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Abstract

This NHH master thesis researches methodologies for forecasting a financial time series,

the Baltic Dry P1A spot price, one week and one month ahead. The methods researched

are four different strategies for time series prediction. The first is by fitting the future

timestep directly based on information about today. The second is a recursive strategy,

which iterates a one-step ahead prediction model. Third, a rectify implementation that

corrects bias from a recursive model, by training on the residuals. Last, a direct recursive

approach that fits each timestep directly with previous predictions as an added variable.

Our research finds that the Direct and Direct Recursive (DirRec) strategy is the most

accurate for both long and short forecast horizons. This performance is consistent when

testing on an independent test set. We cannot exclude that the Direct Recursive strategy

could perform better than Direct, as we get differing results when performing experiments

with fewer variables. An important trade-off is that the Direct Recursive strategy is

substantially more computationally heavy than the Direct strategy.

Keywords – NHH, Master Thesis, XGBoost, Prediction, Time Series, Dry Bulk, Shipping,

Multi-Step Forecasting, Recursive Forecasting, GBM, DirRec
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1 Introduction

The dry bulk shipping market is a volatile market where participants take large risks

to earn a profit. Taking disadvantageous positions can give a substantial downside, so

shipping companies seek to reduce risk by making informed decisions. One way of gaining

an information advantage, is by making forecasts. Although domain knowledge is very

important in the shipping industry, a reliable and accurate forecast can provide crucial

decision support, reduce risk and increase traders’ ability to act in the market (Stopford,

2009).

There are many methods available for time series prediction, both classical and modern. In

this thesis we are using the same data set used by industry professionals to predict dry bulk

spot prices one month in advance. We will look into the feasibility of successfully predicting

prices using this data set, as well as research different strategies for prediction. When

developing multi-step forecasts, different methods have unique strengths and weaknesses.

Classical approaches are often univariate or with a small set of carefully selected features,

while modern machine learning approaches can have a large feature space, but require

substantial computational time.

For methodology comparisons to be sensible, we must assume that variables in the data

set have predictive power. Whether this is true can be answered through how well our

results are in general and across methods. Subsequently, we can see how the different

implementations of methods affect the results. As a base for our methods, we use a gradient

boosting framework called XGBoost (Chen and Guestrin, 2016). Our main methodology

hypothesis is that by combining aspects of classical methods, such as autoregressive

behaviors, together with a modern machine learning framework such as XGBoost, the

resulting forecasts could be more efficient. We will therefore construct and compare

various multi-step implementations of the base model. The comparison will evaluate the

predictions across several metrics, RMSE, MAPE and MAE, as well as how accurately the

models predict the direction of the price development. In addition, we will address the

computational time and complexity of implementing the different methods and strategies.
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1.1 Structure

Section 2 starts by giving an introduction to the dry bulk shipping market and the

forecasting strategies we research in this thesis. Section 3 takes a closer look at the data

set provided to us by the shipping company Torvald Klaveness (hereby reffered to as:

Klaveness). Section 4 gives a brief description of our benchmark forecasting methods and

a more in-depth explanation of more advanced methods. Section 5 presents and compares

the final results from applying the different methods to the data set. Section 6 discusses

the probable causes to the performance of the different methods. Last, in Section 7 our

concluding remarks are presented.
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2 Background

2.1 The Dry Bulk Shipping Market

This section introduces the characteristics of global shipping markets and highlights the

areas that are relevant for this thesis. If the reader has extensive knowledge about this

market, Section 2.1 can be skipped.

The development of shipping markets has had large impact on the economy and world

we live in today. Being both a driver and a beneficiary of globalization, seaborne trade

has connected countries enabling for transportation of large volumes of goods. This has

further enabled economies of scale and global division of labor, shaping the development

of international trade and economies throughout history (Stopford, 2009).

Seaborne freight is often divided into a few major categories, depending on the

characteristics of the good. Some of the most important categories are: Tank freight,

which carries liquids such as crude oil, oil products and liquefied natural gas (LNG).

Container ships, carrying large amounts of containers with the 40-foot (2-TEU) unit

being the most common. Roll-on/Roll-off (RORO), carrying cars or other wheeled cargo.

Refrigerated ships, with perishables requiring a consistent temperature. Lastly, Dry Bulk

carriers move goods such as grain, iron ore or coal in large amounts. This last category

will be at the center of our analysis, and we will therefore elaborate on this specific market

(Stopford, 2009).
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Figure 2.1: Illustration of the world seaborne trade, based on location data from 2012.
Dry bulk shipping routes are displayed in light blue. Source: shipmap.org

2.1.1 Characteristics of Dry Bulk Shipping

Dry bulk shipping consists mainly of transporting the three major bulks: iron ore, coal

and grain. The United Nations estimates that in 2017, the major dry bulk commodities

accounted for 29.9% of the global seaborne shipping trade. The market has been steadily

growing, with an annual growth rate of 4.6% between 1980 and 2017 (United Nations,

2018).

The fleet of dry bulk carriers is divided into groups depending on the capacity of the ship.

The four main size segments are, in decreasing order: Capesize, Panamax, Handymax

and Handysize, separated by how many Deadweight Tonnes (DWT) they can carry.

In addition to the major bulks, the remaining dry bulk cargo is categorized as minor bulks.

Of these, the largest commodities are steel, forest products, metals and minerals. Other

large bulk commodities are sugar, fertilizer and Agribulks, which is mainly soybeans and

soybean meal, but also rice and other oilseeds (Stopford, 2009).



2.1 The Dry Bulk Shipping Market 5

2.1.2 Supply and Demand

As dry bulk shipping is a heterogeneous market, the major exporters and importers of

different goods can vary a lot. Compared to e.g. the price for tankers, which will be

greatly affected by the price of crude oil, dry bulk is affected by several independent

markets each affecting the supply and demand. In general, the movement of goods is

determined by the simple questions: Where are things produced? And where are things

consumed?

The demand side is heavily dependent on the world economy. A thriving world economy

boosts consumption and investment, which increase the demand for production goods

such as crude oil, oil products and coal. In Figure 2.2 one can see that the changes in GDP

growth correlates with the growth of seaborne trade. With some knowledge of history,

major events such as the 1973 oil crisis, 1979 oil crisis and 2008 financial crisis are shown

as large negative shocks to the growth of both. Macroeconomic factors surely have a large

effect on spot prices over time, but in the scope of predicting a monthly development the

effect is probably more long-term than short-term. Seasonality of trades, such as when

grains are harvested, has a short-term effect on demand which affects short term pricing.

Yearly events like Chinese New Year also affects prices in a short time frame, as Chinese

production comes to a halt when the population is on vacation for a few weeks (Stopford,

2009).
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Figure 2.2: Development of world GDP growth and the seaborne trade growth, between
1970 and 2017

The supply side of dry bulk shipping is, put simply, set by the amount, size, and behavior

of ships in the market (Stopford, 2009). Shipbuilding takes time, and gives a time-lag

in the markets’ ability to adapt to supply. Some flexibility can be achieved by adapting

ships, moving them from one market to another, or by having ships such as combination

carriers that can switch between wet and dry cargo. The speed of the ships can also

vary, as in a market with low demand and lower prices the shippers would want to reduce

costs per trade, while in a market with high demand the shippers increase the speed to

complete freights as fast as possible and start the next (Stopford, 2009).

It is important to note that the market is operated by people, and thus, is greatly affected

by human behavior. This is an inherent prediction problem, as prices are set based

on individual’s thoughts and concerns, not by a mathematical equation. Optimistic

ship-owners might order too many ships in good times, oversupplying the market when

they start arriving. Because of this, the spot price forecast will never be perfect. However,

a good forecast will mitigate risk and help decision makers reduce their own behavioral

bias (Stopford, 2009).

Another very important factor affecting spot prices are economic shocks and random

events. A recent example of this is when a dam collapsed in the Brazilian iron ore mine
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The Córrego de Feijão, in the beginning of 2019 (Mandra, 2019). This incident affected the

supply for iron ore and therefore the demand for shipping iron ore. Mainly, this affected

the market for Valemax shipping, which are very large ore carriers specifically used by

Vale, the company who owns the mine. These specialty ships are the world’s largest bulk

carriers, and since the mine closed their capacity opened up to the market, affecting prices

of other ship types.

2.1.3 Major Dry Bulk Commodities and Their Markets

Grains

The world’s largest exporters of grains are the United States and Russia, with 25% and

23% market share respectively in 2017. This includes wheat, coarse grains and soybeans

(United Nations, 2018). Grain is the smallest of the major bulks, but has had steady

growth for several decades. A likely reason behind the steady growth, is the increased

living standard around the world. With higher incomes, a more bread and meat-based diet

is preferred, driving up grain consumption directly but also indirectly as large amounts of

the grain trade is animal feed for meat production (Stopford, 2009).

