
Norwegian School of Economics

Bergen, Fall, 2018

Forecasting Norwegian Inflation with
Deep Neural Networks

The application and comparison of different feedforward
architectures

Benjamin Aanes & Mathias Gullien

Supervisor: Walter Pohl

Master thesis, Economics and Business Administration,
Economics / Finance

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business Admin-
istration at NHH. Please note that neither the institution nor the examiners are responsible –
through the approval of this thesis – for the theories and methods used, or results and conclusions
drawn in this work.

This page intentionally left blank.

Preface

This thesis is written as a concluding part of our Master of Science in Economics and Busi-
ness Administration at the Norwegian School of Economics (NHH). The thesis is written in
conjunction with our majors in Finance and Economics.

Working with this thesis has been challenging and rewarding. We both have a keen interest in
macroeconomics, econometrics and big data, and have enjoyed exploring the possible synergies
between these fields. The most challenging part has been understanding and applying state-of-
the-art deep neural network methodologies. Through this process, we have increased our insight
into the field of neural networks for time-series applications.

We would like to thank our supervisor, Walter Pohl, who introduced us to the field of Machine
Learning through his course on Big Data, and who nudged us towards the sub-field of Deep
Learning. We would also like to thank Benjamin’s sister, who has been of great help reading
and giving feedback on our work.

i

Abstract

This thesis investigates the feasibility of applying deep neural networks to macroeconomic fore-
casting in the Norwegian economy. The thesis is intended for macroforecasters curious about the
possibility of utilizing these approaches for macroforecasting. Deep Neural Networks is the most
recent term coined for directed graphical models which act as universal nonlinear function ap-
proximators, optimized through back-propagation. Focusing on monthly Norwegian year on year
consumer price inflation, we design three different network architectures, one representing the
single hidden layer neural network ubiquitous in the literature and the remaining two represent-
ing recent developments in the field. We apply the modern and pragmatic approach to designing
network architectures, applying time-series cross-validation to tune network hyperparameters in
a problem specific setting, giving ample time to the construction of optimal networks. Each
network architecture is trained repeatedly to produce repeat ensemble forecasts of inflation, and
the predictive acuity of these ensembles are evaluated against common linear benchmarks. We
find that both in the 2000 - 2009 period, used for network design, and in the 2010 - 2017 period,
used for final evaluation, at least one of our neural network architectures outperforms the best
included benchmark for short term horizons. The forecasting improvements are generally found
in times of high volatility. Further, we find that the single hidden layer neural network is dom-
inated by a deep multi-layer perceptron with residual connections. In the evaluation period, a
deep convolutional neural network is the best overall forecast method, beating all benchmarks
up to the six month horizon. At the three and six month horizons, the improvement over the
best benchmark method is 18.2% and 10.6%, respectively. The convolutional neural network
performs similar to the best benchmarks at longer horizons. While there exist barriers to the
direct implementation of these networks in macroeconomic decision making, we argue, based on
our results and recent literature, that including these methods in large statistical model suites,
often applied by central banks, could indeed improve forecasting performance.

ii

Contents
Page

Preface i

Abstract ii

List of Abbreviations vi

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 3
2.1 Strengths of Neural Networks . 3
2.2 Neural Networks for Macroeconomic Forecasting 3
2.3 Weaknesses of Neural Networks . 5

3 Theory 5
3.1 Benchmark Models . 6

3.1.1 The Random Walk Model . 6
3.1.2 The ARIMA Framework . 6

3.2 Deep Neural Networks . 8
3.2.1 Neurons, the Perceptron and the Multi-Layer Perceptron 8
3.2.2 Convolutional Neural Networks . 10
3.2.3 Activation Functions, Normalization and Output Layers 12
3.2.4 Loss Functions and Optimization . 12
3.2.5 Hyperparameters, Capacity and Regularization 13
3.2.6 Residual Connections . 13
3.2.7 Repeat Ensembles . 14

4 Data 15

5 Methodology 17
5.1 Model Evaluation . 17

5.1.1 Evaluation Metrics . 19
5.2 Benchmark Selection Methods . 20

5.2.1 Random Walk Model (RW) . 20
5.2.2 ARIMA Methods Based on Information Criteria (ARBIC & ARAIC) . . 20
5.2.3 auto.arima Approach (AA) . 21
5.2.4 Autoregressive Model Selection (AR) . 21

iii

5.3 Neural Network Design . 21
5.3.1 Inputs and Normalization . 22
5.3.2 Number of Models in each Repeat Ensemble 22
5.3.3 Lag Selection . 23
5.3.4 Number of Hidden Nodes and Dropout Regularization 24

5.4 Final Network Architectures . 25
5.4.1 Neural Network (NN) . 25
5.4.2 Multi-Layer Perceptron (MLP) . 25
5.4.3 Convolutional Neural Network (CNN) 26

5.5 R Implementation . 27

6 Results 27
6.1 Validation Performance . 28

6.1.1 Short Term Forecasts: One and Three Month Horizons 28
6.1.2 Medium to Long Term Forecasts: Six and Twelve Month Horizons . . . 29
6.1.3 Overall Performance in the Validation Period 29

6.2 Test Performance . 29
6.2.1 Short Term Forecasts: One and Three Month Horizons 30
6.2.2 Medium to Long Term Forecasts: Six and Twelve Month Horizons . . . 31
6.2.3 Overall Performance in the Test Period 31

6.3 Test Performance by Year . 31
6.3.1 One Month Horizon . 32
6.3.2 Three Month Horizon . 33
6.3.3 Six Month Horizon . 33
6.3.4 Twelve Month Horizon . 34

7 Discussion 35
7.1 Main Findings . 35
7.2 What is the Best Forecasting Method for Inflation? 35
7.3 Are Neural Networks Feasible Macroforecasting Tools? 40
7.4 Strengths and Limitations . 41
7.5 Avenues for Further Research . 42

8 Conclusion 43

References 47

Appendices 48

A Network Tuning 49
A.1 Neural Network (NN) . 49

A.1.1 Neural Network (NN): Network Architecture 50

iv

A.1.2 Neural Network (NN): Validation Convergence 51
A.1.3 Neural Network (NN): Validation Forecasts 55
A.1.4 Neural Network (NN): Test Forecasts . 56

A.2 Multi-Layer Perceptron (MLP) . 56
A.2.1 Multi-Layer Perceptron (MLP): Architecture 58
A.2.2 Multi-Layer Perceptron (MLP): Validation Convergence 59
A.2.3 Multi-Layer Perceptron (MLP): Validation Forecasts 63
A.2.4 Multi-Layer Perceptron (MLP): Test Forecasts 64

A.3 Convolutional Neural Network (CNN) . 65
A.3.1 Convolutional Neural Network (CNN): Architecture 66
A.3.2 Convolutional Neural Network (CNN): Validation Convergence 67
A.3.3 Convolutional Neural Network (CNN): Validation Forecasts 71
A.3.4 Convolutional Neural Network (CNN): Test Forecasts 72

B Benchmarks 73
B.1 Autoregressive Models (AR): Model Selection . 73
B.2 Benchmark Coefficients in the Test Period . 73

B.2.1 auto.arima Approach (AA): Coefficients in the Test Period 73
B.2.2 Bayesian Information Criterion Approach and Autoregressive Model of

Order 2 (ARBIC/AR2): Coefficients in the Test Period 74
B.2.3 Akaike Information Criterion Approach: Coefficients in the Test Period . 74

C Error Measure Decomposition 75
C.1 Yearly RMSE and MAE in the Validation Period (2000 - 2009) 75
C.2 Yearly RMSE and MAE in the Test Period (2010 - 2017) 77

D Norwegian Inflation Series 79
D.1 Inflation Series 1921 - 2017 . 79
D.2 Inflation Series 1993 - 2017 . 79
D.3 First Differenced Inflation Series 1975 - 2017 . 80
D.4 Second Differenced Inflation Series 1975 - 2017 80
D.5 Summary Statistics for the validation and test periods 80

v

List of Abbreviations

Abbreviation Explanation
AA auto.arima approach
AR(p) Autoregressive model of order p

ARAIC ARIMA procedure selecting lowest AIC
ARBIC ARIMA procedure selecting lowest BIC
AIC Akaike Information Criterion
ARIMA Autoregressive Integrated Moving Average
BIC Bayesian Information Criterion
CNN Convolutional Neural Network
CPI Consumer Price Index
CPU Central Processing Unit
GPU Graphics Processing Unit
MAE Mean Absolute Error
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MA Moving Average
NN Neural Network
RMSE Root Mean Squared Error
RW Random Walk Model

vi

List of Tables

1 Root mean squared error (RMSE) and mean absolute error (MAE) for time series
cross-validation in the validation period . 28

2 Root mean squared error (RMSE) and mean absolute error (MAE) in the test
period . 30

3 Neural Network (NN) Validation: Different architectures and related RMSE . . 49
4 Multi-Layer Perceptron (MLP) Validation: Different architectures and related

RMSE . 57
5 Convolutional Neural Network (CNN) Validation: Different architectures and

related RMSE . 65
6 Autoregressive Models with Lags From One to Twelve 73
7 Yearly RMSE and MAE in the validation period (2000 - 2009) at the one month

horizon . 75
8 Yearly RMSE and MAE in the validation period (2000 - 2009) at the three month

horizon . 75
9 Yearly RMSE and MAE in the validation period (2000 - 2009) at the six month

horizon . 76
10 Yearly RMSE and MAE in the validation period (2000 - 2009) at the twelve

month horizon . 76
11 Yearly RMSE and MAE in the test period (2010 - 2017) at the one month horizon 77
12 Yearly RMSE and MAE in the test period (2010 - 2017) at the three month horizon 77
13 Yearly RMSE and MAE in the test period (2010 - 2017) at the six month horizon 78
14 Yearly RMSE and MAE in the test period (2010 - 2017) at the twelve month

horizon . 78
15 Summary Statistics for Validation and Test Periods 81

List of Figures

1 Directed flow graph of a perceptron model . 9
2 Directed flow graph of a multi-layer perceptron 10
3 Norwegian monthly year-on-year consumer price inflation 1975 - 2017 16
4 Time-series cross-validation . 18
5 Number of models to include in the repeat ensemble 23
6 Lag selection . 24
7 Architecture of the Neural Network (NN) . 25
8 Architecture of the Multi-Layer Perceptron (MLP) 26
9 Architecture of the Convolutional Neural Network (CNN) 26
10 Performance by year at the one month horizon 32
11 Performance by year at the three month horizon 33

vii

12 Performance by year at the six month horizon 33
13 Performance by year at the twelve month horizon 34
14 Neural Network (NN) Architecture . 50
15 Neural Network (NN) Validation Convergence: one month horizon 51
16 Neural Network (NN) Validation Convergence: three month horizon 52
17 Neural Network (NN) Validation Convergence: six month horizon 53
18 Neural Network (NN) Validation Convergence: twelve month horizon 54
19 Neural Network (NN): Out of sample forecasts in the validation period 55
20 Neural Network (NN): Out of sample forecasts in the test period. 56
21 Multi-layer Perceptron (MLP): Architecture . 58
22 Multi-layer Perceptron (MLP): Validation Convergence, one month horizon . . . 59
23 Multi-layer Perceptron (MLP): Validation Convergence, three month horizon . . 60
24 Multi-layer Perceptron (MLP): Validation Convergence, six month horizon . . . 61
25 Multi-layer Perceptron (MLP): Validation Convergence, twelve month horizon . 62
26 Multi-layer Perceptron (MLP): Out of sample forecasts in the validation period 63
27 Multi-Layer Perceptron (MLP): Out of sample forecasts in the test period . . . 64
28 Convolutional Neural Network (CNN): Architecture 66
29 Convolutional Neural Network (CNN) Validation: Validation Convergence, one

month horizon . 67
30 Convolutional Neural Network (CNN) Validation: Validation Convergence, three

month horizon . 68
31 Convolutional Neural Network (CNN) Validation: Validation Convergence, six

month horizon . 69
32 Convolutional Neural Network (CNN) Validation: Validation Convergence, twelve

month horizon . 70
33 Convolutional Neural Network (CNN) Validation: Out of sample forecasts, vali-

dation period . 71
34 Convolutional Neural Network (CNN): Out of sample forecasts in the test period 72
35 auto.arima cofficients in the test period . 73
36 ARBIC and AR2 coefficients in the test period 74
37 ARAIC coefficients in the test period . 74
38 Monthly Norwegian Year on Year Inflation, 1921-2017 79
39 Monthly Norwegian Year on Year Inflation, 1993-2017 79
40 Norwegian Inflation 1975-2017: First Difference 80
41 Norwegian Inflation 1975-2017: Second Difference 80
42 The inflation series for the validation and test periods 81

viii

1 Introduction

Forecasts of macroeconomic indicators, such as inflation, are paramount to decision making at
both central banks and in the private sector. Since the influence of monetary policy on the
economy works through transmission mechanisms with a substantial lag, policy makers must
make decisions on how to handle inflationary or deflationary pressures ahead of time (Szafranek,
2017). Through the transparency revolution brought forth by the new Keynesian formulation
of optimal policy, the forecasts themselves, as published in monetary reports, have become an
essential part of central banks’ modus operandi (Woodford, 2005). The forecasts of inflation
also have a direct influence over decision making in the private sector, through the effects of
monetary policy, and the expectations of market participants thereof, on the nominal value of
long-term commitments (Faust & Wright, 2013).

Forecasting macroeconomic series is a severely difficult task, and because of the importance
of accurate predictions of future movements in these series, a great deal of research has been
conducted on the subject. Several different approaches have been developed in an attempt to
aid decision making. Because of the complexity in the price dynamics of inflation in particular,
a large part of the research has been focused on elastic modelling frameworks (Szafranek, 2017).

Deep Neural Networks is the most recent term coined for directed graphical models which act as
universal nonlinear function approximators, optimized through back-propagation1 (Wang, Ma,
& Yang, 2014). The term succeeds artificial neural networks and connectionism as the marquee
under which data-driven mathematical models, originally designed after human brain function,
learn to predict from example. During the late 1990s - mid 2000s, several papers have focused on
the feasibility of applying these network models in time series forecasting. Among these, a small
fraction focused on forecasting monthly inflation and other macroeconomic variables (Hall &
Cook, 2017; McAdam & McNelis, 2005; Moody, Levin, & Rehfuss, 1993; Nakamura, 2005; Stock
& Watson, 1998). A majority of these papers has indicated that neural networks had either com-
petitive or superior performance relative to univariate and multivariate benchmark approaches
(Crone, Hibon, & Nikolopoulos, 2011). However, due to lacking methodological rigour, the
forecasting community was unable to come to a conclusion about the models’ predictive acuity
(Gonzalez, 2000).

The advent of new and improved techniques has re-ignited the interest for forecasting the macroe-
conomy using neural networks, especially at central banks (Chakraborty & Joseph, 2017; Hall
& Cook, 2017; Szafranek, 2017). Recently, Makridakis, Spiliotis, and Assimakopoulos (2018b)
found that a single hidden layer neural network is generally outperformed by statistical methods
such as the autoregressive integrated moving average framework. Based on these results, the
authors argue that machine learning theorists need to improve their models in order for them

1For a thorough explanation of back-propagation, see review by Rumelhart, Hinton, and Williams
(1986).

1

to become a viable forecasting tool.

While most previous research has focused on single hidden layer neural networks, Hall and
Cook (2017) find that networks utilizing a deep architecture and different network structures
outperform the Survey of Professional Forecasters2 in predicting the movements of monthly US
unemployment.

Enticed by this novel focus on deeper architectures and different network structures, this thesis
investigates the relevancy of applying these new neural network methods in forecasting the
Norwegian macroeconomy. Specifically, we focus on monthly year-on-year inflation in Norwegian
consumer prices in the period January 2010 - December 2017. Through the design and evaluation
of three different network structures, we investigate the predictive acuity of these methods
in macroeconomic forecasting compared to common linear benchmarks, and whether we can
improve upon the single hidden layer neural network often found in the literature.

The thesis is intended for macroeconomic forecasters curious about the possibility of utilizing
these novel approaches to forecasting economic time series, and dealing with small data time
series. Although the basis of our thesis is forecasting inflation through univariate autoregressive
specifications, we attempt to design a generalizable and pragmatic model validation-test harness
that is directly expandable to other time series, and that can take any number of features. This
leads to the following research questions:

1. (a) To what extent is neural networks relevant in forecasting Norwegian macroeconomic
indicators, such as inflation?

(b) Given that data is scarce, are there possible architectural implementations which
can improve performance over single hidden layer neural networks?

2. Are neural networks a feasible addition to the macroforecasting toolbox?

Our thesis contributes to the existing literature in several ways. Firstly, we follow Hall and
Cook (2017) in focusing on deeper architectures and different network structures. These ap-
proaches has, to our knowledge, not been applied to either inflation forecasting or the Norwegian
macroeconomy as a whole. We also compare these novel approaches to the single hidden layer
neural network, found in the literature, in order to assess whether additional gains in forecasting
accuracy can be achieved through extant, but somewhat neglected, architectural implementa-
tions. Additionally, we apply the modern and pragmatic approach to designing networks, as
described in Chollet and Allaire (2018), applying time-series cross-validation to tune network
hyper-parameters in a problem specific setting, giving ample time to the construction of optimal
networks.

2The oldest quarterly survey of macroeconomic forecasts in the US. See
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/

2

The thesis is structured as follows. Chapter 2 outlines previous research in the field of time
series forecasting with neural networks. Chapter 3 gives a brief introduction to the difference
between data modelling and machine learning and an outline of our benchmark models, before
delving into the theoretical foundations of neural networks. Chapter 4 details the gathering and
preprocessing of our inflation data. Chapter 5 explains our particular evaluation procedure, as
well as our approach to finding optimal benchmarks and how we design our neural networks.
Chapter 6 reports the results of our forecasting comparison. Chapter 7 discusses the relevancy of
neural networks for macroeconomic forecasting in light of our results, in addition thesis strengths
and limitations and potential future avenues of research. Chapter 8 concludes the thesis.

2 Background

2.1 Strengths of Neural Networks

Zhang, Patuwo, and Hu (1998) outline four distinguishing features of neural networks for time-
series forecasting. Firstly, neural networks are data-driven and self-adaptive, requiring few, if
any, prior assumptions about the functional relationship in question. Secondly, neural networks
generalize, they are able to learn from presented data and use this knowledge to predict on unseen
data. Third, neural networks are universal functional approximators, able to approximate any
continuous function to any desired accuracy. Fourth, neural networks are capable of modelling
nonlinear relationships.

The combination of non-linear modelling, and data-driven and self-adaptive nature makes neural
networks able to find nonlinear relationships without researchers having to manually implement
these relationships based on hypotheses.

