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Abstract

This thesis is an analysis of a special type of option contract often found in
the shipping industry, a time charter with purchase option (TCPOP). The
TCPOP is a time charter (TC) agreement with an embedded purchase option.

The freight rate is modeled using the two mean reverting stochastic pro-
cesses: Ornstein Uhlenbeck (OU) and Geometric Mean Reversion (GMR).
Both models are estimated from historical spot freight rate data on Suezmax
tankers, using OLS. Based on the stochastic processes I specify a one factor
model for vessel values. The model is calibrated to historical prices for 5
year old vessels, by approximating the risk premium, using a numerical least
squares method. GMR seems to perform better than OU in predicting the
distribution of future freight rates and vessel values.

Using Monte Carlo simulation and applying the least square Monte Carlo
approach (LSM) proposed by Longstaff & Schwartz (2001), I specify proce-
dures for approximating values of option contracts with different complexity,
where a Suezmax vessel is the underlying asset. GMR consistently predicts
higher vessel values and option values than OU.
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1 INTRODUCTION

1 Introduction

When discussing shipping markets it is important to clarify what the am-

biguous term freight rate means. The freight rate is often quoted in USD

per day and means the market price level for buying a freight service for one

day. Similarly, a TC rate is the daily cost for buying a freight service over

a longer time interval. Unless otherwise stated, the term spot freight rate

refers to the time charter equivalent (TCE) spot freight rate1.

1.1 TCPOP

Risk management in the shipping industry is an evolving activity. The mod-

ern developments stem from the 1985 development of the Baltic Freight In-

dex (BFI) in connection with the opening of the Baltic International Freight

Futures Exchange (BIFFEX). BIFFEX was the first exchange that enabled

agents in the shipping industry to participate in hedging and speculation ac-

tivities through trading of financial derivatives. In addition to the contracts

offered at official exchanges, derivative contracts are being traded over the

counter (OTC) between parties in many types of transactions in the industry.

One such contract is the time charter with purchase option (TCPOP), which

is a time charter agreement with an embedded purchase option.

A time charter (TC) is similar to a lease. The shipowner gives the char-

terer the right to operate a vessel for a predetermined time period and price.

During the TC period, the shipowner still takes care of management of the

vessel, such as crew and operation, while the charterer orders how the ves-

sel should be employed. The shipowner still pays the operation and capital

costs, such as crew-, maintenance-, insurance-, management- and interests-

costs, while the charterer pays, in addition to the TC-rate, the voyage and

cargo handling costs, which normally include bunkers, canal tolls and port

dues. The price of a TC is often quoted in USD per day. TC’s can have

durations from weeks to several years.

1 TCE freight rate is voyage income less voyage costs. See section 1.2 for an extended
discussion.
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1.1 TCPOP 1 INTRODUCTION

A purchase option, where the underlying is a vessel, is defined as the right,

but not the obligation to buy the vessel at a predetermined price and time.

A European option can only be exercised at one specific predetermined point

in time, while an American option can be exercised at any time during a

predetermined time interval. In between is the Bermudan option, which can

be exercised at several predetermined points in time.

A Bermudan TCPOP is thus a TC of a vessel, where the vessel can be

purchased at several predetermined points in time, and thus end the TC.

As the literature on TCPOP is rather scarce, there is not much informa-

tion on how these contracts are normally priced. The general impression, as

can be seen from the quotes below, is that the general knowledge about the

valuation and treatment of such options is limited.

Siri Strandenes claims that

These (TCPOPs) can have substantial value, but are often given

away2.

while Bjerksund & Ekern says:

Det kan virke som verdsettingen av slike realopsjoner innen ship-

ping kan være temmelig tilfeldig. Et skipsverft kan gi fra seg en

nybyggingsopsjon nærmest gratis, som et ekstra smøringsmiddel

for å f̊a dagens kontraheringskontrakt i havn. P̊a sin side kan en

reder være i stor tvil om hvilket tillegg til gjeldende TC-rate en

forlengelsesopsjon il befrakter burde medføre. Likevel synes slike

opsjonstrekk rutinemessig å inng̊a som tillegg til andre kontrakter

i shippingmarkedene3.

Based on personal experience it seems practitioners often lack the knowledge

on how to treat such options, both in valuation and in determining optimal
2 Notes from lecture on risk in the course “Shipping economics” at NHH, spring 2008.
3 Bjerksund & Ekern (1992)

2



1.2 Objectives and outline 1 INTRODUCTION

exercise strategies. Seemingly, the option contracts are “given” away in an

attempt to sweeten deals, but lack of knowledge might give unintentional

consequences for both parties. This is unfortunate as investment decisions

in shipping seems to be extremely important, and should thus be dealt with

in a consistent and rational manner. Kavussanos & Visvikis (2006, p. 63)

for instance, claims that asset play has a much stronger impact on balance

sheets in general than the operational profits.

1.2 Objectives and outline

This thesis will deal with three main topics:

1. Modeling and calibration of the freight rate dynamics using OU and

GMR.

2. Valuation and choice of optimal exercise strategy for a Bermudan TCPOP

3. A comparison of how the GMR performs compared to OU.

In section 2 I deal with the specification of a freight rate model. I will briefly

present some of the available research that relates to the topic, then discuss

the most important features that characterizes shipping markets, and point

out what a freight rate model should take into account. From there I will

present two stochastic models, OU and GMR, to represent the freight rate

process.

In section 3 I use historical data from the Suezmax market to estimate the

parameters in OU and GMR.

In Section 4 I present a one factor freight rate model for vessel values. Because

of bad model performance, I attempt a calibration procedure by estimating a

variable risk premium. The variable risk premium should according to theory

be dependent on market conditions, so I use the freight rate as a proxy vari-

able and apply a numerical least square method to estimate a linear model.

3



1.3 Current literature 1 INTRODUCTION

In section 5 I propose how one can use the vessel value models, combined

with Monte Carlo simulation, to price a set of options contracts. The option

contracts vary in complexity, with the Bermudan TCPOP as the most com-

plex one. For the path dependent4 option contracts I apply the LSM method

from Longstaff & Schwartz (2001).

A note on the TCE freight rate

The TCE freight rate is defined as voyage income less voyage cost. Voyage

cost incorporate bunker cost, canal fees, port dues, etc. Especially bunker

costs are volatile. This might represent a source of bias in the models, as

the TCE spot freight rate in fact is influenced by uncertainties from both

cost and revenue. For further discussions on the TCE, see Aadland (2003,

pp 26-27).

1.3 Current literature

The literature on TCPOP contracts is not very extensive. Jørgensen &

De Giovanni (2009) is to my knowledge the only publication that deals with

the pricing of TCPOP contracts in specific. However, since a TCPOP is

similar to a leasing contract with an embedded option, we can utilize the

already available literature on this topic. Jørgensen & De Giovanni provides

the following overview:

To the authors’ knowledge this paper is the first which con-

siders the valuation and optimal management of the common

T/CPOP contract in shipping markets. However, since T/CPOPs

is a very specific form of lease contract with an option to purchase

the underlying (real) asset we can indeed point the interested

reader to previous literature which treats the subject of lease

contracts with options from a more general perspective. For ex-

ample, McConnell & Schallheim (1983) set up a discrete time

4 Path dependence implies that decisions made at a certain point in time, is affected by
decisions made at earlier points in time (e.g an American option).

4



1.3 Current literature 1 INTRODUCTION

model in which they consider the general valuation of a variety

of different types of asset leasing contracts. Examples of such

contracts are 1) leases that grant the lessee an option to pur-

chase the leased asset at a fixed price at the maturity date of

the lease, 2) leases that grant an option to the lessee to purchase

the leased asset at a prespecified price anytime during the life

of the lease, and, 3) leases which grant the lessee an option to

extend the life of the lease. Another key reference in this respect

is Trigeorgis (1996) which deals with the numerical valuation of

leasing contracts with a variety of complex embedded operating

options including purchase options, exit options, and options to

extend.5

Jørgensen & De Giovanni use an OU process to value different types of

TCPOP contracts, for instance a Bermudan TCPOP similar to the one un-

der consideration in this thesis. However, the use of OU as a freight rate

model have some known fallacies. In their summary they point them out,

and suggest alternative solutions for future research.

Our analysis has some limitations and there are therefore

some obvious directions for future research. First, although we

argued that mean reversion is supported in freight rate data, the

Ornstein-Uhlenbeck process admittedly also has some less desir-

able properties. It implies future freight rates that are Gaus-

sian although actual freight rates often appear to be skewed, it

has a constant rate of volatility although some empirical research

(e.g. Aadland (2000)) has found evidence of a volatility rate that

increases with the level of freight rates, and it implies a posi-

tive probability of negative freight rates at any future point in

time (although this probability is usually negligible). To allevi-

ate the above-mentioned deficiencies, Tvedt (1997) has proposed

the Geometric Mean Reversion process as an alternative to the

Ornstein-Uhlenbeck process and it would indeed be an interesting

5 Jørgensen & De Giovanni (2009)

5



1.3 Current literature 1 INTRODUCTION

subject for future research to investigate the use of this and other

alternative processes in pricing TC-POPs and other freight rate

derivatives.6

Jørgensen & De Giovanni does not attempt to estimate their model param-

eters, and thus cannot judge how their model performs in predicting future

vessel value distributions. To determine option values they use a finite dif-

ference (FD) algorithm. While FD might be a numerical more convenient

way to solve the problem, it has a disadvantage in being somewhat hard to

understand and implement. LSM on the other hand, allows one to bypass

many of the mathematical and theoretical obstacles encountered using FD.

The literature on freight rate dynamics is more extensive. In broad terms

there are two types of models that are dominant. Tvedt (2003), and Aadland

(2003) gives a thorough overview of the two. First, we have the equilibrium

models, that specify freight rates as a function of traditional demand and sup-

ply. Second, we have the stochastic process models, that specify the freight

rates as a stochastic process. Later developments in the area deals with how

to combine the two types of models. See for instance Tvedt (2003) and Aad-

land & Strandenes (2004). Aadland (2003) provides another approach where

he specifies a non-parametric model for the spot freight rate.

Bjerksund & Ekern (1995) created an important building block for contin-

gent claims analysis in shipping when they specified a freight rate model

using the OU process. Tvedt (1997) did a comparison on VLCC values using

the OU process, but also introduced the GMR model from Schwartz (1997).

