find the break-even transaction cost to be approximately 20.5 basis points. The break-even

cost might seem very high, but is due to the fact that we do not necessarily rebalance the whole

portfolio at every time step.

While only taking the direct transaction cost into account is a shallow assumption for actual

trading performance, our opinion is that this is an important part of the thesis due to findings

in previous literature based on similar assumptions. Hence, we use the same method for the

sake of comparability.

5.3.3 Portfolio analysis and stock selection

It is very interesting to analyze what types of stocks the LSTM model from the previous section

holds in its portfolio, and what types of strategies it follows. By doing so we also shed some

light into what is often criticized as a black-box model. We start by looking at the pattern in

terms of return and volatility exhibited by the selected stocks in the period prior to selection.

By analyzing the daily returns for the 240 previous days of when the chosen stocks are picked,

we discover some very interesting patterns.
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Figure 5.3: Average accumulated return of selected stocks over the 240 days prior to selection.

Based on LSTM a with K = 5.

From figure 5.3 we observe that the selected stocks have underperformed the OSEBX average

in the period prior to selection. The selected stocks are on average performing at par with the

market for the first 150 days, but underperform during the last 90 days. The selected stocks

especially underperform in the very last days before selection, loosing on average 3.4% of their

value in the last five days.

It might be counterintuitive to invest in stocks doing poorly in the recent past, but it is similar

to a widely used strategy called short term mean-reversion (Poterba & Summers, 1987). Ap-

parently, our model has discovered a well known trading strategy on its own, without any input

or instructions from us. This might just partly explain the behaviour of the model, but it is

still interesting to observe this behavior from a machine without any knowledge beyond daily

stock returns.

In addition, we calculated the corresponding standard deviation and beta of the stocks in the

preceding 240 days before selection. We find an average portfolio standard deviation of 0.195

and a beta of 0.88, compared to a standard deviation of 0.203 for the market portfolio (OSEBX).

In terms of the beta, it is somewhat lower than expected. This might be explained by the fact

that despite the portfolio having a similar volatility as the OSEBX, it moves differently than the

market due to the choice of under-performing stocks. Another explanation might be how beta
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values are calculated in our case. We calculate beta as the co-variance of our average portfolio

return with the average OSEBX return divided by the variance of the average OSEBX portfolio,

which equally weights all the constituents, while in reality they should be weighted by market

capitalization.

Table 5.3: Descriptive statistics for the stocks selected.

LSTM Portfolio OSEBX

Stocks traded total 189 235

Average daily portfolio turnover 28.45% -

Average cumulative return (t-240 to t) 6.94% 14.07%

Average standard deviation (t-240 to t) 19.47% 20.29%

Average Beta 0.88 1

Median market cap 12 240 11 458

Median turnover by value 64 496 27 333

Median free float % 61 62

Median bid-ask spread (bp)% 82 102

Cumulative return and standard deviation based on equally-weighted average of the OSEBX constituents.

Based on model LSTM a with k=5.

Market cap, turnover by value and free float for 20 most traded stocks of LSTM portfolio,

retrieved from Reuters Datastream December 2018.

Further statistics on the specific 20 top stocks can be found in appendix C.

We also analyze how many trades and how many stocks are being held over the whole period.

The LSTM model traded in 189 out of 235 stocks available and performed on average 2.85

trades each day, giving a daily portfolio turnover of 28.45% (10 trades would be maximum if

we both bought 5 stocks and sold 5 stocks at every time step).

Moreover, we have analyzed our LSTM model’s top 20 traded stocks over the whole period

to understand further the stocks chosen by the model. We observe a range from small cap,

ill-liquid stocks like Odfjell to some of the most traded stocks on OSE like Norsk Hydro and

Marine Harvest. Of the top 20 stocks, 14 are listed today. Median daily volume turnover by

value for these stocks were 64 496 for 2018, compared to 27 333 for all constituents on OSEBX,

which is surprisingly high compared to what we expected. The median market capitalization
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for these stocks are about the same as the median for OSEBX. The median percentage of free

float of our selected stocks are quite similar to that of the OSEBX. We also see that the median

bid-ask spreads of the selected stocks are lower than for the OSEBX, further implying that the

stocks are more liquid.

To summarize, the stocks being picked can be characterized as especially bad performers over

the last 5 days, with moderate volatility, lower beta than expected and higher turnover by value

than the OSEBX median. It seems evident that the model follows a strategy that exploits

short-term mean-reversion, while the stocks it trades in seems to be more liquid than expected.