Iron Ore

Iron ore is the largest major bulk, and is mainly used in the worldwide steel production.

There are a few countries that dominate the supply and demand side of this commodity.

The largest suppliers are Australia and Brazil, at 56% and 26%, while the largest importer

is China with a substantial 72% of global demand. Being the largest major bulk, it further

exemplifies why events like the Brazilian ore mine collapse and Chinese New Year can

affect the global market of all dry bulks (United Nations, 2018).

Coal

The seaborne coal trade is almost as large as iron ore, but has a much more diversified

demand. In 2017 the largest importer was China with 18%, closely followed by India,

Japan, EU and South Korea, all of which represent 12% of the market (United Nations,
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2018). The largest exporters were Indonesia and Australia at 32% and 30%. Coal is

divided into two main markets, coking coal which is used in steel production, and thermal

coal which is used to fuel power stations. Coal as an energy source is an alternative to oil

and gas, and has historically had growth when oil prices have increased (Stopford, 2009).

2.1.4 Routes and Ships

Shipping is not a fully standardized good, as prices depend on the route, how large the

ship is and several other factors. When deciding on market prices, this has to be taken into

account, and the result is that there are many indices created from negotiated prices that

can be observed. One of the main sources of market information is the Baltic Exchange,

which is a global membership organization that gathers information about trades in the

market from its members and uses it to create rate indices (Baltic Exchange, 2019a).

These indices are one of the main factors when new freight contracts are negotiated.

Panamax

The routes are separated by the earlier mentioned size segments. To limit the scope,

we are predicting a Panamax route. Panamax ships are named after being the largest

ships that could pass through the Panama Canal, with restrictions on width and length.

In 2016, the canal opened up a new lane, doubling the capacity and introducing the

possibility of larger ships, called Neopanamax to pass through. Regular Panamax ships

have a capacity of up to 82,000 DWT, although depth limitation at the canal can limit

the capacity to 52,500 DWT.

P1A - Atlantic Round Voyage

In the Panamax size segment, there are four routes which are part of the Baltic Dry Index.

These are summarized as the P4TC, which is their average time charter rate equally

weighted. To further limit the scope to a single index, we select P1A which is one of these

four. The P1A index is rates of transatlantic round voyages between Skaw in northern

Europe and Gibraltar in southern Europe, to the US gulf (Baltic Exchange, 2019b).
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2.2 Potential Value of Predictions

The spot price market is a physical market, consisting of prices on actual freight contracts

being executed. The purely financial alternative is the Forward Freight Agreement (FFA)

market. For participants in the physical market, Forward Freight Agreements are used

as a tool for hedging, for others it opens up purely speculative trades without making

physical commitments to ships (Stopford, 2009). Because of this, the FFA market is more

liquid and one should expect it to be more efficient. In 2006, the FFA market had an

estimated volume of USD 56 billion with more than 300,000 lots traded (Stopford, 2009).

The physical market, represented in our case by the spot price, has large barriers to entry

and should be less efficient. Therefore, a successful trading strategy for the FFA market

would be easier to implement, but less likely to find, while a trading strategy for the spot

price market could be easier to discover.

An important decision is for which horizon we are forecasting. Our data set consists of

data from days where the market is open, i.e. most weekdays except holidays. Because

of this, when building the model, we chose a 5 day horizon as a proxy for a week, and

a 22 day horizon as a proxy for a month. The models we are building have no inherent

understanding of time, and as it is not the main focus of our research we will not take

effort into researching whether 5 or 7 days is the best prediction one week ahead. If one

were to implement a trading strategy from our models, the short term prediction should

be more accurate in general, but the long term would be easier to act upon as many

contracts are negotiated a month in advance.

2.3 Classification or Regression

There are two general approaches to a prediction problem like this, either regressing the

price and predicting a future price p̂t, or classifying the direction of where the price will

end up. After discussion with Klaveness, an important consideration is the magnitude of

the price change for a specified period. Even though a classifier might be more correct

in predicting the direction, it is hard to act upon a binary prediction. The magnitude

will serve as a proxy for risk, and as such the traders will behave differently if they know
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the predicted price is a large increase rather than a small increase. The added value of

knowing the magnitude is larger than the potential added accuracy of classifying direction,

given that the regression models have sufficient accuracy.

2.4 Methods for Time Series Forecasting

Forecasting or predicting future values is an activity that has been done in some shape or

form for a long time. The motivation is simple, as predicting the future could be quite

lucrative, either by correctly forecasting the costs or income of a project, or as a financial

trade by forecasting future stock prices.

Classical time series forecasting has often been tightly connected with economic theories

on the topic. For instance, if assuming that a stock price is a random walk because of the

Efficient Market Hypothesis, the prediction of tomorrow’s price would then be today’s

price with a random movement (Adland and Alizadeh, 2018). If the price is correlated

with earlier day’s prices as well, i.e. a trend, a coefficient will be fitted to earlier values of

the price. When a time series is correlated with itself, it is autocorrelated.

This autocorrelation can be accounted for by using a model with an autoregressive term,

typical for classical forecasting methods. Such models are either univariate, using only

the price itself, or use a small set of carefully selected variables to predict. They function

by forecasting incremental steps, using the predicted values to forecast the subsequent

value. This is called a recursive approach to multi-step forecasting (Taieb et al., 2012a).

In recent years, methods that fall within the term machine learning have become popular

and are applied to many topics. Machine learning has proven successful in many fields,

but is very data dependent and sometimes computationally challenging. Typically, a

multivariate approach will be preferred, with a set of related variables to use as predictors

xt. These methods often fit the future value directly as a function of today, thereby fitting

each horizon independently of each other.

In this thesis, we seek to experiment with both direct and recursive approaches, and find

out which is more suitable for our forecasting problem. In addition, some researchers

suggest variants that combine these two. Taieb et al. (2012b) suggest a Rectified strategy,

where the iterated predictions from the recursive approach is corrected with a model
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trained on the errors of the base model. If the model is biased, this strategy could improve

predictions (Taieb et al., 2012b). Sorjamaa and Lendasse (2006) suggest a DirRec strategy,

where for each timestep of the Recursive model, a specific model trained to predict t+step

timesteps, rather than the original t + 1 model ran iteratively. We will consider the

implications of these in the methodology section.

2.4.1 Literature Review

There have been many studies comparing these strategies and more. Some researchers that

have frequently discussed the topic are Souhaib Ben Taieb and Gianluca Bontempi. The

article ’A review and comparison of strategies for multi-step ahead time series forecasting

based on the NN5 forecasting competition’ gives a comparison and summary of applicable

methods with many sources if wanted, and cites many articles if one wants to research

this topic (Taieb et al., 2012a). Another extensive source on this topic is the research of

Rob J. Hyndman, who is also the main author of the popular R package ’forecast’ as well

as the textbook ’Forecasting: Principles and Practice’ (Hyndman and Athanasopoulos,

2018).
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3 Data

The source data of this thesis is a panel data set retrieved from the shipping company

Torvald Klaveness, one of the leading service providers to the global dry bulk industry

(Klaveness, 2019). Klaveness have gathered data from a variety of sources through their

research and daily operations, in order to help the company take reliable positions. With

Klaveness’ knowledge, variables which there are reason to believe affect prices on the dry

bulk shipping market have been selected. In this section we take a closer look at the data

set, handling of missing observations, the dependent variable and its relation to other

variables in the data set.

This data set is currently being used by Klaveness on a day-to-day basis, consequently

Klaveness is in danger of exposing valuable data to their competitors if the variables are

explained in detail. To some extent, this sets limitations for the level of detail we will go

into in this thesis. However, the description of the dry bulk shipping market in Section 2

describes many of the factors that could be important when constructing a data set for

this purpose.

3.1 Descriptive Statistics

If you are forecasting a daily time series, it is often difficult to acquire large amounts of

relevant data. Both because a whole year of data would at most be 365 observations, but

also because most time series change over time. The 1980’s shipping market is not the

same as today’s, and therefore observations from 40 years ago will likely be of little use

to a model predicting future prices. The data set provided by Klaveness contains 1772

daily observations between September 2012 and January 2019, across 759 variables. The

data set is limited to trading days, thereby excluding many holidays, and weekends. The

explanatory variables are from a variety of sources which can be categorized based on

their origin. Examples of such categories are: Securities traded on the Baltic Exchange,

stock prices, commodity prices, and foreign exchange rates. In addition, the data set

contains variables which are made to account for time specific changes.
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3.1.1 Dependent Variable
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Figure 3.1: Development of the Baltic P1A spot price between 2012 and 2019. The
mean is displayed in red.