2.2 Neural Networks for Macroeconomic Forecasting

Several papers have focused on forecasting inflation and other macroeconomic variables using
neural networks. Nakamura (2005) finds that a simple neural network outperforms autoregres-
sive benchmarks in forecasting US inflation at the quarterly frequency. This is expanded by
McAdam and McNelis (2005) who find that combining the forecasts of several neural networks
with different specifications outperform autoregressive benchmarks for the US, German, Italian
and Japanese consumer price inflation at longer time horizons.

Further work by Szafranek (2017) takes modelling ensembles to the extreme. The author cre-
ates a model ensemble consisting of 10 000 single hidden neural networks with slightly different

3

specifications, trained on bootstrap samples of inflation3. He finds that the model ensemble
significantly outperforms a battery of machine learning and econometric models aimed at fore-
casting monthly Polish headline inflation. This model ensemble is found to be especially suited
for forecasting inflation in small economies after 2011, where inflation has remained persistently
lower than the official inflation targets set by central banks.

Szafranek (2017) argues that including such models in the forecasting toolbox would be beneficial
to forecasting accuracy, especially in periods of structural change. Furthermore, he argues that
the combination of several models, both linear and nonlinear, univariate and multivariate might
improve forecast accuracy further. This final point is backed up by the results of Makridakis,
Spiliotis, and Assimakopoulos (2018a) who recently concluded that the combination of statistical
and machine learning methods was the best overall forecasting method for 100 000 diverse time-
series at different frequencies.

Hall and Cook (2017), from the Federal Reserve Bank of Kansas City, apply four different
deep neural networks4 in forecasting US monthly unemployment. These advanced architectures
have in common a deep network structure, applying more than a single hidden layer, and also
applying residual connections between the layers. Using only past values of unemployment, and
the series’ first and second differences, all four network architectures outperform the Survey of
Professional Forecasters (SPF) at one of the tested forecasting horizons. This indicates that,
even though data may be scarce, a deeper neural network may be better at forecasting than the
ubiquitous single hidden layer neural network.

A particular branch of research focuses on the performance of different methods as standard
forecasting tools. In the competition environment, novel forecasting approaches purported to
improve performance is compared on the task of forecasting a large and diverse set of different
time series. Such competitions are surely important, and have led to strong insight into the
general predictive ability of different forecasting methods. For instance, Makridakis and Hibon
(2000) report four general results regarding time series forecasting which have become ubiquitous
in the literature. Firstly, statistically complex forecast methods do not necessarily produce more
accurate forecasts than simple ones. Secondly, the rankings of model performance vary according
to the accuracy measure being used. Third, the accuracy of the combination of various methods
outperform specific methods on average. Fourth, the performance of various methods depend
upon the length of the forecasting horizon.

3Bootstrap sampling is a common re-sampling technique in machine learning used to artificially in-
crease sample sizes and improve predictive accuracy (see Breiman (1996) for details).

4Deep neural networks are usually defined as neural network architectures with more than one hidden
layer.

4

2.3 Weaknesses of Neural Networks

Gonzalez (2000) outline the main weaknesses of neural networks. The first is the lack of in-
terpretability, known as the black-box problem. Through the inclusion of hidden intermediary
functions, which sole purpose is to facilitate network learning, a single input’s effect on the
final output is hidden. The second is the unlikeliness of finding the true global minimum when
training network parameters. Because these parameters are iteratively improved by some, usu-
ally fixed, amount, the probability that the final iteration step finds an optimal solution to
the predictive problem is very small. The third is the method’s large sample requirements. In
the literature from mid 1990s - early 2000s the considered sample sizes are very small relative
to common modern deep learning applications5. Neural networks are inherently data hungry
because of the large number of parameters that need to be estimated, and the large number of
different patterns which must be presented to the models for them to generalize well. Fourth,
neural networks have a tendency to fit training data too closely, a problem known as overfitting.
Based on this issue, Kuan (2006) argues that the implementation of these models should be
handled with care. In Nakamura (2005), approaches to avoid the overfitting problem are found
to be paramount to performance. The final issue with neural networks is the time consuming
trial and error process for designing networks that perform well. One of the main reasons the
community has adopted such a laborious design process is the vast number of different hyper-
parameters that must be selected in order for networks to perform well. In addition, changing
one parameter changes the accuracy of the networks in a way that is hard to predict. Ceteris
paribus comparisons of different network parameters are therefore seldom an optimal approach,
and thus trial and error experimentation ensues.

3 Theory

We begin with a quick introduction to the difference between data modelling and machine learn-
ing, the umbrella term under which the field of deep learning resides, showing the philosophical
and practical difference between the two approaches. As described in Breiman et al. (2001), con-
sider data being generated by some unknown function f(x) which converts inputs x to outputs
y

y = f(x) + ε (1)

where ε is some stochastic and unknown error term. Both the data modeling and the machine
learning approaches are concerned with f(x). For researchers subscribing to the data modeling

5Some authors, such as Nakamura (2005), use quarterly observations of inflation, training, validating
and testing networks on a total of 175 observations. Makridakis et al. (2018b) use several univariate time
series, where the longest training period spans 104 observations. In contrast, a modern computer vision
dataset, the CIFAR-10, contains 60 000 images.

5

culture the analysis starts with assuming a stochastic data model for this relationship, giving rise
to the popular first words of many articles ”assume that the data are generated by the following
model: ...”. The test of whether this model actually mirrors the nature of f(x) is based on the
in-sample goodness-of-fit and examination of model residuals against the assumptions underlying
the fitted model, in addition to hypothesis driven analysis of model coefficients.

On the other hand, the analysis based on machine learning considers f(x) as a complex and
unknown function. The goal is to find another function ˆf(x) which utilizes the information
contained in the input x to predict the response y. The test for whether this approximated
function closely fits the real world is to measure its predictive accuracy when new data is
presented.

Methodologically, the predictive acuity of novel machine learning methods are evaluated by
comparing their accuracy against alternative modelling approaches on the same predictive task.
This facilitates the need for one or more benchmark models, which sole function is to be a yard
stick for novel methods claimed to improve accuracy.

In the following sections we outline our choice of benchmarks before delving into the theoretical
foundations of deep learning.

3.1 Benchmark Models

3.1.1 The Random Walk Model

The random walk model is one of the simplest forecasting methods, and has proven to be remark-
ably accurate in forecasting financial and economic time series (Hyndman & Athanasopoulos,
2018). This model is

yt = yt−1 + εt (2)

and simply assumes the present value of a series as a forecast for all future values. The model is
especially useful for series exhibiting nonstationarity. Obviously, if the underlying series follows
a random walk, the highest probability of correctly predicting the direction of the next step
is 50%. Thus, the optimal forecast is to guess the same value as the previous timestep. The
forecast is the same for all horizons.

3.1.2 The ARIMA Framework

Our other benchmarks are based on the autoregressive integrated moving average (ARIMA)
framework, which is one of the most widely used forecasting approaches for univariate time
series in general (Hyndman & Athanasopoulos, 2018), and also the most common benchmark
for neural networks (Gonzalez, 2000). The framework can be applied to different time series

6

dynamics through its combination of the autogregressive (AR) and moving average (MA) models
with a differencing factor. This linear parametric framework assumes that the underlying data
generating process is stationary, meaning that the properties of the series do not change over
time. Consider the generalized ARIMA model for a given stochastic time series process {yt}

∆dyt = δ +
p∑
i=1

ρi∆dyt−i + εt +
q∑
j=1

θjεt−j (3)

where d is the series´ order of integration6, δ is an intercept term, p is a given number of past
values of yt, ρ are the coefficients related to each of these past values, εt is the contemporaneous
error term, assumed to be independently and identically distributed, q is a given number of past
error terms and θ the related coefficients of these error terms. The optimal combination of p, d
and q depends on the structure of correlations in {yt}. The data modelling approach to find
these parameters is to investigate the correlation structure between present and past values to
select which of these values are important in explaining the present value. Once p, q and d are
chosen, the model parameters are estimated using maximum likelihood7.

The ARIMA framework can be decomposed to its constituent models through specific choices
of p and q. For a given d, the case when p > 0 and q = 0 yields an autoregressive model (AR),
where the series is modelled using only past values of itself. Similarly, p = 0 and q > 0 yields
a moving average model (MA), where the series is modelled using only past values of the error
term. The combination of p > 0 and q > 0 gives us an autoregressive moving average model,
where the series is modelled using both past values of itself and previous errors.

As outlined later in section 5.2, we apply algorithmic approaches in order to find optimal ARMIA
parameters. Two of the approaches are based on goodness of fit measures called information
criteria. These are measures based on the likelihood function used for estimation L. The first
is the Akaike information criterion (AIC), which directly focuses on prediction (Hyndman &
Athanasopoulos, 2018). The AIC measure is defined as

AIC = −2log(L) + 2(p+ q + k + 1), (4)

where L is the likelihood estimate, p and q are the number of past values and past error terms
included as model features and k is an indicator taking the value 1 if the intercept coefficient
takes a value > 0. The second is the Bayesian information criterion (BIC), defined in terms of
AIC as

BIC = AIC + (log(T)− 2)(p+ q + k + 1) (5)

6The number of times the series needs to be differenced before becoming stationary.
7This method finds the values of ρ and θ that maximizes the probability of obtaining the observed

data.

7

where T is the number of time steps in the time series. For both measures, the optimal model is
the one which minimizes the functions in either equation (4) or (5). Practically, the AIC gives
a larger penalty to more complex frameworks, and is often preferred for forecasting models,
while the BIC often is preferred for inference. For a more thorough introduction to the ARIMA
framework, see e.g. Bjørnland and Thorsrud (2015).

The benchmarks are further explained in section 5.2.

3.2 Deep Neural Networks

The following outline of the foundations of deep neural networks is based on Chollet and Allaire
(2018) and Goodfellow, Bengio, and Courville (2016). We restrict our scope to the suite of
feed-forward8 structures, namely the multi-layer perceptron (MLP) and convolutional neural
network (CNN).

3.2.1 Neurons, the Perceptron and the Multi-Layer Perceptron

The most fundamental building block of neural networks is the computational neuron. A neuron
is a function ξ(x) which performs a differentiable affine transformation on a vector of inputs, x,
following

ξ(x) = Φ(ωTx + b), (6)

where ω = [ω0, ω1, ..., ωp]T is a vector of weights, x = [x0, x1, ..., xp]T is a vector of features, b is
a bias term, and Φ is an element-wise activation function.

The most basic predictive model implementing neurons is the perceptron, introduced in Rosen-
blatt (1958). Figure 1 shows a graphical representation of a perceptron model.

8Meaning that information flows in one direction through the network, from inputs to outputs, as
opposed to recurrent neural networks, where information about previous activations are looped back into
the network. See Chollet and Allaire (2018) for more on recurrent neural networks.

8

x0

x1

x2

Φ(x + b)ω
T y ̂

Input Layer Neuron Output Layer

Figure 1: Directed flow graph of a perceptron model. The depicted network consists of an input layer with three nodes,
one computational neuron, and one output layer. The inputs are fed to the neuron, producing a scalar prediction of some
target variable y.

Notably, for the identity activation function Φ(ωTx + b) = ωTx + b, the perceptron in figure 1
is identical to the linear regression model, where the neurons in the input layer are the input
variables, the features, the output neuron is the dependent variable, or target variable, the weights
ω are the estimated coefficients and the bias b is an intercept term (Gonzalez, 2000). Even for
nonlinear Φ, a single layer perceptron will never be able to model nonlinear relationships, due
to it only having one node of computation (Hall & Cook, 2017).

To enable a network to learn such patterns multiple neurons similar to equation (6) are stacked
in a layered structure, creating a multi-layer perceptron model. The objective of the net-
work is to create a functional approximation of f(x), f∗ through leveraging the intermedi-
ary functional representations produced by these layers of neurons. Defining the layers as
Υ = f(x; θ)9, f∗ can consist of an infinite number of intermediary functions f2, ..., fn, so that
f∗ = fn...(f3(f2(f1(x; θ1); θ2); θ3); ...; θn), where x is the input layer and fn is the output layer.
How the remaining layers is used to help approximate f∗ is dictated by a learning algorithm,
and their behaviour is not explicitly defined (Touretzky & Pomerleau, 1989). They are therefore
commonly referred to as hidden layers.

Figure 2 depicts a multi-layer perceptron with three hidden layers, where each layer consists
of several neurons as in equation (6), each performing a transformation on the inputs before
passing it on to the next layer.

9where θ consists of the weights, ω, and the bias vector b.

9

x0

x1

x2

Input Layer Layer 1 Layer 2 Layer 3

y ̂

Output Layer

Figure 2: Directed flow graph of a multi-layer perceptron. The network consists of an input layer with three nodes,
followed by three hidden layers, each with three computational neurons. The hidden layer is followed by an output layer,
producing a scalar prediction of some target variable y.

Notice how the network connects every neuron of one layer to all neurons in the next layer,
creating a densely connected network of computational nodes. A network with one hidden
layer, a nonlinear activation function and a sufficient number of neurons can approximate any
piecewise continuous function to any desired level of precision (Hornik, Stinchcombe, & White,
1989), giving such networks the universal approximator property (Kuan, 2006). It is through
this property that neural networks are able to recognize complex nonlinear patterns in the data
(Gonzalez, 2000). The term neural network has come to represent a multi-layer perceptron
with a single hidden layer. This network structure is ubiquitous in the literature. Zhang et al.
(1998) argue that the focus on single hidden layer neural networks, as opposed to networks with
more layers or other structures, is due to a single hidden layer being sufficient for the universal
approximator property.

3.2.2 Convolutional Neural Networks

We focus on an additional feedforward network structure, the convolutional neural network.
These networks have had great success in image recognition tasks, but can be applied to any
problem where the inputs have a meaningful spatial structure10 (LeCun & Bengio, 1995).

These networks have at least one convolutional layer, as in equation (7)

ξ = Φ((x ∗K)(τ) + b), (7)

Which applies the convolution operation instead of matrix multiplication
10Recently, similar networks with dilated kernels have had great success in audio generation (Van

Den Oord et al., 2016), and also for time series forecasting (Borovykh, Bohte, & Oosterlee, 2017). We
focus on the general structure of these networks, without the dilated kernels, as described in Chollet and
Allaire (2018).

10

(x ∗K)(τ) =
τ∑
τ=0

x(τ)K(t− τ), (8)

where K is a kernel which is convolved over x. For image processing, the kernel is usually a 2x2
matrix of weights, called a 2 dimensional kernel. Time series only have one spatial dimension
and the kernel is therefore usually a 1 dimensional kernel. The kernel slides across the input
data, giving as outputs weighted sums of a given number of the inputs. The outputs from a
convolutional layer are called feature maps. The width of the kernel, deciding how many of
the inputs are extracted at each step, is known as the kernel size, and is one of the additional
hyperparameters of these networks. Essentially, convolving by a kernel with a kernel size of 2
applies the weight matrix

WC =

W0 W1 0 0 0 . . .

0 W0 W1 0 0 . . .

0 0 W0 W1 0 . . .

0 0 0 W0 W1 . . .

0 0 0 0 W0 . . .

.

As we see from the matrix, a convolutional layer connects the inputs to only a few neurons
using the same weights. This allows the networks to extract features from local patches of
inputs, which allows for modularity in the functional representations which can be leveraged
for prediction (Chollet & Allaire, 2018). Weight sharing also leads to data efficiency which
may improve the network’s accuracy when less data is available (LeCun & Bengio, 1995). A
convolutional layer can consist of several filters, each with its own set of weights. Each filter learns
to recognize specific local patterns important for predicting the output. Recently, Oord et al.
(2016) introduced causal convolutions. This is a method to stop convolutions from violating local
temporal ordering when transforming inputs to outputs. This type of convolution is preferred
when working with time series (Chollet et al., 2015).

One interesting feature of convolutional neural networks is their ability to model multivariate
inputs through feature channels. Given m > 1 univariate time series, a convolutional layer may
learn to recognize patterns in each series simultaneously. The network passes a seperate kernel
over each of the univariate series, producing filters of equal width, which work in unison to
predict the output (Zheng, Liu, Chen, Ge, & Zhao, 2014).

A common implementation is pooling filters, used to extract the most pertinent information from
the outputs of convolutional layers. The most common is the max pooling filter. Practically,
this filter slides a fixed size 1 dimensional convolutional kernel across its inputs, outputting the
maximum value of the inputs within the kernel. The size of this max pooling kernel is known as
the pool size, and is inversely proportional to the length reduction of the inputs. For instance,

11

a pool size of 2 halves the length of the inputs.

3.2.3 Activation Functions, Normalization and Output Layers

The rectified linear unit (ReLU) activation function introduced in Glorot, Bordes, and Bengio
(2011) has been the de-facto standard since its conception, and is the first choice when selecting
the activation function of a hidden layer (Goldberg, 2016). The function returns a positive value
or zero, which helps reduce the number of parameters in the network (Chakraborty & Joseph,
2017)

ReLU(ωTx + b) = max(0, ωTx + b) =

 0 ωTx + b < 0
ωTx + b otherwise

(9)

When the activation function returns an output of 0, or close to 0, the neuron barely responds
to received impulses indicating that these are not important in approximating of f(x).

Because ReLU is unbounded, networks can learn to be too dependent on a given input. It
is therefore important to normalize the input data before passing it through the network. A
common practise is to normalize the data to the range [−1, 1] following

z(x) = 1− (−1)
max(x)−min(x) ∗ (x−max(x)) + 1, (10)

The choice of activation function (and number of neurons) in the output layer depends on the
predictive task. For a scalar regression, the most common is to use a linear activation function
and a single neuron, Φ(ωTx + b) = ωTx + b. By applying a single neuron in the output layer,
we force a vector to scalar transformation. Thus, the output layer is a linear combination of the
incoming signals.

3.2.4 Loss Functions and Optimization

The parameters in each layer, θ, are determined jointly to minimize the deviance between our
predictions and the actual target values through a given loss function. The choice of loss function,
as with the choice of activation function, depends on the predictive task at hand. A common
function for scalar regression is the mean squared error (MSE)

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (11)

where yi is the realized value of observation i, and ŷi is the model’s prediction of observation i.
The loss function is minimized through an iterative optimization technique applying the back-

12

propagation algorithm11. The first iteration initializes the parameters using small randomized
values, and uses these parameters to make a prediction of either a single observation, or a batch
of observations. How many observations each iteration predicts is known as the batch size. The
loss function is calculated based on this initial prediction, before the parameters are adjusted
in the direction of the negative gradient of the function with respect to the weights. How
far in this direction the weights are altered is dictated by the learning rate. In this way, the
network incrementally improves its predictions either until the procedure terminates or some
other criterion is fulfilled. This is the reason we say that the models learn.