5.3.4 Our findings relative to previous literature

Fischer and Krauss (2018) performed a similar analysis on the constituents of the S&P 500, and

found a strong out-performance of the Deep Learning driven strategies from 1992-2015 with a

Sharpe ratio of 5.8 before transaction costs. However, they found that there were no excess

returns for the period 2010-2015. Our test period starts out in 1999 and considers a different

stock universe, so the results are not directly comparable. Since the S&P 500 includes 500 stocks

as opposed to the OSEBX averaging 63 stocks, strategies based on the S&P 500 are likely to

take advantage of a larger variation between stocks and more certain predictions for the top

K stocks, and thus likely to achieve a higher return and Sharpe ratio. We also find returns

that are somewhat decreasing the closer we are to the present day, but as our analysis above

shows the excess returns are still present over the last three years. This might indicate that the

exploitable inefficiencies on the S&P 500 have been arbitraged away, while the potential still

exists on the OSEBX.
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6. A practitioners approach

In the previous chapter we followed the classic academic approach where we only included simple

trading strategies and only took the direct transaction costs into account. However, this ignores

the majority of the real-world transaction costs and as such we need to also take those into

account to really understand the strategy performance. In this chapter, we include the effects

of the bid-ask spread and seek to implement strategies that will overcome the significant cost

levels. We also train models on returns adjusted by the bid-ask spread and other independent

variables and compare their performance to those only trained on simple returns. Finally, we

analyze which stocks are selected and how it differs from those found in the previous chapter.

6.1 Transaction cost analysis

As defined in the theory chapter, transaction costs can be decomposed into direct transaction

costs (commissions) and indirect transaction costs (market impact, implementation shortfall).

In this chapter, we also include the effects of market impact and implementation shortfall. We

avoid implementation shortfall by trading at the bid/ask prices to ensure that our portfolio

is the preferred portfolio (it is hard to simulate the implementation shortfall ex-post with our

data set). Furthermore, our data set only includes the closing bid and ask prices, and does not

include the order depth and volume allocated to the given bid and ask prices. Hence, the true

market impact might be higher than what we calculate.

Direct transaction costs are set to 2.9 basis points, and we find the median relative bid-ask

spread in our data set to be substantial at 102 basis points. We find a median bid-ask spread

of 142 basis points from 1999-2008, and a median bid-ask spread of 75 basis points from 2009-

2017. This is somewhat lower than Ødeegard’s (2009) findings of a median bid-ask spread at

Oslo Stock Exchange of 200 basis points from 2000-2008, likely due to OSEBX representing the

most liquid companies listed on the OSE. The spread will lead to a very high median round-trip

transaction cost of 107.8 (102 + 2.9 * 2) basis points.
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6.2 Trading performance after total transaction costs

The best-performing model in the previous chapter had an annualized return of 89%, Sharpe

ratio of 2.72 after direct transaction costs and a break-even transaction cost of 20.5 basis points.

When bid-ask spreads are taken into account, with a median of 102 basis points, it is clear that

this strategy is unlikely to be viable. We therefore train different LSTM models on returns

adjusted for the actual bid-ask and other independent variables, as well as implementing more

advanced strategies to reduce turnover and transaction costs.

6.2.1 Training on spread-adjusted returns

We consider five different LSTM models with the following independent variables:

• LSTM Standard: Simple returns. Best performing model from previous chapter.

• LSTM Spread: Spread-adjusted simple returns.

• LSTM Var3: Spread-adjusted simple returns, volume and bid-ask spreads.

• LSTM Var3D: Same as Var3, where the independent variables are de-noised.

• LSTM Var8D: Same as Var3D, as well as 50- and 200-day moving average stock price,

and de-noised USD/NOK fx rate, 3-year and 10-year government bond yields.

Figure 6.1: Trading performance after total transaction costs (K = 10)

(a) Simple vs spread-adjusted returns (b) Additional independent variables
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From the graph to the left in 6.1 we see that the model trained on the spread-adjusted simple

returns by far outperform the model trained on simple returns, however still showing a negative

annualized return of -12.7%. From the graph to the right, we see that additional independent

variables improves the performance of the models. We see that the model with 8 denoised

independent variables outperform the other models with an annualized return of 7%.