The dependent variable of the data set is Baltic P1A, the spot price index for a Panamax

transatlantic round voyage (Explained in Section 2.1.4). Figure 3.1 shows the development

of the Baltic P1A price from 2012 until the beginning of 2019. As one can see in Table 3.1

the prices stretches from a minimum value of 690 to a maximum value of 21075. The

mean is 8442, not far from the median of 8150, which indicates little skewness.

Min. 1st Qu. Median Mean 3rd Qu. Max.
690 5346 8150 8442 11018 21075

Table 3.1: Descriptive statistics, Baltic P1A.

The histogram in Figure 3.2 shows how the daily observations of Baltic P1A is bell-shaped

with a slight deviation in the number of observations close to 5000. The bell-shape

supports the empirical results of Koekebakker et al. (2006) which finds that freight rates

have stationary mean reverting characteristics.
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Figure 3.2: Histogram illustrating the distribution of the Baltic P1A spot price.

Stationarity

A stationary data set will have all observations independent of the time series in which

they were observed, without seasonality or trends (Hyndman and Athanasopoulos, 2018).

A non-stationary time series can become more stationary by differencing the values, such

that each value is the change from the previous day: y′t = yt − yt−1. Certain forecasting

methods may perform better with a differenced data set, while other methods have built

in abilities to account for trends and seasonality e.g. multivariate models with dummy

variables accounting for time specific events, seasons or weekdays. Knowledge about the

data set in terms of stationary properties can help develop a better forecasting model.

Thus, it is relevant to address whether the data set holds such features, before constructing

models.

ACF and PACF plots

The autocorrelation functions (ACF) in Figure 3.3 show the correlation between a Baltic

P1A and its lags. These plots show that yt is correlated with yt−1, which also means that

yt−1 and yt−2 must be correlated. This correlation may be the result of both lags being

connected with yt, and not necessarily because yt−2 holds any new information. This

effect of correlation between lags is neutralized in the partial autocorrelation function
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(PACF) plot, which shows the correlation adjusted for prior lags. Such plots can be a

useful tool to find appropriate number of lags for the autoreggressive and moving average

terms in an ARIMA model (Hyndman and Athanasopoulos, 2018).

By inspecting the plots in Figure 3.3, one can see how Baltic P1A shows clear evidence of

autocorrelation. Figure 3.3a shows the autocorrelation function for different lags of Baltic

P1A, with a slowly decreasing autocorrelation. The effect of differencing is evident when

comparing the plots in Figure 3.3a and 3.3b, where the autocorrelation clearly is reduced.

The partial correlation of each lag can be found in Figure 3.3c and Figure 3.3d.
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Figure 3.3: ACF and PACF plots for Baltic P1A, showing the effect of differencing

Unit Root Test

There are a variety of tests available to determine whether Baltic P1A spot price is

stationary, e.g. Kwiatkowski–Phillips–Schmidt–Shin (KPSS), Augmented Dickey-Fuller

(ADF) and Phillips-Perron (PP). We have chosen to conduct a KPSS test, as it has proven

to lead to better ARIMA models on average (Hyndman, 2014). Generally, these tests

struggle with size distortion, and can possibly reject the null hypothesis even though it is
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true (Zivot and Wang, 2003). The null hypothesis (H0) of the KPSS test is that the data

is stationary, and it is rejected for a test statistic higher than the 5 percent critical value

of 0.463. The KPPS test with seven lags gives a test statistic of 2.98, indicating rejection

of the null hypothesis at a 1% level. This supports the autocorrelation displayed in the

ACF plots in Figure 3.3. However, it contradicts Koekebakker et al. (2006) in terms of

freight rates having stationary characteristics.

The ACF and PACF plots indicate that the rates should be differenced to become more

stationary. Therefore, if the goal of this analysis was inference, we would have likely

differenced the data. In our case, we want to achieve as accurate predictions as possible,

and whether or not the data should be differenced to facilitate accurate forecasting is still

arguable. Therefore, when stationarity is an important concern in the model, we will test

out both with and without differencing, and select the best performing model.

3.1.2 Correlation with Baltic P1A

Many of the available predictors are highly correlated with our dependent variable. Table

3.2 shows the ten variables with the highest correlation with the future spot price, on a

five-day horizon. We can see that all variables on this list are indices or securities listed at

the Baltic Exchange with a positive correlation to the Baltic P1A. Not surprisingly, the

highest correlating variable is Baltic P1A itself, indicating autocorrelation on a five-day

horizon. Second is the P4TC, which contains 25% of the P1A rate.1 In addition, the one

month FFA for P4TC is present with a correlation of 0.861, illustrating the relationship

between futures and spot prices. We also find other routes such as P2A, P5 and Baltic

S4A which explain that rates are correlated across different routes and ship types.

Calculation of correlation was also performed on a monthly horizon, showing some other

variables among the top ten. These calculations are unfortunately excluded from the

thesis, due to the fact that they would expose too much of the data set.

1The P4TC rate is explained in more detail in Section 2.1.4
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# Variable Correlation

1 BALTIC_P1A 0.939
2 BALTIC_P4TC 0.896
3 FFA_P4TC_M0 0.861
4 BALTIC_P2A 0.849
5 BALTIC_Smax_Atlantic_Tess_58 0.796
6 BALTIC_P5 0.777
7 FFA_P4TC_M1 0.776
8 BALTIC_P3A 0.763
9 BALTIC_SM10TC 0.759
10 BALTIC_Ratio_P4TC_S6TC 0.756

Table 3.2: Top ten correlated five-day lagged variables in relation to Baltic P1A

In Figure 3.4 the price development of Baltic P1A and Baltic P2A are illustrated together.

The similar development indicates that many of the same underlying factors affect the

two prices. This is reasonable considering that P2A is a route from the Skaw-Gibraltar

range through the US Gulf to the Taiwan-Japan area, and thereby partially operating the

same region. Routes operating in parts of another route’s region, shipping the same type

of goods, should intuitively be affected by many of the same market factors.
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Figure 3.4: Development of Baltic P1A and Baltic P2A between 2012 and 2019
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3.2 Missing Values

Some variables in the data set consist of a continuous time series, i.e. a time series without

gaps. However, most variables are registered inconsistently, resulting in a total of 18%

missing values in the data set. The occurrence of missing values is visualized in Figure 3.5,

ordered by most to least occurrences of missing values, from left to right. These missing

values are handled in a systematic way, removing columns and then rows, in order to

balance the trade-off between data quality and number of observations. Our approach of

handling missing values will be explained in more detail in Section 4.1.1.

Figure 3.5: Missingness map showing variables on the x-axis, and observations on the
y-axis.



19

4 Methodology

This section focuses on different methods to solve aspects of the forecasting problem. First,

the data preparation method is presented. Afterwards, the method of cross-validation

used for model selection and assessment of performance. Later, the different benchmark

models are introduced. Last, the characteristics of the different strategies are explained.

4.1 Data Preparation

4.1.1 Handling of Missing Values

The objective of handling missing values is to enable the different methods to make use of

the data available, and at the same time manage the trade-off between data quality and

the number of observations. Handling missing observations can influence the results in

different ways depending on the type of data, how it is distributed, the objective, and the

model in use. In order to mitigate the issues of having missing values, we have applied an

intuitively sensible rule in order to remove missing values in a consistent way. A summary

of this approach is explained in Table 4.1, while the following section explains the rationale

behind it.

Step Action Columns(∆) Rows(∆)

Status before data preparation 759 1772

1 Remove columns >50% NA (-32)
2 Remove row 1-180 (>50% NA) (-181)
3 Remove columns with recent NA (-19)
4 Remove columns with NA in the middle of the data set (-5)
5 Remove columns without variation (-1)
6 Median impute columns

Final data set 702 1591

Table 4.1: Our stepwise approach of handling missing values (NA)

First, our approach is to remove columns with more than 50% missing observations.

This threshold was decided after inspecting each decile of missing value percentage, and
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counting the number of columns within each. This showed that an effective removal of

missing values would be at a threshold of 50%. Another reason for choosing 50% as a

threshold is because we consider it to be difficult to impute variables with more than half

of its values missing, and at the same time ensure a realistic representation of the reality.

This process reduced the number of columns from 759 to 727.

Thereafter, row 1 to 180 was removed because they contained more than 50% missing

values. These rows represent the oldest part of the data set, and is therefore considered

to be less relevant. Next, columns with missing values in the most recent observations

were removed. This is because these rows represent data we may not receive in the future.

A variable which always has to be imputed when receiving new data, will have limited

ability to increase the forecast accuracy of a model.

Certain variables with substantial amount of missing values in the middle of the time

series were removed without imputation. In the same way, a variable only containing the

value 0 was removed, as it cannot explain any variation.

After removing columns and rows, there were still variables containing missing values.

These variables were median imputed, which is the process of replacing missing values

with the median value of the specific variable. As it does not make sense to median

impute certain types of variables, they were assessed with basis in the type of data and its

relationship to the dependent variable. Imputation was performed in a stepwise manner

in order to maintain the order of the time series. This ensures that no future information

enter the training set through the imputed values. By using this approach, we ensure to

maintain a continuous time series, while not adding new characteristics to the data set.