3.2.5 Hyperparameters, Capacity and Regularization

The number of hidden layers defines a network’s depth, while the number of neurons in each
layer defines a network’s width. The depth and width of a network jointly defines its architecture
and also the hypothesis space of possible functional representations which can be leveraged. The
flexibility of functional representations a network can leverage decides its capacity. If a model has
too much capacity, it can learn to fit the training data too closely. This is known as overfitting
the data, and can hamper the model’s accuracy when predicting on new data. If a model
has too little capacity, it can not learn sufficiently complex relationships between inputs and
outputs, leading to underfitting. Monitoring and negating overfitting is a vital part of designing
good networks. The data being modelled is often partitioned into training, validation and test
datasets, where such monitoring is the main purpose of the validation dataset. Balancing model
capacity can be done efficiently by comparing optimization convergence between data used to
train the model and the unseen validation data. The act of finding optimal network capacity is
known as hyperparameter tuning. Any modifications we make to a learning algorithm to reduce
its out-of-sample error, but not its training error, is called regularization (Goodfellow et al.,
2016). We focus on dropout layers as a means of regularizing our networks.

Dropout regularization introduces layers which randomly drops a certain percentage of the in-
coming connections in an attempt to prevent the learning algorithm from becoming too depen-
dent on specific inputs (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). The
researcher chooses the position of dropout-layers, and the rate at which connections are dropped
at each layer.

3.2.6 Residual Connections

Networks with a deeper structure have the same properties as more shallow structures, but with
an exponentially lower number of training parameters (Mhaskar, Liao, & Poggio, 2016). One of
the main historical issues for building deeper networks has been the vanishing gradient problem.

11For a more detailed explanation see Rumelhart et al. (1986)

13

When more layers are added, the gradient based weight updates may become vanishingly small.
Another issue with building deeper networks is the degradation problem, where accuracy is
saturated with increasing network depth. He, Zhang, Ren, and Sun (2016) solves these problems
through the implementation of residual connections12, which are skip connections between the
inputs and outputs of the layers in a network. The idea is that, given an ideal underlying mapping
H(x), we let the layers in the network fit a residual mapping F (x) = H(x) − x. Solving for
the original mapping we get H(x) = F (x) + x. This formulation is realized through performing
identity mapping between the inputs and outputs to each layer, called residual connections.

Recently, Hall and Cook (2017) applied residual connections to build several deep architectures
which performed well in forecasting monthly US unemployment.

3.2.7 Repeat Ensembles

In the forecasting community, combinations of forecasts have been found to increase forecasting
accuracy (Makridakis & Hibon, 2000). Timmermann (2006) argues that this accuracy gain is
due to a diversification effect. This effect is larger if forecasts from the included models are
less correlated (Timmermann, 2006). All models are inherently wrong to some degree, but
can incorporate different input information, estimation techniques or assumptions. Therefore a
combination of the forecasts produced by several different models will be more robust. Forecast
combinations for macroeconomic indicators such as inflation are popular among central banks.
For instance Bjørnland, Gerdrup, Jore, Smith, and Thorsrud (2010) outline the Norwegian
central bank’s SAM-system, which consists of 140 different individual models, and is actively
used in the bank’s decision making. In the machine learning community, forecast combinations
are known as model ensembles.

Because neural networks are initialized with randomized weights the learning algorithm may, in
repeated runs of the same network, terminate in different local optima. This inherent stochas-
ticity can have a large impact on the predictive accuracy of a single network architecture in
repeated runs. One approach to mitigate this stochasticity is to train each network architecture
several times, and either choose the error measure of the best performing network, or report an
average error across all networks in order to evaluate the architecture’s predictive prowess (Hall
& Cook, 2017). Another approach is to harness the variation in each training run to create
model ensembles. In order to create these repeat ensembles, each neural network architecture
is trained several times and the forecasts from each individual network is combined using some
linear combination. Because the network initialization is random there is no way, a priori or
ex post, to know which of the individual models will be better at forecasting. Therefore, we
combine the forecasts using the simple mean. Given k repeated runs, the ensemble forecast for
observation i is given by

12The ReLU activation function also alleviates the vanishing gradient problem, see Glorot et al. (2011).

14

ŷi
ensemble = 1

k

k∑
j=1

ŷij (12)

where ŷij is the j-th training run forecast of observation i. This approach is obviously compu-
tationally intensive. Therefore, repeat ensembles are especially applicable when data is scarce.
Additionally, these ensembles allow us to be somewhat agnostic as to the combination of learning
rate and the number of training iterations.

4 Data

To test the performance of different neural network architectures for macroeconomic forecasting,
we apply these methods to Norwegian inflation. We begin with the unadjusted Norwegian con-
sumer price index (CPI), in the period March 1920 to December 2017. The series was gathered
from Macrobond on March, 21. 2018. We start with unadjusted data because the available
series has significantly more observations13. To adjust the data for potential seasonal variations,
we apply the X13ARIMA-SEATS filter through the seasonal R-package. See Hyndman et al.
(2017) for a thorough explanation of this approach to seasonal adjustment. We transform the
adjusted series to monthly year-on-year consumer price inflation following

πt = ∆12log(CPIt) = log(CPIt)− log(CPIt−12) (13)

This choice of year-on-year inflation is due to the fact that the Norwegian central bank uses year-
on-year inflation as the target variable. The Norwegian central bank focuses on the energy and
tax adjusted measure of core inflation (CPI-ATE), but the bank also publishes forecasts based
on the headline CPI measure. As can be seen from Figure 38 in Appendix D, the resulting
inflation series exhibits erratic behaviour prior to the cut-off line in 1975, probably due to
different recording standards. For our models to have optimal accuracy, we need high quality
data. We therefore decide to start our CPI series in January 1974, before applying the year-
on-year inflation transformation on the shorter series. The resulting series is depicted in figure
3.

13The first available observation of the series adjusted by the Norwegian statistical agency (SSB) is
from January 1985.

15

−2%
−1%

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%

1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018

Year

In
fla

tio
n

Figure 3: Monthly Norwegian year-on-year consumer price inflation 1975 - 2017

The series of inflation spans the period January, 1975 - December, 2017, where we lose one year
of observations due to our year-on-year transformation. This gives us a total of 516 monthly
observations.

As evident, the Norwegian inflationary process has changed over time. Before 1993, the series
seems to have a declining trend, and higher relative peaks and troughs. The sudden change
can be explained by the implementation of inflation targeting in 2001, unofficially a part of
the Norwegian central bank’s policy since 1998. From this point the Norwegian central bank
makes policy decisions to keep inflation stable at a target value. This change in regime is not
compatible with a stationary process for Norwegian inflation in the 1975 - 2017 period.

Stationarity is necessary for our ARIMA benchmarks. While neural networks do not require
such an assumption, the presence of these breaks may have implications for the method´s pre-
dictive accuracy (Stock & Watson, 1998). A common approach to deal with structural breaks
when the break-time is known is simply to estimate one model before the break and one model
after (Bjørnland & Thorsrud, 2015). For our neural networks this yields fewer total training ob-
servations, which may lead to worse performance. Through preliminary comparisons of network
performance using the whole series and the post-1993 period, we find that the networks using
the whole sample perform better than the ones where the training set starts in 1993. At a similar
juncture, Moshiri and Cameron (2000), after testing the Canadian inflation rate for a structural
break due to the shift to inflation targeting, difference their series until it is stationary before
training their neural networks. Through preliminary analysis, we find that networks trained to
forecast the first difference of inflation perform worse in terms of the level of inflation, and have
a more homogenuous structure14.

Hall and Cook (2017) argues that because of the self-regularizing nature of neural networks,
researchers can be less selective with how we pre-process the data in question. Because our
networks seem to prefer the non-stationary series, we decide to use the full sample to train our

14Essentially, all networks were optimal with a 2 lag specification.

16

neural networks. Since our benchmarks require stationarity, we estimate these on the post-break
sample 1993 - 2018 (Series for 1993 - 2018 depicted in figure 39 in Appendix D).

5 Methodology

In this section we introduce our evaluation methodology, our benchmark methods and our
network architectures. We begin by outlining time-series cross-validation, the method we use
to design network architectures, and our particular evaluation metrics. We then explain our
benchmark methods, before delving into neural network designs.

We follow the terminology of Stock and Watson (1998). A forecasting model is a singular model
which is either estimated once, or re-estimated each period to produce forecasts. A forecasting
method, on the other hand, can apply any information available at the time to produce forecasts,
for instance averaging over several models. With this terminology, repeat ensembles are forecast
methods that consists of multiple individual models.

5.1 Model Evaluation

There are several ways to get good estimates of out of sample forecast accuracy. A common
approach in the machine learning community is to split the data into training and test sets,
where the model parameters are estimated on the training set and out of sample performance is
calculated on the test set. For small data problems, re-sampling techniques are preferred. One of
these is k-fold cross-validation (James, Witten, Hastie, & Tibshirani, 2013). In this procedure,
the data is randomly shuffled and split into k equally sized folds. We then iterate over the k
folds, using each fold as a separate test set, and the remaining k − 1 folds as a training set.
The cross-validation error is the average error measure across all folds. When we are faced with
a temporal dimension, random sampling causes issues. Particularly, a model trained on future
data may lead to look-ahead-bias (Choudhary & Haider, 2012). For this reason, time-series
cross-validation (Hyndman & Athanasopoulos, 2018) partitions the data into training and test
sets which are adjacent in temporal ordering. Figure 415 outlines the procedure.

15This figure is based on https://gist.github.com/robjhyndman/9fa152c585442bb076eb42a30a020091

17

● ● ● ● ●● ●
● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
● ●● ● ● ● ● ● ● ●
● ●● ● ● ●

Time

● ●Training Set Testing Set

Figure 4: Time-series cross-validation. Each row represents a different temporal fold of the data. The training set is
shown in blue, while the test set is shown in red. Moving along the time dimension the training set is expanded with the
test data from the previous fold.

Each row in the figure represents a temporal fold. For each of these folds, a model is trained on
the training partition and some error measure is calculated on the test partition. The average
error measure over all the folds becomes our cross-validation error. While the figure illustrates
the case where each test set consists of four observations, any number of observations can be
sequestered into each test set. The first training set, which in the figure is represented by four
blue observations, generally contains enough observations for the forecasts in the first test set to
be reliable. The most robust estimates of out of sample accuracy are gained through creating a
fold for each observation. This particular approach is at the forefront when evaluating machine
learning and deep learning models for time-series forecasting (Hyndman & Athanasopoulos,
2018). The illustrated figure above produces 24 out of sample forecasts by training a model on
each of the 6 folds. With one test observation per fold, 24 models need to be trained on separate
folds to produce the same number of forecast. Because of the computational expense of the
latter procedure, the trial and error process of designing deep neural networks quickly becomes
infeasible.

Because of this potential trade-off between estimate robustness and computational expense, we
apply a two-step evaluation procedure. To monitor overfitting and design network architectures,
we apply time-series cross-validation as illustrated in Figure 4, where each test set consists of
twelve months of observations, in the validation period. To test the final network architectures,
we apply time-series cross-validation with monthly temporal folds in the test period. In addition
to giving more robust estimates of the test period forecast errors, this procedure is also equivalent
to pseudo out of sample forecasting, which is one of the most common approaches in the statistical
forecasting literature, see e.g. Stock and Watson (1998).

Our test period contains observations of inflation between January 2010 and December 2017,
yielding 96 test observations. The choice of validation period is dictated by both the minimum
number of observations for a reliable first forecast, and the fact that our benchmark models
are estimated on the post-break sample 1993 - 2018. Tkacz and Hu (1999) guesstimate that
the point where neural networks improve noticeably over linear models at approximately 300
observations. This gives us the period January 2000 to December 2009 for validation, yielding
298 initial observations for our neural networks and 84 initial observations for our benchmarks

18

(See end of Section 4). Figure 42 in Appendix D.5 shows the validation and test periods, while
table 15 shows summary statistics for both periods.

Practically, this gives us 9 data partitions for validation, where the first training set ends in
December 1999, the second in December 2000 and so on. Which twelve observations that
are sequestered into the accompanying test set depend on the forecast horizon. Using a one
month horizon as an example, the first test set consists of the observations for January 2008 -
December 2008. For a twelve month horizon, the final test set contains observations December
2008 - November 200916. Notice that we keep the number of forecasted values fixed for each
horizon. For each of these 9 data partitions, we train our benchmarks and networks on the
training set and calculate the forecast error on the accompanying test set. For each temporal
fold we calculate error measures, and report the average error measure over all folds as our final
evaluation metric.

For the test procedure, the first training set stops in December 2009. Assuming a forecast
horizon of one month, the accompanying test set contains the observation for January 2010. We
follow the same approach with a fixed number of forecasted values. This means that we get 84
distinct training and test splits for each forecast horizon in the test period. Instead of report
the average error measure over all folds, we calculate the error measures based on the out of
sample forecasts.

5.1.1 Evaluation Metrics

There are several possible measures for evaluating forecasting performance, see e.g. Shcherbakov
et al. (2013). The characteristics and emphasis differ between measures (Bjørnland & Thorsrud,
2015). When evaluating the relative performance of different forecasting methods on the same
predictive task, scale dependent metrics based on forecast errors are common. We focus on two
error measures, the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE).

The RMSE is defined as

RMSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2 (14)

where ŷt is the time t forecast from a model or method we are evaluating. The RMSE expresses
the model prediction error in the same units as the variable of interest, in our case in terms of
average percentage point error in inflation. We will report the metric in terms of basis point
error in inflation. Because this is a quadratic function of the errors, the metric gives more
weight to large errors. When considering forecasting methods for inflation aimed at aiding
decision making, this property of the evaluation function is desirable.

16The test set ends in November because of the particular way we have coded our evaluation procedure.

19

The MAE is defined as

MAE = 1
T

T∑
t=1
|yt − ŷt| (15)

As with the RMSE, MAE expresses the error in the same units as the variable of interest,
however, the function is not quadratic and does not give the same weight to large deviations
as the RMSE. Crone and Preßmar (2006) stresses the importance of applying a non-quadratic
error measure when comparing out of sample forecasting performance.

By comparing different error measures indications of specific forecasting performance can be
evaluated (Shcherbakov et al., 2013). For instance, lower relative RMSE may indicate that the
approach is better at forecasting extreme cases, while a higher relative MAE may indicate that
the approach is more robust.

5.2 Benchmark Selection Methods

Our neural networks are compared to a total of five benchmarks. Two of the benchmarks are
singular models. These are the random walk model (RW), and the best performing autoregressive
specification in the validation period. The remaining three benchmarks are different automatic
model selection approaches, which perform model selection for each training and test partition
in our evaluation procedures.

5.2.1 Random Walk Model (RW)

The random walk model, as outlined in section 3.1.1, simply guesses that inflation at any horizon
is always equal to the contemporaneous value. Thus, the model has no parameters that must
be selected. We denote this model RW.

5.2.2 ARIMA Methods Based on Information Criteria (ARBIC & ARAIC)

The first two methods apply an automated procedure based on the AIC and BIC information
criteria. For each training and test partition in our validation and test procedures, we estimate
ARIMA models with AR-terms17 in the range 1 to 12. We select the specification with the
lowest BIC (ARBIC) and the specification with the lowest AIC (ARAIC) in the training set,
and use these models to forecast the test set.

17Bjørnland et al. (2010) did not find significance for any MA-terms when forecasting quarterly Nor-
wegian year on year inflation, and subsequently did not consider the moving average part of the ARIMA
framework when comparing forecasting models. Although our data is at a monthly frequency, we also
decide to omit the MA-terms for this procedure.

20

5.2.3 auto.arima Approach (AA)

The third method is also based on ARIMA and proposed in Hyndman, Khandakar, et al. (2007)
and denoted AA. It is implemented through the auto.arima function from the R-package
forecasts. This approach has been implemented in forecasting competitions with good results
(Makridakis et al., 2018b). For each training and test partition, the procedure finds the order of
integration of the training data and searches for the optimal number of AR and MA terms based
on information criteria18. We limit the choice of AR and MA terms in the range 1 to 12, and
let the model consider both differencing and inclusion of trend. This means that the algorithm
may also pick the random walk model if a given training partition exhibits non-stationarity.

5.2.4 Autoregressive Model Selection (AR)

In some cases, model selection methods based on in sample criteria, such as the ones above,
have potential detrimental effects on out of sample forecasting due to changes in the underlying
series (Stock & Watson, 1998). Therefore, we also estimate ARIMA models with AR-terms in
the range 1 to 12, and pick the specification with the lowest RMSE in the entire validation
period to forecast the test period. These models are denoted AR followed by the number of lags
included. For our validation period an AR with two lags has the lowest error at the one month
horizon19. Further this model is denoted AR2.

5.3 Neural Network Design

Because of the immense number of possible network hyperparameters, we need to restrict our
scope prior to modeling. We therefore make a few design choices which stay fixed for all net-
works. Firstly, we only consider the ADAM optimizer20 with its default parameters. The
default learning rate is set to 0.001. All network architectures are trained using a batch size of
421. The optimizer aims to minimize the MSE loss function, defined in equation (11). Secondly,
to produce forecasts for longer horizons, we apply the multi-neural network method described in
Makridakis et al. (2018b). This entails training separate networks for each considered forecast
horizon. The target inflation values are shifted forward in time by the forecast horizon. We
consider four horizons: 1, 3, 6 and 12 months ahead. We focus on the one month horizon when
designing networks, and then use the best network architectures to forecast the other horizons.

18The procedure finds the combination of p and q which minimizes an adjusted AIC measure, AICc,
defined as, AICc = AIC + 2(p+q+k+1)(p+q+2)

T −p−q−2 . For models with d = 0 the model includes an intercept,
while for d > 0, the model sets the constant to zero. Variations of the models are considered repeatedly
until the lowest possible AICc is found (Hyndman et al., 2007).

19Validation RMSE for all autoregressive models can be found in Table 6 in Appendix B.1.
20For more on the ADAM optimizer, see (Kingma & Ba, 2014).
21Each weight update in network training is based on 4 samples of inflation.

21

Third, all our final network forecasts are repeat ensembles of a given number of repeated ini-
tializations of the same network architecture. Lastly, for network design we only consider the
RMSE evaluation metric.

5.3.1 Inputs and Normalization

Through training, the network identifies which inputs and neurons are important in predicting
the output. If the model is presented with many input features it should be able to self-regularize
to some extent. For instance, the networks should be able to perform lag selection by themselves.
Following Hall and Cook (2017) the inputs to our neural networks are lagged values of the rate
of inflation (π) and lagged values of the first and second order differences of inflation (∆π,∆2π,
respectively). The inflation features are normalized for each training and test partition following
equation (10) using the training partition´s maximum and minimum values. Normalizing the
entire series prior to partitioning into training and test sets could induce look-ahead bias in
the results, because the network receives implicit information about the future maximum and
minimum values. The outputs of our neural networks are re-scaled to their original values before
calculating the evaluation metrics.