Table 6.1: Trading performance after total transaction costs (K = 10)

Annualized LSTM standard LSTM spread LSTM var3 LSTM var3D LSTM var8D OSEBX

Return -0.7494 -0.1273 0.0396 0.0566 0.0698 0.1010

Standard deviation 0.2701 0.2308 0.2510 0.2504 0.2622 0.2266

Sharpe Ratio -2.8945 -0.6924 0.0283 0.0964 0.1423 0.3022

Max drawdown 1.0000 0.9422 0.7621 0.7932 0.7489 0.6410

VaR 5% -1.1937 -0.5070 -0.3732 -0.3552 -0.3615 -0.2717

By analysing table 6.1 the most important insight is the fact that none of the models beat the

OSEBX in terms of risk-adjusted return on average. The poorest performing models are not

worth investigating further. The LSTM standard and LSTM spread are declining over the whole

period, and the max drawdown measurement will therefore count this as one long drawdown.

On the other side, the LSTM var8D is performing relatively good. Due to lower return and

higher volatility compared to the OSEBX, the Sharpe is obviously lower. Despite this, from the

graphical inspection on the previous page, we see that this model outperformed the OSEBX

from 1999 until 2014.

6.2.2 Imposing constraining strategies

We move forward with the model with eight de-noised independent variables (LSTM var8D)

and implement different constraining strategies in order to see if we can improve performance.

The parameters for the constraining strategies are chosen as they gave the best performance,

and are outlined below:

• Volume: only allows trading in the stocks that have had an average trading volume over

the last ten days, that is over the 28th percentile of trading volume that day

• Monthly: rebalancing is only performed every 20th trading day.

• Bet sizing: adjusts the weights based on the standardized predicted probabilities.
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• Threshold: only invests when the predicted probability is above 77%.

• Spread: only invests if the average spread over the last ten trading days is less than 100

basis points.

• Turnover: makes sure that stocks are not removed from the portfolio if they are part of

the predicted top 15 (K*3) stocks the following day.

Figure 6.2: Trading performance of constraining strategies (K = 5)

Figure 6.2 shows the performance of the different constraining strategies, as well as the bench-

mark OSEBX and the non-constrained strategy (LSTM var8D from the previous section). We

see that all the constraining strategies perform better than the non-constrained strategy, except

for the spread-restricted strategy. This is likely due to the the fact that the model is already

trained on returns adjusted for the bid-ask spread, and that further constraints of the bid-ask

spread thus are redundant. We also tested a constraining strategy that only rebalanced the
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portfolio weekly (every 5th trading day), but this did not outperform the monthly strategy. We

clearly see that the Turnover constrained strategy outperforms all the other constraints, and

is the only strategy that outperform the OSEBX benchmark over the whole period. When all

constraints (except spreads) isolated improve the performance, it is reasonable to believe that

combining them altogether will lead to even better performance. It does not make sense to com-

bine the Turnover and Monthly strategies, as they both restrict turnover and thus essentially

does the same. Therefore, we combine the volume, bet sizing, threshold and turnover strategies

to one combined strategy. However, we find that the performance of this combined strategy

(with different parameter combinations) does not outperform the turnover strategy on its own.

Figure 6.3: Trading performance after total transaction costs (K = 5)

With an annualized return of 14.5% and a Sharpe ratio of 0.37, the Turnover strategy outper-

forms the OSEBX with a return of 10.1% and a Sharpe ratio of 0.30. We also see that the

strategy seems to under-perform in recent years. Moreover, maximum drawdown and value

at risk shows that the risk is higher for our portfolio than just holding the index portfolio

(OSEBX). We follow Lopez De Prado (2018) and test whether the excess risk-adjusted returns

are statistically significant by calculating the Probabilistic Sharpe ratio. We find that we can

not reject the null hypothesis of no significant difference with a p-value of 0.44. Based on our
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relatively extensive search of different predictive set-ups and constraining strategies, we can

therefore not conclude that LSTM predictions seems to be profitable to trade on alone.

6.2.3 Portfolio analysis and stock selection

Figure 6.4: Accumulated return over the t = 240 lookback days the model used to choose which

stocks to hold in portfolio at time t, with K = 5.

It is interesting to see if there are large differences between the choices of this portfolio com-

pared to the portfolio found before total transaction costs where applied. When looking at the

performance of the selected stocks prior to inclusion in the portfolio, we see that the stocks we

invest in on average have performed better than the (equally-weighted) average of the OSEBX

constituents over the last 240 days. More interesting is the fact that we do not observe the

strong short-term mean-reversion as we observed in the previous chapter. This is likely due

to the fact that the previous model found exploitable and profitable short-term mean-reversion

patterns before taking the total transaction costs into account, but when the bid-ask spread

is included these patterns are not profitable to act upon. In this case, it might seem as if the

model follows a momentum strategy and pick stocks that have outperformed in the last period.