4.1.2 Feature Selection

Methods for high dimensional data usually require some type of feature selection before

method implementation. Since the models used in this thesis either are univariate or have

built in feature selection, and that a large part of the thesis focuses on comparison of

methods, feature selection will not be a focus. Despite this, the variable importance will

be addressed in section 5 in order to understand which variables add predictive power to

the models.
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4.1.3 Aggregation

An important consideration to make is whether to aggregate the data set, which changes

the granularity of the data. For instance, if a prediction about next week is wanted,

both historical daily data and weekly data could be utilized. There are two main ways

of aggregating a data set. One is taking the mean of the observations in the aggregated

period, while another is summarizing the change of all the observations. The two different

methods will give different meaning to the forecasts. It is therefore important to find the

most suitable method for the specific forecast.

Aggregating the data set from daily observations to weekly or monthly can have both

positive and negative effects on the forecasts. On the one hand, aggregating will result in

less computational time, since the data set will have reduced size. In addition, aggregation

can give the models access to data which is registered with a different level of granularity.

This can help the forecast make use of data it would not have access to otherwise. On the

other hand, aggregating means that one will lose information that might be important to

make a precise forecast.

When forecasting dry bulk time charters, aggregation by taking the mean seem to be the

most suitable method, as it would both account for variation within the period, as well as

smooth out the high variability of daily values. After experimenting with aggregation, we

decided not to aggregate, as the test results were significantly worse and the number of

observations were reduced to an undesirable level.

4.2 Cross-Validation

Forecasting accuracy can only be determined by evaluating how a model performs on

new data, which has not been used for fitting the model (Hyndman and Athanasopoulos,

2018). K-fold cross validation would regularly be a go-to approach for validating machine

learning methods. However, when performing cross-validation on time series data, it

makes little sense to mix the order of the observations. In addition, standard K-fold

cross-validation will suffer from data leakage, mixing future data into the training set

(De Prado, 2018). Forecasting the future will essentially be easier with knowledge on the
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actual future, making the results unrealistically good and causing the model to overfit.

To ensure out-of-sample testing and prevent data leakage, we therefore use the time series

cross-validation approach.

Time series cross-validation, also known as walk forward validation, is one of the most

widely used forms of time series evaluation together with Akaike’s Information Criterion

(AIC) and Schwarz’s Bayesian Information Criterion (BIC). Hyndman and Athanasopoulos

(2018) suggest using AIC, corrected AIC or time series cross-validation as they will lead

to the same result when a large number of observations are used for estimation. We have

selected time series cross-validation of model performance in order to ensure comparable

results independent of the number of observations and method used.

4.2.1 Time Series Cross-Validation

Time series cross-validation involves training on all prior observations and validation on

a single future observation H steps ahead (Hyndman and Athanasopoulos, 2018). This

procedure is then repeated for all future observations. The incremental construction of

the training set is illustrated in Figure 4.1, where the blue squares make out the training

observations and the red square is the observation in which validation is performed.

The main benefit of the method, is that the tested validation error is always a future

value, thereby reducing the possibility of data leakage. The method is still not without

drawback. De Prado (2018) asserts that since the walk forward always tests the same

scenario, repeated tests such as through parameter optimization can lead to overfitting.

Another drawback is that the starting calculations are made on a small part of the data

set, and as such, many of the errors will be calculated without sufficient training data.

Training and Test Set

In order to mitigate the drawbacks of time series cross-validation, and to reduce the

computational time needed, we have chosen to split the data into an initial training set

from observation t=1 to t=1200. The walk-forward is then ran throughout the remaining

data, validating on all future observations. This should make the training set sufficiently

large for all observations, reducing the possible drawback of walk-forward. The downside is
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that the overall amount of test data is reduced significantly, making our test estimates less

robust. Last, the evaluation metric for the errors is calculated in order to find which model,

and with which parameters, that on average results in the lowest forecast error. Figure

4.1 and Equation 4.1 gives a visual and mathematical illustration of our cross-validation

set up, respectively.

Figure 4.1: Example of cross-validation with validation at H = t+ 5

CV(t) =
1

T − t

T∑
t=1200

(y − ŷ)t+H (4.1)

4.3 Method Evaluation

To evaluate how the models perform, several metrics are available. The models will be

evaluated on their forecasting performance, not on their ability to explain the relationship

between variables.

4.3.1 Evaluation Metric

Root Mean Square Error

The root mean square error (RMSE) is used as the main evaluation metric in this thesis.

For every method, each prediction error for all timesteps is stored. The errors are then

squared to make them absolute, since errors in either direction are of same importance.

By squaring the errors, RMSE also incorporates a measure of risk, as the value increases

exponentially with the error, thereby punishing high variance. Last, the errors are averaged

to get the Mean Squared Error (MSE), and then taking the square root to get RMSE.

The objective is to find the method and model which corresponds to the lowest RMSE.
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The RMSE is a common evaluation metric used for a wide range of problems (Hastie

et al., 2013).

Mean Absolute Error

The mean absolute error (MAE) is used as a secondary evaluation metric, after RMSE.

MAE works by taking the mean of the absolute value of the error. This metric also

measures errors in either direction similar to RMSE, but does not punish high variance as

much. In other words, MAE is different from RMSE in that it punishes large errors less

(Hastie et al., 2013). The MAE is however easier to interpret as it is directly transferable

to the unit of the dependent variable.

Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) calculates the absolute error relative to the

actual value. This makes it easy to interpret the magnitude of the errors. Another benefit

of using MAPE is that it is unit-free and can therefore be used across data sets (Hyndman

and Athanasopoulos, 2018). Although not used for model selection, we list the MAPE

because of its interpretability.

Hit Rate

As explained in Section 2 the implications of forecasting the wrong direction of the price

is considerable when taking positions in the dry bulk market. It is therefore interesting to

see how the method has performed in terms of forecasting the correct direction compared

to today’s price. As a result, the hit rate (the percentage of correctly forecasted directions)

is included in Table 5.1. As mentioned earlier, the hit rate could have been evaluated as a

classification problem where the objective is to predict whether the price will go up or

down. The importance of direction is addressed, but will not be the main focus of the

analysis.
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Trading Strategy

Another method of measuring performance is by calculating the returns of a trading

strategy using the forecasts. This would be an easily interpretable method, as the net

profit would be a relatable metric. There are two reasons we are not using this approach.

The main reason is that we do not have available data to calculate the actual profits

of many trading strategies. The spot price can be either a revenue or cost component

depending on which side of the trade you are on. In both cases, additional information

is needed to get a trustworthy estimate of profits. An arbitrage strategy using FFA

prices and spot prices could be constructed, but this requires more exploration of the

technical financial details of these markets than we deem necessary for this thesis. Another

important reason is that compared to RMSE, a net profit metric would not be affected by

variability and therefore risk. Because of these reasons, a trading strategy metric is not

utilized.

4.4 Benchmark Models

In order to evaluate and compare the performance of more advanced methods, we

have chosen a group of benchmark models differing in complexity. By having suitable

benchmarks, it is easier to evaluate the actual gain of using more advanced methods.

The gain is evaluated against its complexity, interpretation, and computational feasibility.

The benchmarks also function as introductions to some key concepts used in the more

advanced models. Next, we introduce the Random Walk model, Moving Average, and

ARIMA as benchmark models.

4.4.1 Random Walk Model

A common benchmark in forecasting is to use a random walk model, also called the

naïve method. The random walk model will predict the last observed value for any future

horizon, as shown in Equation 4.2. Random walk models are often used if the data is

non-stationary, which is often the case in financial data such as stock prices. The rationale

behind the model is that the underlying time series is a random walk, i.e. that all future
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movement is unpredictable but equally likely. This makes the expected value of a future

observation the same as the last observed, and if true this model should perform well

(Hyndman and Athanasopoulos, 2018).

ŷt+H = yt (4.2)

4.4.2 Moving Average Model

Another univariate benchmark is to calculate the moving average in a range of prior

observations. On a data set with mean reverting characteristics, a moving average is

intuitively a good forecast, depending on the frequency of the mean reversion. The moving

average is not always suitable, e.g. in a time series with a constant growth. When it

comes to the hit rate, it is intuitive that such a model would be correct about 50% for a

normal distributed time series. For this benchmark, the period to average over needs to

be selected. Our selection is somewhat arbitrary, with a 100-day period, made mainly to

demonstrate the concept of a moving average model.

ŷt+H =
1

100

t∑
i=t−100

yi (4.3)

4.4.3 The ARIMA Framework

The Autoregressive Integrated Moving Average (ARIMA) model holds the characteristics

of both the moving average and random walk model. Deriving from the Box–Jenkins

methodology, the univariate ARIMA model is commonly used in time series analysis.