5.3.2 Number of Models in each Repeat Ensemble

In order to chose the number of individual models to include in each repeat ensemble, we
explore how the validation RMSE evolves as more individual models are added. We train 30
single hidden layer neural networks with 6 computational neurons, applying ReLU activation,
and a linear output activation. The network uses p = 12 lagged values as inputs. Figure 5
illustrates how repeat ensemble RMSE and average individual model RMSE evolves.

22

47
49
51
53
55
57
59
61
63
65
67
69
71
73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Individual Models

R
M

S
E

 (
B

as
is

 P
oi

nt
s)

RMSE
Average over Individual Models

Ensemble
Distribution of RMSE

IQR

Min−Max

Figure 5: Number of models to include in the repeat ensemble. Red line represents ensembling RMSE. Blue line represents
average RMSE of individual networks in the ensemble. Light grey band represents minimum and maximum validation RMSE
for individual models. Darker grey band represents interquartile range (IQR) of individual model RMSE.

Ensemble RMSE is reduced by adding more models, while the average RMSE of the individual
models remains noticeably higher. For this exact set of 30 networks, the best performing single
model is found after 10 random initializations, while the worst is found after 16. Notice that
the model ensemble is very close to the best individual model without performing any model
selection. For this exact network architecture, 15 individual models seems like a good balance
between computational expense and ensemble performance. There is some evidence that adding
more than 30 models could improve performance further, but this quickly becomes computa-
tionally infeasible. In order to make the comparison of several architectures feasible, we decide
to use fifteen models in the repeat ensembles for each network structure.

5.3.3 Lag Selection

When choosing the number of models in each repeat ensemble we used 12 lags as inputs. This
number was chosen somewhat arbitrarily. Further analysis indicates that the number of lagged
values used in the models are paramount to performance. In order to investigate whether another
lag specification improves accuracy, we train 15 simple architectures with 2, 6, 12, 24, 30 and 36
lags as inputs. Figure 6 shows a boxplot of the RMSE from the individual models, as well as
the ensemble RMSE, for each of the six different lag specifications.

23

●

●

●

●

●

●

●

50

60

70

80

90

2 6 12 18 24 30 36

Number of lagged values (p)

R
M

S
E

 (
B

as
is

 P
oi

nt
s)

Individual Models Model Ensemble

Figure 6: Lag selection. Validation RMSE in basis points for ensembles with different lag specifications. The boxplots
show the distribution of RMSE for individual networks. Red line represents RMSE of model ensemble.

From the figure, we see that the number of included lags has an impact on the spread of
different model forecasts, as depicted by the size of the black boxes. Additionally, we see that
the repeat ensembles have noticeably lower RMSE than the individual models. For this network
architecture it appears that the initial 12 lag specification is a decent trade-off between RMSE
and the number of inputs to the model.

When designing neural networks each parameter choice affects performance in a way that is
hard to predict. For instance, increasing the number of neurons or implementing dropout reg-
ularization for the networks in Figure 6 could change the optimal number of lags. This gives
rise to a chicken and the egg type issue, where the order in which you find optimal parameters
may have large implications for the final network’s architecture. Essentially, this means that the
optimal approach would be to run every possible combination of parameters. To simplify this
process we initially assume that the same lag specification is optimal for all network structures.
After designing the three network structures we again consider different lag specifications.

5.3.4 Number of Hidden Nodes and Dropout Regularization

Based on the literature, there is no direct way of choosing the number of hidden units. While
research on the single hidden layer neural network suggests that 6 computational neurons is a
good initial value (Makridakis et al., 2018b), no initial values have been proposed for our other
network structures. We therefore find the initial values for the latter two networks through trial
and error. We then attempt to improve the networks through coarsely increasing the number
of hidden neurons. For each number of hidden units, we increment the rate of dropout in the
range [0.0, 0.1, 0.2, 0.3].

24

5.4 Final Network Architectures

For the sake of brevity, the performance and diagnostics for alternative specifications of each of
the three neural networks is moved to appendix A. In the following section, we briefly introduce
our final network architectures.

We compare three different network structures. The first is a single hidden layer neural network
(NN). The second is a deep multi-layer perceptron with residual connections (MLP). The third is
a deep convolutional neural network with residual connections (CNN). Through employing these
different network structures we can explore how robust performance is to different specifications,
in addition to exploring whether the architectural implementations in the two latter networks
improve forecasting performance.

5.4.1 Neural Network (NN)

The first network architecture is based on the single hidden layer neural network applied in
Makridakis et al. (2018b)22. Figure 7 shows the final network architecture.

Input Layer
36

Dense Layer
6 Units
Relu

Output Layer
1 Unit
Linear

Figure 7: Architecture of the Neural Network (NN). Dense layers are equivalent to hidden layers.

The network consists of an input layer, one hidden layer (dense layer) and an output layer. The
network takes an input vector of 36 values, 12 for each of the three inflation features, and passes
it through a hidden layer with six computational neurons. The layer applies the ReLU activation
function to its outputs before passing it on to the output layer. The output layer, consisting
of a single computational neuron applying linear activation, produces a scalar prediction at the
forecast horizon.

5.4.2 Multi-Layer Perceptron (MLP)

Figure 8 shows the final network architecture for our multi-layer perceptron. The network is
based on Hall and Cook (2017) and has the same overall structure.

22The code for this network, as well as other machine learning benchmarks for time series, is publicly
available on github: https://github.com/M4Competition/M4-methods/blob/master/MLbenchmarks.py

25

Input Layer
72

Output Layer
1 Unit
Linear

Dropout
0.1

Dropout
0.1

Dense Stack
3 x 8 Units

ReLU

Dense Stack
3 x 6 Units

ReLU

Dropout
0.1

Dense Stack
3 x 4 Units

ReLU

Residual Connection Residual Connection Residual Connection

Figure 8: Architecture of the Multi-Layer Perceptron (MLP).

We include three dense stacks, which are clusters of hidden layers with the same number of
neurons. Each of these stacks consists of three hidden layers that apply the ReLU activation
function defined in equation (9). Each of the three layers in the first stack contains eight
computational neurons. The number of neurons in the following stacks are reduced to six and
four, respectively. The output of each stack is passed through a dropout layer with a dropout
rate of 0.1, before entering the next stack. Between these stacks we add residual connections,
which perform element-wise addition between the output of the stack and the inputs to the
stack.

After deciding on a final network architecture, we consider different lag lengths. For the multi-
layer perceptron model, we find that a 24 lag specification is optimal23. For this 24 lag specifi-
cation, the input layer consists of 72 input nodes, 24 for each of our inflation features.

5.4.3 Convolutional Neural Network (CNN)

Figure 9 shows the final network architecture for our convolutional neural network. Similarly
to the MLP, our convolutional neural network is based on Hall and Cook (2017). The authors
apply a network utilizing two convolutional stacks, which are pairs of 1-D convolutional layers.
Through experimentation we find that this architecture does not fit our particular predictive
problem. Our architecture consists of single 1-D convolutional layers as opposed to pairs. In
addition the architecture has fewer dense stacks.

Input Layer
24 x 3

Output Layer
1 Unit
Linear

Residual Connection

1D Convolution
12 Filters

Kernel Size 6
ReLU

Max Pooling
2

1D Convolution
12 Filters

Kernel Size 6
ReLU

Residual Connection

Dropout
0.2

Dense Stack
3 x 6 Units

ReLU

Dropout
0.2

Dense Stack
3 x 4 Units

ReLU

Residual Connection Residual Connection

Figure 9: Architecture of the Convolutional Neural Network (CNN).

The final network consists of an input layer, two 1D convolutional layers separated by a max
pooling layer, two dense stacks and an output layer. The inputs are passed through a 1D
convolutional layer with twelve filters, a kernel size of six and ReLU activation. The outputs of

23Reducing the cross-validation error from 47.2 to 46.1 basis points.

26

the convolutional layer are fed to a max pooling layer, halving the size of the feature map. The
reduced feature map is fed into another 1D convolutional layer identical to the first. The first
dense stack consists of three hidden layers, each with six computational neurons applying ReLU
activation. This stack is followed by a dropout layer with a dropout rate of 0.2. The outputs
of the dropout layer are fed to another dense stack, consisting of three hidden layers, each
with four computational neurons and ReLU activation. The outputs of the last dense stack is
passed through a final dropout layer, before entering the output layer. The output layer has one
computational neuron with linear activation, transforming the inputs into a scalar prediction.
We add residual connections between the inputs and the outputs of the first convolutional layer,
between the outputs of the max pooling layer and the outputs of the second convolutional layer,
and between each dense stack.

We find that a 24 lag specification is optimal also for the convolutional neural network (CNN)24.

5.5 R Implementation

All models are implemented in the R programming language. The code is written in a repro-
ducible Jupyter Notebook environment, which is available from the authors upon request.

All neural network architectures are implemented using keras-gpu version 2.1.5 and tensorflow-gpu

1.1.0 through the reticulate R-package (Allaire, Ushey, & Tang, 2018). We interface with
keras through the R-keras package (Allaire & Chollet, 2018). We leverage ggplot2 for visu-
alization (Wickham, 2009), stargazer for tabulating (Hlavac, 2018), lubridate for iteratively
manipulating dates (Grolemund & Wickham, 2011), tstools for manipulating time series (Ban-
nert & Thoeni, 2018), the seasonal package to implement the X13ARIMA-SEATS filter (Sax,
2017). All neural networks are trained on a 6-core Intel i5 system running at 4.8GHz with an
Nvidia GTX1080 graphics card utilizing CuDNN 6.0. The implementations are based on Chollet
and Allaire (2018).

6 Results

In this section we report the results of our forecasting comparison. The reported results are for
the final network architectures as outlined in section 5.4 for the short term (one and three month)
and medium to long term (six and twelve month) forecast horizons. We begin by presenting
the results for the validation period before looking at the test period. For each period we first
report the forecast accuracy, as measured by our evaluation metrics (RMSE25 and MAE26). Both

24The cross-validation RMSE is marginally reduced (51.9 to 51.8).
25As defined in equation (14).
26As defined in equation (15).

27

evaluation metrics are negatively oriented, such that a lower value indicates higher forecasting
accuracy. We then compare the three network architectures, first against the benchmarks, and
then against each other, for the different forecast horizons. Lastly, the performance of the
forecasting methods are compared at a yearly level.

6.1 Validation Performance

As mentioned in section 5.1 we apply time-series cross-validation in the 2000 - 2009 validation
period. Table 1 reports the evaluation metrics for each of the chosen benchmark methods and
neural network architectures.

Root Mean Squared Error (RMSE) Mean Absolute Error (MAE)
Horizon 1 3 6 12 Mean 1 3 6 12 Mean

B
en

ch
m

ar
ks

RW 54.99 112.35 144.35 198.09 127.44 40.69 88.54 119.33 162.09 102.66
AA 51.58 102.91 129.01 160.09 110.90 38.93 83.63 111.84 133.10 91.88
ARBIC 51.27 98.45 119.04 128.16 99.23 38.58 80.90 100.34 107.54 81.84
ARAIC 50.90 98.47 121.09 129.46 99.98 38.72 79.74 101.94 110.11 82.63
AR2 50.83 98.21 118.81 126.04 98.47 38.03 80.78 100.04 106.01 81.22

N
et

w
or

ks NN 50.07 103.58 135.61 175.61 116.22 38.51 79.99 112.93 144.81 94.06
MLP 46.09 94.91 127.33 161.83 107.54 33.68 74.83 105.40 132.79 86.68
CNN 52.53 106.52 140.40 166.72 116.54 40.98 85.37 118.18 151.50 99.01

Table 1: Root mean squared error (RMSE) and mean absolute error (MAE) for time series cross-validation in the validation
period. RMSE and MAE are reported in basis points. A lower value indicates a more accurate model. The lowest error for
each horizon is highlighted in bold face. The Mean is the average RMSE and MAE over all forecast horizons.

6.1.1 Short Term Forecasts: One and Three Month Horizons

Table 1 shows that the best benchmark for the one month horizon is the autoregressive model of
order 2 (AR2)27. This model yields an average error of 50.83 basis points and 38.03 basis points
when forecasting inflation in the 2000−2009 period, measured by RMSE and MAE, respectively.

When considering our neural networks, Table 1 shows ambiguous results for the NN architecture.
While NN has a 1.5% lower RMSE than AR2, the MAE is 1.3% higher. The MLP network
outperforms all benchmarks, reducing the forecast error by 9.3% and 11.4% relative to AR2 for
RMSE and MAE, respectively. The CNN architecture performs worse than AR2, in terms of
both RMSE and MAE.

At the three month horizon, AR2 has the lowest RMSE, while ARAIC has the lowest MAE
among the benchmarks. Both NN and CNN perform worse than these benchmarks. However,
MLP outperforms both benchmarks, decreasing RMSE by 3.4% relative to AR2 and MAE by
6.2% relative to ARAIC.

27Remember that the AR2 model is chosen as the best AR model ex post, and as such may have a
slightly overstated forecast accuracy in the validation period.

28

6.1.2 Medium to Long Term Forecasts: Six and Twelve Month Horizons

Table 1 shows that AR2 is the best benchmark for both the six and twelve month horizons. The
AR2 yields an average error of 118.81 (100.04) and 126.04 (106.01) basis points, measured as
RMSE (MAE) for the two horizons, respectively.

None of the neural network architectures outperform AR2 at the six month horizon. Relative
to AR2, the networks increase RMSE by between 7.2% and 18.2%, and MAE between 5.4%
and 18.1%. Of the network architectures, MLP has the lowest error measures, reducing RMSE
(MAE) by 6.1% (6.7%) relative to NN, and 9.3% (10.8%) relative to CNN.

The results are similar for the twelve month horizon. The increase in RMSE for the neural
networks is between 28.4% and 39.3% relative to AR2. Similarly, the MAE is increased by
25.3% to 42.9%. Again, the best network architecture is MLP, outperforming NN and CNN by
7.8% (8.3%) and 2.9% (12.3%) for RMSE (MAE).

6.1.3 Overall Performance in the Validation Period

Overall, AR2 is the best benchmark for forecasting inflation in the validation period. Averaged
over all forecast horizons, this benchmark yields a Mean RMSE of 98.47 and a Mean MAE 81.22
basis points. The best overall neural network architecture is MLP, yielding Mean RMSE and
Mean MAE values of 107.54 and 86.68 basis points, respectively. The MLP network outperforms
RW and AA for both evaluation metrics, while the other neural network architectures are only
slightly better than the worst benchmark, RW.

Comparing the overall forecast accuracy of the neural networks, MLP yields a reduction in Mean
RMSE of 7.5% and 7.7% relative to NN and CNN, respectively. In terms of Mean MAE, MLP
has a 7.8% and 12.4% lower error measure than NN and CNN.

While both NN and CNN are outperformed by, or only slightly better than, benchmarks at all
horizons, MLP outperforms the best benchmark at the short term horizons. However, the three
network architectures perform worse than the benchmarks at the medium to long term horizons.

6.2 Test Performance

As mentioned in section 5.1, we apply a pseudo out of sample procedure in the 2010 - 2017
test period. Thus, the reported error measures are estimates of the real world accuracy of the
different methods if they were re-estimated each month in the test period. These results are

29

reported in Table 2 for the chosen benchmark methods28 and neural network architectures29.

Root Mean Squared Error (RMSE) Mean Absolute Error (MAE)
Horizon 1 3 6 12 Mean 1 3 6 12 Mean

B
en

ch
m

ar
ks

RW 35.83 60.65 79.00 124.99 75.12 28.30 46.89 64.05 100.14 59.85
AA 36.42 61.17 76.39 93.53 66.88 28.43 46.38 57.65 73.26 51.43
ARBIC30 36.61 63.38 80.24 93.34 68.39 28.73 47.92 60.01 72.96 52.41
ARAIC 37.37 64.00 79.25 100.80 70.36 29.12 50.74 62.71 79.37 55.49
AR2 36.61 63.38 80.24 93.34 68.39 28.73 47.92 60.01 72.96 52.41

N
et

w
or

ks NN 33.49 59.60 80.12 115.05 72.07 26.27 47.28 66.06 98.42 59.51
MLP 32.58 55.28 74.00 108.15 67.50 25.33 45.66 63.25 90.21 56.11
CNN 32.64 49.64 68.29 95.81 61.60 26.24 40.93 58.58 79.78 51.38

Table 2: Root mean squared error (RMSE) and mean absolute error (MAE) for the pseudo out of sample approach in
the test period. RMSE and MAE are reported in basis points. A lower value indicates a more accurate model. The lowest
error for each horizon is highlighted in bold face. The Mean is the average RMSE and MAE over all forecast horizons.

6.2.1 Short Term Forecasts: One and Three Month Horizons

Table 2 shows that all benchmarks perform similarly at the one month horizon, with RMSE
ranging between 35.83 and 37.37 and MAE ranging between 28.30 and 29.12. All our neural
network architectures outperform these benchmarks, with RMSE ranging between 32.58 and
33.49 and MAE ranging between 25.33 and 26.27. The MLP is the best architecture, and
reduces both error measures by between 9.1% and 13% compared to the benchmarks. The other
networks are only slightly worse than MLP. The MAE is around 3.6% higher for both networks,
while RMSE is 2.8% higher for NN and 0.18% for CNN, relative to MLP.

At the three month horizon the best benchmark methods, RW and AA, perform similarly, with
RMSE ranging from 60.65 to 61.17 basis points and MAE ranging from 46.38 to 46.89 basis
points. The NN network performs similar to these, while both the other neural networks are
better than all benchmarks. With regards to RMSE, MLP outperforms the benchmarks by
approximately 8.9% and 9.6%. However, MLP is only slightly better in terms of MAE with a
1.6% to 2.6% reduction. The best network is CNN which reduces RMSE by 18.2% and 18.8%
and MAE by 11.8% to 12.7%, relative to RW and AA respectively.

28Model coefficients from the AA, ARBIC / AR2 and ARAIC methods is found in figures 35, 36 and
37 in Appendix B.2.

29The actual out of sample forecasts produces by each of our three neural network architectures is
found in figures 20, 27 and 34 in Appendix A.

30The ARBIC method chose an autogregressive model of order 2 throughout the test period, making
the ARBIC and AR2 the same.