When looking at the properties of the returns of the stocks we invest in in the previous 240 days,

we see that the average standard deviation is 27.9% and average Beta is 1.17. Compared to the
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average standard deviation of the OSEBX constituents at 20.3%, we see that our model now

prefers stocks with high volatility where it previously selected stocks with a similar standard

deviation of the OSEBX.

Table 6.2: Descriptive statistics for the stocks selected before and after spreads.

Before spreads After spreads OSEBX

Stocks traded total 192 61 235

Average daily portfolio turnover 46.75% 0.3% -

Average cumulative return (t-240 to t) 7.45% 17.1% 14.07%

Average standard deviation (t-240 to t) 19.52% 27.9% 20.29%

Average Beta 0.8 1.17 1

Median market cap 27 052 33 749 11 458

Median turnover by value 31 914 113 306 27 333

Median free float % 60 63 62

Median bid-ask spread (bp) % 82 65 102

Cumulative return and standard deviation based on equally-weighted average of the OSEBX constituents.

Based on model LSTM a and LSTM var8D with a Turnover constraining strategy (K = 5).

with a Turnover constraining strategy.

Market cap, turnover and free float based on the top 20 stocks held by LSTM portfolios,

retrieved from Reuters Datastream December 2018.

Further statistics on the specific 20 top stocks can be found in appendix C.

From the table above we see that this model is heavily constrained and only trades in a total

of 61 stocks of the 235 possible candidates, and has a significantly reduced turnover with an

average daily portfolio turnover of 0.3%. When looking deeper into the stocks selected, we see

that the median daily traded volume by value of the top 20 stocks invested in is 113 306, more

than four times the median of the OSEBX constituents at 27 333. This is also more than three

times higher the median traded volume under the optimal portfolio from the previous chapter.

From the top 20 stocks held we observe many liquid stocks with high market capitalization,

with a median market capitalization that is far above the OSEBX average. We also see that the

model invests in stocks with a lower median bid-ask spread than the model from the previous

chapter.
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To summarize, we see that our model now has a strongly reduced turnover and does not exploit

the same short-term mean-reversion inefficiency as we found in the previous chapter. We also

see that the strategy invests in liquid, volatile stocks with high market cap and turnover by

value, as well as relatively low bid-ask spreads. This is in line with what we would expect given

that the model now have been directly penalized for the bid-ask spread during training, as well

as portfolio turnover being explicitly constrained.
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7. Discussion
Throughout this thesis we have gone through some technically challenging topics and theories.

Despite our effort to account for all possible transaction costs and effects, some questions still

stands unanswered. In this chapter we will elaborate on the the general challenges of doing

backtesting, robustness of our method, our results in light of the Efficient Market Hypothesis

and finally discuss the inherent value of our findings and the future of Deep Learning in financial

markets. We will also elaborate on relevant areas of further research.

7.1 Backtesting challenges

7.1.1 Transaction costs

Despite the model taking into account the direct transaction cost associated with each trade

and the historical bid-ask spread, it is not possible to account for the actual transaction costs

that had occurred if this strategy were implemented - then we would have to travel back in

time and execute the strategies. Our data set does not give us the volume available at different

bid-ask prices, so we can not test how the portfolio size would affect returns due to price impact.

Another issue is the fact that we have used an average direct transaction cost to illustrate the

direct commissioning for trades over the whole period. Most likely this cost was higher in the

early 2000s than today due to physical brokers compared to today’s electronic solutions. This

will lead to an overestimation of returns early on and push our annualized return and Sharpe

ratio higher than it actually would have been.

7.1.2 Problem of false discoveries

We have to be very careful when evaluating how good our strategies and models are. Say we try

100 different predictive models, at least one of those is doomed to show very good results, just by

chance. This makes it really hard to determine whether or not good backtesting results are pure

luck or actually promising strategies that will perform well in the future. How to address this

challenge is perhaps the most fundamental question in quantitative finance (Lopez de Prado,
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2018). If there were a quick solution, hedge-funds, investment firms and individuals would yield

high returns with certainty, as they would know that a good backtested strategy would yield

good results in the future.

7.2 Efficient Market Hypothesis in light of our results

Our model would not be able to generate an excess risk-adjusted return if the weak form of

the Efficient Market Hypothesis holds. We see that the LSTM model has significant predictive

properties with a directional accuracy of 53.17%, and that strategies utilizing these predictions

with and without accounting for direct transaction costs generate significant excess returns.