ARIMA consists of three components: Autoregressive (AR), Integrated (I), and Moving

average (MA). This entails that ARIMA accounts for effects of prior values of the dependent

variable, as well as the element of differencing. As ARIMA is a simple, but yet a powerful

forecasting tool, the model is well suited as a benchmark model.

y′t = c+ φ1y
′
t + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt (4.4)
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Equation 4.4 shows the integrated, autoregressive and moving average term of the

ARIMA(p, d, q) model, for different values of p (order of the autoregressive term),

d (degree of differencing) and q (order of the moving average term) (Hyndman and

Athanasopoulos, 2018).

Model Selection

The optimal ARIMA model is selected through a combination of visual inspection of the

ACF and PACF plots described in Section 3 and cross-validation of different p, d, and q

models.

First, the visual determination of p and q is performed by identifying lags which corresponds

to the positive significant spikes in the plot, before it cuts off or turns negative. The last

lag of significant spikes in the partial autocorrelation function plot is used to identify the

number of AR terms included in the model. In the same way, the number of MA terms

is identified by looking at significant lags in the autocorrelation plot. Last, a range of

values for p, d and q, in reasonable proximity to the visual determination, is tested with

cross-validation in order to find the best performing ARIMA model.

4.5 Machine Learning Framework

4.5.1 Tree-based Methods

A simple method that can be used both for regression and classification is decision

trees. The method works by splitting the predictor space into regions, and attributing a

prediction to each region. Depending on the use case, the method can be called regression

trees or classification trees as well. Decision trees are highly interpretable and intuitive

to understand, and are named for the visual rendition of them which resembles a tree

structure, as seen in Figure 4.2 (James et al., 2013).
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Figure 4.2: Illustration of a simple regression tree. Source: (James et al., 2013)

Standard decision trees often perform worse compared to other methods, and is therefore

rarely used if prediction accuracy is the goal. Still, the method can be used as a base for

three common models: Bagging, Boosting and Random Forest. All of these are ensemble

models, which instead of relying on a single decision tree create several slightly varying

models, and use the combination of them to output a final predicted value. In a regression

setting, this means averaging the predictions of the models. In a classification setting this

means taking a majority vote of which class the models predicted. Ensembles of decision

trees can create highly accurate models, although at the cost of interpretability (James

et al., 2013).

The main difference between the three variants, is how the additive models are fitted.

Bagging uses random sampling with replacement, also known as bootstrap sampling. The

observations are sampled when each model is fit, to reduce variance of the models and

improve ensemble accuracy. Random forest instead samples the predictors, and uses a

random subset of predictors for each fit, decorrelating the models and improving ensemble

performance. In our thesis, the boosting method is used extensively and therefore requires

a more in-depth description in the sections below (James et al., 2013).

4.5.2 Boosted Trees

Boosting is a sequential implementation of prediction models, which fits multiple models

on previous models’ residuals, to produce the final ensemble model for prediction. The
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fitting sequence initially fits a selected model that minimizes loss, for instance a regression

tree. The residuals of this fit, is then used to fit a new model fm that best explains

the remaining variance. To prevent overfitting, the models could also be shrunk by a

shrinkage parameter η. The process is described simplified in the algorithm below. Usage

of boosting together with tree-based models is often called Boosted Trees (James et al.,

2013; Hastie et al., 2013).

Boosting process for Regression Trees

Set f̂(x) = 0 and residuals ri = yi for each observation i in training set.

for all m = 1, 2, ....M do

Fit model f̂m(x) to data (X, r)

Update model f̂(x)← f̂(x) + ηf̂m(x)

Update residuals ri ← ri − ηf̂m(x, r)

end for

This process is repeated a desired M times. Giving a final model

f̂(x) =
M∑

m=1

f̂m(x)

XGboost

There are many ways to implement Boosted Trees, and they have some distinct differences.

XGBoost has proven to be a highly effective method in many machine learning cases,

demonstrated by the amount of Kaggle competitions won by using this algorithm.2 A

2016 NTNU master thesis researched why the algorithm performs so well, concluding

that tree boosting is highly adaptable by using differing levels of flexibility for different

areas of feature space (Nielsen, 2016). This implies that the model takes into account the

bias-variance trade-off, fitting simpler representations where the relationships between

variables are simpler, but still being able to fit complex interactions and functions where

they are occurring. This also weighs features, providing an implicit feature selection in

the algorithm (Nielsen, 2016).

To highlight the main differences of XGBoost, we compare it to the common

2Kaggle is an online competition platform for Data Science, and XGBoost is used extensively by
top-performing teams (Chen and Guestrin, 2016).
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implementation of ’Gradient Boosted Machine’ suggested by Friedman (2001), used

in the R gbm package. The original author of XGBoost, Tianqi Chen, answers this

question himself by stating that:

"Both xgboost and gbm follows the principle of gradient boosting. There are

however, the difference in modeling details. Specifically, xgboost used a more

regularized model formalization to control over-fitting, which gives it better

performance." (Chen, 2018).

This means that the difference lies in how the model itself is fit, the general boosting

framework of algorithm 4.5.2 is still used. gbm offers regularization through the shrinkage

parameter or learning rate η, the depth of each tree which decides how many variables each

tree will split on growing depth-wise, and a bagging fraction which combines bagging and

boosting. XGBoost adds many parameters to this list, but some of the most important

ones are: The L1 regularization term alpha, which adds a shrinkage parameter similar

to lasso regression, punishing the size of the variable weights. The L2 regularization

term lambda, similar to ridge regression which punishes the squared size of variables

weights. The gamma is the minimum loss required for a tree to split. Last, the column

subsampling fraction enables the fit to behave more similar to a random forest regression,

where a specific share of the predictors are selected randomly for each iteration (Chen

and Guestrin, 2016; Nielsen, 2016).

By utilizing column sampling, the algorithm will select more varying predictors to explain

the dependent variables, aiding the implicit feature selection. In our case, with a feature

rich data set, having an algorithm that automatically selects and weighs features is highly

practical. The simplicity of implementing XGBoost is also beneficial to test out a controlled

experiment on creating autoregressive implementations of regression models. XGBoost

is also sparsity aware, which means that it can work around missing values in the data

set. The algorithm learns which direction that minimizes loss for each parameter, which

allows for further growth of the trees even though a missing value has been encountered.

Since we remove the missing values beforehand, this feature is not used, but it can be

very practical if a quick experimental test run is needed (Chen and Guestrin, 2016).
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Parameter Optimization

The mentioned regularization parameters can dramatically change the performance of the

model, and must be tuned and selected to perform optimally. A thorough way of doing

this is through using a parameter grid, where for n combinations of p parameters the

n ∗ p possible models are tested. Naturally, this takes a long time if the grids are large. A

common approach is tuning a few parameters at a time beginning at the parameters that

should have the largest impact on the model. We follow this approach, by at first tuning

the number of boosting rounds, learning rate and depth of the models. The number of

boosting iterations and the learning rate have a high degree of interaction, and therefore

should be trained jointly (Nielsen, 2016). After these main variables are predicted, row-

wise and column-wise sampling parameters are tested, as well as regularization parameters

lambda (L2 regularization) and gamma (split regularization) (XGBoost Documentation,

2019).

4.6 Strategies for Multi-Step Time Series Forecasting

This section introduces the four strategies for time series forecasting studied in this thesis.

With the exception of the Direct strategy, all strategies contain different activities between

t and t + H which have the intention of increasing the forecasting accuracy of ŷt+H ,

illustrated by the yellow areas in Figure 4.3.

Figure 4.3: Example of model expansion in step 1-4, on a five-day horizon

Direct Approach

As mentioned in Section 2, there are several ways of expanding a Boosted Trees model to

have autoregressive components. In our Direct approach, this is achieved to some degree

by creating new variables that use the previous days prices as predictors. Specifically,
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new predictor columns are created, with yt−1, yt−2...yt−x. A method of expanding this

would also be creating similar lagged variables of several of the predictors, which would

especially be relevant if the model has a few specific predictors with large predictive power.

If many predictors are present, this method would quickly increase the width of the data

set. In our implementation we have limited it to only the price with a four timestep lag,

making our model for a given horizon H the equation below:

ŷt+H = f(yt....yt−4, xt) + ε (4.5)

Because of our choice to only predict yt+5 and yt+22, we are only required to fit two models.

If a complete forecast of the horizon h = 1, 2, ..., H is wanted, the Direct method requires

H models to be fitted. Since the H models should ideally be individually tuned, this

approach becomes very computationally intensive (Taieb et al., 2012a). In addition, the

model for each consecutive day f1, f2, ...fH is estimated independently of each other. This

opens up the possibility that each horizon ŷt+h can be estimated in with highly differing

coefficients, creating high variance between predictions of consecutive days (Taieb et al.,

2012b).