30

6.2.2 Medium to Long Term Forecasts: Six and Twelve Month Horizons

Table 2 shows that the best benchmark at the six month horizon is AA with RMSE and MAE
of 76.39 and 57.65 basis points, respectively. The AA method outperforms NN, which is more
similar to the other benchmarks. The MLP network shows ambiguous results with a 3.1%
reduction in RMSE but a 9.7% higher MAE compared to AA. The CNN is the best network
architecture both in terms of RMSE and MAE. It outperforms AA by 10.6% in terms of RMSE.
However, the MAE is similar between these methods and differ only by 1.6% in favour of AA.

Considering the twelve month horizon, AR2 is the best benchmark closely followed by AA. These
benchmarks have a RMSE of 93.34− 93.53 basis points and MAE of 72.96− 73.26 basis points.
None of the neural network architectures outperform these benchmarks. However, CNN is the
best neural network and is just outperformed by 2.6% in terms of RMSE. However, MAE is
9.3% higher than the two best benchmarks. The other neural networks perform better than the
worst benchmark, RW. However, their error measures are more than higher than CNN. The NN
architecture has a 20% higher RMSE and 23% higher MAE, while MLP has a 13% higher error
across both measures, compared to CNN.

6.2.3 Overall Performance in the Test Period

Overall, CNN is the best method for forecasting inflation in the test period. The best benchmark
is AA with 66.88 and 51.43 basis points RMSE and MAE, respectively. The CNN architecture
outperforms this benchmark with 7.9% RMSE, while the MAE is marginally lower (0.1%).

Compared to the other neural networks, CNN outperforms NN by 14.5% in terms of RMSE and
13.7% in terms of MAE. The CNN architecture outperforms MLP by 8.7% in terms of RMSE
and 8.4% in terms of MAE. Nevertheless, NN and MLP perform within the range of benchmark
error measures, both beating the worst benchmark, RW. In terms of RMSE, MLP is better than
most benchmarks, and only has a 0.9% higher error than AA. However, with regards to MAE,
MLP yields a 9.1% higher error than AA, but still outperforms the worst benchmark, RW, by
6.2%. The NN network is 4.1% better than RW in terms of RMSE, but these methods are
similar with regards to MAE (0.6% difference in favour of NN).

6.3 Test Performance by Year

To get a better understanding of the neural network architectures´ test performance, we calculate
the error measures for each year. The results are presented in figures 10 to 13. In addition to
showing the error measures of our different network architectures and the best benchmark, we
include the maximum and minimum error measure values of all benchmarks for each year. The

31

numeric values of the error measures for each year is included in Appendix C for both the
validation and test periods. In this section, only the test period is considered.

6.3.1 One Month Horizon

17

20

23

26

29

32

35

38

41

44

47

2010 2011 2012 2013 2014 2015 2016

Year

R
M

S
E

15

18

21

24

27

30

33

36

39

2010 2011 2012 2013 2014 2015 2016

Year

M
A

E

Benchmark Error Range Best Benchmark CNN MLP NN

Figure 10: Performance by year at the one month horizon. The left figure shows results for RMSE, while the figure to
the right shows the results for MAE. The solid black line represents the error measures from the best benchmark for each
horizon, as reported in Table 2. The red, green and blue lines represent the error measures for the CNN, MLP and NN
network architectures, respectively. The light grey band shows the maximum and minimum benchmark error measures for
each year.

The test performance at the one month horizon is presented in Figure 10. Generally, the neural
networks have a similar performance and are better than the benchmarks in the years 2010 -
2013 and 2015 - 2016. However, as illustrated by the grey band, all the benchmarks have a lower
RMSE in the year 2014. In terms of MAE, the neural networks perform more similar to the
benchmarks.

32

6.3.2 Three Month Horizon

16
22
28
34
40
46
52
58
64
70
76
82
88
94

2010 2011 2012 2013 2014 2015 2016

Year

R
M

S
E

14
20
26
32
38
44
50
56
62
68
74
80

2010 2011 2012 2013 2014 2015 2016

Year

M
A

E

Benchmark Error Range Best Benchmark CNN MLP NN

Figure 11: Performance by year at the three month horizon. The left figure shows results for RMSE, while the figure to
the right shows the results for MAE. The solid black line represents the error measures from the best benchmark for each
horizon, as reported in Table 2. The red, green and blue lines represent the error measures for the CNN, MLP and NN
network architectures, respectively. The light grey band shows the maximum and minimum benchmark error measures for
each year.

The performance at the three month horizon is presented in Figure 11. Again, the networks
generally perform better in the years 2010 - 2013, while being dominated for the year 2014.
There is a larger difference in architecture performance. For instance, CNN has noticeably
better performance for 2010 and 2013, while performing worse than the alternatives for 2014
and 2015.

6.3.3 Six Month Horizon

10

19

28

37

46

55

64

73

82

91

100

2010 2011 2012 2013 2014 2015 2016

Year

R
M

S
E

9

18

27

36

45

54

63

72

81

90

2010 2011 2012 2013 2014 2015 2016

Year

M
A

E

Benchmark Error Range Best Benchmark CNN MLP NN

Figure 12: Performance by year at the six month horizon. The left figure shows results for RMSE, while the figure to
the right shows the results for MAE. The solid black line represents the error measures from the best benchmark for each
horizon, as reported in Table 2. The red, green and blue lines represent the error measures for the CNN, MLP and NN
network architectures, respectively. The light grey band shows the maximum and minimum benchmark error measures for
each year.

33

The test performance for each year at the six month horizon is shown in Figure 12. We see that
the neural networks in general perform similar to benchmarks for this horizon. We also see that
CNN is better than the best single benchmark for all years except 2014, where the benchmark
in general outperform all neural networks.

6.3.4 Twelve Month Horizon

15
27
39
51
63
75
87
99

111
123
135
147
159
171

2010 2011 2012 2013 2014 2015 2016

Year

R
M

S
E

13
25
37
49
61
73
85
97

109
121
133
145
157

2010 2011 2012 2013 2014 2015 2016

Year

M
A

E

Benchmark Error Range Best Benchmark CNN MLP NN

Figure 13: Performance by year at the twelve month horizon. The left figure shows results for RMSE, while the figure to
the right shows the results for MAE. The solid black line represents the error measures from the best benchmark for each
horizon, as reported in Table 2. The red, green and blue lines represent the error measures for the CNN, MLP and NN
network architectures, respectively. The light grey band shows the maximum and minimum benchmark error measures for
each year.

Figure 13 presents the test performance for the twelve month horizon. We see that the discrep-
ancy in network performance has grown, and that both the NN and MLP perform worse than
the benchmarks. The CNN is better than the other neural architectures and even outperforms
the single best benchmark in the years 2011 - 2012.

34

7 Discussion

7.1 Main Findings

In this thesis we have explored the predictive potential of neural networks in forecasting macroe-
conomic time series in the Norwegian economy. Through the comparison of different methods
for forecasting inflation, we find several interesting results. Firstly, in both the validation and
test periods, at least one neural network architecture outperforms the best included benchmark
for short term horizons. Secondly, the ubiquitous single hidden layer neural network architecture
(NN) applied in the literature is dominated by a deeper multi-layer perceptron architecture with
residual connections (MLP) for all horizons, both in the validation and test periods. Third, in
the test period, a convolutional neural network with residual connections (CNN) outperforms
all alternative forecasting approaches at the three and six month horizons, while performing
similarly to the best alternatives at the one and twelve month horizons. Overall, the CNN
outperforms all alternatives in the test period.

This section sums up our main findings, and discusses the best forecasting method of inflation.
Further, we discuss these findings against the literature, and try to answer our research questions.

1. (a) To what extent is neural networks relevant in forecasting Norwegian macroeconomic
indicators, such as inflation?

(b) Given that data is scarce, are there possible architectural implementations which
can improve performance over single hidden layer neural networks?

2. Are neural networks a feasible addition to the macroforecasting toolbox?

7.2 What is the Best Forecasting Method for Inflation?

Overall, our neural networks seem to perform well at the task of forecasting Norwegian inflation.
Our results sheds light on some important topics for discussion which could have an impact on the
feasibility of applying these methods in practice. Firstly, we find that while performing strongly
in the test period, the CNN architecture performs worse than the other neural networks in the
validation period. Secondly, we find that the rankings of our included forecasting approaches
differ depending on the applied error measure, and when considering different forecast horizons.
We discuss these in turn, before choosing which of the included network architectures is the
most suitable for our forecasting task.

35

Difference in Validation and Test Performance

The choice of validation approach seems to be very important when dealing with neural net-
works for macroeconomic time series, as not beating the benchmarks in the validation period
is potentially problematic. In practice, the methods that do not improve forecasting accuracy
in the validation period would be discarded. If we had discarded the CNN architecture because
of relatively poor validation performance, we would not have discovered that the method has
the best forecasting accuracy in the test period. Thus, in order to decide upon the best of our
forecasting methods, we need to investigate this inconsistency.

In the validation period, the only network architectures to outperform the best benchmarks
are NN and MLP, and only at the short term horizons. While the improvement of NN is only
slight, the MLP yields a noticeable reduction in the error measures at these horizons. In the
test period, all three network architectures outperform the best benchmarks at the short term
horizons. Interestingly, the CNN network outperforms all other methods at the three and six
month horizons, while the performance is similar to the best alternatives at the one and twelve
month horizons.

Why is the performance of CNN noticeably better in the test period than in the validation
period? There could be several possible explanations for this. The rankings between forecast
methods have been found to be different for different sample periods (Choudhary & Haider,
2012). While some forecast methods may excel at forecasting in times of volatility and structural
change, others may perform better in more regular times. We see examples of how the neural
network performance differs between years in the figures in section 6.3. Thus, the discrepancy in
CNN´s test performance could simply be explained by differences in the behaviour of inflation
in the validation and test periods. We found that the CNN network generally performed well in
all years except for 2014 - 2015. However, as shown in Figure 42 in Appendix D.5 this period
is characterised by low volatility, and a realized inflation close to the test period mean of 2%.
All our neural network architectures are outperformed by the benchmarks in this period, for
all horizons, while the networks are generally better than the benchmarks for more volatile
periods. These results are similar to those in Szafranek (2017), indicating that the networks
perform well in times of high volatility or structural change. As outlined in Appendix D.5, the
validation and test periods are quite similar in terms of mean inflation, but the former is more
volatile. Thus, we would in fact expect the CNN network to perform better in this period. The
difference in period is, therefore, a less plausible explanaiton for the difference in validation and
test performance.

Another possible explanation may be that the difference is due to overfitting because of the
smaller sample size in the validation period. The CNN network has more parameters than the
two other network architectures (see network architecture in A.3), making it more prone to
overfitting. Appendix A.3.2 shows the CNN network’s convergence plots for each of the nine

36

years in the validation period. Relative to the plots of convergence for the NN and MLP networks
in appendices A.1 and A.2, the CNN network does seem to be more prone to overfit the data.

Also, the different approaches used to estimate error measures in the validation and test periods
may impact performance. As outlined in section 5.1, we retrained the network ensembles once
each year in the validation period, while retraining the ensembles each month in the test period.
This yields a nine-fold increase in the number of individually trained models with random
initialisation in the test period. An increase in the number of individually trained models
reduces the overall stochasticity due to random initialisation. Since the CNN ensemble seems
more prone to overfitting and we use the same number of individual models in each of the
architectures’ ensembles, the CNN ensemble may still exhibit some stochasticity. Therefore, the
CNN could perform relatively worse in the validation period, where this residual stochasticity
may have an effect, than in the test period where this effect is, to a larger extent, averaged out
because of the increased number of total models trained31.

Finally, the difference in validation and test periods could be due to the validation period having
closer proximity to the structural break discussed in section 4. This entails that the network has
(1) more memory of a declining trend and a more volatile series, and (2) that the network has
less patterns pertaining to the inflation targeting period. Although the issue of stationarity for
deep networks needs further research, evidence suggests that training networks on nonstationary
series could have a negative impact on performance (Chollet & Allaire, 2018). For the NN and
MLP architectures, the methods perform relatively similar in the validation and test period.
Thus, if non-stationarity is the underlying cause for the difference in performance between the
periods, the CNN may be less robust to non-stationarity.

We believe that the most plausible explanation for the difference is the smaller sample size of the
validation period leading to overfitting and more stochasticity in the CNN ensemble. The NN and
MLP architectures do not seem to be subject to whatever is causing the difference in performance
between the training and test periods. Therefore, it seems that the two alternatives are more
robust to the potential causes discussed above. For these reasons, our approach for validation and
testing may not be optimal. Perhaps network design could be performed on a smaller validation
period closer to the test period. If we had validated our models on e.g. 2010 - 2014, and tested
them in 2014 - 2018, we might have more similar performance between the validation and test
sets. Another alternative could be to evaluate networks using a different procedure. Several
other approaches have been proposed, particularly some which do not necessarily adhere to the
arrow of time, for instance sequestering a number of randomly chosen samples into a validation
set, such as in Hall and Cook (2017), or training networks on bootstrap samples (Szafranek,
2017).

31This could be alleviated by performing a similar analysis as in section 5.3.2 separately for the CNN.

37

Difference in Rankings Based on Different Error Measures

Comparing different error measures with different emphasis is important, and can indicate what
situations a given method forecasts well (Shcherbakov et al., 2013). Our results indicate that the
rankings of different measures depend on the chosen evaluation metric. This is in tune with the
findings in Makridakis and Hibon (2000). The forecasting accuracy of our methods are presented
in terms of the error measures RMSE and MAE, and our neural network architectures generally
perform better compared to our benchmarks when considering RMSE32. A lower relative RMSE
indicates that the approach is better at forecasting extreme cases, while a higher relative MAE
indicates that the approach is more robust.

The ambiguous cases, such as when the MLP network outperforms the benchmarks at the three
month horizon in terms of RMSE, while being outperformed by all but RW in terms of MAE,
indicate that the method is better at forecasting extreme cases at the cost of robustness. The
clearer cases, such as the CNN outperforming all alternatives in terms of both RMSE and MAE
at the three month horizon, indicate that the method is both better at extreme cases and in
general.

Selecting the best forecast method may, therefore, depend on the error measure considered.

Difference in Rankings at Different Horizons

The forecasting methods’ accuracy also differ in terms of forecast horizon. For instance, the
MLP method outperforms the benchmarks at the one and three month horizons, while the
architecture is outperformed by our best benchmark methods at longer horizons. These results
echo the findings in Makridakis and Hibon (2000) regarding differing horizons, and indicate that
there may not exist a single forecast method which is superior for all forecast horizons.

The literature is ambiguous regarding neural network performance at different horizons. Naka-
mura (2005) finds that their neural network outperforms, or performs similar to, benchmarks
up to the six month horizon, while performing worse at the twelve month horizon. Other stud-
ies (Moshiri & Cameron, 2000; Szafranek, 2017, e.g.) find that the predictive power of their
included models is higher at the longer forecast horizons. These differences in the literature
may be due to the use of different time series, with different dynamics, different methods for
producing forecasts, e.g. the multi-neural vs. iterative approach (Makridakis et al., 2018b), or
the implementation of slightly different architectures and network inputs. Our results, along
with the literature, shows the importance of comparing forecasting methods at different time
horizons. However, for neural networks, this can be time consuming. Thus, in this thesis we have

32This could generally be explained by the fact that our learning algorithm minimizes the MSE, which
is also a quadratic loss function of the errors, similar to RMSE.

38

focused on the one month horizon when designing networks. The performance of our networks
at the different horizons could, to some extent, be explained by this.

Our NN and MLP architectures are consistently good at forecasting the short term up to three
months, and inferior at forecasting the longer horizons. These results are in line with literature
on similar network architectures (Hall & Cook, 2017; Nakamura, 2005). A different specification
in terms of network capacity or number of included lags could lead to networks which are better
at forecasting longer horizons. The CNN network, however, seems to perform well at both short
and longer term horizons. Especially relative to the NN and MLP architectures at the longer
horizons, where the CNN is considerably more similar to the best benchmarks than the two other
structures. Thus, under optimal conditions, the CNN architecture may be better at forecasting
not only short term, but also for the medium to long term horizons. Therefore, the network
structure is an interesting branch for further research.

Which Network Architecture is the Best at Forecasting Norwegian Inflation?

We find that the ubiquitous neural network architecture (NN), similar to the application in
Makridakis et al. (2018b), gives marginal performance improvements over our benchmarks on the
one and three month horizons. The MLP architecture, based on Hall and Cook (2017), improves
upon the benchmarks at the one, three and six month horizons, and also improves upon the NN
model at all horizons. The CNN model, also based on Hall and Cook (2017), improves noticeably
over the benchmarks at the one, three and six month horizons, while also outperforming both
the NN and MLP models at the three, six and twelve month horizons. Among the networks,
overall performance is improved over the NN by introducing deeper networks with residual
connections. The overall performance is further improved, especially at longer horizons, by
applying a convolutional neural network structure.

However, as discussed, the CNN only performs well in the test period, while the ranking of MLP
relative to the benchmarks is similar for both periods. So, which network is best at forecasting
Norwegian inflation, MLP or CNN?

The MLP is robust and performs well at the short-term, both for the validation and test periods.
Similarly, if we consider the accuracy of the alternative specifications of the MLP architecture
from which we chose the best performing network ensemble in the validation period (see Table
4 in Appendix A.2), all specifications improve upon the best benchmarks at the one month
horizon. This further indicates that the accuracy of MLP is robust to model specification.

The CNN is, however, the best network in the test period. Whatever the reasons underlying the
difference in validation and test performance, under optimal conditions the CNN seems to be a
suitable forecasting method for Norwegian inflation. Therefore, the convolutional neural network
structure could be interesting to apply in future research. Some of the underlying reasons for the
instability in performance, as previously discussed, could quite easily be mitigated. The small

39

sample size is naturally reduced as time moves forward, making overfitting less of a problem.
Increasing the number of individual CNN networks in each repeat ensemble could further reduce
potential random initialization stochasticity.

Thus, both the MLP and CNN networks can be applied to forecast inflation better than our
benchmarks at some horizon. While the MLP seems to be more robust at forecasting the short
term, the CNN network has the potential of also forecasting well at the medium to longer
term horizons. Therefore, of our tested network architectures, the CNN network is the most
interesting network structure for further research. But, does this mean that the neural networks
are feasible macroforecasting tools?

7.3 Are Neural Networks Feasible Macroforecasting Tools?

Several papers argue that neural networks should be part of the macroforecasters toolbox (Gon-
zalez, 2000; Kuan, 2006). In our study, we find that our neural networks generally outperform
the random walk model and different ARIMA methods at some forecast horizon. These are
meaningful benchmarks to beat, and are commonly applied to measure the accuracy of neural
networks in the literature (e.g. Hall & Cook, 2017; Nakamura, 2005). Beating these benchmarks
indicates that the small sample size of inflation, and similar macroeconomic series, at the monthly
frequency is not a complete hindrance to the application of neural networks. Furthermore, we
are able to improve upon a single hidden layer neural network through different architectural
implementations. This indicates that expanding the scope of neural network structures could
further improve accuracy. These findings are generally positive as to the implementation of neu-
ral networks as a macroforecasting tool, and indicate that this could lead to potential forecasting
gains.