However, when taking total transaction costs into account the performance in terms of Sharpe

ratio is not significantly better than OSEBX. Hence, we can state that our model is able to

extract patterns from historical prices and predict future returns with a certain confidence, but

it does not seem to be profitable to trade on the predictions alone due the substantial transaction

costs on the OSEBX. Therefore, we can not conclude that the weak-form EMH does not hold

on the OSEBX.

We see that the performance stagnates somewhat in recent years. This can indicate that the

efficiency of the OSEBX constituents have increased over time, and might be due to increased

trading that implement similar predictive models and strategies. Another more likely reason is

that macroeconomic (systematic) risk have dominated from 2008 going forward and have some-

what reduced the performance of our models as they leverage the firm-specific (unsystematic)

risk. An interesting finding is the fact that Fischer and Krauss 2018 found the same pattern

for the S&P 500, only that the diminishing returns started much earlier than for the OSEBX.

This seems to strengthen our initial assumption that the OSEBX is less efficient than the S&P

500, which consists of more liquid stocks.

49



7.3 The inherent value of our predictive model

While it does not seem to be profitable to trade on the predictions alone, we see that the

predictive performance of our model can make it suited to complement other, more complex

strategies in order to increase their profitability. Quantitative funds are often driven by opti-

mization models that leverage signals generated by different types of models. A typical use-case

for our prediction model could therefore be as a signal generator for a larger trading strategy

optimization model. It might also be used as a supporting tool for portfolio managers and pro-

fessionals to guide them in their decision-making process, where other predictive models might

currently be used.

7.4 How Deep Learning predictions might affect financial

markets

We ask ourselves whether Deep Learning predictions might improve market quality in terms of

price efficiency and liquidity. There is one very appealing reason for why it might improve market

quality. One of the most fundamental assumptions in finance is that investors act rational. This

assumption has proven over time to not always hold, people are affected by feelings and execute

trades based on it. An algorithm on the other hand can be seen as perfectly rational since it

will never act on feelings.

To understand why it might lower market quality, a thought experiment might be practical.

Imagine a stock exchange were absolutely all trades were executed by algorithms using the

same perfect prediction model. If markets had a predictive model that could predict the price

tomorrow with 100% certainty, all investors would act on it today and the prediction would turn

out to be wrong. Hence, one might say that predicting the predictable causes the predictable to

become unpredictable (Wright, 2018). A model that can predict the future with 100% certainty

is of course not possible, but the dynamics of the thought experiment stands. Moving on, a

danger with similar algorithms doing most trades is that they are likely to perform the same

trades at the same time. This will in turn lead to reduced liquidity if every market participant

wants to perform the same trade (e.g. buy), and no market participant want to be on the

opposing side of the trade (e.g. sell).
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7.5 Further research

We see that the emerging field of financial Deep Learning holds much promise, and see many

areas of further research within the field. Firstly, one can do more research on refining the

predictive models used. Other Deep Learning algorithms and models might be implemented,

and deeper LSTM models with more layers and more complex structures might be tested. One

of the key limitations of LSTM networks are that they are very computer intensive, and hyper-

parameter optimization is thus a very time-consuming task. Further research might perform

a more thorough hyper-parameter optimization that go further than our ad-hoc experimental

approach.

Secondly, within financial time series there is a large space of possible assets to predict and

different independent variables to be used for predictions. One might include other independent

variables outside historical stock prices, as well as perform different de-noising transformations

to the independent variables to reduce the noise that is fed to the predictor. Deep Learning

predictions might also be applied to other financial markets which are expected to be less efficient

than the OSEBX, or to markets that have a lower bid-ask spread and thus lower transaction

costs.

The third, and most directed towards the actual trading viability is to implement a model

where turnover, liquidity and transaction costs are being punished within the model instead of

reducing the signal as we do. One way to do this is through reinforcement learning, where an

agent iteratively makes trading decisions in a market environment and are rewarded based on

the performance of those decisions.
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8. Conclusion

Long Short-Term Memory (LSTM) networks are a promising Deep Learning technique for se-

quence learning inherently suitable for financial time series predictions. We therefore predict

daily out-of sample directional movements of the constituent stocks of the Oslo Stock Exchange

Benchmark Index (OSEBX) from 1999-2017 using LSTM networks, benchmarked against other

machine learning and econometric techniques. Our primary independent variable is historical

stock returns, and our approach thus implicitly tests the weak form of the Efficient Market

Hypothesis on the OSEBX.