Recursive Approach

If H forecasts are required, a faster solution would be to only fit one model for ŷt+1 and

use the predicted values of this model to predict each t+ 1, ...t+H model iteratively. The

same lagged variables from the Direct approach are still used, but are now updated with

the predictions from the previous time step as it walks forward.

ŷt+1 = f(yt....yt−4, xt) + ε (4.6)

ŷt+2 = f(ŷt+1....yt−3, xt) + ε (4.7)

...

yt+5 = f(ŷt+4, .., ŷt+1, yt, xt) + ε (4.8)



4.6 Strategies for Multi-Step Time Series Forecasting 33

Compared to the Direct strategy, the Recursive approach will be computationally easy,

as only one model is fitted. The largest potential issue with using a recursive strategy,

is that for each forward step the error of the predictions will accumulate and become

more biased for each iteration (Taieb et al., 2012a,b). This is intuitive, as consecutive

predictions use an estimate of ŷt−1 as a predictor.

A good explanation of the trade-off between the Direct and Recursive approach can be

found in Marcellino et al. (2006). Stating that

"The iterated method produces more efficient parameter estimates than the

Direct method, but it is prone to bias if the one-step-ahead model is misspecified.

(...) Because it seems implausible that typically low-order autoregressive models

are correctly specified, in the sense of estimating the best linear predictor,

the theoretical literature tends to conclude that the robustness of the Direct

forecast to model misspecification makes it a more attractive procedure than

the bias-prone iterated forecast." (Marcellino et al., 2006)

This implies that the Direct strategy should give better results, but requires increased

computational time as stated by Taieb et al. (2012a).

More recently, several researchers are suggesting that combinations of these approaches

can give improved forecasts, suggesting some different variations (Taieb et al., 2012a,b)

which we will address below.

Rectified approach

The working paper by Taieb et al. (2012b) suggests training a Recursive model and an

additional rectifier. The rectifier is a flexible model fit on the errors of the base model

ε̂ = frec(ŷbase). The reasoning behind this implementation is that if the base model has a

bias, such that the mean of the residuals of this model is different from 0, the rectifier

should learn this bias and be able to correct it.

Taieb et al. (2012b) suggests using a linear model as a base, with low variance but high

bias, and a flexible KNN model as the rectifier. If these cooperate optimally, they should

create an ideal compromise of the bias-variance trade-off.
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ŷbaset+1 = fbase(yt...yt−4) + ε (4.9)

ŷrectified = ŷbase + frec(ŷbase) (4.10)

In our implementation we test out this method with linear models as the base, and

XGBoost models as the rectifier.

Direct Recursive (DirRec)

Another variant suggested by Sorjamaa and Lendasse (2006), is a strategy called DirRec.

It is similar to the Direct model, in that you construct H models to predict. The element

from the Recursive method is that each model fh is a function of the predictions from

previous models fh−1...ft+1, as well as the variables yt, xt. An important aspect of the

DirRec strategy is that the predictions are added, not replaced, in the subsequent model.

The DirRec model ft+2 would be equivalent to a Direct fit with an extra predictor ŷt+1,

the model still accumulates errors from previous forecasts, but keeps all the data from a

Direct fit (Sorjamaa and Lendasse, 2006). This is repeated until the desired forecast ŷt+H ,

as described in Equation 4.11 below.

ŷt+1 = f(yt...yt−4, xt) + ε (4.11)

ŷt+2 = f(ŷt+1, yt...yt−4, xt) + ε (4.12)

...

yt+5 = f(ŷt+1...ŷt+4, yt...yt−4, xt) + ε (4.13)

The trade-off in this strategy is that the iterative use of former predictions should

accumulate error, but accurate predictions of a former timestep can assist the model in

predicting the final horizon. To further elaborate this point, we can first compare to the

recursive strategy. The accumulated error should always be less than recursive, because

each DirRec t+h model still keeps all the original yt, xt variables, removing the possibility

of predictive power being removed from the model (Sorjamaa and Lendasse, 2006). In
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addition, given that some explanatory variables have predictive power at different horizons,

the t+ h model should be better at predicting t+ h than an iterated t+ 1 model, thereby

having less error per step.

The reason the model can also outperform Direct, is because the XGBoost algorithm

selects variables based on their loss reduction, which if functioning optimally should only

select the a former ŷt+h as a feature if it adds predictive power. If the model does this

efficiently, it will act as an additive model, which together increases performance. One

limitation for this method in our experiment, is that DirRec always requires H models,

even when you only are interested in only the ŷH predictions. The computational time is

therefore approximately H times the Direct model, if only the horizon H is of interest.

4.7 Tools

The models in this thesis are mostly constructed using the R programming language. All

data manipulation is done in R. The libraries used are mostly those part of the tidyverse

environment, as well as model specific libraries such as XGBoost. To mitigate the

computational limitations of ordinary desktop computers, virtual machines on Microsoft

Azure was utilized to provide on-demand capacity.
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5 Results

5.1 Forecast Results

The models were able to forecast prices with a high degree of accuracy on both horizons.

This indicates that the data set compiled by Klaveness contains variables well suited for

explaining future development of the spot price. The hit rates are in general high, and the

accuracy of the best models precise enough that a trading strategy likely could be utilized.

As expected, the predictions were better on the weekly horizon than the monthly, but

the difference in accuracy was surprisingly low. In our analysis we will comment on the

performance on each model, and try to diagnose why each performed the way they did.

Horizon Method RMSE MAE Hit Rate MAPE

Weekly (5)

MA(100) 2312 1866 53% 16.0%
Random Walk 1470 1173 - 9.9%

ARIMA 1303 1023 70% 8.6%

Direct 729 570 85% 4.8%
Recursive 1350 1058 67% 9.0%

Rectify 1883 1445 64% 12.1%
DirRec 697 548 86% 4.6%

Monthly (22)

MA(100) 2580 2092 56% 18.0%
Random Walk 2323 1818 - 15.3%
ARIMA (1,0,2) 2323 1825 54% 15.0%

Direct 817 616 86% 5.1%
Recursive 2461 1894 58% 15.8%

Rectify 2271 1735 66% 14.6%
DirRec 767 583 87% 4.8%

Table 5.1: Main results, with time series cross-validation starting at observation 1200
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5.1.1 Prediction Performance across Horizons

In Figure 5.1 we can see that the increase in residuals of the different methods starts

flattening after a while, indicating that there is more predictive power in some variables

for a long horizon rather than the earlier. An important factor here, is that when tuning

the models the hyperparameters which minimize loss at H = 22 were chosen for all models.

The DirRec and Direct model should ideally be tuned for each iteration, but this would

require such high amounts of computing power and/or time that it is not feasible for our

research. The Recursive model however, is tuned both for a weekly and monthly horizon,

resulting in similar performance to ARIMA.
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Figure 5.1: RMSE of our main models for different horizons
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5.2 Benchmark Models

All results should be seen in comparison to the benchmark models, these are all relatively

simple and should be thought of as the bare minimum of performance for a forecasting

model. Our analysis will emphasize on the best performing benchmark, ARIMA.

5.2.1 Moving Average

As mentioned in Section 4 the moving average model should perform well on mean

reverting data sets. In our case, the 100-day moving average model seems to not be

flexible enough to predict well, shown in Figure 5.2. This could be because the spot price

likely is not mean reverting on a 100-day horizon.
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Figure 5.2: Forecast using the 100-day moving average model on a 22 day horizon
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5.2.2 Random Walk

The random walk model performs relatively well, and serves as a good benchmark model,

with performance better than moving average and almost as good as the ARIMA model.

Figure 5.3 displays the behavior of the random walk model. We see that the model

forecasts the exact value of Baltic P1A, with a 22 day delay.
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Figure 5.3: Forecast using the Random walk model on a 22 day horizon
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5.2.3 ARIMA

Our best empirically tested ARIMA model appears to be a (1,0,3) model for the 5-day

horizon and a (1,0,2) model for the 22-day horizon. These models support the findings

of Koekebakker et al. (2006), but contradicts our interpretation of the plots in Figure

3.3 and the residual ACF and PACF plots of the selected ARIMA model in Appendix

A2. None of our best performing models contain an integrated term (d), indicating that

differencing does not increase the forecasting accuracy. The effect of differencing is evident

when comparing the performance of two different ARIMA models with and without an

integrated term, seen in Figure 5.4.
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Figure 5.4: Performance comparison between ARIMA(1,0,2) and ARIMA(1,1,2) on a
22 day horizon

In Table 5.1 we see that ARIMA performs very close to the random walk model. An

obvious reason is that ARIMA holds much of the same characteristics as the random walk

method through the autoregressive term (AR=1). This is apparent in Figure 5.3 and

Figure 5.5. This, in addition to the inclusion of moving average term of the prior three

days (MA=2), makes ARIMA the best performing benchmark model.
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Figure 5.5: Forecast using ARIMA(1,0,2) on a 22 day horizon

5.3 Strategy Evaluation

The Direct strategy proved to be very efficient, with the overall best results on a weekly

horizon and very good results on the monthly, outperforming all benchmarks considerably.