As mentioned, the GMR model has some desirable features that OU lacks.

Schwartz used GMR to model the behavior of commodity prices. The GMR

model is sometimes refered to as the “Schwartz model 1”.

The literature on valuation under uncertainty is extensive. This research

area has received much attention in financial academia. Hull (2006) is highly

6 Jørgensen & De Giovanni (2009) pp.34-35
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1.3 Current literature 1 INTRODUCTION

regarded and covers a wide range of techniques and theory for option pric-

ing. Longstaff & Schwartz (2001) suggests a simple and intuitive numerical

method based on simulation and ordinary least squares; the “least square

Monte Carlo approach”(LSM), to value path dependent options.

7



2 FREIGHT RATE MODELING

2 Freight rate modeling

As mentioned in the introduction, the modeling of freight rates has tradi-

tionally been dominated by two different approaches. The earlier models

have relied on traditional equilibrium theory, where the specification of sup-

ply and demand functions plays the most important role. In more recent

year, stochastic market models have prevailed. These models have to some

extent dominated the field in freight rate modeling. The current innovations

in freight rate modeling have evolved around either combining the equilib-

rium models with the stochastic ones, or developing new stochastic ones.

Much effort have been put into examination of the risk premium in shipping

markets, see for instance Aadland (2003), Adland & Strandenes (2006) and

Kavussanos & Alizadeh-M (2002). However, any model chosen should be

well founded in economic theory, so a brief discussion of the characteristics

of the shipping freight market is neccesary.

2.1 Market equilibrium

The bulk markets are normally considered to be a good example of a perfect

competitive market. The demand side is primarily driven by the global de-

mand for goods in combination with geographical patterns. In the short run

the demand curve is relatively inelastic, due to the lack of alternative freight

methods7. In the long run however, for high freight rates, people tend to

adjust by importing or buying goods that are geographically closer.

The supply side of the equation is mainly influenced by the available ves-

sels on the market.8 In the short run, shipowners have three choices that

may influence the supply. If freight rates are low, they may stop operating

the vessel to avoid operation and voyage costs, or even scrap vessels to re-

7
Airplanes and railroad are the only real alternatives, but can obviously not match the
scale of a bulk vessel. Pipelines however, can be a economically feasible substitute for
transport of oil and gas.

8 Usually measured in tonnemiles, i.e the aggregated freight capacity in the market,
measured in tonnes, times the aggregated vessel travel capacity, measured in miles.

8



2.2 Stochastic modeling 2 FREIGHT RATE MODELING

ceive a residual value9. If freight rates are high they can increase the vessel

speed. An increase in vessel speed will be costly, due to increased tear, and

as the speed reaches a physical maximum, the supply curve becomes almost

perfectly inelastic, as we can see from figure 2.1. In the long run, the sup-

ply is influenced by the amount of newbuildings entering the market. For

a bulk carrier the delivery time is normally minimum one year. Because of

the relative long building times, the supply side is rather slow in adapting to

booming conditions. Because of the slow adaption shipping markets have a

distinctive business cycle.10

Figure 2.1: Typical supply and demand in bulk shipping markets

2.2 Stochastic modeling

In this section I will examine two candidate models for the freight rate pro-

cess. First I will present the OU model from Bjerksund & Ekern (1995), and

then an alternative model, the GMR model from Tvedt (1997) and Schwartz

(1997). As mentioned earlier, the main problem with OU is that it may pre-

dict negative freight rates, and that the volatility is constant for all freight

rate levels. However, even though the GMR process can account for these

characteristics, the crucial benefit from working with the OU process is its

available analytical solutions. Where the OU process offers easy calculations,

the GMR relies on using time and computer-consuming procedures, which

we will encounter later.

9 Vessels are sold to demolition yards.
10 Figure 2.1 is from Aadland & Strandenes (2004)

9



2.2 Stochastic modeling 2 FREIGHT RATE MODELING

the stochastic models for the freight rate are similar to those often used

for commodities. However, freight is not a commodity, but a service. As

a service cannot be stored, an important distinction is that we cannot use

standard cost-of-carry arguments11.

A stochastic model of the freight rate should account for the features that

stems from the discussion on market equilibrium above. However, it is not

straight forward to identify what these features are. Aadland (2003) gives

an extensive discussion and stylizes four main characteristics.

Mean reversion

Mean reversion is maybe the most distinctive feature for the freight rate.

It implies that if freight rates are high, they tend to go down, and if freight

rates are low, they tend to go up. The feature is governed by the fact that

when freight rates are high, shipowners will postpone scrapping of old vessels

and increase vessel speed, while newbuildings will keep entering the market.

This will shift the supply curve to the left, and over time push freight rates

downward. For low freight rates, shipowners will lay up and scrap vessels.

There is a lower freight rate boundary for profitable operation. Over time,

vessel scrapping will shift the supply to the left increse the freight rate.

Short run momentum

In the short run, freight rate trends often show persistence. Aadland claims

that since the freight rate itself cannot be traded or stored, there is no pos-

sibility to exploit trends in the market in the short run. This will naturally

lead to short run market imbalances. Neither OU or GMR accounts for this,

except through the mean reversion effect.

11 A future price is a function of todays price and the cost of holding the underlying over
the time interval

10



2.3 Ornstein Uhlenbeck 2 FREIGHT RATE MODELING

Level effect in variance

As we can see from figure 2.1, the short run run supply is close to per-

fectly elastic as demand for transport approaches zero. At low freight rates,

vessels lay up. One can argue that the freight rate will stay at a minimum

until the last unemployed vessel get chartered. In a competitive market price

fluctuations should be very low until freight rates reach a level where the

entire fleet is employed. At higher freight rates, when the fleet is fully em-

ployed, we know that supply turns close to perfectly inelastic, and the freight

rate is subject to large fluctuations, for small shifts in the demand. OU fails

to account for this, while for GMR, the variance increase as the freight rate

increase.

Lag effect in variance

Kavussanos (1996) finds empirical lag effects in the freight rate volatility.

Aadland however, claims that ARCH models doesnt account for a relation-

ship between freight rates and volatility, and thus that the lagged volatility is

merely picking up the level effect. Aadland also argue that a lagged volatility

effect probably is present, but that a potential model must control for the

level and the lag effect simultaneously. Neither OU nor GMR controls for

lagged effects in the volatility, but a consolidation can be found in Aadlands

chapter 3, where he concludes that the lag effects seems to be of less impor-

tance for larger vessel types. The Suezmax vessel considered in this thesis

can be characterized as a larger vessel type.

2.3 Ornstein Uhlenbeck

From Bjerksund & Ekern (1995), I start by stating the instant cash flow

generated by an operating ship as:

D(t)dt = a(S(t)− b)dt, [2.1]

11



2.4 Geometric mean reversion 2 FREIGHT RATE MODELING

where S(t) is the freight rate per unit of cargo at time t, a is the amount

of cargo carried by the vessel, and b is the costs involved with operating the

vessel. The data used in this thesis represents S(t) as a daily spot rate, rather

than a per unit of cargo rate, I set a = 1, and return to b later, in section

4. Bjerksund & Ekern further assume that the spot freight rate S(t) follows

the mean-reverting Ornstein-Uhlenbeck-process,

dS(t) = κ(φ− S(t)) + σdW (t) [2.2]

where κ represents the strength of the mean reversion, φ is a long term aver-

age freight rate level, σ is its standard deviation and dW (t) is the standard

Wiener process with expectation 0 and variance dt. The solution to the

stochastic differential equation [2.2] can be shown to be

S(T ) = S(t)e−κ(T−t) + φ(1− e−κ(T−t)) + σ

∫ T

t

e−κ(u−t)dW (u) [2.3]

The stochastic integral term can be rewritten as

σ

∫ T

t

e−κ(T−u)dW (u) = σ

√
1− e−2k(T−t)

2k
dW (t) [2.4]

S(T ) will now be normally distributed with the time t conditional expectation

and variance:

Et{S(T )} = S(t)e−κ(T−t) + φ(1− e−κ(T−t)) [2.5]

V art{S(T )} =
σ2

2κ
(1− e−2κ(T−t)) [2.6]

2.4 Geometric mean reversion

As with the OU process we start out with the stochastic differential equation

describing the increment for the freight rate (S(t) is still the spot freight

rate):

dS(t) = κ(φ− lnS(t))S(t)dt+ σS(t)dW (t) [2.7]

12



2.4 Geometric mean reversion 2 FREIGHT RATE MODELING

Following the procedure from Schwartz (1997), we denote X = lnS(t) and

apply Itos Lemma (see appendix A for details), which enables us to rewrite

the equation to

dX = κ(α−X)dt+ σdW (t) [2.8]

where

α = φ− σ2

2κ
. [2.9]

dX can be interpreted as a percentage change in S(t) in an infinite small

time step.

We see that X follows a OU process. The solution to equation [2.8] can

be written as

X(T ) = e−κ(T−t)X(t) + (φ− σ2

2κ
)(1− eκ(T−t)) + σ

∫ T

t

e−κ(T−u)dW (u), [2.10]

where the stochastic integral term can be rewritten for Monte Carlo simula-

tion as in equation [2.4]. X(T ) will be normally distributed with the time t

conditional expectation and variance,

Et{X(T )} = e−κ(T−t)X(t) + (φ− σ2

2κ
)(1− e−κ(T−t)) [2.11]

V art{X(T )} =
σ2

2κ
(1− e−2κ(T−t)). [2.12]

We can now formulate an expression for the freight rate, S(T ), at time T

conditional on the information available at time t

S(T ) = eX(T ) [2.13]

= exp

(
e−κ(T−t)X(t) + (φ− σ2

2κ
)(1− e−κ(T−t)) + σ

∫ T

t

e−κ(T−u)dW (u)

)
[2.14]

Since X(T ) is normally distributed, eX(T ) = S(T ) will be lognormal dis-

tributed. From the properties of the lognormal distribution we know the

13



2.4 Geometric mean reversion 2 FREIGHT RATE MODELING

time t conditional expectation and variance.