We test the predictive performance of the different models, before evaluating the performance

of trading strategies based on the predictions. First we follow what seems to be the academic

standard within the field of evaluating performance prior to transaction costs and after direct

transaction costs. Secondly, we take a practitioners approach and seek to account for total

transaction costs through taking the bid-ask spread into account, as well as implement advanced

strategies to limit the impact of the high transaction costs. We also shed light into the black-box

nature of our models to understand which stocks are selected and what patterns are exploited.

Our results unambiguously show that the LSTM model outperforms all benchmark models in

terms of predictive performance with a directional accuracy of 53.17% . When testing simple

long trading strategies on top of the predictions, we find that the LSTM model outperforms all

other models with an annualized return of 106% and a Sharpe ratio of 3.25 prior to transaction

costs from 1999 - 2017. From a risk perspective, our model inherits higher volatility and has

about the same risk in terms of maximum drawdown as the OSEBX. After direct transaction

costs of 2.9 basis points, we find an annualized return of 89% and a Sharpe ratio of 2.72.

In comparison, the OSEBX had a Sharpe ratio of 0.30 over the same period. While seeing

somewhat diminishing excess returns in the last years, the excess returns are still present in the

last three years, which differs from similar studies on other stock universes where the excess

returns seems to be arbitraged away in recent years. We see that the model invest in stocks

with a diminishing return in the 90 days prior to investing, with a volatility similar to the

OSEBX constituents and average beta level of 0.88. In the last days prior to stock selection,

the selected stocks on average have a negative return of -3.4%. Hence it seems that the model
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follow a short-term mean-reversion strategy.

When total transaction costs are taken into account we see that the excess return is lost in

the bid-ask spread. We therefore train an LSTM model on spread-adjusted returns and other

independent variables, as well as implementing advanced strategies. This leads to a modest

Sharpe ratio of 0.37 over the whole period, which is not statistically significant higher than

that of the OSEBX. The risk of our model is also higher than the OSEBX with both higher

volatility, maximum drawdown and value at risk. Moreover, when analyzing which stocks this

model selects we can not observe the same short-term mean reversion as we did for the previous

model. The model now prefers historically over-performing stocks with higher volatility, higher

liquidity and lower bid-ask spreads compared to earlier. This is in line with what we would

expect given that the model now have been directly penalized for the bid-ask spread during

training, as well as portfolio turnover being explicitly constrained.

Even though the trading performance after total transaction costs is not significantly better

than the OSEBX, we see that LSTM networks have significant predictive properties far beyond

the predictive methods we compare it to. We believe that while it might not be profitable

to trade on the predictions alone, it can make a great tool for investment professionals to

complement other trading strategies. Based on our findings we can conclude that our model

finds inefficiencies on the OSEBX, but that it is not possible to generate an excess risk-adjusted

return by exploiting those inefficiencies. Hence, we can not conclude that the weak form of the

Efficient Market Hypothesis does not hold for the OSEBX constituents.
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9. Appendix

9.1 Appendix A: Theory

Recurrent neural networks and Long Short-Term Memory networks

In this section, we go deeper into the intuition behind recurrent neural networks and long

short-term memory networks. Recurrent Neural Networks (RNNs) can be thought of as multiple

copies of the same neural network over time where each network passes a message to its successor

(Olah, 2015). RNNs are thus able to capture dependencies over time and sequences, and

have shown incredible success within areas such as speech recognition, language modelling and

translation (Olah, 2015).

Figure 9.1: Illustration of a standard RNN. Source: Olah, 2015

Standard RNNs work very well for short-term dependencies, but struggle with long-term depen-

dencies as the gradients are multiplied backwards through the different looped network resulting

in exploding gradients or vanishing gradients (Skymind, 2018). An exploding gradient will lead

to oscillating weights and unstable learning, while a vanishing gradient will imply that nothing

can be learned in acceptable time (Hochreiter & Schmidhuber, 1997). Long Short-Term Mem-

ory networks were therefore proposed by Hochreiter and Schmidhuber in 1997 as a solution to

the vanishing/exploding gradient problem, and they are therefore superior in learning long-term

dependencies.
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Figure 9.2: Flow through an LSTM Network. Source: Colah, 2015

Where the standard RNN cell contains a single neural network layer, an LSTM network cell has

four neural networks interacting together. The cell contains a cell state Ct, a forget gate ft, an

input gate it and an output gate ot. A gate is the combination of a neural network layer and

a point wise multiplication operation, and a way to determine what information to let through

(Olah, 2015).