At shorter forecasting horizons, several central banks apply forecast combinations based on
large model suites. For instance, the system used by the Norwegian central bank (SAM33)
consists of 140 different econometric approaches (Bjørnland et al., 2010). As such, an important
real world test of relevancy would be whether the inclusion of these networks into this model
suite improves performance. Recently, Makridakis et al. (2018a) found that the combination
of statistical and machine learning methods generally improve forecast accuracy relative to
both individual models and combinations of statistical or machine learning methods, separately.
Specifically for inflation, Szafranek (2017) finds similar results when combining such methods.
At the same time, evidence suggests that neural networks are one of the best machine learning
methods for forecasting time series (Ahmed, Atiya, Gayar, & El-Shishiny, 2010). Therefore,
the inclusion of well designed networks with different specifications could have the potential
to improve the performance of large model suites, such as SAM. This is an interesting avenue
for further research, and an indication that neural networks should, in fact, be part of the

33SAM: System of average models

40

macroforecasters toolbox.

However, the main aim of macroeconomic forecasting is to aid decision making which necessitates
a certain level of interpretability in applied forecasting models. One of the main deterrents of the
usefulness of these methods is the black box issue(Kuan, 2006). Implementing repeat ensembles,
residual connections and deeper network structures further exacerbate the black-box issue. Thus,
any gains in forecasting accuracy comes at the cost of inference.

7.4 Strengths and Limitations

Our thesis has a few key strengths. We compare the single hidden layer neural network to
common time series methods for inflation used in the literature. In addition, we apply two deeper
network structures, derived from networks performing well for US unemployment (Hall & Cook,
2017). We compare our three networks to benchmarks and to each other, providing insight about
the predictive acuity of neural networks in general and the possibilities of improving performance
through more complex network structures. We also apply time series cross-validation, and give
ample time to designing performant networks. This approach to network design is similar to
the modern approach in Chollet and Allaire (2018) for larger data problems, and is generally
not applied in the literature. We also implement repeat ensembles both to mitigate random
stochasticity and to improve forecast accuracy through forecast combination. We compare our
results for both short term and long term forecasts, and for different error measures. We consider
the forecasting performance of the validation and test periods, and discuss potential reasons why
they differ. We decompose the error measures in order to investigate which periods the neural
networks perform well in.

There are also some limitations in this thesis. We only considered a single macroeconomic
series, inflation, and only univariate neural network and benchmark specifications. This makes
us less confident in the real world accuracy of our networks, and their generalizability to other
macroeconomic series. A general approach would be to create a larger battery of benchmarks
from both the statistical and machine learning literature. Additionally, we only considered one
pre-processing procedure, indicated by preliminary analysis, instead of producing results for
different procedures. We also had several issues pertaining to computational efficiency. In this
respect, our choice of the multi-neural approach to produce h > 1 step ahead forecasts may
have been suboptimal. We believe that the iterative approach in Makridakis et al. (2018b)
is a better trade-off between computational efficiency and multi-step forecasts. Because of
our particular evaluation procedure, we unintentionally violated the underlying assumptions
of common significance tests for equal predictive ability, such as the Giacomini and White
test (Giacomini & White, 2006). Thus, we are unable to say anything about the statistical
significance of the improvement in forecasting accuracy from applying neural networks. Our
procedure for designing neural networks is also somewhat limited. To make the comparison

41

of different network structures feasible, for instance, we focus on the simplest network when
deciding the number of individual models in each repeat ensemble. Due to time constraints, we
only consider the one month horizon while designing networks.

7.5 Avenues for Further Research

Our findings indicate that neural network forecasting performance can be improved through
experimenting with network structure and network depth. Previous research has mainly focused
on the single layer hidden neural network, and our results indicate that deeper networks with
residual connections can improve upon this simple structure. An interesting branch of research
is the implementation of more advanced network structures. A few interesting examples of such
structures are the WaveNet architecture in Oord et al. (2016), based on convolutional neural
networks with dilated kernels, or the Encoder-Decoder LSTM network in Hall and Cook (2017).
Choudhary and Haider (2012) argue that neural networks should be continually compared to
extant forecasting approaches in order to gauge its period by period performance. We would
like to add to this continuous comparison the implementation of novel approaches from the deep
neural network literature.

Focusing on multivariate specifications of deeper network architectures for macroeconomic fore-
casting could potentially give gains in forecasting accuracy. For example, Hall and Cook (2017)
argue that their networks could be improved through implementing exogenous variables impor-
tant for the evolution of inflation.

Research into ways of artificially increasing the sample size of macroeconomic time series could
reduce the potential for overfitting and may allow a larger set of different advanced network
architectures to be applied. Bootstrapping, as used in Szafranek (2017) could be one alternative.
Implementing different architectures into large model ensembles based on bootstrapping could
improve performance. In the same vein, it would be interesting to see if techniques such as
transfer learning34 could be a feasible way of improving forecasting performance. Here, the
problem of having a small data sample is circumvented by training the first few layers of a
deeper neural network structure on a different, high frequency, time series.

Based on recent developments, it would be very interesting to see if the combination of neural
networks and extant forecast combination suites, such as those applied at central banks, improve
forecasting accuracy.

34See e.g. Laptev, Yu, and Rajagopal (2018).

42

8 Conclusion

In this thesis we have gauged the feasibility of applying different neural network architectures
to the task of forecasting the Norwegian macroeconomy. Focusing on inflation, we find that
all three of our network architectures outperform common linear benchmarks at one of the
tested horizons. The forecasting improvements are generally found in times of high volatility.
Furthermore, we find that the single hidden layer neural network architecture, which has been
the focus in large parts of the literature, is dominated by a deeper network architecture with
residual connections. A deep convolutional neural network with residual connections is found
to outperform the multi-layer perceptron architecture at the medium to long term horizons.
Overall, the convolutional neural network is the best tested forecasting method for Norwegian
inflation.

We find that the performance of neural networks in forecasting Norwegian inflation is improved
by giving ample time to network design, and through implementing techniques such as residual
connections, dropout regularization and convolution. Though there currently exist barriers to
the direct implementation of these methods in macroeconomic decision making, the potential
gains in forecasting accuracy of including these methods in large statistical model suites, often
applied by central banks, could make the methods part of a decision making tool in the future.

Also, the design and application of advanced deep neural network architectures has become
significantly easier through the advent of simplified modelling tools. At the same time the surge
in interest has demystified the underlying theoretical foundations leading to a significant decline
in the level of expertise needed to practically implement such advanced forecasting methods.

Although neural networks may not currently be the complete answer to the problem of macroeco-
nomic forecasting, the methods seem to be superior in forecasting certain periods. We therefore
argue that neural networks should be continually compared to extant forecasting approaches.
We believe these networks are relevant in forecasting macroeconomic time series, and that fur-
ther research should be focused on the application of this particular technology. If ample time
is given to network design, these types of networks could be applied to a large number of small
data time series problems in an effective manner with potential forecasting accuracy gains.

43

References

Ahmed, N. K., Atiya, A. F., Gayar, N. E., & El-Shishiny, H. (2010). An empirical
comparison of machine learning models for time series forecasting. Econometric
Reviews, 29 (5-6), 594–621.

Allaire, J., & Chollet, F. (2018). keras: R interface to ’keras’ [Computer software manual].
Retrieved from https://CRAN.R-project.org/package=keras (R package version
2.1.5)

Allaire, J., Ushey, K., & Tang, Y. (2018). reticulate: Interface to ’python’ [Com-
puter software manual]. Retrieved from https://CRAN.R-project.org/package=

reticulate (R package version 1.6)
Bannert, M., & Thoeni, S. (2018). tstools: A time series toolbox for official statis-

tics [Computer software manual]. Retrieved from https://CRAN.R-project.org/

package=tstools (R package version 0.3.6)
Bjørnland, H., Gerdrup, K., Jore, A. S., Smith, C., & Thorsrud, L. A. (2010). Does

forecast combination improve norges bank inflation forecasts?
Bjørnland, H., & Thorsrud, L. A. (2015). Applied times series for macroeconomics, 2nd

edition (No. 79-104). Gyldendal Akademisk.
Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017). Conditional time series forecasting

with convolutional neural networks. arXiv preprint arXiv:1703.04691 .
Breiman, L. (1996). Bagging predictors. Machine learning, 24 (2), 123–140.
Breiman, L., et al. (2001). Statistical modeling: The two cultures (with comments and a

rejoinder by the author). Statistical science, 16 (3), 199–231.
Chakraborty, C., & Joseph, A. (2017). Machine learning at central banks.
Chollet, F., & Allaire, J. (2018). Deep learning with r. Manning Publications Co.
Chollet, F., et al. (2015). Keras. https://github.com/keras-team/keras. GitHub.
Choudhary, M. A., & Haider, A. (2012). Neural network models for inflation forecasting:

an appraisal. Applied Economics, 44 (20), 2631–2635.
Crone, S. F., Hibon, M., & Nikolopoulos, K. (2011). Advances in forecasting with neural

networks? empirical evidence from the nn3 competition on time series prediction.
International Journal of Forecasting, 27 , 635–660.

Crone, S. F., & Preßmar, D. B. (2006). An extended evaluation framework for neural
network publications in sales forecasting. In Artificial intelligence and applications
(pp. 179–186).

Faust, J., & Wright, J. H. (2013). Forecasting inflation. In Handbook of economic
forecasting (Vol. 2, pp. 2–56). Elsevier.

Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica,

44

https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=tstools
https://CRAN.R-project.org/package=tstools
https://github.com/keras-team/keras

74 (6), 1545–1578.
Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In

Proceedings of the fourteenth international conference on artificial intelligence and
statistics (pp. 315–323).

Goldberg, Y. (2016). A primer on neural network models for natural language processing.
J. Artif. Intell. Res.(JAIR), 57 , 345–420.

Gonzalez, S. (2000). Neural networks for macroeconomic forecasting: a complementary
approach to linear regression models. Department of Finance Canada.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT press
Cambridge.

Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate.
Journal of Statistical Software, 40 (3), 1–25. Retrieved from http://www.jstatsoft

.org/v40/i03/

Hall, A. S., & Cook, T. R. (2017). Macroeconomic indicator forecasting with deep neural
networks.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the ieee conference on computer vision and pattern recognition (pp.
770–778).

Hlavac, M. (2018). stargazer: Well-formatted regression and summary statistics tables
[Computer software manual]. Bratislava, Slovakia. Retrieved from https://CRAN

.R-project.org/package=stargazer (R package version 5.2.1)
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are

universal approximators. Neural networks, 2 (5), 359–366.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice, 2nd

edition. OTexts. https://otexts.org/fpp2/.
Hyndman, R. J., Khandakar, Y., et al. (2007). Automatic time series for forecasting: the

forecast package for r (No. 6/07). Monash University, Department of Econometrics
and Business Statistics.

Hyndman, R. J., O’Hara-Wild, M., Bergmeir, C., Razbash, S., Wang, E., & Hyndman,
M. R. (2017). Package ‘forecast’. Online] https://cran. r-project. org/web/pack-
ages/forecast/forecast. pdf .

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical
learning (Vol. 112). Springer.

Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Kuan, C.-M. (2006). Artificial neural networks (IEAS Working Paper : academic research
No. 06-A010). Institute of Economics, Academia Sinica, Taipei, Taiwan. Retrieved

45

http://www.jstatsoft.org/v40/i03/
http://www.jstatsoft.org/v40/i03/
https://CRAN.R-project.org/package=stargazer
https://CRAN.R-project.org/package=stargazer
https://otexts.org/fpp2/

from https://EconPapers.repec.org/RePEc:sin:wpaper:06-a010

Laptev, N., Yu, J., & Rajagopal, R. (2018). Applied timeseries transfer learning.
LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361 (10), 1995.
Makridakis, S., & Hibon, M. (2000). The m3-competition: results, conclusions and

implications. International Journal of Forecasting, 16 , 451-476.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018a). The m4 competition: Results,

findings, conclusion and way forward. International Journal of Forecasting.
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018b). Statistical and machine learn-

ing forecasting methods: Concerns and ways forward. PloS one, 13 (3), e0194889.
McAdam, P., & McNelis, P. (2005). Forecasting inflation with thick models and neural

networks. Economic Modelling, 22 (5), 848–867.
Mhaskar, H., Liao, Q., & Poggio, T. (2016). Learning functions: when is deep better

than shallow. arXiv preprint arXiv:1603.00988 .
Moody, J., Levin, U., & Rehfuss, S. (1993). Predicting the us index of industrial produc-

tion.
Moshiri, S., & Cameron, N. (2000). Neural network versus econometric models in fore-

casting inflation. Journal of forecasting, 19 (3), 201–217.
Nakamura, E. (2005). Inflation forecasting using a neural network.
Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . .

Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499 .

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65 (6), 386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323 (6088), 533.

Sax, C. (2017). seasonal: R interface to x-13-arima-seats [Computer software manual].
Retrieved from https://CRAN.R-project.org/package=seasonal (R package
version 1.6.1)

Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P., Janovsky, T. A., &
Kamaev, V. A. (2013). A survey of forecast error measures. World Applied Sciences
Journal, 24 , 171–176.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, 15 (1), 1929–1958.

Stock, J. H., & Watson, M. W. (1998). A comparison of linear and nonlinear univariate
models for forecasting macroeconomic time series (Tech. Rep.). National Bureau of

46

https://EconPapers.repec.org/RePEc:sin:wpaper:06-a010
https://CRAN.R-project.org/package=seasonal

Economic Research.
Szafranek, K. (2017). Bagged artificial neural networks in forecasting inflation.
Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting, 1 ,

135–196.
Tkacz, G., & Hu, S. (1999). Forecasting gdp growth using artificial neural networks. Bank

of Canada Ottawa.
Touretzky, D. S., & Pomerleau, D. A. (1989). What’s hidden in the hidden layers. Byte,

14 (8), 227–233.
Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . .

Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499 .

Wang, G., Ma, J., & Yang, S. (2014). An improved boosting based on feature selection for
corporate bankruptcy prediction. Expert Systems with Applications, 41 (5), 2353–
2361.

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer-Verlag New
York. Retrieved from http://ggplot2.org

Woodford, M. (2005). Central bank communication and policy effectiveness (Tech. Rep.).
National Bureau of Economic Research.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks::
The state of the art. International journal of forecasting, 14 (1), 35–62.

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using
multi-channels deep convolutional neural networks. In International conference on
web-age information management (pp. 298–310).

47

http://ggplot2.org

Appendices

48

Appendix A Network Tuning

This appendix outlines the process of tuning our networks. For each of our three network
structures, we begin by reporting the cross-validation RMSE that results from different hyper-
parameters. We then look at the convergence plots for the selected model architecture, for each
of the years in the validation period and for each forecast horizon. Because all our ”models”
are actually model ensembles, averaging over several individual models for each network, we
consider the average model convergence in order to monitor overfitting. Specifically, this is done
by averaging the training/test loss over each epoch. To get an idea of the variability in test
convergence, we also plot the interquartile range for each epoch, as well as the maximum and
minimum values. Finally, we the out of sample forecasts generated by each of the networks.

A.1 Neural Network (NN)

Model# H.Layers Neurons Dropout RMSE
1 1 6 0 48.6
2 1 6 0.1 57.8
3 1 6 0.2 64.1
4 1 6 0.3 75.4
5 1 12 0 50.7
6 1 12 0.1 50.5
7 1 12 0.2 53.2
8 1 12 0.3 57.9
9 1 18 0 49.9
10 1 18 0.1 49.5
11 1 18 0.2 51.5
12 1 18 0.3 53.6
13 1 24 0 49.3
14 1 24 0.1 52.0
15 1 24 0.2 51.5
16 1 24 0.3 52.8

Table 3: Neural Network (NN) Validation: Different Architectures and related RMSE. H.Layers reports the number of
hidden layers. For the neural network architecture this is fixed to one. Neurons reports the number of computational
neurons in the hidden layer. We coarsely increase the number of neurons from 6 to 24. Dropout reports the amount of
dropout regularization that is applied. The dropout layer is placed after the hidden layer. RMSE reports the cross-validation
error in the validation period, and is reported in basis points. The lowest RMSE is denoted in bold face.

49

A.1.1 Neural Network (NN): Network Architecture

input_11: InputLayer

fatten_12: Flatten

dense_63: Dense

dense_64: Dense

Figure 14: Neural Network (NN) Architecture. Total trainable parameters: 445. The initial flatten layer flattens the
[samples, timesteps, features] input structure utilized by Convolutional Neural Networks to a 2D tensor of the form
[samples, timesteps ∗ features] which is compatible with the neural network.

50

A.1.2 Neural Network (NN): Validation Convergence

2000 − 2001

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.0

0.1

0.2

0 5 10 15 20 25

Epoch
M

S
E

2002 − 2003

0.00

0.25

0.50

0.75

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.3

0.6

0.9

1.2

0 5 10 15 20 25

Epoch

M
S

E

2005 − 2006

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 15: Neural Network (NN) Validation Convergence: one month horizon. Final validation convergence for each
separate training and test set used for model validation. The network is trained to forecast the one month horizon. The
blue line represents the average evolution of the training loss for each epoch. The red line represents the average evolution
in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors for given
epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

51

2000 − 2001

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.25

0.50

0.75

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 16: Neural Network (NN) Validation Convergence: three month horizon. Final validation convergence for each
separate training and test set used for model validation. The network is trained to forecast the three month horizon. The
blue line represents the average evolution of the training loss for each epoch. The red line represents the average evolution
in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors for given
epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

52

2000 − 2001

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 17: Neural Network (NN) Validation Convergence: six month horizon. Final validation convergence for each
separate training and test set used for model validation. The network is trained to forecast the six month horizon. The
blue line represents the average evolution of the training loss for each epoch. The red line represents the average evolution
in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors for given
epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

53

2000 − 2001

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.25

0.50

0.75

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.5

1.0

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.5

1.0

1.5

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 18: Neural Network (NN) Validation Convergence: six month horizon. Final validation convergence for each
separate training and test set used for model validation. The network is trained to forecast the twelve month horizon. The
blue line represents the average evolution of the training loss for each epoch. The red line represents the average evolution
in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors for given
epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

54

A.1.3 Neural Network (NN): Validation Forecasts

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year
In

fla
tio

n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2001200220032004200520062007200820092010

Year

In
fla

tio
n

Realized Inflation Average Model Prediction

Figure 19: Neural Network (NN): Out of sample forecasts in the validation period. Starting from the top left: one month
ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead forecasts. The blue line
represents realized inflation. The red line represents our model ensemble forecast. The dark grey band around the red line
represents the 75 and 25 percentile of individual model forecasts, while the light grey band represents the maximum and
minimum individual model forecast. The dotted grey lines indicate the first out of sample forecast made by a given model.
For instance, the line coinciding with January 2002 represents the first of twelve out of sample forecasts produced by the
model trained on data until December 2001.