Et[S(T )] = exp

(
EtX(T ) +

1

2
V artX(T )

)
[2.15]

= exp

(
e−κ(T−t)X(t) + (φ− σ2

2κ
)(1− e−κ(T−t)) +

σ2

4κ
(1− e−2κ(T−t))

)
[2.16]

V art[S(T )] = exp

(
2Et[X(T )] + V art[X(T )]

)(
exp
(
V art[X(T )]

)
− 1

)
[2.17]

= exp

(
2e−κ(T−t)ln(S(t)) + 2(φ− σ2

2κ
)(1− eκ(T−t))(eζ − e

ζ
2 )

)
[2.18]

where ζ = σ2(1−e−2κ(T−t))
κ

.12

12 Derivation in Tvedt (1997, p.14)
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3 MODEL CALIBRATION

3 Model calibration

To estimate the parameters in the freight rate models I have gathered data

on the monthly (TCE) spot freight rate for Suezmax tankers, from January,

1990 to March, 2009. Figure 3.1 shows the TCE spot freight rate in this

period. The freight rate is quoted in USD per day.

Figure 3.1: Data presentation
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As we can see, the freight rate seems to have a low volatility in the pe-

riod from 1990 to 2000 compared to the period from 2000 until 2009. In

the latter period we can observe freight rates near 150000 USD, which in a

historical perspective is fairly high. It is also worth noting the distribution

of the freight rate. It is clearly skewed to the right, and does not seem to

be normally distributed as implied in OU. This suggests that the lognormal

GMR might be a better fit.

From Enders (2003, p.171) we also know that applying OLS on non-stationary

variables often lead to spurious regressions13. To determine whether the ob-

served freight rates are in fact stationary, we can apply the Augmented Dickey

Fuller Unit Root Test (ADF). ADF test the null hypothesis that the process

contains a unit root, which is equivalent testing for stationary. For details

13 Spurious regression occurs when OLS discovers a relationship which is really not there,
and can often lead to a very high R2 and strong autocorrelation in the residuals.
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3.1 Ornstein Uhlenbeck 3 MODEL CALIBRATION

on ADF, see Wooldridge (2006, pp 639-645). We apply ADF on both S(t)

and lnS(t), as both will be used in later regressions.

Table 3.1: Augmented Dickey Fuller

Lags Test statistic P-value H0

S 12 -4.8960 0.0001
Non-stationary

log(S) 12 -4.2741 0.0041

From table 3.1, ADF rejects the null of non-stationarity in both cases. This

means that we can ease our worry about applying OLS. The results are also

in line with our a priori assumptions. In fact, we have already assumed sta-

tionarity through OU and GMR which are both stationary. As we will see

in the next section, both models can be rewritten as a classical AR(1) model.

If we had no a priori intuition about how the freight rate process should

be modeled, we could utilize the Box-Jenkins (BJ) methodology to select a

specification. An important input in BJ is the use of autocorrelation- and

partial autocorrelation-functions (ACF and PACF). Enders (2003, pp. 60-

72) gives an explanation on how to identify a model based on the shape of

its ACF and PACF. For an AR(1) process, such as OU and GMR, the ACF

should decline slowly towards zero, while the PACF will be significant for lag

1, and insignificant for all other lags. The ACF and the PACF for the sample

of Suezmax freight rates can be seen in figure B.1. Both for the price and

the log of the price, the ACF and PACF acts according to a AR(1) process,

which is in line with the OU and GMR assumptions.

3.1 Ornstein Uhlenbeck

To calibrate the freight process, we transform equation [2.3] to a discrete

form. Since our data is monthly we impose a new parameter δ = 1
12

, which

is the time step length measured in years. We can now rewrite equation [2.3]

to

S(t+ δ) = S(t)e−κδ + φ(1− e−κδ) + ε. [3.1]

16



3.2 Geometric mean reversion 3 MODEL CALIBRATION

where ε is normal distributed with expectation 0 and standard deviation

σε = σ

√
1− e−2kδ

2k
.

Setting α = φ(1− e−κδ) , β = e−κδ we can form the equation

St+δ = α + βSt + ε, [3.2]

which can be estimated by the use of OLS. It is straightforward to show

that14

κ = − lnβ
δ

φ =
α

1− β

σ = σε

√
−2lnβ

δ(1− β2)

[3.3]

3.2 Geometric mean reversion

We hold on to δ = 1
12

, and rewrite equation [2.10] to

lnS(t+ δ) = e−κδlnS(t) + (φ− σ2

2κ
)(1− eκδ) + ε, [3.4]

where ε is normal distributed with expectation 0 and standard deviation

σε = σ

√
1− e−2κδ

2κ
.

Setting α = (φ− σ2

2κ
)(1− eκδ) and β = e−κδ, we can form the equation

lnSt+1 = α + βlnSt + ε [3.5]

14 See C
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3.3 Estimation results 3 MODEL CALIBRATION

which can also be estimated by OLS. It is straightforward to show that15

κ = − lnβ
δ

(same as OU)

φ =
α

1− e−κδ
+
σ2

2κ

σ = σε

√
−2lnβ

δ(1− β2)
(same as OU)

[3.6]

3.3 Estimation results

By using OLS I obtain the estimates for both models, with the results in

table 3.2.

Table 3.2: Estimation results

OU GMR
Parameter Estimate

(Std. Err.)
α 4744.484∗∗ 0.838∗∗

(1307.989) (0.269)

β 0.848∗∗ 0.918∗∗

(0.035) (0.026)

ˆstd.dev(ε) 11271.179 0.240

N 230 230
R2 0.719 0.841

F (1,228) 583.704 1204.221
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Using the estimated parameters we can calculate the structural parameters

from equations [3.3] and [3.6]. The results are shown in table 3.3,

15 See C
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3.3 Estimation results 3 MODEL CALIBRATION

Table 3.3: Structural parameters

OU GMR
κ 1.98 1.03
φ 31213.71 10.56
σ 42303.78 0.87

A visual inspection of the price process behavior using the estimated pa-

rameters is appropriate. Figure 3.2 shows a freight rate simulation. The

simulation is based on the same random numbers for both processes. The

figure illustrates some of the features pointed out earlier. First, we see that

both processes revert to a mean. Second, we see that the GMR process, be-

cause of the lognormal distribution, can obtain much higher values than the

normal distributed OU process. Third, we see that the OU process obtains

negative values, while the GMR does not. Fourth, we see that the GMR

process exhibits volatility relative to its value (i.e low volatility when rate is

low and high when rate is high), while OU has a constant volatility. These

properties are in line with expectations.

Figure 3.2: Freight rate simulation illustrated
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Since there is limited information in watching single simulation paths, figure

3.3 shows the conditional expectations and it’s 95% confidence intervals.

We see that in the long run, the contitional variance converges. It is also

worth noting that the lower confidence interval for the OU process becomes
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3.4 Estimation diagnostics 3 MODEL CALIBRATION

negative.

Figure 3.3: Conditional expectation
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3.4 Estimation diagnostics

According to Wooldridge (2006), OLS is an unbiased estimator, E(β) = β̂,

for time series data if the following assumptions are fulfilled:

TS.1 (Linearity) The relationship between the independent

variable and the independent variable is

linear.

TS.2 (No perfect collinearity) No independent variable is constant nor a

perfect linear combination of the others

TS.3 (Zero conditional mean) E(ut|X) = 0. The expected value of the

error term ut, given the vector of variables

X = (x1t, ..., xnt) is zero for all t.

When TS.1-TS.3 are fulfilled, OLS is an unbiased estimator. However, to be

able to make inference there are additional requirements.

20



3.4 Estimation diagnostics 3 MODEL CALIBRATION

TS.4 (Homoskedasticity) V ar(ut|X) = V ar(ut) = σ2 for all t. The

variance for the error term must be the

same for all t.

TS.5 (Autocorrelation) ρ(ut, ut+i) = 0 for all i, (where ρ(y1, y2) is

the correlation coefficient for y1 and y2).

The error term in one period must be un-

correlated with the error term in any other

period.

When TS.1 through TS.5 holds, OLS is the best linear unbiased estimator,

where E(σ2) = σ̂2.

TS.1 is true by assumption. We have specified a linear model and thus

TS.1 holds. TS.2 must hold since we only use a single explanatory variable.

We can also see from figure 3.1 that the explanatory variable is not constant.

TS.3 holds for both models. The mean of the residuals are both zero. Since

TS.1 through TS.3 holds, our estimates are unbiased.

To check whether TS.4 and TS.5 holds we need to investigate the residu-

als. Figure 3.4 shows the residuals from both estimations.
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3.4 Estimation diagnostics 3 MODEL CALIBRATION

Figure 3.4: Diagnostics: residual plots
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From figure 3.4 we see that the residuals from the OU estimations clearly

exhibits heteroscedasticity when plotted against time, while for GMR it is not

straight forward to tell. From the plot of residuals versus lagged residuals,

we see that none of the models exhibit any clear form of autocorrelation.

The graphical examination is however not sufficient and we need to formally

test TS.4 and TS.5. To test for homoscedasticity I use the Breusch-Pagan

test16. To test for autocorrelation I use the Ljung-Box test17.

Table 3.4: Diagnostics: Heteroscedasticity and autocorrelation

Model Test Test statistic P-value H0

OU
Breusch-Pagan 248.23 0.0000 Constant variance

Ljung Box Q (l=50) 75.029 0.0125 No autocorrelation

GMR
Breusch-Pagan 19.42 0.000 Constant variance

Ljung Box Q (l=50) 50.1673 0.4668 No autocorrelation

As we can see, the tests rejects the null of homoscedasticity for both models,

but fails to reject the null of no autocorrelation. The easiest, but possibly not

16 See Wooldridge (2006, pp 280-283)
17 See Enders (2003, p. 68)
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3.4 Estimation diagnostics 3 MODEL CALIBRATION

the most sophisticated way to correct for heteroscedastisity, is robust OLS

estimation. I will not present results from a robust estimation, but mention

that all coefficients remain significant at a 1% level.
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4 VESSEL VALUE

4 Vessel value

Having figured out a model for the freight rate dynamics, we can go on with

our analysis and start by specifying a model for vessel value. As in Jørgensen

& De Giovanni (2009), I specify a one factor model, where the only uncertain

input is the cash flow income from receiving the freight rate. In practice, it

is obviously unrealistic that the freight rate is the only uncertain cash flow

from operating a vessel. While other factors such as interest rates, exchange

rates, residual vessel value, operation costs etc., could be relevant18, it is

convenient not to include these. However, the freight rate income is obviously

a significant, and probably the most important determinant for vessel values,

and thus the simplification is reasonable.