The cell state Ct runs as a conveyor belt through the cells, and contains the data that is

memorized from previous cells. The memory in the cell state is updated through each cell

through the forget gate and input gate (Olah, 2015). The forget gate layer ft determines which

part of the cell state (memory) to forget:

ft = σ(Wf ∗ [ht−1, xt] + bf ) (9.1)

The input gate layer consists of two neural network gate layers, one sigmoid layer it that

determines which values in the cell state we want to update, as well as a tanh layer C̃t that

produces candidate values to add to the cell state (Olah, 2015):

it = σ(Wi ∗ [ht−1, xt] + bi)

C̃t = tanh(WC ∗ [ht−1, xt] + bC)
(9.2)

The gates have now decided how much to keep from memory ft (forget gate layer), as well as

how much we will add to the memory it (sigmoid input gate layer) and which candidate values

to be added C̃t (tanh input gate layer). The cell state Ct is therefore update as follows, with ◦

denoting the Hadamard product:

Ct = ft ◦ Ct−1 + it ◦ Ct) (9.3)

The last step involves determining what values to output as our ŷ. Our output will be deter-

mined by our current input values xt, the previous output value ŷt−1 as well as the current cell
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state Ct. The sigmoid (σ) layer determines which parts of the cell state we will output, while

the cell state goes through a tanh transformation to get values between -1 and 1 (Colah, 2015):

ot = σ(Wo ∗ [ht−1, xt] + bo)

ht = ot ◦ tanh(Ct)
(9.4)
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9.2 Appendix B: Methodology

Our LSTM architecture

Figure 9.3: LSTM Network architecture.

Our primary independent variable are sequences consisting of 240 stock returns. The LSTM

network will then create 240 cells (one for each individual stock return) that each go through

the aforementioned LSTM operations, and sends the memory cell state and output forward to

the next cell. We use 50 hidden units, meaning that each cell produces 50 output values. At the

end of the sequence, the final cell produces the final output (50 values). Both since our output

is a binary classification problem, and to add depth to the model, these 50 output values is then

forwarded through a normal neural network layer that has one output neuron with a sigmoid

activation function, predicting either 1 or 0. The loss function is then calculated as the binary

cross-entropy, and all the parameters in the network are updated according to their individual

contribution to the loss function.
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Measures to reduce overfitting of our models

Firstly, we split between training, validation and test set to avoid overfitting to the training set

or overfitting to the test set. Secondly, after each epoch, training the model on all observations

while adjusting parameters, we compute the loss function on the training set and the validation

set. Once the loss function calculated on the validation set predictions stops decreasing, the

iteration stops and no more epochs are run. This process is called early stopping, and makes

sure that we do not overfit to the training observations, and improves the performance on

unseen data. We use an early stopping patience of 10, meaning that when validation loss has

not improved over 10 epochs, training is stopped and the best parameters (of those 10) are used

for test set prediction. Thirdly, we use dropout regularization of 10% within the recurrent layer

as recommended by Gal and Ghahramani (2016), meaning that a random fraction of the inputs

are being dropped, reducing the risk of over-fitting further.

Another way of reducing the risk of overfitting is controlling the relationship between the number

of observations and number of parameters in the network. The number of parameters trained

in the LSTM layer can be calculated as follows, where h denotes the number of hidden units

and i denotes the number of independent variables (Fischer & Krauss, 2018):

4hi+ 4h+ 4h2 = 4(h(i+ 1) + h2) (9.5)

In our case we have one independent variable and 50 hidden units, yielding 10 400 parameters.

We also have a normal neural network layer connected to the LSTM layer with 50 weights and

one bias term, yielding a total of 10 451 parameters to be trained. We have on average 32 000

training observations per study period (average 63 constituents * (750 training days - 240 days

lookback) Hence we end up with roughly 3 observations per parameter (32 000 / 10 451) to be

trained.

Hyper-parameters of all our models

Here we outline the hyper-parameter values for all the predictive models we have presented in

the thesis. All models used in chapter 6 have the same hyper-parameters as the LSTM a model

shown, and the only difference is which independent variables are used. All hyper-parameter

values that are not mentioned below are set to default values. Benchmark models follow the

same underlying methodology as the LSTM models, outlined in our methodology chapter. The
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LSTM i model has such a low number of hidden units (10) in order to maintain a reasonable

relationship between the number of observations and trained parameters. Since it fits to stocks

individually it only has 510 training observations. The LSTM f has a slightly higher number

of hidden units (15) since it also includes additional independent variables.