55

A.1.4 Neural Network (NN): Test Forecasts

0%

1%

2%

3%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

5%

2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

2011 2012 2013 2014 2015 2016 2017 2018

Date

In
fla

tio
n

IQR Min−Max Prediction Realized Inflation

Figure 20: Neural Network (NN): Out of sample forecasts in the test period. Starting from the top left: one month
ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead forecasts. The blue line
represents realized inflation. The red line represents our model ensemble forecast. The dark grey band around the red line
represents the 75 and 25 percentile of individual model forecasts, while the light grey band represents the maximum and
minimum individual model forecast.

A.2 Multi-Layer Perceptron (MLP)

Table (4) reports the cross-validation RMSE obtained by different multi-layer perceptron archi-
tectures.

56

Model Neurons Dropout RMSE
1 8, 6, 4 0 X 3 48.1
2 8, 6, 4 0.1 X 3 47.2
3 8, 6, 4 0.2 X 3 47.5
4 8, 6, 4 0.3 X 3 47.8
5 16, 12, 8 0 X 3 48.6
6 16, 12, 8 0.1 X 3 48.5
7 16, 12, 8 0.2 X 3 48.6
8 16, 12, 8 0.3 X 3 47.9
9 24, 18, 12 0.0 X 3 50.6
10 24, 18, 12 0.1 X 3 50.0
11 24, 18, 12 0.2 X 3 49.7
12 24, 18, 12 0.3 X 3 48.3

Table 4: Multi-Layer Perceptron (MLP) Validation: Different architectures and related RMSE. Neurons reports the
number of computational neurons in each of the dense stacks. Dropout reports the amount of dropout regularization that
is applied at each dropout layer. The dropout layers are placed after each dense stack. RMSE reports the cross-validation
error in the validation period, and is reported in basis points. The lowest RMSE is denoted in bold face.

57

A.2.1 Multi-Layer Perceptron (MLP): Architecture

input_12: InputLayer

fatten_13: Flatten

dense_65: Dense

dense_66: Dense

add_14: Add

dense_67: Dense

dense_68: Dense

dropout_12: Dropout

dense_69: Dense

dense_70: Dense

add_15: Add

dense_71: Dense

dense_72: Dense

dropout_13: Dropout

dense_73: Dense

dense_74: Dense

add_16: Add

dense_75: Dense

dense_76: Dense

dropout_14: Dropout

dense_77: Dense

Figure 21: Multi-layer Perceptron (MLP): Architecture. Total number of trainable parameters: 1.055. The initial flatten
layer flattens the [samples, timesteps, features] input structure utilized by convolutional neural networks to a 2D tensor
of the form [samples, timestepsxfeatures] which is compatible with the Multi-Layer Perceptron (MLP).

58

A.2.2 Multi-Layer Perceptron (MLP): Validation Convergence

2000 − 2001

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.0

0.1

0.2

0 5 10 15 20 25

Epoch
M

S
E

2002 − 2003

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25

Epoch

M
S

E

2005 − 2006

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 22: Multi-layer Perceptron (MLP): Validation Convergence, one month horizon. Final validation convergence for
each separate training and test set used for model validation. The network is trained to forecast the one month horizon.
The blue line represents the average evolution of the training loss for each epoch. The red line represents the average
evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors
for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

59

2000 − 2001

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.5

1.0

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 23: Multi-layer Perceptron (MLP): Validation Convergence, three month horizon. Final validation convergence for
each separate training and test set used for model validation. The network is trained to forecast the three month horizon.
The blue line represents the average evolution of the training loss for each epoch. The red line represents the average
evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors
for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

60

2000 − 2001

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.2

0.4

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 24: Multi-layer Perceptron (MLP): Validation Convergence, six month horizon. Final validation convergence for
each separate training and test set used for model validation. The network is trained to forecast the six month horizon.
The blue line represents the average evolution of the training loss for each epoch. The red line represents the average
evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test errors
for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

61

2000 − 2001

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.2

0.4

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 25: Multi-layer Perceptron (MLP): Validation Convergence, twelve month horizon. Final validation convergence
for each separate training and test set used for model validation. The network is trained to forecast the twelve month
horizon. The blue line represents the average evolution of the training loss for each epoch. The red line represents the
average evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of test
errors for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

62

A.2.3 Multi-Layer Perceptron (MLP): Validation Forecasts

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year
In

fla
tio

n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2001200220032004200520062007200820092010

Year

In
fla

tio
n

Realized Inflation Average Model Prediction

Figure 26: Multi-layer Perceptron (MLP): Out of sample forecasts in the validation period. Starting from the top left:
one month ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead forecasts. The
blue line represents realized inflation. The red line represents our model ensemble forecast. The dark grey band around
the red line represents the 75 and 25 percentile of individual model forecasts, while the light grey band represents the
maximum and minimum individual model forecast. The dotted grey lines indicate the first out of sample forecast made
by a given model. For instance, the line coinciding with January 2002 represents the first of twelve out of sample forecasts
produced by the model trained on data until December 2001.

63

A.2.4 Multi-Layer Perceptron (MLP): Test Forecasts

0%

1%

2%

3%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

2%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

2%

4%

2011 2012 2013 2014 2015 2016 2017 2018

Date

In
fla

tio
n

IQR Min−Max Prediction Realized Inflation

Figure 27: Multi-Layer Perceptron (MLP): Out of sample forecasts in the test period. Starting from the top left: one
month ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead forecasts. The
blue line represents realized inflation. The red line represents our model ensemble forecast. The dark grey band around
the red line represents the 75 and 25 percentile of individual model forecasts, while the light grey band represents the
maximum and minimum individual model forecast.

64

A.3 Convolutional Neural Network (CNN)

Model# Filters K.Size H.Nodes Dropout RMSE
1 6,6 3, 3 6, 4 0 0.539
2 6,6 3, 3 6, 4 0.1 X 2 0.544
3 6,6 3, 3 6, 4 0.2 X 2 0.529
4 6,6 3, 3 6, 4 0.3 X 2 0.545
5 12,12 6, 6 6, 4 0 0.529
6 12,12 6, 6 6, 4 0.1 X 2 0.527
7 12,12 6, 6 6, 4 0.2 X 2 0.519
8 12,12 6, 6 6, 4 0.3 X 2 0.520
9 16,16 8, 8 6, 4 0 0.540
10 16,16 8, 8 6, 4 0.1 X 2 0.531
11 16,16 8, 8 6, 4 0.2 X 2 0.529
12 16,16 8, 8 6, 4 0.3 X 3 0.526

Table 5: Convolutional Neural Network (CNN) Validation: Different architectures and related RMSE. Filters reports the
number of filters in each convolutional layer. K.Size reports the kernel size of each convolutional layer. H.Layers reports
the number of hidden layers. For the neural network architecture this is fixed to one. Neurons reports the number of
computational neurons in the hidden layer. Dropout reports the amount of dropout regularization that is applied. The
dropout layer is situated after the hidden layer. RMSE reports the cross-validation error in the validation period, and is
reported in basis points. The lowest RMSE is denoted in bold face.

65

A.3.1 Convolutional Neural Network (CNN): Architecture

input: InputLayer

conv1d_1: Conv1D

1stconv: Conv1D

add_10: Add

max_pooling1d_1: MaxPooling1D

conv1d_2: Conv1D

2stconv: Conv1D

add_11: Add

fatten_11: Flatten

dense_54: Dense

dense_55: Dense

add_12: Add

dense_56: Dense

dense_57: Dense

dropout_10: Dropout

dense_58: Dense

dense_59: Dense

add_13: Add

dense_60: Dense

dense_61: Dense

dropout_11: Dropout

dense_62: Dense

Figure 28: Convolutional Neural Network (CNN): Architecture. Total trainable parameters: 3.191.

66

A.3.2 Convolutional Neural Network (CNN): Validation Convergence

2000 − 2001

0.00

0.02

0.04

0.06

0.08

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.000

0.025

0.050

0.075

0 5 10 15 20 25

Epoch
M

S
E

2002 − 2003

0.000

0.025

0.050

0.075

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2005 − 2006

0.000

0.025

0.050

0.075

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.00

0.02

0.04

0.06

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.00

0.02

0.04

0.06

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.00

0.02

0.04

0.06

0.08

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 29: Convolutional Neural Network (CNN) Validation: Validation Convergence, one month horizon. Final valida-
tion convergence for each separate training and test set used for model validation. The network is trained to forecast the one
month horizon. The blue line represents the average evolution of the training loss for each epoch. The red line represents
the average evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of
test errors for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

67

2000 − 2001

0.000

0.025

0.050

0.075

0.100

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.02

0.04

0.06

0.08

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.00

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.1

0.2

0.3

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.02

0.04

0.06

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.02

0.04

0.06

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.02

0.04

0.06

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.000

0.025

0.050

0.075

0.100

0.125

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 30: Convolutional Neural Network (CNN) Validation: Validation Convergence, three month horizon. Final
validation convergence for each separate training and test set used for model validation. The network is trained to forecast
the three month horizon. The blue line represents the average evolution of the training loss for each epoch. The red
line represents the average evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and
25 percentiles of test errors for given epoch, while the light grey fill represents the maximum and minimum test loss for
individual models.

68

2000 − 2001

0.00

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.025

0.050

0.075

0.100

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.025

0.050

0.075

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.000

0.025

0.050

0.075

0.100

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 31: Convolutional Neural Network (CNN) Validation: Validation Convergence, six month horizon. Final validation
convergence for each separate training and test set used for model validation. The network is trained to forecast the six
month horizon. The blue line represents the average evolution of the training loss for each epoch. The red line represents
the average evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and 25 percentiles of
test errors for given epoch, while the light grey fill represents the maximum and minimum test loss for individual models.

69

2000 − 2001

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2001 − 2002

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E

2002 − 2003

0.05

0.10

0.15

0 5 10 15 20 25

Epoch

M
S

E

2003 − 2004

0.0

0.2

0.4

0.6

0 5 10 15 20 25

Epoch

M
S

E

2004 − 2005

0.0

0.1

0.2

0 5 10 15 20 25

Epoch

M
S

E
2005 − 2006

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2006 − 2007

0.000

0.025

0.050

0.075

0.100

0 5 10 15 20 25

Epoch

M
S

E

2007 − 2008

0.05

0.10

0.15

0.20

0 5 10 15 20 25

Epoch

M
S

E

2008 − 2009

0.025

0.050

0.075

0.100

0.125

0 5 10 15 20 25

Epoch

M
S

E

Test Loss Training Loss

Figure 32: Convolutional Neural Network (CNN) Validation: Validation Convergence, twelve month horizon. Final
validation convergence for each separate training and test set used for model validation. The network is trained to forecast
the twelve month horizon. The blue line represents the average evolution of the training loss for each epoch. The red
line represents the average evolution in the test loss for each epoch. The surrounding dark grey fill represent the 75 and
25 percentiles of test errors for given epoch, while the light grey fill represents the maximum and minimum test loss for
individual models.

70

A.3.3 Convolutional Neural Network (CNN): Validation Forecasts

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year
In

fla
tio

n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2000200120022003200420052006200720082009

Year

In
fla

tio
n

−3%

−2%

−1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

2001200220032004200520062007200820092010

Year

In
fla

tio
n

Realized Inflation Average Model Prediction

Figure 33: Convolutional Neural Network (CNN) Validation: Out of sample forecasts, validation period. Starting from
the top left: one month ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead
forecasts. The blue line represents realized inflation in the period January 2000 to December 2008. The red line represents
our model ensemble forecast. The dark grey band around the red line represents the 75 and 25 percentile of individual
model forecasts, while the light grey band represents the maximum and minimum individual model forecast. The dotted
grey lines indicate the first out of sample forecast made by a given model. For instance, the line coinciding with January
2002 represents the first of twelve out of sample forecasts produced by the model trained on data until December 2001.

71

A.3.4 Convolutional Neural Network (CNN): Test Forecasts

0%

1%

2%

3%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

2010 2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

1%

2%

3%

4%

2011 2012 2013 2014 2015 2016 2017

Date

In
fla

tio
n

0%

2%

4%

2011 2012 2013 2014 2015 2016 2017 2018

Date

In
fla

tio
n

IQR Min−Max Prediction Realized Inflation

Figure 34: Convolutional Neural Network (CNN): Out of sample forecasts in the test period. Starting from the top left:
one month ahead forecasts, three month ahead forecasts, six month ahead forecasts and twelve month ahead forecasts. The
blue line represents realized inflation. The red line represents our model ensemble forecast. The dark grey band around
the red line represents the 75 and 25 percentile of individual model forecasts, while the light grey band represents the
maximum and minimum individual model forecast.

72

Appendix B Benchmarks

B.1 Autoregressive Models (AR): Model Selection

AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 AR10 AR11 AR12
h = 1 0.535 0.508 0.509 0.512 0.513 0.519 0.519 0.510 0.510 0.513 0.524 0.525
h = 2 1.004 0.982 0.982 0.999 1.004 1.013 1.001 0.979 0.970 0.966 0.999 0.995
h = 3 1.191 1.188 1.191 1.197 1.195 1.205 1.193 1.182 1.172 1.186 1.217 1.212
h = 4 1.308 1.260 1.264 1.235 1.230 1.243 1.240 1.255 1.257 1.282 1.303 1.293

Table 6: Autoregressive Models with Lags From One to Twelve

B.2 Benchmark Coefficients in the Test Period

B.2.1 auto.arima Approach (AA): Coefficients in the Test Period

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.5

1.0

1.5

2.0

2010 2011 2012 2013 2014 2015 2016 2017

Date

C
oe

ffi
ci

en
t v

al
ue

Intercept, Inflation %

AR (1) Intercept MA (1)

Figure 35: auto.arima cofficients in the test period, The AA method consistently picked an ARIMA(1,0,1) model. Left
axis shows the value of the coefficients given to each AR and MA term. Right axis shows intercept in % inflation.

73

B.2.2 Bayesian Information Criterion Approach and Autoregressive Model
of Order 2 (ARBIC/AR2): Coefficients in the Test Period

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.0

0.5

1.0

1.5

2.0

2010 2011 2012 2013 2014 2015 2016 2017

Date

C
oe

ffi
ci

en
t v

al
ue

Intercept, Inflation %

AR (1) AR (2) Intercept

Figure 36: ARBIC and AR2 coefficients in the test period. The ARBIC method consistently picked an AR(2) model.
Thus, the plot also shows the coefficients for AR2. Left axis shows the value of the coefficients for each AR term. Right
axis shows intercept in % inflation.

B.2.3 Akaike Information Criterion Approach: Coefficients in the Test Pe-
riod

−0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.0

0.5

1.0

1.5

2.0

2010 2011 2012 2013 2014 2015 2016 2017

Date

C
oe

ffi
ci

en
t v

al
ue

Intercept, Inflation %

AR (1)

AR (10)

AR (11)

AR (2)

AR (3)

AR (4)

AR (5)

AR (6)

AR (7)

AR (8)

AR (9)

Intercept

Figure 37: ARAIC coefficients in the test period. The ARAIC method consistently picked an AR(11) model. Left axis
shows the value of the coefficients for each AR term. Right axis shows intercept in % inflation.

74

Appendix C Error Measure Decomposition

C.1 Yearly RMSE and MAE in the Validation Period (2000 -
2009)

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.284 0.400 0.473 0.876 0.846 0.164 0.332 0.764 0.810 0.550 0.608
AA 0.293 0.400 0.473 0.853 0.712 0.150 0.354 0.672 0.734 0.516 0.562

ARBIC 0.293 0.390 0.464 0.853 0.749 0.158 0.340 0.672 0.695 0.513 0.560
ARAIC 0.303 0.390 0.464 0.792 0.772 0.175 0.345 0.695 0.646 0.509 0.551

AR2 0.303 0.382 0.464 0.814 0.749 0.158 0.340 0.672 0.695 0.508 0.553
NN 0.248 0.404 0.385 0.810 0.628 0.563 0.355 0.615 0.498 0.501 0.526

MLP 0.215 0.422 0.284 0.781 0.600 0.346 0.413 0.629 0.459 0.461 0.491
CNN 0.327 0.421 0.356 0.976 0.721 0.382 0.408 0.688 0.450 0.525 0.565

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.236 0.337 0.382 0.644 0.548 0.114 0.262 0.561 0.578 0.407 0.407
AA 0.255 0.337 0.382 0.641 0.457 0.126 0.284 0.537 0.484 0.389 0.389

ARBIC 0.255 0.346 0.383 0.641 0.394 0.135 0.260 0.533 0.525 0.386 0.386
ARAIC 0.264 0.346 0.391 0.540 0.534 0.152 0.278 0.516 0.465 0.387 0.387

AR2 0.264 0.336 0.391 0.585 0.394 0.135 0.260 0.533 0.525 0.380 0.380
NN 0.223 0.354 0.336 0.586 0.516 0.364 0.284 0.414 0.389 0.385 0.385

MLP 0.185 0.330 0.228 0.546 0.469 0.274 0.284 0.402 0.314 0.337 0.337
CNN 0.289 0.308 0.305 0.764 0.619 0.303 0.295 0.458 0.346 0.410 0.410

Table 7: Yearly RMSE and MAE in the validation period (2000 - 2010) at the one month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the validation period. The error measure reported in the results section is found under Mean. Best method for each
year in bold face.