4.1 Risk neutral valuation

A useful application in finance is the change of probability measure for the

stochastic process. The processes we specified in equations [2.3] and [2.10]

are representations of what we can refer to as the real world. To valuate

such cash flows we need to account for subjective risk preferences in order to

determine a specific discount rate, which is cumbersome. However, assuming

standard no-arbitrage arguments, allows us to transform the stochastic pro-

cess into a risk neutral one, and use the risk free interest rate as a discount

rate for valuation.

Following the procedure from Jørgensen & De Giovanni (2009, p. 7), we

assume that the standard no arbitrage arguments holds (i.e. the existence

of a traded twin asset, risk free interest rates, no taxes and no transaction

costs). Using Girsanovs theorem19, we can transform the process to a risk

neutral one.

dW (t) = dW ∗(t)− λdt,

18 Aadland (2003)
19 See Hull (2006) for details.
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4.1 Risk neutral valuation 4 VESSEL VALUE

where λ is the market price of risk.

dS = κ(φ− S)dt+ σdW (t)

= κ(φ− S)dt+ σ(dW ∗(t)− λdt)

= κ(φ∗ − S)dt+ σdW ∗(t) [4.1]

Where φ∗ = φ − σλ
κ

can be interpreted as the long term mean under Q.

dW ∗(t) is normal distributed with expectation 0, and variance dt.

4.1.1 Ornstein Uhlenbeck

The solution to the risk neutral differential equation is equivalent to the

solution for the real process. By substituting φ with φ∗, and dW (t) with

dW ∗(t) our risk neutral OU process will be

S(T ) = S(t)e−κ(T−t) + φ∗(1− e−κ(T−t)) + σ

∫ T

t

e−κ(u−t)dW ∗(t) [4.2]

with a time t conditional expectation under the Q measure,

EQ
t {S(T )} = S(t)e−κ(T−t) + φ∗(1− e−κ(T−t)). [4.3]

4.1.2 Geometric mean reversion

We do the same for GMR which gives the freight rate under the Q measure

S(T ) = exp

(
e−κ(T−t)lnS(t)+(φ∗− σ

2

2κ
)(1−eκ(T−t))+σ

∫ T

t

e−κ(t−u)dW ∗(u)

)
,

[4.4]

with a time t conditional expectation under Q,

EQ
t {S(T )} = exp

(
e−κ(T−t)lnS(t)+(φ∗−σ

2

2κ
)(1−e−κ(T−t))+σ2

4κ
(1−e−2κ(T−t))

)
,

[4.5]
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4.1.3 Vessel valuation

Under the risk neutral measure we can now specify an expression for the

value of receiving a stream of freight rate cash flows over time. The value at

time t of receiving the spot rate S(t) in the interval t to T can be stated as∫ T

t

EQ
t S(u)e−r(u−t)du, [4.6]

where r is the risk free interest rate.

For OU, we denote this value as V flow
OU (S(t), t : T ). From Bjerksund & Ekern

(1995, 12.2112.23) we have the luxury of an available closed form solution.

V flow
OU (S(t), t;T ) = EQ

t

∫ T

t

S(u)e−r(u−t)du [4.7]

= (S(t)− φ∗)A(T − t, r + k) + φ∗A(T − t, r) [4.8]

A(n,m) = 1−e−mn
m

20 is an annuity factor, which multiplied with an annuity

gives the present value of the annuity for n periods, with a discount rate of

m per period.

For the GMR process we denote the value as V flow
GMR(S(t), t : T ). Unfor-

tunately no closed form solutions are available21. Because of this we will

from now on rely on numerical methods22 to solve the following integral.

V flow
GMR(S(t), t;T ) = EQ

t

∫ T

t

S(u)e−r(u−t)du

=

∫ T

t

[
exp
(
e−κ(u−t)lnS(t) + (φ− σ2

2κ
)(1− eκ(u−t))

+
σ2

4κ
(1− e−2κ(u−t))

)
e−rudu

]
[4.9]

The above expressions describes the value of receiving the spot freight rate

20 Note that the names of the variables differ from Bjerksund & Ekern (1995)
21 See Tvedt (1997, p 168)
22 Matlab offers, among others, the ”trapz” command for numerical solving integrals
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4.1 Risk neutral valuation 4 VESSEL VALUE

over time, However, to express vessel values there are some other factors we

need to consider. To be able to compare results with Jørgensen & De Gio-

vanni (2009), I use the similar assumptions.

Age

A vessel has a limited lifetime. For Suezmaxe vessels, it is reasonable to

assume 25-30 years of operation. For the remaining of this analysis I assume

an operating age of 25 years. We denote this T̂ = 25

Scrap value

When the vessel reaches it’s maximum operation age it is normally sold

of to a scrap yard that utilizes the hull for steel production. The demand

and supply determining the price of the hull is normally closely related to

the freight rate, as shipowners do continuous consideration of what is most

profitable, scrapping or operating. When freight rates are high the shipowner

will postpone the scrapping to utilize the vessel to generate income, while

when the freight rates are low, shipowners might gain from scrapping. If

markets are efficient the value from scrapping should equal the value from

continuing to operate the vessel. One could model this relationship as done

by Tvedt (1997), but for convenience I assume the residual value to be con-

stant. Kavussanos & Visvikis (2006, p.67) shows that the mean scrap rate

for Suezmax vessels in the period 1990 to 2005 was 4.53 million USD. For the

remainder of this thesis I assume a constant residual value as V̂ = 5.000.000.

Operation cost

From equation [2.1], we know that we also have to consider relevant costs.

Operation costs, often referred to as OPEX, consists of all the costs related

to operating the vessel. Such costs include crew, maintenance, mangement,

insurance etc. OPEX normally shows some degree of variability and goes up

as the age of the vessel increases. If considered reasonable, and with available
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4.2 Model performance 4 VESSEL VALUE

data, one could expand the analysis to also model OPEX. For the remaining

of my analysis however, i will assume OPEX to be constant at a rate of 15000

USD per day23. Let b = 15000 denote OPEX.

Under the assumption that we know with certainty that the vessel will be

scrapped at time T̂ for V̂ , with an OPEX, b, the vessel value can be stated

as, expanding [4.6],

∫ T̂

t

EQ
t S(u)e−r(u−t)du− bA(T̂ − t, r) + V̂ e−r(T̂−t) [4.10]

The value of a vessel can no be stated as in equations and , but with substi-

tuting T with T̂ , adding V̂ e−r(T̂−t), and subtracting bA(T̂ − t, r) .

4.2 Model performance

The term market price of risk can be somewhat vague. A general definition

is that it is the market’s view on the reward that should be attached to the

risk inherent in an uncertain cashflow. In short, the excess return over the

risk free rate for taking on extra risk. In a shipping context the market price

of risk is the markets view on the premium that should be attached to the

freight rate to compensate for the risky cash flows the freight rate represents.

Many recent publications have investigated the application of the pure ex-

pectation hypothesis in shipping markets. The studies have not been able

to prove that the PEH aplies, and have thus led to a general consensus that

there is probably a time varying market price of risk in shipping markets (see

for instance Aadland (2003). However, since it is not straight forward to ob-

serve and quantify it, a common approach has been to assume a zero market

price of risk, λ = 0. Both Tvedt (1997) and Jørgensen & De Giovanni (2009)

does this. If the market price of risk is zero, the freight rate process under

the real measure P is identical to the one under the risk neutral measure Q.

This implies that market participants are risk neutral and that we can use

23 See Stopford (1997) for details on costs in shipping.
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the risk free interest rate as a discount rate for the real process. To see if

this assumption is reasonable, a visual inspection of the performance of the

proposed models is appropriate.

Figure 4.1 shows the time t conditional expected vessel value, together with

a 95% confidence interval, under the assumption that Q = P . The risk free

rate is set to r = 0.05. Anyone familiar with Suezmax vessel prices, which

I will present later, will see that the models clearly overestimates real world

market prices. We can also see that the confidence intervals are rather nar-

row, compared to what one would expect. These observations indicates that

the assumption might be inappropriate.

Figure 4.1: Vessel values under Q=P

To further investigate the assumption, I have gathered data on monthly vessel

prices for the period from January 1990 to October 2008. Figure 4.2 shows

prices for 5, 10 and 15 year old double hull Suezmax tankers. The sample

shows for instance that five year old vessels had a market price of around 40

to 50 USD for a time interval of several years. Comparing with the models

from figure 4.1, we see that this would be an extremely unlikely outcome.

As the reader can see, the samples for 10 and 15 year old vessels are smaller

than for 5 year old vessels. Therefore, only data for 5 year old vessels will be

used for further analysis.
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Figure 4.2: Historical Suezmax prices

Even more interesting is how the proposed models for vessel value perform,

compared to the historical vessel prices, if we use the historical freight rate

as input. As we see in figure 4.3, the models, not surprisingly, fails to fit the

market vessel price. However, we should note that if we examine the first

two thirds of the time interval, we can see that the movements in the price

to some extent is captured, but the levels are totally off. In the end of the

period, both models seems to fail completely in both movement and level.

Figure 4.3: Model performance, predicting 5 year old Suezmax price

So, what conclusions can we draw from this? There are mainly two sources

for the observed errors. First, the models, the estimated parameters and the

assumed parameters may be wrong. If this was the case, we would probably

not be able to obtain the good fit in the regressions from table 3.2. The
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estimated parameters are also significant. The fact that the predictions from

figure 4.3 seems to capture some of the movements in the actual price, may be

an indication that the model specification is correct. For the assumed param-

eters, which rely on (qualified) guesses, we could obviously put more effort

into a more rigorous specification (i.e. a stochastic interest rate and OPEX,

dynamic decision for scrapping, vessel utilization, etc). There is also a possi-

bility that there are factors outside of my knowledge that should be included.

Second, the assumption of a zero market price of risk may be wrong. On

the basis of the conclusions drawn from Aadland (2003), this is the most

likely source of error. As mentioned in the beginning of this section, there

is consensus on the existence of a non-zero market price of risk in shipping

markets. If such a risk premium exists, it is not unlikely to cause errors in

the scale that we have observed.