The Recursive model performs better than the Random Walk model in a weekly horizon,

but not better than the ARIMA model. In a monthly horizon it does not perform better

than any benchmark.
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Figure 5.6: Forecast using the Direct model on a 22 day horizon
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Figure 5.7: Forecast using the Recursive model on a 22 day horizon

Both the Direct and Recursive strategy have comparable computational time, but have a

very differing performance. The Recursive strategy performs relatively worse on a longer

horizon than a short, in line with Marcellino et al. (2006) that the error of a misspecified

model accumulates as the predictions walk forward.
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By investigating the Direct models at different horizons, we see that the selected variables

slightly differ each time. Our data set is constructed to forecast at a monthly horizon,

which is of high interest to shipping companies. Still, predictions are better at a short

term than in the long term, but some results point towards many of the features getting

increased predictive power on a longer horizon. This will be investigated further in

Section 6.

The ideal parameters of the Direct strategy are shown in Table 5.2. The best performing

tree depth is quite high, as well as a high degree of column sampling. This can be a

consequence of the high number of features, and possibly the presence of interaction

effects. Lambda is also present, indicating that the model had a benefit from adding a

regularization term.

Hyperparameter Value

Boosting iterations 600
Learning Rate 0.05

Tree Depth 12
Column Sampling 0.25

Row Sampling 1
Lambda 1
Gamma 0

Table 5.2: Hyperparameters for XGBoost model using Direct method

5.3.1 DirRec Strategy

As mentioned in Section 4, the DirRec strategy should perform comparable to the Direct.

This is confirmed by our results, as they have very similar scores on our performance

metrics. Studying this further, we look at the plots of RMSE at each timestep for DirRec

and Direct. In figure 5.8, as well as a density plot in Appendix A4, we can see that the

two strategies have similar performance across all horizons. A likely explanation for this

is that the feature selection in XGBoost did not choose the previous ŷh as predictors,

thereby neither accumulating errors nor increasing performance. Still, the model proves

to be just as good as the Direct strategy, although considerably more computationally

heavy if only one horizon H is needed. In fact, the Direct strategy is approximately 18

times faster than the DirRec strategy, on a 22-day horizon in our empirical tests.
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Figure 5.8: RMSE of Direct and DirRec models for each horizon

Parameter-wise, the best performing DirRec model used the same values as the Direct.

While this is not necessarily true if more parameters had been tested, it is also no surprise

considering that the models are quite similar and can be identical depending on the feature

selection.
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Figure 5.9: Forecasted values using the DirRec model on a 22-day horizon
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5.3.2 Rectify Strategy

Finding the best performing implementation of the Rectify strategy proved difficult. We

found the intuition from (Taieb et al., 2012b), that a linear model with a high-variance

rectifier could produce good results to be somewhat correct. Our best performing base

model was therefore an ARIMA(1,0,8), which is considerably smoother than the previously

used ARIMA(1,0,2) model. Figure 5.10 shows the rectified predictions, where high variance

in the predictions is apparent. If flexible models such as XGBoost were used on both,

the models would seem to work against each other rather than together, resulting in

inaccurate predictions, and even more variance.
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Figure 5.10: Forecasted values using the Rectify model on a 22-day horizon

Repeating the rationale behind this strategy, the linear base model should have low

variance and a constant high bias. The flexible rectifier should then correct this by having

high variance and low bias, approximating the function of the bias given the predicted

values. To research how plausible this scenario is, we can look at the residuals from the

underlying ARIMA(1,0,8) model In Figure 5.11. A high bias could manifest as a pattern

in the residuals, which the rectifier can use as training data to correct the bias. We see

that in the residuals of the base model, there is a downward sloping trend, illustrated by

the blue linear regression line. If the rectifier is successful, the final residuals of the forecast
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should be irreducible error, i.e. randomly distributed around zero. The red regression line

illustrates the rectified predictions, clearly with a lower bias. The model becomes a very

clear illustration of the bias-variance trade off, where the decreased bias of the rectifier

comes with a large increase in variance.
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Figure 5.11: Plot of residuals of the base model (blue) and the rectifier (red). A linear
regression line is provided for each to illustrate the change in bias by adding the rectifier.

By studying individual observations, we see that the rectifier cannot consistently improve

predictions, as many are rectified to increased error, but extreme values at the lower and

higher range of predictions are often correctly rectified. Another way of illustrating the

rectifier effect, is through a density plot of the residuals shown in Appendix A3.
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6 Discussion

6.1 Performance of the Direct and DirRec Strategies

Since the actual fitted models of the two strategies became very similar in our main

predictions, we construct some experiments to see if this always is true. Will the Direct

and DirRec strategies always perform equally?

Our data set has a high number of features, and mostly time series, with two main

assumptions that have been made about the features: (1) They can affect the future spot

price, (2) the effect is on a specific horizon (H).

The second is a major assumption, as it cannot possibly be true for all variables of our

data set. A simple comparison could be made with two variables, e.g. FFA prices for

the next month and the ECB interest rate. Both have the possibility of affecting spot

prices, but should intuitively have an effect at a completely different horizon. Since each

model that predicts t+H directly, only have access to variables yt, xt, they cannot utilize

the variables with a lag unequal to H. They can get some degree of predictive power,

if these variables are persistent, but the optimal lag relationship between the variables

would require the respective xt to be lagged to the ideal time frame.

The former Direct predictions available to the last DirRec model, represent H − 1 models

trained to predict their own horizon. As long as these models choose different variables xt

when training the model, they can become proxies for the variables with a specific lag,

giving increased predictive power to the final model, if selected by the algorithm.

By calculating the relative importance of each variable in the model, we study some of the

selected variables by the DirRec and Direct models at different timesteps. From H = 10

and forward, the models start using a future price of a common dry bulk commodity as

a predictor, indicating that the stabilization in RMSE in Figure 5.1 could be the effect

of this feature’s predictive power on H > 10. Still, the former predictions of DirRec are

not used as predictors in ŷH and therefore the models will behave similarly, and neither

benefit nor be punished from using previous predictions.
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6.2 Control Experiments

6.2.1 Univariate Comparison

To research whether this behavior is consistent, we conduct a control experiment by

implementing a univariate version of Direct and DirRec, using only the Baltic P1A

variable. The DirRec strategy can still use the predictions of previous timesteps. This

variant equals the setup that Sorjamaa and Lendasse (2006) used for their analysis. The

experiment would remove the effects of xt, and isolate the possible benefit or downside

from the DirRec compared to Direct strategy.
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Figure 6.1: Comparison of RMSE for each horizon of ARIMA and univariate models of
the DirRec and Direct strategy.

We can see in Figure 6.1 that the DirRec outperforms the Direct strategy when all other

predictors are removed. This suggests that the value of having t+ 1....t+H − 1 forecasts

as predictors increase prediction performance. XGBoost can be a very flexible model, and

by using the intuition that a model trained for e.g. t+ 15 outperforms an equal model

trained for t+ 22 on a t+ 15 horizon, it follows that the t+ 22 model can be improved

by having the former prediction available as a predictor. Sorjamaa and Lendasse (2006),

Taieb et al. (2012a), and Bontempi et al. (2013) all refer to this model as DirRec because
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of its similarities with both the Direct and Recursive strategy. If the underlying fitting

method is flexible, a different way of describing it would be an additive model, where the

effects of each previous model is taken into account to optimize t+H accuracy.

On a short horizon, ARIMA has lower RMSE than both XGBoost models. As the previous

predictions are added to the DirRec model, they deviate, while ARIMA and Direct show

similar performance for longer horizons.

6.2.2 Effect of Adding Variables

To isolate the effects of the specific variables xt, we run another control experiment by

training a DirRec model which adds only the noted xt that the model selected in the later

timesteps of the full model. This could isolate the effect of this single commodity, and be

compared to the univariate DirRec.
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Figure 6.2: Change in RMSE of the DirRec model by adding a few selected variables

As we can see in Figure 6.2 the added variables improve predictions in the long term,

indicating a lag relationship between the variables. This effect also increases with more

added variables containing information about the same commodity.