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.423 0.884 1.411 1.863 1.208 0.353 0.773 1.657 1.540 1.123 1.235
AA 0.509 0.884 1.411 1.763 0.799 0.264 0.671 1.416 1.544 1.029 1.140

ARBIC 0.509 0.810 1.340 1.763 0.749 0.277 0.668 1.387 1.357 0.984 1.089
ARAIC 0.562 0.810 1.314 1.710 1.135 0.338 0.584 1.318 1.091 0.985 1.069

AR2 0.562 0.788 1.314 1.737 0.749 0.277 0.668 1.387 1.357 0.982 1.082
NN 0.398 0.749 1.002 1.964 1.236 1.073 0.659 1.269 0.972 1.036 1.118

MLP 0.375 0.836 1.022 1.705 0.945 0.758 0.790 1.298 0.813 0.949 1.013
CNN 0.419 0.712 1.121 2.087 1.306 0.968 0.764 1.255 0.955 1.065 1.155

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.362 0.784 1.111 1.500 0.824 0.277 0.635 1.230 1.246 0.885 0.885
AA 0.398 0.784 1.111 1.383 0.669 0.198 0.539 1.253 1.192 0.836 0.836

ARBIC 0.398 0.762 1.015 1.383 0.630 0.207 0.545 1.229 1.111 0.809 0.809
ARAIC 0.445 0.762 1.002 1.285 0.950 0.266 0.480 1.133 0.854 0.797 0.797

AR2 0.445 0.735 1.002 1.365 0.630 0.207 0.545 1.229 1.111 0.808 0.808
NN 0.325 0.666 0.728 1.419 0.943 0.707 0.584 0.997 0.828 0.800 0.800

MLP 0.312 0.704 0.721 1.240 0.797 0.653 0.674 0.945 0.689 0.748 0.748
CNN 0.369 0.630 0.730 1.586 1.101 0.847 0.653 0.985 0.781 0.854 0.854

Table 8: Yearly RMSE and MAE in the validation period (2000 - 2010) at the three month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the validation period. The error measure reported in the results section is found under Mean. Best method for each
year in bold face.

75

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.529 1.463 1.870 2.238 1.345 0.568 1.110 2.204 1.664 1.444 1.561
AA 0.910 1.463 1.870 2.052 0.697 0.318 0.969 1.602 1.731 1.290 1.405

ARBIC 0.910 1.179 1.551 2.052 0.631 0.317 0.954 1.547 1.573 1.190 1.296
ARAIC 1.026 1.179 1.486 1.879 1.474 0.332 0.909 1.431 1.182 1.211 1.280

AR2 1.026 1.124 1.486 2.036 0.631 0.317 0.954 1.547 1.573 1.188 1.288
NN 0.708 1.280 1.117 2.495 1.468 1.569 0.889 1.503 1.176 1.356 1.440

MLP 0.576 1.341 1.255 2.364 1.289 1.036 1.040 1.654 0.906 1.273 1.361
CNN 0.733 1.343 1.143 2.803 1.403 1.240 0.974 1.521 1.475 1.404 1.507

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.442 1.369 1.496 1.937 0.862 0.525 0.803 1.905 1.400 1.193 1.193
AA 0.856 1.369 1.496 1.760 0.653 0.248 0.735 1.493 1.455 1.118 1.118

ARBIC 0.856 1.071 1.153 1.760 0.597 0.250 0.733 1.446 1.163 1.003 1.003
ARAIC 0.974 1.071 1.109 1.603 1.277 0.300 0.669 1.351 0.819 1.019 1.019

AR2 0.974 1.013 1.109 1.718 0.597 0.250 0.733 1.446 1.163 1.000 1.000
NN 0.631 1.150 0.856 2.001 1.097 1.310 0.720 1.359 1.041 1.129 1.129

MLP 0.500 1.219 0.988 1.817 1.036 0.889 0.878 1.426 0.733 1.054 1.054
CNN 0.683 1.229 0.972 2.233 1.189 0.963 0.839 1.262 1.266 1.182 1.182

Table 9: Yearly RMSE and MAE in the validation period (2000 - 2010) at the six month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the validation period. The error measure reported in the results section is found under Mean. Best method for each
year in bold face.

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.947 2.175 2.000 3.173 1.376 0.891 1.827 3.369 2.070 1.981 2.144
AA 1.035 2.175 2.000 2.419 0.670 0.408 1.549 2.031 2.120 1.601 1.741

ARBIC 1.035 1.455 1.409 2.419 0.639 0.383 1.529 1.952 0.713 1.282 1.424
ARAIC 1.097 1.455 1.352 1.972 1.596 0.308 1.462 1.596 0.813 1.295 1.375

AR2 1.097 1.353 1.352 2.326 0.639 0.383 1.529 1.952 0.713 1.260 1.394
NN 0.922 2.026 1.295 3.560 0.991 2.117 1.393 2.114 1.387 1.756 1.918

MLP 0.926 2.004 1.418 3.225 1.062 1.521 1.243 2.217 0.949 1.618 1.766
CNN 1.262 1.989 1.058 3.207 1.237 1.629 1.203 2.167 1.252 1.667 1.790

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Total
RW 0.837 1.868 1.544 2.206 1.054 0.814 1.659 3.068 1.538 1.621 1.621
AA 0.874 1.868 1.544 1.932 0.614 0.339 1.399 1.836 1.574 1.331 1.331

ARBIC 0.874 1.257 0.988 1.932 0.584 0.323 1.379 1.763 0.579 1.075 1.075
ARAIC 0.914 1.257 0.944 1.637 1.492 0.269 1.315 1.446 0.635 1.101 1.101

AR2 0.914 1.168 0.944 1.887 0.584 0.323 1.379 1.763 0.579 1.060 1.060
NN 0.785 1.696 1.055 2.584 0.867 1.885 1.212 1.883 1.065 1.448 1.448

MLP 0.800 1.722 1.110 2.216 0.847 1.436 1.032 2.016 0.772 1.328 1.328
CNN 1.117 1.876 0.858 2.746 1.183 1.530 1.121 2.042 1.161 1.515 1.515

Table 10: Yearly RMSE and MAE in the validation period (2000 - 2010) at the twelve month horizon. Top: RMSE,
bottom: MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for
each year in the validation period. The error measure reported in the results section is found under Mean. Best method
for each year in bold face.

76

C.2 Yearly RMSE and MAE in the Test Period (2010 - 2017)

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.424 0.460 0.353 0.372 0.171 0.349 0.305 0.348 0.358
AA 0.382 0.487 0.331 0.324 0.213 0.383 0.372 0.356 0.364

ARBIC 0.361 0.479 0.364 0.340 0.203 0.377 0.383 0.358 0.366
ARAIC 0.429 0.473 0.361 0.290 0.230 0.386 0.392 0.366 0.374

AR2 0.361 0.479 0.364 0.340 0.203 0.377 0.383 0.358 0.366
NN 0.467 0.384 0.289 0.274 0.268 0.322 0.292 0.328 0.335

MLP 0.394 0.383 0.300 0.293 0.275 0.320 0.295 0.323 0.326
CNN 0.386 0.388 0.289 0.296 0.277 0.346 0.280 0.323 0.326

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.343 0.380 0.315 0.310 0.147 0.260 0.225 0.283 0.283
AA 0.318 0.389 0.271 0.266 0.174 0.284 0.289 0.284 0.284

ARBIC 0.305 0.380 0.295 0.288 0.164 0.278 0.302 0.287 0.287
ARAIC 0.344 0.371 0.294 0.237 0.186 0.280 0.326 0.291 0.291

AR2 0.305 0.380 0.295 0.288 0.164 0.278 0.302 0.287 0.287
NN 0.396 0.316 0.241 0.220 0.186 0.259 0.222 0.263 0.263

MLP 0.306 0.323 0.236 0.238 0.176 0.261 0.234 0.253 0.253
CNN 0.334 0.314 0.253 0.263 0.160 0.284 0.230 0.262 0.262

Table 11: Yearly RMSE and MAE in the test period (2010 - 2017) at the one month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the testing period. The error measure reported in the results section is found under Total. Best method for each year
in bold face.

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.831 0.743 0.568 0.666 0.188 0.461 0.564 0.574 0.606
AA 0.678 0.802 0.652 0.526 0.165 0.487 0.742 0.579 0.612

ARBIC 0.644 0.838 0.732 0.508 0.162 0.496 0.794 0.596 0.634
ARAIC 0.734 0.751 0.820 0.360 0.318 0.501 0.781 0.609 0.640

AR2 0.644 0.838 0.732 0.508 0.162 0.496 0.794 0.596 0.634
NN 0.964 0.664 0.443 0.512 0.379 0.462 0.547 0.567 0.596

MLP 0.712 0.701 0.527 0.450 0.428 0.438 0.533 0.541 0.553
CNN 0.473 0.618 0.549 0.321 0.462 0.557 0.438 0.488 0.496

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.676 0.554 0.488 0.568 0.149 0.395 0.452 0.469 0.469
AA 0.533 0.582 0.533 0.400 0.142 0.406 0.650 0.464 0.464

ARBIC 0.506 0.635 0.578 0.388 0.140 0.416 0.691 0.479 0.479
ARAIC 0.612 0.583 0.688 0.316 0.266 0.415 0.672 0.507 0.507

AR2 0.506 0.635 0.578 0.388 0.140 0.416 0.691 0.479 0.479
NN 0.822 0.524 0.368 0.402 0.312 0.401 0.479 0.473 0.473

MLP 0.586 0.622 0.469 0.350 0.351 0.377 0.441 0.457 0.457
CNN 0.423 0.542 0.474 0.282 0.322 0.480 0.342 0.409 0.409

Table 12: Yearly RMSE and MAE in the test period (2010 - 2017) at the three month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the testing period. The error measure reported in the results section is found under Total. Best method for each year
in bold face.

77

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.807 0.755 0.791 0.959 0.173 0.766 0.993 0.749 0.790
AA 0.602 1.016 0.776 0.628 0.109 0.819 1.005 0.708 0.764

ARBIC 0.596 1.079 0.897 0.583 0.104 0.828 1.070 0.737 0.802
ARAIC 0.474 1.092 1.008 0.449 0.273 0.843 0.988 0.732 0.792

AR2 0.596 1.079 0.897 0.583 0.104 0.828 1.070 0.737 0.802
NN 1.009 0.987 0.577 0.819 0.551 0.764 0.782 0.784 0.801

MLP 0.872 0.887 0.669 0.724 0.497 0.720 0.741 0.730 0.740
CNN 0.540 0.886 0.706 0.471 0.482 0.804 0.767 0.665 0.683

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.716 0.626 0.724 0.798 0.142 0.628 0.850 0.640 0.640
AA 0.516 0.908 0.563 0.452 0.086 0.678 0.833 0.576 0.576

ARBIC 0.494 0.976 0.678 0.394 0.085 0.688 0.886 0.600 0.600
ARAIC 0.411 0.973 0.881 0.390 0.222 0.712 0.802 0.627 0.627

AR2 0.494 0.976 0.678 0.394 0.085 0.688 0.886 0.600 0.600
NN 0.749 0.944 0.475 0.657 0.490 0.645 0.665 0.661 0.661

MLP 0.764 0.836 0.546 0.592 0.450 0.625 0.612 0.632 0.632
CNN 0.468 0.870 0.557 0.401 0.444 0.737 0.624 0.586 0.586

Table 13: Yearly RMSE and MAE in the test period (2010 - 2017) at the six month horizon. Top: RMSE, bottom: MAE.
The table shows the error measures of each of our benchmark methods and neural networks calculated for each year in the
testing period. The error measure reported in the results section is found under Total. Best method for each year in bold
face.

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 1.148 1.149 1.665 0.680 0.365 1.368 1.748 1.161 1.250
AA 0.785 1.481 0.684 0.178 0.324 1.450 0.780 0.812 0.935

ARBIC 0.758 1.513 0.656 0.153 0.323 1.459 0.741 0.800 0.933
ARAIC 0.636 1.725 0.848 0.379 0.368 1.503 0.691 0.878 1.008

AR2 0.758 1.513 0.656 0.153 0.323 1.459 0.741 0.800 0.933
NN 1.073 1.498 1.222 0.983 0.505 1.427 1.058 1.109 1.151

MLP 1.363 1.543 0.887 0.612 0.373 1.416 0.803 1.000 1.081
CNN 1.127 1.292 0.476 0.490 0.487 1.419 0.877 0.881 0.958

2010 2011 2012 2013 2014 2015 2016 Mean Total
RW 0.952 0.916 1.486 0.570 0.263 1.265 1.559 1.001 1.001
AA 0.734 1.426 0.562 0.140 0.215 1.387 0.663 0.733 0.733

ARBIC 0.712 1.464 0.557 0.130 0.217 1.398 0.629 0.730 0.730
ARAIC 0.593 1.688 0.708 0.325 0.299 1.439 0.504 0.794 0.794

AR2 0.712 1.464 0.557 0.130 0.217 1.398 0.629 0.730 0.730
NN 0.862 1.413 1.024 0.940 0.424 1.332 0.894 0.984 0.984

MLP 1.237 1.452 0.722 0.578 0.316 1.344 0.665 0.902 0.902
CNN 1.064 1.215 0.387 0.387 0.391 1.355 0.786 0.798 0.798

Table 14: Yearly RMSE and MAE in the test period (2010 - 2017) at the twelve month horizon. Top: RMSE, bottom:
MAE. The table shows the error measures of each of our benchmark methods and neural networks calculated for each year
in the testing period. The error measure reported in the results section is found under Total. Best method for each year
in bold face.

78

Appendix D Norwegian Inflation Series

D.1 Inflation Series 1921 - 2017

Cut−off

−23%
−20%
−17%
−14%
−11%
−8%
−5%
−2%

1%
4%
7%

10%
13%
16%
19%
22%

1922 1928 1934 1940 1946 1952 1958 1964 1970 1976 1982 1988 1994 2000 2006 2012 2018

Year

In
fla

tio
n

Figure 38: Monthly Y-o-Y growth in Norwegian consumer price index from 1921-2017. The vertical line in 1975 indicates
a possible cut-off point where data quality is feasible for our approach. We lose 12 months of observations in the start of
the series due to the year on year transformation.

D.2 Inflation Series 1993 - 2017

−2%

−1%

0%

1%

2%

3%

4%

5%

1994 1997 2000 2003 2006 2009 2012 2015 2018

Year

In
fla

tio
n

Figure 39: The figure depicts the monthly Y-o-Y growth in Norwegian consumer price index from 1993-2017. This is the
series used for training our ARIMA models.

79

D.3 First Differenced Inflation Series 1975 - 2017

−2.4%

−1.9%

−1.4%

−0.9%

−0.4%

0.1%

0.6%

1.1%

1.6%

2.1%

1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018

Year

In
fla

tio
n:

 F
irs

t D
iff

er
en

ce

Figure 40: Norwegian Inflation 1975-2017: First Difference.

D.4 Second Differenced Inflation Series 1975 - 2017

−2.4%

−1.9%

−1.4%

−0.9%

−0.4%

0.1%

0.6%

1.1%

1.6%

2.1%

2.6%

1976 1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018

Year

In
fla

tio
n:

 S
ec

on
d

D
iff

er
en

ce

Figure 41: Norwegian Inflation 1975-2017: Second Difference.

D.5 Summary Statistics for the validation and test periods

Figure 42 shows the validation period (red) and the testing period (blue).

80

−2%

−1%

0%

1%

2%

3%

4%

5%

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

In
fla

tio
n

Validation Period Testing Period

Figure 42: The inflation series for the validation and test periods. The period from 2000 - 2010, colored red, is the period
used for network design. The period from 2010 - 2017, colored in blue, is used as a final testing set.

Table 15 reports the mean, standard deviation and min-max values of the Norwegian inflation
series for the validation and test periods. While the mean is similar between the two periods, we
see that the standard deviation is 44% higher. The validation period also has a deeper negative
range, and a slightly higher positive range.

Validation Period Testing Period

µ 2.06 2.00
σ 1.27 0.88

Min −1.75 0.13
Max 5.30 4.15

Table 15: Summary Statistics of the Validation and Test Periods.

81

	Preface
	Abstract
	List of Abbreviations
	List of Tables
	List of Figures
	Introduction
	Background
	Strengths of Neural Networks
	Neural Networks for Macroeconomic Forecasting
	Weaknesses of Neural Networks

	Theory
	Benchmark Models
	The Random Walk Model
	The ARIMA Framework

	Deep Neural Networks
	Neurons, the Perceptron and the Multi-Layer Perceptron
	Convolutional Neural Networks
	Activation Functions, Normalization and Output Layers
	Loss Functions and Optimization
	Hyperparameters, Capacity and Regularization
	Residual Connections
	Repeat Ensembles

	Data
	Methodology
	Model Evaluation
	Evaluation Metrics

	Benchmark Selection Methods
	Random Walk Model (RW)
	ARIMA Methods Based on Information Criteria (ARBIC & ARAIC)
	auto.arima Approach (AA)
	Autoregressive Model Selection (AR)

	Neural Network Design
	Inputs and Normalization
	Number of Models in each Repeat Ensemble
	Lag Selection
	Number of Hidden Nodes and Dropout Regularization

	Final Network Architectures
	Neural Network (NN)
	Multi-Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)

	R Implementation

	Results
	Validation Performance
	Short Term Forecasts: One and Three Month Horizons
	Medium to Long Term Forecasts: Six and Twelve Month Horizons
	Overall Performance in the Validation Period

	Test Performance
	Short Term Forecasts: One and Three Month Horizons
	Medium to Long Term Forecasts: Six and Twelve Month Horizons
	Overall Performance in the Test Period

	Test Performance by Year
	One Month Horizon
	Three Month Horizon
	Six Month Horizon
	Twelve Month Horizon

	Discussion
	Main Findings
	What is the Best Forecasting Method for Inflation?
	Are Neural Networks Feasible Macroforecasting Tools?
	Strengths and Limitations
	Avenues for Further Research

	Conclusion
	References
	Appendices
	Network Tuning
	Neural Network (NN)
	Neural Network (NN): Network Architecture
	Neural Network (NN): Validation Convergence
	Neural Network (NN): Validation Forecasts
	Neural Network (NN): Test Forecasts

	Multi-Layer Perceptron (MLP)
	Multi-Layer Perceptron (MLP): Architecture
	Multi-Layer Perceptron (MLP): Validation Convergence
	Multi-Layer Perceptron (MLP): Validation Forecasts
	Multi-Layer Perceptron (MLP): Test Forecasts

	Convolutional Neural Network (CNN)
	Convolutional Neural Network (CNN): Architecture
	Convolutional Neural Network (CNN): Validation Convergence
	Convolutional Neural Network (CNN): Validation Forecasts
	Convolutional Neural Network (CNN): Test Forecasts

	Benchmarks
	Autoregressive Models (AR): Model Selection
	Benchmark Coefficients in the Test Period
	auto.arima Approach (AA): Coefficients in the Test Period
	Bayesian Information Criterion Approach and Autoregressive Model of Order 2 (ARBIC/AR2): Coefficients in the Test Period
	Akaike Information Criterion Approach: Coefficients in the Test Period

	Error Measure Decomposition
	Yearly RMSE and MAE in the Validation Period (2000 - 2009)
	Yearly RMSE and MAE in the Test Period (2010 - 2017)

	Norwegian Inflation Series
	Inflation Series 1921 - 2017
	Inflation Series 1993 - 2017
	First Differenced Inflation Series 1975 - 2017
	Second Differenced Inflation Series 1975 - 2017
	Summary Statistics for the validation and test periods