4.3 Estimating market price of risk

Given that the error in fact lies in the zero market price of risk, a correction

is needed. The correction lies in obtaining an estimate for the risk premium.

This is not straight forward, as the risk premium is not observed in the freight

rate. However, given that the models and the parameters are correct, the

observed difference in the prediction versus the real price of the vessel should

reveal information about some implied market price of risk. Aadland states

The implied risk premium is defined as the difference between

the published period charter rate and the model-implied period

charter rate when the market price of freight risk is equal to zero.

Equivalently, the difference between the published vessel price, and the model

implied vessel price should be the implied risk premium.

Aadland (2003) argues that the market price of risk is non-zero and depend
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on the market conditions. To obtain an approximate estimate, I propose a

simple linear model, where the market price of risk is a function of the freight

rate level. The freight rate serves as a proxy variable for market conditions24.

λt = β0 + β1St [4.11]

To estimate equation [4.11], I apply a numerical least squares routine25, using

the data for 5 year old vessels values and the vessel value models. I minimize

the sum of squared residuals from the model predictions with respect to β0

and β1.

Min
∑

(Vt − V̂t)2, wrt β0 and β1 [4.12]

Vt is the historical vessel price for five year old vessels, while V̂ is the predicted

vessel value from the model. V̂ is calculated using equation [4.10],

φ∗ = φ− σλ

κ
[4.13]

where we substitute equation 4.11 so that

φ∗ = φ− σ(β0 + β1St)

κ
[4.14]

The numerical least square procedure finds the solution to [4.12] by trying

different combinations of β0 and β1, based on an initial guess. In the esti-

mation, the freight rate is given in 1000 USD, for shorter coefficients. The

reason for using such a simple model is based on the fact that I am reliant

on numerical solutions for estimation.

From the estimation we obtain the following parameters26

24 An observed variable that is related but not identical to an unobserved variable,
Wooldridge (2006)

25 The Matlab code is provided in appendix D
26 See Wooldridge (2006) for details on R2
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Table 4.1: Market price of risk parameters

OU GMR
β0 0.428 0.335
β1 -0.0051 -0.0031

R2 0.511 0.514
SST 84889 84889
SSE 41516 41259

The estimated market price of risk is presented visually in figure 4.4. We

see the market price of risk is decreasing to the freight rate, which is in line

with the expectations based on Aadland (2003, Chapter 4). We see that

the market price of risk lies approximately between 20-40% during ”normal”

market condition (i.e. freight rates between 10000 and 50000). This seems

like a reasonable estimate. We see that for very high freight rates, the risk

premium turns negative, indicating that market participants become risk

seekers in good market conditions. From Aadlands discussion on the risk

premium, this might also be a reasonable estimate. OU requires a higher

premium at lower values than GMR, which probably is due to the negative

value problem.

Figure 4.4: Estimated market price of risk

To see how the model performs under the variable risk premium we plot

the predictions against the historical vessel prices in figure 4.5. Under the

variable risk premium, OU and GMR performs almost identical for the given

sample. The predictions perform fairly well in the first part of the sample,

while it seems to perform worse in the latter. Graphical representations of the
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residuals can be studied in appendix D.2. As just mentioned, the residuals

show bad performance in the end of the sample period. However, the plot

against the explanatory variable, the freight rate, the residuals seems to

fluctuate around zero. This indicates that the estimates are unbiased. From

the ACF and PACF, we see that the residuals exhibits strong autocorrelation

(seemingly AR(1). This suggests that the model is underspecified.

Figure 4.5: Model performance, after adjusting for variable risk premium

For further comparison, I have shown the conditional expected vessel value

in figure 4.6, and some distributions in figure 4.7. We see that the expected

vessel values are significantly lower now, than under the assumption of a

zero risk premium. The new expectations are much more in line with actual

market conditions. We also see that the confidence intervals have widened,

which also seems to be in line with real conditions. If we compare OU and

GMR, we see that they differ slightly in expectation, but that the confidence

intervals differ significantly, a natural consequence of the model properties.

See also figure E.1 for illustration of the relationship between vessel value

and spot freight rate. We can see that OU is linear to the freight rate, while

GMR shows non-linearity.
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Figure 4.6: Expected vessel values, controlled for risk premium

Figure 4.7: Distribution of vessel values for age 5, 10 and 15 (years)

Note on the estimation

The estimation of a potential risk premium is a topic that deserves much

more attention than feasible in the scope of this thesis, and the estimates

should not be interpreted without a high degree of caution. The results

should not be considered to be anything else than an approximation to ac-
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count for the seemingly unrealistic assumption of a zero market price of risk.

First, the estimation relies on the assumed parameters in the vessel value

function. If for instance OPEX turns out to be higher, the estimated con-

stant term for the risk premium will be lower. This will again lead the

expected future vessel values to change. Second, one would expect the risk

premium to also depend on the age of the vessel. If the estimation were done

on historical values of ten or five year old vessels instead, the estimated risk

premium might be different. Third, the simple linear model shows clear signs

of being underspecified. Especially in the last part of the sample, the model

fails. In addition, we find strong autocorrelation in the residuals, which the

model should account for. The attempt to estimate the risk premium from

Aadland (2003) finds a significant AR(1) relationship for the risk premium.

However, based on the models for freight rates, I have now specified a model

for the value of a vessel during its lifetime. Under the equivalent martingale

measure Q, a time varying risk premium has also been specified. We can

now move on to the pricing of option contracts in the shipping industry.
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5 Option pricing

In this section I will present methods, using numerical examples, and results

for the pricing of four different types of option contracts on Suezmax vessels.

The first three contracts works as natural building steps toward the fourth

and last, which is the contract of original interest, the Bermudan TCPOP.

1. European purchase option on a vessel

2. TC contract with embedded European purchase option on a vessel

3. Bermudan purchase option on a vessel

4. TC contract with embedded Bermudan purchase option on a vessel

5.1 European purchase option

5.1.1 Numerical example

Consider a European call option on a Suezmax tanker with expiration in year

T and a strike, K. At expiration, the vessel will be T years old. The value

of the option at expiration is

Max{VT −K, 0}, [5.1]

so the value of the option ct at time t is

ct = EQ
t

[
Max(VT −K, 0)e−r(T−t)

]
[5.2]

To approximate the option value I simulate n vessel values, VT at time T .

Suppose that T = 15 and K = 30. Table shows an example of 10 simulations.
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Table 5.1: Numerical method example, European call

i VT Max(VT −K, 0)

1 27 0
2 60 30
3 32 2
4 30 0
5 32 2
6 26 0
7 31 1
8 25 0
9 44 14
10 42 12

To find the approximate option value, we discount the realized cash flows (i.e

the option value at time T ) back to time t, and find the mean.

ĉt =

n∑
i=1

(Max(VT,i −K, 0))e−r(T−t)

n
, [5.3]

where i ∈ [1, 2, ..., n] is the number of the simulation path. Table 5.2 shows

the discounted cash flows. The estimated option value will in this case be

ĉt =
14 + 1 + 1 + 7 + 6

10
= 2.9 [5.4]

Table 5.2: Numerical method example, European call, discounted cash flows

i Max(VT −K, 0)e−r(T−t)

1 0×0.47= 0
2 30×0.47= 14
3 2×0.47= 1
4 0×0.47= 0
5 2×0.47= 1
6 0×0.47= 0
7 1×0.47= 0
8 0×0.47= 0
9 14×0.47= 7
10 12×0.47= 6
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5.1.2 Analysis

Figure 5.1 shows the option price estimate, ĉt, as a function of the strike

price K, for 5, 10 and 15 year expirations. The graph is in line with what

we would expect. The option price based on the GMR is consistently higher

than the one based on OU. We see that the highest difference in the option

price estimate is approximately 5 mill. USD for a 5 year old vessel where K

is close to 0.

Figure 5.1: Price of a European call determined by K

5.2 TC with European purchase option

This contract is the European equivalent to the Bermudan TCPOP, and can

thus be called a European TCPOP. The value of such an agreement, which

consists of a TC contract from time t to T , with an embedded European call

option the vessel at time T ca be written

V flow(S(t), t;T )− TCt,TA(T − t, r) + EQ
t

[
Max(VT −K, 0)e−rT

]
[5.5]

V flow(S(t), t;T ) is the expected present value, under Q, of the revenue cash

flow from operating in the spot market from time t to T . TCt,T is the daily

TC rate from time t to T . EQ
t

[
Max(VT −K, 0)e−rT

]
is the expected value

of the embedded European call option, identical to the one in equation [5.2]
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from the previous section.

As we can see, the valuation of this agreement can be decomposed into two

components, where each component can be priced independently from the

other. The first component is the TC contract and the second component

is the option contract. Since the option contract has been covered in the

previous section, the rest of this section will focus on the value of the TC

contract. The analytical solutions presented below is based on Bjerksund &

Ekern (1995) and Jørgensen & De Giovanni (2009).

From the shipowners point of view a TC contract is used to remove the

risk of low freight rates and thus low revenues, while for the charterer it is

used to remove the risk of high freight rates and thus high costs.

The TC component of the agreement however has not been treated yet,

and deserves some attention.

In a complete market we can assume that the TC rate for a contract from

time t to T should equal the expected value under Q, of receiving the spot

rate for the same period.

TCt,TA(T − t, r) = V flow(S(t), t;T )

⇒

TCt,T =
V flow(S(t), t;T )

A(T − t, r)
[5.6]

Let ˆTCt,T denote the fair TC rate which satisfies equation [5.6]. This is the

certainty equivalent rate of the stochastic spot rate.

Figure 5.2 shows how the fair TC rate relates to the current spot rate and

the duration of the contract. Notice, when the length of the contract (T-t)

increases the fair TC rate becomes less sensitive to spot freight rate. Though

not observable in this figure, there is a spot freight rate level where the fair
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TC rate is equal for all contract durations. This occurs when the spot freight

rate equals the risk adjusted unconditional expected freight rate level, EQφ∗.

Notice also that the OU model is linear in S(t), while GMR is not. See table

F.1 for further comparisons.