In our original model containing all available features, there was no noticeable difference
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between Direct and DirRec. As mentioned, this could be because the XGBoost algorithm

always selected the xt variables instead of using former predictions ŷh. This would indicate

that the possible benefit of using DirRec is overshadowed by the addition of better

explanatory variables. To investigate this, we use the four previously used commodity

variables on both a Direct and DirRec model, and compare them in Figure 6.3 below.
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Figure 6.3: Comparison in RMSE per horizon of Direct and DirRec with one and four
variables

Even though the DirRec strategy consistently outperforms Direct, the difference between

them is gradually reduced as more variables are added. This supports our hypothesis, and

suggests that there is some potential in the DirRec strategy which we were not able to

fully utilize in our main model.

6.2.3 Handling of Missing Values

Instead of limiting the data set and imputing values, we could have left the missing values

handling to the XGBoost algorithm itself. The main issue with this would be the difficulty

of testing out other types of models on the same data set, as many require no missing

values in order to be fitted. We also performed a test of our models using the raw data

set. Even though there was a slight decrease in performance, the difference was small.

If speed of implementation is a large concern, using XGBoost without handling missing

values would have worked well in our case.
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6.3 Robustness and Critique

Our results indicate that we can predict future spot prices to a large extent. This would

let us deduce that the data set accurately describes future developments of the spot price.

An important indicator for this statement is the varying selection of features, where in a

short horizon the Baltic prices is used as predictors, while commodity-related variables

are used on a longer horizon. These results coincide with the intuition that movements in

commodity markets affect dry bulk shipping, but not as instantaneous as movements of

related markets.

Looking at the forecast values, such as in Figure 5.9, we can see that the models predict

with an extraordinary accuracy. Despite the whole plotted forecast being at some point

a held-out test observation, we cannot exclude the possibility that the data has been

overfit. This is one of the more challenging aspects of a prediction problem like ours. As

mentioned in Section 4.2.1, the cross-validation approach we have used is good but not

perfect. Once a high degree of parameter tuning is done, there is little one can do other

than gather new data to further validate the results. In an operational setting, the daily

retrieval of new observations would over time give a more precise measure of the true test

error.

In addition, a real-life implementation would meet some distinct challenges. Every day,

events that simply cannot be predicted, occur. There is no data set which in practice could

capture all information required to predict perfectly, as this information is acted upon by

humans in the final step. That being said, predictive power is definitely achievable, and

can be used to develop methodical hypotheses as well as for taking calculated risks in the

market. There is considerable value in reducing risk, but participating in a market will

always carry a potential downside.

6.3.1 Lack of Feature Selection

One could argue that feature selection should have been performed despite the built-in

abilities available in XGBoost. However, in order to evaluate the performance of the

complete method, without the risk of evaluating the feature reduction methods, we have
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chosen not to perform any feature reduction. We therefore heavily rely on the assumption

that the data set by Klaveness in large part are variables which can affect the dry bulk

market. If implementing the methods described in this thesis, we recommend thorough

feature analysis to avoid spurious relationships.

6.3.2 Limitations of Parameter Tuning

Although a substantial amount of time has been spent tuning hyperparameters, the process

does not cover all possible combinations of parameters. The truly optimal parameters

are likely not found by our approach, and the chosen parameters should be regarded as

an estimate. Some of the parameters may also have negligible impact on the final model,

and therefore end up with arbitrary values as the chosen parameter.

6.3.3 Which Method is Preferred When Forecasting the P1A

Price?

Using the DirRec strategy gives the best results according to our tests, but it is considerably

more computationally heavy than the Direct method. Likely, the DirRec strategy can be

used with higher efficiency if careful feature selection is implemented. This being said, it

is important to notice that the computational time is significantly reduced when the best

performing model is used on a specific forecast, rather than being run through the whole

cross-validation process.

6.3.4 Starting Time Series Cross-Validation at t=1200

XGBoost does not necessarily require 1200 observations to be fit. The decision to start at

1200 was a practical choice to reduce computation time considerably. The main argument

for this decision is that since markets can change greatly over time, the performance

several years ago is of less relevance than the most recent years.

To control the robustness of our models, we also ran the best performing models on an

increased test set, by running from t = 800 and forward. The results did not change

dramatically, and can be seen in Appendix A1. Even though this increases the trust in
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our results slightly, it is only a marginal improvement. To further substantiate our results

we use a hold-out test set.

6.3.5 Hold-Out Test Set

As our original data set was from February 2019, we acquired an updated version towards

the end of writing this thesis. This served as a hold-out test set, where we could get

a test estimate with a low possibility of overfitting. The updated data set added 103

observations, shown in Figure 6.4 below.
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Figure 6.4: Baltic P1A with added test observations

The testing period should give an unbiased test error, but is limited by its small size. As

previously stated, random events can affect the results dramatically. Notably, our test

period contains the mentioned Vale Dam accident in Brazil, contributing to a sharp decline

in prices. The results can be viewed in Table 6.1 below. The models and benchmarks

performed significantly worse in this period, indicating a less predictable time period. Still,

compared to the benchmarks, the models performed consistently with previous results.

The Direct and DirRec models continues to have the best performance, with comparable

results. A particular detail is the remarkably high hit rates, likely due to the particular

movement of the spot price in the short period of the test set. A larger test set would be
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preferable, but the additional observations still provide considerable confirmation of our

findings.

Horizon Method RMSE MAE Hit Rate MAPE

Weekly (5)

MA(100) 6150 5012 48% 146.8%
Random Walk 1515 1190 - 22.2%
ARIMA (1,0,3) 1233 962 79% 17.9%

Direct 814 646 84% 11,6%
Recursive 1086 876 70% 15.9%

Rectify 1434 1011 69% 16.9%
DirRec 768 619 88% 11,4%

Monthly (22)

MA(100) 7110 5938 50% 171.9%
Random Walk 5358 4794 - 1.1%
ARIMA (1,0,2) 4876 4267 93% 102.7%

Direct 1436 1161 99% 27.6%
Recursive 5088 4451 73% 104.3%

Rectify 3742 2416 86% 45.4%
DirRec 1452 1158 99% 28.6%

Table 6.1: Results table on hold-out test set

The results across horizons were very similar, shown in Figure 6.5. ARIMA and Recursive

still has comparable results and DirRec behaves the same as Direct. A notable change is

that the Rectify model performs better compared to the previous results, but still not

competing with Direct and DirRec. In Figure 6.6 the forecast values of the period are

shown.
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Figure 6.6: Forecast using the DirRec model on test set

Last, the behavior of the univariate models is tested. As shown in Figure 6.7, the results

are consistent with our previous discoveries, as the DirRec strategy still outperforms

ARIMA and Direct. This further strengthens the possibility that DirRec has potential to

consistently outperform Direct.
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6.4 Further Research

This thesis focuses on forecasting prices in the Atlantic area through the Baltic P1A price.

This opens for future studies to look into whether similar models and type of data can

be applied to dry bulk prices in other geographical regions. In this context, questions

one may want to answer is whether prices in different regions demands specific data, or

whether it is possible to make a generic set of data which can be used to provide sufficient

predictions in all regions. Different regions may have specific factors affecting the price,

but are there predictors which can work on all? This thesis can hopefully make the

foundation for future predictions of other prices in the dry bulk shipping market.
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7 Conclusion

According to our results, the Direct and DirRec strategy greatly outperform our benchmark

models when predicting dry bulk spot prices. The drawback of DirRec is a considerable

increase in computational time.

Our most interesting discovery, is that our experiments on feature sparse data indicate

that there could be some added predictive power by using the DirRec strategy. In the

univariate model comparison, the DirRec strategy performed significantly better than

both ARIMA and Direct, but the difference in performance was diminishing as more

explanatory variables were added to Direct and DirRec. Our supposition is that the

individual prediction models for each timestep perform better at their specified horizon,

enabling an additive model to perform better at the final forecast horizon compared to a

direct prediction.
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Appendix

A1 Results Table with Predictions Starting at 800

Horizon Method RMSE MAE Hit Rate MAPE Comp.Time

Weekly (5)

MA(100) 2724 2035 52% 27.3% 20 seconds
Random Walk 1484 1086 - 12.1% -

ARIMA 1268 918 72% 10.1% 5.1 minutes

Direct 664 495 84% 5.7% 12.4 minutes
Recursive 1309 943 66% 10.8% 24.9 minutes

Rectify 1839 1300 64% 13.6% 20.5 minutes
DirRec 663 486 87% 5.5% 3.5 hours

Monthly (22)

MA(100) 3080 2301 61% 31.4% 17 seconds
Random Walk 3053 2308 - 28.0% -
ARIMA (1,0,2) 2939 2231 58% 27.0% 6.7 minutes

Direct 843 621 92% 7.0% 42.0 minutes
Recursive 3067 2306 57% 27.6% 4.8 minutes

Rectify 3142 2213 67% 24.6% 5.8 minutes
DirRec 786 578 93% 6.7% 15.7 hours

Table A1.1: Results table with predictions starting at 800
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Figure A3.1: Density plot of errors, Rectify
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Figure A4.1: Density plot of errors, Direct and DirRec
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