Table 9.1: Hyper-parameters for the LSTM models

LSTM i LSTM a LSTM d LSTM f

Number of layers 1 1 2 1

Hidden units layer 1 10 50 30 15

Hidden units layer 2 - - 20 -

Output neurons 1 1 1 1

Activation function (output neuron) sigmoid sigmoid sigmoid sigmoid

Optimizer RMSprop RMSprop RMSprop RMSprop

Epochs 1000 1000 1000 1000

Batch size 32 32 32 32

Learning rate 0.001 0.001 0.001 0.001

Dropout regularization 0.05 0.1 0.1 0.1

Table 9.2: Hyper-parameters for the benchmark models

Logistic RAF SVM

C 0.01 - 100

Solver / Kernel LBFGS - RBF

Number of estimators - 1000 -

Max depth - 8 -

Criterion - Entropy -

Gamma - - 0.01
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9.3 Appendix C: Analysis and results

Statistics top 20 traded stocks - optimal model before transaction costs

Ticker
Number

of trades

Market value

(MNOK)

Turnover by value

(000s NOK)

Percentage of

free float (%)
Beta

Royal Carribean Cruises1 RCL 471

Olav Thon Eiendomsselskap OLT 445 15 349 3 496 28 0.458

Odfjell2 ODF 445 2 004 575 55 0.151

Ekornes1 EKO 416

Orkla ORK 379 72 507 134 746 68 0.195

Storebrand STB 373 31 821 120 325 88 0.467

Avantor1 AVA 359

Profdoc PRO 351

Norsk Hydro NHY 341 86 422 326 269 59 0.742

Wilh. Wilhelmsen Holding ser. B WWIB 332 1 946 2 024 46 0.616

Hafslund HNB 331

REC Silicon REC 330 1 820 32 599 77 0.683

Steen & Strøm1 SST 326

Marine Harvest MHG 318 104 653 325 722 79 0.392

Kongsberg Automotive2 KOA 313

EVRY EVRY 312 11 458 6 825 41 -

Norwegian NAS 311 10 042 126 997 70 0.742

Petroleum Geo-Services PGS 305 6 601 96 394 81 1.521

DNO DNO 302 16 615 106 600 60 1.023

ATEA ATEA 300 13 021 13 499 61 0.356

Average 26 733 92 577 58 0.525

Median 12 240 64 496 61 0.463

OSE3 1 451 1 969 63

Median OSEBX4 11 458 27 333 62

Data retrieved from Reuters Datastream 04.12.2018

1) Not on OSE as of 04.12.2018

2) On OSE, but not constituent of OSEBX

3) Average of all constituent stocks as of 04.12.2018

4) Average of all constituent stocks as of 04.12.2018

Table 9.3: Data for 20 top traded stocks over period from 1999-2017. Turnover is calculated as

average daily turnover over the last year.
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Statistics top 20 traded stocks - optimal model trained on spreads

Ticker
Number

of trades

Market value

(MNOK)

Turnover by value

(000s NOK)

Percentage of

free float (%)
Beta

Norsk Hydro NHY 1500 86 422 326 269 59 0.742

Tomra Systems TOM 1000 33 749 37 156 66 0.552

Norwegian Air Shuttle NAS 1000 10 042 126 997 70 0.742

Prosafe PRS 1000 1 451 162 63 0.845

Telenor TEL 750 242 055 303 415 41 0.499

Tandberg1 TAA 750

BWG Homes1 BWG 750

ATEA ATEA 750 13 021 13 499 61 0.356

StepStone1 STP 728

Orkla ORK 500 72 507 134 746 68 0.195

Equinor EQNR 500 690 768 713 919 33 1.547

Opticom1 OPC 500

Schibsted ser. A SCHA 500 33 805 65 225 87 0.376

Marine Harvest MHG 500 104 653 325 722 79 0,392

Austevoll Seafood AUSS 500 23 799 38 555 44 0,171

TGS TGS 500 25 8474 113 306 90 1.507

SensoNor1 SEN 500

DSND Subsea1 SFJ 479

Profdoc1 PRO 386

Apptix2 APP 250 98 3 851 38 0.845

Average 108 701 178 133 59 0.699

Median 29 798 120 151 62 0.647

Median OSE3 1 451 1 969 63

Median OSEBX4 11 458 27 333 62

Data retrieved from Reuters Datastream 04.12.2018

1) On OSE, but not constituent of OSEBX

2) Not on OSE as of 04.12.2018

3) Average of all constituent stocks as of 04.12.2018

4) Average of all constituent stocks as of 04.12.2018

Table 9.4: Data for 20 top traded stocks over period from 1999-2017. Turnover is calculated as

average daily turnover over the last year.
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