Figure 5.2: Fair TC rate

If the TC rate is set at the fair rate, the TC agreement will have an expected

value of 0. However, sometimes TC agreements are made prior to the start

date, and the TC rate is set before we know what the fair rate will be at

that time. If the TC rate differs from the fair rate, the agreement will have

an expected non-zero value. The expected value of a TC contract with rate

TC from time t to T can be denoted

VTC = V flow(S(t), t;T )− TCt,TA(T − t, r) [5.7]

Substituting from equation [5.6], we get

VTC =
[

ˆTCt,T − TCt,T
]
A(T − t, r) [5.8]

Note that these values are for the charterer. The shipowner, as the counter-

part, will naturally expect the opposite value.
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The expected value of a 5 year TC, for different freight rate levels at the

contract starting date, can be seen in figure 5.3. We see that such contracts

can be of significant value if the right conditions are met. For the OU process

the TC value is linear in the freight rate , while GMR it is non-linear. We

can also see that the GMR consistently values the contract higher than OU.

Figure 5.3: Expected value from TC

5.3 Bermudan purchase option

The Bermudan call option is characterized by multiple exercise dates in the

future. The challenge when pricing such options is the creation of a stopping

rule that determines if the option should be exercised, or if we should wait to

the next exercise date. To do this, I apply the LSM approach. The contract

we consider is a Bermudan purchase option on a new vessel built at t = t0,

with expiration in year t3. The option can be exercised at t = t1, t2 and t3.

At each exercise date the strike price is Kt.

5.3.1 Implementation of LSM

1. Simulate n price paths.
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2. At each exercise date, for each simulated path, store the vessel value.

3. Starting in the last period, create a cash flow matrix ((n × number of

exercise dates)), where for each simulation path we store the intrinsic

value of the option at time t3, in the last column.

4. Go back to the previous exercise date, t2. Find the continuation value.

Exercise if the intrinsic value is higher than the continuation value. If

the option is exercised store the intrinsic value in the column for t2,

and update column t3.

5. Go back to the previous exercise date, t1 and repeat the procedure.

6. Discount all cash flows from the cash flow matrix back to t0 and use

the average as an approximation of the TCPOP-value.

5.3.2 Numerical example

In the following example I have simulated 10 sample vessel price paths, shown

in table 3(a). Suppose that the strike prices are Kt1 = 50 Kt2 = 40 Kt3 = 30,

the exercise dates are t1 = 5, t2 = 10, t3 = 15, and that the risk free rate is

r = 0.05 . Based on the realized vessel values, the options intrinsic value,

Max(Vt −Kt, 0), [5.9]

at each exercise date, will be as shown in table 3(b)
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Table 5.3: Bermudian purchase option, numerical example

(a) Simulated vessel values

i
t

t1 t2 t3

1 46 45 28
2 55 42 36
3 44 33 39
4 49 45 50
5 65 42 29
6 37 59 36
7 70 58 35
8 66 46 24
9 46 42 23
10 65 30 35

(b) Intrinsic values

i
t

t1 t2 t3

1 0 5 0
2 5 2 6
3 0 0 9
4 0 5 20
5 15 2 0
6 0 19 6
7 20 18 5
8 16 6 0
9 0 2 0
10 15 0 5

At the last exercise date, t3, the optionholder chooses to exercise if the option

is in the money, and not exercise if it is out of the money. We start the

algorithm at time t3, and create a payoff matrix with the intrinsic option

values as shown in table 5.4.

Table 5.4: Payoff matrix

i
t

t1 t2 t3

1 · · · · · · 0
2 · · · · · · 6
3 · · · · · · 9
4 · · · · · · 20
5 · · · · · · 0
6 · · · · · · 6
7 · · · · · · 5
8 · · · · · · 0
9 · · · · · · 0
10 · · · · · · 5

We now move one exercise date back in time, to t2. At t2, the optionholder has

to decide whether the option should be exercised now or not. If exercised,

the optionholder receives the intrinsic value, Vt2 − Kt2 , if not, he receives

nothing, but is eligible to receive a cash flow in the future. The optionholder

chooses Using LSM to estimate the continuation value, using only in the

money paths at t2, we regress the intrinsic value at t2 on the discounted

intrinsic value at t3 for the corresponding simulation path. We specify a
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linear regression equation of the form

Y = β0 + β1X + β2X
2 [5.10]

where X is the t2 intrinsic value, and Y is the discounted t3 intrinsic value.

Y = (Vt3 −Kt3)e
−r(t3−t2) [5.11]

X = (Vt2 −Kt2) [5.12]

Table 5.5 shows the variables used in the regression. For path 1, X = 5 is

found in table 3(b) under t2. Y = 0 × 0.78 is the intrinsic value at t3, 0,

from the initial payoff matrix in table 5.4, multiplied with a discount rate

0.78 = e−0.05(15−10).

Table 5.5: LSM regression variables, t2

i Y X

1 0×0.78 5
2 6×0.78 2
3 · · · · · ·
4 20×0.78 5
5 0×0.78 2
6 6×0.78 19
7 5×0.78 18
8 0×0.78 6
9 0×0.78 2
10 . . . · · ·

We estimate equation [5.10] by OLS, and get

Ŷ = 4.9607− 0.0044X + 0.0001X2. [5.13]

Ŷ now serve as an estimate for the continuation value. To decide whether

the option will be exercised or not we estimate the continuation value for

all simulation paths and compare it to the intrinsic value. The estimated

continuation values are shown in table 6(a). We can now update the cash

flow payoff matrix. Since the option can only be exercised once, if the option

is exercised at t2, we must set the cash flow at t3 to 0.
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Table 5.6: Payoff at t2

(a) Continuation choice att2

i Vt2 −Kt2 Ŷ Decision

1 5 5 Exercise
2 2 5 Continue
3 0 5 Continue
4 5 5 Exercise
5 2 5 Continue
6 19 5 Exercise
7 18 5 Exercise
8 6 5 Exercise
9 2 5 Continue
10 0 5 Continue

(b) Updated payoff matrix

i
t

t1 t2 t3

1 · · · 5 0
2 · · · 0 6
3 · · · 0 9
4 · · · 5 0
5 · · · 0 5
6 · · · 19 0
7 · · · 18 0
8 · · · 6 0
9 · · · 0 0
10 · · · 0 5

We now move a step further back in time, to t1, and repeat the procedure.

We estimate an equation identical to the one in equation [5.10], but this time,

X is the intrinsic value at t1, only for paths that are in the money, and Y is

the discounted value from the cash flow matrix.

Y = Max

[
(Vt3 −Kt3)e

−r(t3−t1), (Vt2 −Kt2)e
−r(t2−t1)

]
[5.14]

X = (Vt1 −Kt1) [5.15]

For path 2, Y = 6× 0.61. We find 6 from the updated payoff matrix in table

6(b), under t3. 0.61 is the discount factor e−0,05(15−5). X = 5 is the intrinsic

value at t1, found in table 3(b).

Table 5.7: LSM regression variables, t1

i Y X

1 · · · · · ·
2 6×0.61 5
3 · · · · · ·
4 · · · · · ·
5 5×0.61 15
6 · · · · · ·
7 18×0.78 20
8 6×0.78 16
9 · · · · · ·
10 5×0.61 15
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Estimating the regression equation gives us27

Ŷ = 4.94− 0.0035X + 0.0001X2. [5.16]

Table 5.8: Payoff at t1

(a) Continuation choice at t1

i Vt2 −Kt2 Ŷ Decision

1 6 5 Exercise
2 15 5 Exercise
3 4 5 Continue
4 9 5 Exercise
5 25 5 Exercise
6 0 5 Continue
7 30 5 Exercise
8 26 5 Exercise
9 6 5 Exercise
10 25 5 Exercise

(b) Updated payoff matrix

i
t

t1 t2 t3

1 6 0 0
2 15 0 0
3 0 0 9
4 9 0 0
5 25 0 0
6 0 19 0
7 30 0 0
8 26 0 0
9 6 0 0
10 25 0 0

We now have a complete payoff matrix for all exercise dates. We can approx-

imate the option value, by discounting all cash flows back to t0 and take

the average. Discounting the cash flows from the payoff matrix would give

present values shown in table 5.9. Simulation path 3 has a t0 value equal to

4. This is calculated by finding the cash flow in the updated payoff matrix

in table 8(b), and multiply with the discount rate, 9e−0.05(15−0) = 4

i PV
1 5
2 12
3 4
4 7
5 20
6 12
7 23
8 20
9 5
10 20

Table 5.9: Discounted cash flows

27 Based on 1000 simulations
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The approximated option value will be

b̂ =
5 + 12 + 4 + 7 + 20 + 12 + 23 + 20 + 5 + 20

10
= 12.8 [5.17]

5.3.3 Analysis

Sticking with the option contract in the numerical example, we can do a more

thorough analysis. I simulate 50.000 vessel values to estimate the option

price. Figure 4.7 shows the distribution of the simulated vessel values at

the different exercise dates. Figure 5.4 shows the estimated continuation

value compared to the intrinsic value at each possible exercise date. The

first graph, for time t3, shows only the intrinsic value of the options, because

the continuation value, as discussed earlier, is 0. The other graphs show the

intrinsic value, as well as the estimated continuation value, using both OU

and GMR, at time t2 and t1. We see that the GMR continuation value is

higher than the OU process for all relevant vessel values, except for very high

values at t2.

Figure 5.4: Continuation value illustrated

The option price and the corresponding standard deviation28 for OU and

GMR is given in table 5.10. We see that the GMR predicts a significantly

28
σsample√

n
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higher option price than OU.

Table 5.10: Bermudan purchase option value (Mill. USD)

OU GMR
Estimate 6.81 8.91
Std.dev 0.0261 0.037

5.4 TCPOP - TC with Bermudan purchase option

Finally, we’ve reached the Bermudan TCPOP. The Bermudan TCPOP can

be seen as a combination of all the previous priced options. To find the

value at the last period we use the methodology for option 1, the European

purchase option. To find the value of the TC contract we can29 use the re-

sults from option 2, the European TCPOP, and to account for the Bermudan

component we apply LSM, as for option 3.

There are two things that makes this option more complex than the standard

Bermudan purchase option (as considered in the previous section). First, at

any possible exercise date, except for the last, the option may be out of the

money, but still eligible for exercise. If the contract has a high enough TC

rate, the charterer may be better of by buying the vessel with a loss, than

by sticking to a bad TC rate where one expects an even greater loss. This

means that there is a potential downside to the agreement, unlike a pure

option, and the charterer may be forced into taking on a loss. Second, we

have to consider two factors for the continuation, the expected option value

at next exercise date, and the expected value of the TC agreement through

the next period.

Taking the TC into account, the optimal strategy at each point is still to

choose the alternative which yields highest expected profit.

Max(Vt −Kt, E
Q
t [V Continuation]), [5.18]

29 My approach is based on simulating this value.
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but the expected continuation value can now be split into two components:

first, the expected value from keep paying the TC and receiving the spot

rate, and second, the expected option value at the next exercise date. The

challenge lies in estimating the combined continuation value. To do this, the

LSM methodology is applied.

5.4.1 Implementation of LSM

The following example will serve as an explanation of the implementation of

LSM:

The contract we consider is similar to the one from (Jørgensen & De Giovanni,

2009, Section 5.2), a TCPOP on a new vessel for t3 years, split into three

periods, starting at t = t0 with exercise dates at t = t1, t2 and t3. At

each exercise date the strike price is Kt. Between all the exercise dates

the charterer pays a TC rate TCp, where p = 1, 2, 3 is the period under

consideration (e.g p = 1 is the first period between t0 and t1). Let Lp be the

accumulated profit/loss from receiving the spot rate St, simulated under the

Q measure, and paying TCp, assuming daily settlement. Also assume that

any daily profit/loss will be invested/borrowed at the risk free rate. Lp is

the accumulated profit/loss evaluated at the end of the period (e.g L1 is the

value evaluated at time t1, and L2 is the value evaluated at time t2).

1. Simulate i price paths.

2. At each exercise date, for each simulated path, store the spot rate, the

vessel value, and the present value of the accumulated cash flow from

the TC agreement in the previous period.

3. Starting in the last period, create a matrix ((i × number of exercise

dates)) where for each simulation path we store the intrinsic value of

the option at the last column, representing time t3.

4. Go back to the previous exercise date, t2. Find the continuation value.

Exercise if the intrinsic value is higher than the continuation value. If
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the option is exercised store the intrinsic value in the coloumn for t2

and update column t3.

5. Go back to the previous exercise date, t1 and repeat the procedure.

6. Generate a cash flow matrix (still (i × number of exercise dates)) and

sum the cash flow from exercising, and the cash flows from the TC

component, Lp. That is, if the option is exercised at t3, include L1,L2

and L3. If exercised at t2, only include L1 and L2. If exercised at t1,

include only L1. If not exercised, same as for exercise at t3.

7. Discount all cash flows back to t0 and use the average as an approxi-

mation of the TCPOP-value.

5.4.2 Numerical example

Table 11(a) shows outcomes for vessel values, while table 11(b) shows the

net value of the TC payments, Lp, during period p. Table 11(c) shows the

corresponding spot freight rate, St. Suppose that the strike prices are Kt1 =

45, Kt2 = 35, Kt3 = 25, the exercise dates are t1 = 5, t2 = 10, t3 = 15, and

that the risk free rate is r = 0.05.
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Table 5.11: Simulation example (Mill. USD)

(a) Vessel value, Vt

i
t

t1 t2 t3

1 41 63 21
2 44 48 15
3 37 76 22
4 60 32 42
5 40 34 21
6 54 43 15
7 59 29 36
8 30 36 34
9 55 23 30
10 20 31 35

(b) TC values, Lp

i
p

1 2 3

1 -11 -19 23
2 22 -17 -25
3 -8 -2 -3
4 14 -2 20
5 14 1 -21
6 -0 30 -12
7 7 -4 -5
8 32 -28 2
9 -10 -0 -51
10 -10 -25 31

(c) Spot freight rate, St (1000 USD)

i
t

t1 t2 t3

1 24 72 14
2 29 46 3
3 18 92 15
4 51 20 56
5 23 23 15
6 43 39 2
7 50 15 45
8 8 27 40
9 44 6 32
10 -6 18 42

We start by creating an option cash flow matrix and initiate the calculations

at the last period, t3. At t3, we know that the value of the option is Max(Vt3−
Kt3 , 0). We use this to create an initial payoff matrix, represented in table

5.12.
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i
t

t1 t2 t3

1 · · · · · · 0
2 · · · · · · 0
3 · · · · · · 0
4 · · · · · · 17
5 · · · · · · 0
6 · · · · · · 0
7 · · · · · · 11
8 · · · · · · 9
9 · · · · · · 5
10 · · · · · · 10

Table 5.12: Payoff matrix

Moving a step backwards in time, to t2, the expected value of continuing will

involve not only the value of exercising the option in the next period, but also

the value of the TC component, L3. The regression must therefore include

both. To find the continuation value I propose using the spot rate as an

explanatory variable. This is reasonable since both the expected vessel value

and the expected TC contract value depends on the current spot freight rate.

Our regression specification will be of the form

Y = β0 + β1X + β2X
2, [5.19]

where Y will be the discounted simulated value of continuing, and X, the

spot freight rate.

Y = (Max[Vt3 −Kt3 , 0] + L3)e
−r(t3−t2) [5.20]

X = St2 [5.21]

Table 5.13 shows the variables used in the regression. For path 1, X = 72 is

the spotrate at t2, found in table 11(c). For Y , (0 + 23) is the insintric value

at t3 in table 5.12, plus the value of the TC at time t3, found in table 11(b),

while 0.78 = e−0.05(15−10) is the discount rate.
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i
Var

Y X

1 (0+23)×0.78 72
2 (0-25)×0.78 46
3 (0-3)×0.78 92
4 (17+20)×0.78 20
5 (0-21)×0.78 23
6 (0-12)×0.78 39
7 (11-5)×0.78 15
8 (9+2)×0.78 27
9 (5-51)×0.78 6
10 (10+31)×0.78 18

Table 5.13: Regression variables

Applying OLS, our estimated equation will be approximately30:

Ŷ = −6, 67 + 0, 00012X + 6, 02 ∗ 10−10X2. [5.22]

We can now estimate the continuation value, Ŷ , at time t2. In table 14(a) we

compare the estimated continuation value against the intrinsic value, Vt2 −
Kt2 , of the option. If (Vt2 −Kt2)>Ŷ , the option is exercised, if not, the TC

is continued. Based on this decision algorithm, we can update the payoff

matrix from 5.12. Since the option can only be exercised once, for any path

where the option is exercised at t2, we must set the payoff at t3 to 0. Table

14(b) shows us the updated payoff matrix. Notice that for path 4, 8 and 10,

the exercise decision has changed compared to the initial decision. Notice

also that for path, 4, 5 and 10, the option has been exercised even though

the payment is higher than the ships value. This is a consequence of, as

discussed earlier, the possibility to get out from a bad TC contract.

30 Based on a simulation of 1000 paths
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Table 5.14: Payoff at t2

(a) Continuation choice at t2

i Vt2 −Kt2 Ŷ Decision

1 28 5 Exercise
2 13 0 Exercise
3 41 10 Exercise
4 -3 -4 Exercise
5 -1 -3 Exercise
6 8 -1 Exercise
7 -6 -5 Continue
8 1 -3 Exercise
9 -12 -6 Continue
10 -4 -4 Exercise

(b) Updated payoff matrix

i
t

t1 t2 t3

1 · · · 28 0
2 · · · 13 0
3 · · · 41 0
4 · · · -3 0
5 · · · -1 0
6 · · · 8 0
7 · · · 0 11
8 · · · 1 0
9 · · · 0 5
10 · · · -4 0

We now move further one step back in time, to t1, and repeat our procedure to

estimate the continuation value. In our regression equation, the explanatory

variable, X, will still be the spot freight rate, but the dependent variable Y

will change slightly. Y will now be the discounted values from the updated

payoff matrix added to the discounted value of the TC agreement, L2.

Y = Max[Payofft3e
−r(t3−t1),Payofft2e

−r(t2−t1)] + L2e
−r(t2−t1) [5.23]

X = St1 [5.24]

Using path 7 in table 5.15 as an example, we see that X = 24 can be

found in table 11(c). For Y , 11 × 0.61 is the value from the updated payoff

matrix in table 14(b), times the discount factor 0.61 = e−0.05(15−5). −4×0.78

is the value from the TC value in table 11(b), times the discount factor

0.78 = e−0.05(10−5).
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i
Var

Y X

1 (28-19)×0.78 24
2 (13-17)×0.78 29
3 (41-2)×0.78 18
4 (-3-2)×0.78 51
5 (-1+1)×0.78 23
6 (8+30)×0.78 43
7 11×0.61 -4×0.78 50
8 (1-28)×0.78 8
9 5×0.61 -0×0.78 44
10 (-4-25)×0.78 -6

Table 5.15: Regression variables

The estimated continuation value coefficients at t1 is approximately31:

Ŷ = −5, 29 + 0, 00019X − 1, 19 ∗ 10−10X2. [5.25]

In table 16(a) we have estimated the continuation value for all simulation

paths, and to determine whether to exercise or not, the continuation value is

compared to the intrinsic value. Based on the comparison, we decide whether

to exercise or not. As before, the option can only be exercised once, so we

exercise at time t1, the values in the following periods must be set to zero in

the updated payoff matrix, shown in table 16(b) .

Table 5.16: Payoff at t1

(a) Continuation decision at t1

i Vt1 −Kt1 Ŷ Decision

1 -4 -1 Continue
2 -1 0 Continue
3 -8 -2 Continue
4 15 4 Exercise
5 -5 -1 Continue
6 9 3 Exercise
7 14 4 Exercise
8 -15 -4 Continue
9 10 3 Exercise
10 -25 -6 Continue

(b) Updated payoff matrix

i
t

t1 t2 t3

1 0 28 0
2 0 13 0
3 0 41 0
4 15 0 0
5 0 -1 0
6 9 0 0
7 14 0 0
8 0 1 0
9 10 0 0
10 0 -4 0

31 Still based on only 1000 simulations
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We have now finished determining when the option will be exercised. How-

ever, to obtain an approximation for the value of the contract, we also have

to consider the cashflows from the TC until the option is exercised. Table

5.17 shows the accrued cash flows from the TC until the option is exercised

or expires. For path 1, we see from the payoff matrix in table 16(b) that it

is exercised at time t2. The accrued cash flows from the TC in period 1 and

2, can be found in table 11(b).

i
t

t1 t2 t3

1 -11 -19 0
2 22 -17 0
3 -8 -2 0
4 14 0 0
5 14 1 0
6 -0 0 0
7 7 0 0
8 32 -28 0
9 -10 0 0
10 -10 -25 0

Table 5.17: Accrued cash flows from the TC components

To approximate the TCPOP value we discount the cash flows from the TC

(table 5.17) and the cash flows from the updated payout matrix (table 16(b))

back to t0, and sum for each path. For path 1 this we see that this is −3. The

discounted cash flows from the TC is −11e−0.05(5−0) − 19e−0.05(10−0) ≈ −20,

where −11 and −19 are taken from table 5.17. The discounted cash flow

from exercising the option is 28e−0.05(10−0) ≈ 17, where 28 is taken from

table 16(b). Summing, we see that −20 + 17 = 3.
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i NPV
1 -3
2 15
3 18
4 22
5 11
6 7
7 16
8 9
9 -0
10 -25

Table 5.18: t0 value of total cash flow

An approximate value for the TCPOP, ĉt0 , will now be the average over all

paths. In our case, the t0 value for each path is shown in table 5.18. The

average, and our approximate option value, is

ĉt0 =
−3 + 15 + 18 + 22 + 11 + 7 + 16 + 9 + 0− 25

10
= 7 [5.26]

5.4.3 Analysis

To validate the method, I compare my results with the results found in

Jørgensen & De Giovanni (2009, table 7). I find that my LSM method, given

the same inputs, provides identical results to the finite difference approach.

For an application, i consider the same contract specified in the numeri-

cal example, and further specify the predetermined TC rate, TC1 = TC2 =

TC3 = 22500. I use 50000 simulations. The price of the contract, and the

standard deviation32 of the estimate is given in table 5.19. We see that, as

expected, the GMR contract price is significantly higher than the one for

OU.

Table 5.19: TCPOP contract value (Mill. USD)

OU GMR
Estimate 23.37 27.03
Std.dev 0.1046 0.1209

32
σsample√

n
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A visual presentation of the simulated contract values is shown in figure 5.5.

We see that the GMR predicts a skewed distribution for the TCPOP value.

Figure 5.5: TCPOP value, relative frequency histogram

6 Concluding remarks

This thesis presents a simple, and easy to implement, method for the de-

termination of price, and optimal continuation strategy for a set of option

contracts in the shipping industry. I use Ornstein Uhlenbeck and Geometric

Mean Reversion to model the freight rate. The freight rate processes are

again used to create models for a vessels value through its lifetime. The

vessel value models are calibrated under the assumption that there exists a

variable risk premium. Based on the vessel value models, I use Monte Carlo

methods to price the option contracts.

When modeling the freight rate process there are certain characteristics a

model should control for, whereas mean reversion is probably the most im-

portant one. The OU process offers analytical, easy-to-work-with solutions,

but has some undesirable characteristics, where the most prominent one is

the possibility of negative predicted freight rates. While the GMR process

has some desirable properties that corrects for what OU lacks, it can be te-

dious to work with as analytical solutions are not available. Model selection
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is therefore a tradeoff between easy computations and theoretical correctness.

If results from the two processes are similar, the choice of model should be

based on a parsimonious criteria, and OU should be chosen. Otherwise, the

more theoretical correct GMR should be chosen. In this thesis I have found

that the difference in the results from the two models can be of economic

significance. GMR consistently estimate vessel values, and prices of options

on vessels, to be higher than OU. On the basis of this, GMR should be the

preferred choice of model. However, the tradeoff between tractability and

theoretical correctness still applies, and for problems that are more complex

than those considered here, one should of course reconsider.

An obvious weakness in my analysis is the determination of the market price

of risk. First, the estimation is done under assumptions about the costs that

are not very robust. Second, the proposed linear model shows clear signs of

being underspecified. Third, it is not very realistic to assume that the risk

premium is the same for different aged vessels. However, the model seems to

capture some of the variation, and can probably be a better approximation

than assuming a zero market price of risk. The identification and determi-

nation of a risk premium would be an interesting topic for future research,

as it is crucial factor in the valuation of contingent claims.
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A ITOS LEMMA

Appendices

A Itos lemma

If x follows the process

dS = a(S, t)dt+ b(S, t)dz [A.1]

Where dz is the wiener process. Itos lemma show that a function G of x and
t follows the process

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2
b2
)
dt+

∂G

∂x
bdz [A.2]

If we define G = lnS

∂G

∂x
=

1

S
∂G

∂t
= = 0 [A.3]

∂2G

∂x2
= − 1

S2
[A.4]

From equation [2.7] we have that

a = κ(ω − lnS)S

b = σS

Substituting into equation [A.2] we get

dG = (
1

S
κ(φ− lnS)S +

1

2
(− 1

S2
)σ2S2)dt+ σ

1

S
Sdz

Simplifying gives us

dG = κ(φ− lnS − σ2

2κ
)dt+ σdz

Setting α = φ− σ2

2κ
we get the following

dG = κ(α−G)dt+ σdz
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which is equivalent to equation [2.8]

B Estimation diagnostics

B.1 Price processes

Figure B.1: ACF and PACF for the price and the log of the price
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C STRUCTURAL PARAMETERS

C Structural parameters

C.1 Ornstein Uhlenbeck

We have that:

α = φ(1− e−κδ) [C.1]

β = e−κδ [C.2]

σε = σ

√
1− e−2kδ

2k
[C.3]

Derivation of κ:

β = e−κδ [C.4]

Taking the logarithm on both sides gives

lnβ = lne−κδ = −κδ [C.5]

⇒

κ = − lnβ
δ

[C.6]

Derivation of φ:

α = φ(1− e−κδ) [C.7]

φ =
α

1− e−κδ
[C.8]

where we can substitute from equation [C.2]

φ =
α

1− β
[C.9]
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Derivation of σ

σε = σ

√
1− e−2κδ

2k
[C.10]

⇒

σ = σε

√
2κ

1− e−2δ
[C.11]

Substituting from equation [C.2] and [C.6] gives

σ = σε

√
2−lnβ

δ

1− β2
[C.12]

Multiplying with δ gives

σ = σε

√
2δ−lnβ

δ

δ(1− β2)
= σε

√
−2lnβ

δ(1− β2)
[C.13]

C.2 Geometric mean reversion

We have that:

α = (φ− σ2

2κ
)(1− eκδ) [C.14]

β = e−κδ [C.15]

σε = σ

√
1− e−2κδ

2κ
[C.16]

Derivation of φ:

α = (φ− σ2

2κ
)(1− eκδ) [C.17]

= φ(1− eκδ)− σ2

2κ
(1− eκδ) [C.18]

⇒

φ =
α

(1− eκδ)
+
σ2

2κ
[C.19]
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Substituting from [C.15]

φ =
α

(1− β)
+
σ2

2κ
[C.20]

κ and σ: Same as for OU.
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D Risk premium estimation

D.1 MATLAB code

%aGMR=beta 0
%bGMR=beta 1
%rate=historical freight rate
%omegaGMR=phi
%kGMR=kappa
%sigGMR=sigma

t=[0:50:That−T5];
aGMR=[0.32:0.005:0.36];
bGMR=[−0.004:0.0001:−0.001];

for n=1:length(aGMR)
for m=1:length(bGMR)

for j=1:length(rate)
v5GMR(j,1)=trapz(t,exp(t.*−r*dt).*(exp(log(rate(j,1))*exp(−kGMR*

t.*dt)+(omegaGMR−(aGMR(n)+bGMR(m)*(rate(j,1)/1000))−((sigGMR
.ˆ2)/(2*kGMR)))*(1−exp(−kGMR*t.*dt))+(((sigGMR.ˆ2)/(4*kGMR))
*(1−exp(−2*kGMR*t.*dt))))−opex))+(Vhat*exp(−r*(That−T5)*dt));

end

resGMR(n,m)=sum((v5GMR/1000000−rv5).ˆ2);
end
end

[j,i]=find(resGMR==(min(min(resGMR))))
aGMR=aGMR(j)
bGMR=bGMR(i)
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D.2 Residuals

Figure D.1: Residual plots

(a) Residual vs. time

(b) Residual vs. predictor: spot freight rate

(c) ACF and PACF for residuals

67



E VESSEL VALUES ILLUSTRATED

E Vessel values illustrated

Figure E.1: Expected vessel values as in relation to spot freight rate
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F TC VALUES

F TC values

Table F.1: Fair TC rates, in 1000 USD

(a) Fair TC, OU

S(t)
T-t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10000 10 16 18 19 20 20 21 21 21 21 21 22 22 22 22
20000 16 20 21 22 22 23 23 23 23 23 23 23 23 23 23
30000 22 24 24 24 25 25 25 25 25 25 25 25 25 25 25
40000 28 27 27 27 27 27 27 27 27 27 27 27 27 27 27
50000 34 31 30 30 29 29 29 29 29 28 28 28 28 28 28
60000 40 35 33 32 32 31 31 31 30 30 30 30 30 30 30
70000 46 39 36 35 34 33 33 32 32 32 32 32 32 32 31
80000 52 43 39 37 36 35 35 34 34 34 34 33 33 33 33
90000 58 47 42 40 38 38 37 36 36 36 35 35 35 35 35
100000 64 51 45 43 41 40 39 38 38 37 37 37 37 36 36

(b) Fair TC, GMR

S(t)
T-t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10000 15 18 20 21 21 22 22 22 23 23 23 23 23 23 23
20000 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25
30000 29 29 28 28 27 27 27 27 27 27 27 27 27 27 27
40000 36 33 32 31 30 29 29 29 29 29 28 28 28 28 28
50000 42 37 35 33 32 32 31 31 30 30 30 30 30 30 30
60000 47 41 38 36 34 34 33 32 32 32 32 31 31 31 31
70000 53 45 41 38 37 36 35 34 34 33 33 33 33 32 32
80000 58 49 44 41 39 37 37 36 35 35 34 34 34 34 34
90000 63 52 46 43 41 39 38 37 37 36 36 36 35 35 35
100000 69 56 49 45 43 41 40 39 38 38 37 37 37 36 36
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