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Abstract

The continuous-time version of Kyle’s (1985) model of asset pricing
with asymmetric information is studied, and generalized by allowing
time-varying noise trading. From rather simple assumptions we are
able to derive the optimal trade for an insider; the trading intensity
satisfies a deterministic integral equation, given perfect inside infor-
mation, which we give a closed form solution to.

We use a new technique called forward integration in order to find
the optimal trading strategy. This is an extension of the stochastic
integral which takes account of the informational asymmetry inherent
in this problem. The market makers’ price response is found by the
use of filtering theory. The novelty is our approach, which could be
extended in scope.

KEYWORDS: Insider trading, asymmetric information, strategic
trade, filtering theory, forward integration
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1 Introduction

We take as our stating point the seminal paper of Kyle (1985), where a model
of asset pricing with asymmetric information is presented. Traders submit
order quantities to risk-neutral market makers, who set prices competitively
by taking the opposite position to clear the market. Excluding the market
makers, the model has two kinds of traders: a single risk neutral informed
trader and noise traders. The informed trader rationally anticipates the ef-
fects of his orders on the price, i.e., he acts non-competitively or strategically.
In the presence of noise traders it is impossible for the market makers to ex-
actly invert the price and infer the informed trader’s signal. Thus markets
are semi-strong, but not strong form efficient.

In this model the insider makes positive profits in equilibrium by ex-
ploiting his monopoly power optimally in a dynamic context. Noise trading
provides camouflage which conceals his trading from market makers. An im-
portant issue is to demonstrate that this is possible in equilibrium without
destabilizing prices.

Kyle’s approach is to first study a one-period auction, then extend the
analysis to a model in with auctions take place sequentially, and finally let-
ting the time between the auctions go to zero, in which case a limiting model
of continuous trading is obtained. Back (1992) formalize and extend the
continuous-time version of the Kyle model, by i.a., the use of dynamic pro-
gramming.

There is a rich literature on the one period model, as well as on discrete
insider trading, e.g., Holden and Subrahmanyam (1992), Admati and Pflei-
derer (1988), and others, all adding insights to this class of problems. Glosten
and Milgrom (1985) present a different approach, containing similar results
to Kyle. Before Kyle (1985) and Glosten and Milgrom (1985) there is also
a huge literature on insider trading in which the insider acts competitively,
e.g., Grossman and Stiglitz (1980).

The purpose of this article is to study the continuous-time model directly,
not as a limiting model of a sequence of auctions, and use certain aspects of
the modern methodological machinery in continuous-time modeling to resolve
the problem of the informed trader, in a slightly more general setting with
time-varying noise trading. The wealth of the insider can be represented as
a stochastic integral of his orders with respect to the changes in the market
price. This integral is not of a standard form, since the insider’s order is not
in the information set generated by the prices. This is precisely where a key
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part of the problem lies; the insider has more information then reflected in
the market prices.

There is, however, an extension of the stochastic integral, called the for-
ward integral, in which the usual information constraint of this type of analy-
sis need not be satisfied. This is exactly what we need in the present context
of asymmetric information.

The prices set by the market makers are in the form of a conditional
expectation, which calls for the use of filtering theory. Combining these two
methodologies, we are able to solve the insider’s problem in a direct way,
leading to a deterministic integral equation for the insider’s trading intensity
β(t) at time t, given his information set with perfect forward information.

We solve the integral equation for the trading intensity β(t) by by trans-
forming this equation to a non-linear, separable differential equation, which
calls for a simple solution. This we compare to the solution of Kyle (1985)
(and also Back (1992)). In the special case of time homogeneous noise trad-
ing, we recover the Kyle-solution. For time-varying noise trading we get the
result that the market depth is still a constant, and the expected (ex ante)
profits of the insider depends on the average volatility process.

2 The Model

At date T there is to be a public release of information that will perfectly
reveal the value of an asset; cf. fair value accounting. Trading in this asset
and a risk-free asset with interest rate zero is assumed to occur continuously
during the interval [0, T ]. The information to be revealed at time T is rep-
resented as a signal ṽ, a random variable which we interpret as the price
at which the asset will trade after the release of information. This informa-
tion is already possessed by a single insider at time zero. The unconditional
distribution of ṽ is assumed to be normal with parameters µṽ and σṽ.

In addition to the insider, there are liquidity traders who have random,
price-inelastic demands, and risk neutral market makers. All orders are mar-
ket orders and the net order flow is observed by all market makers. We
denote by zt the cumulative orders of liquidity traders through time t. The
process z is assumed to be a Brownian motion with mean zero and variance
rate σ2

t , i.e., dzt = σtdBt, where σt > 0 is a deterministic continuously differ-
entiable function on [0, T ], for a standard Brownian motion B defined on a
probability space (Ω, P ). Note that we do not assume that z is independent
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of ṽ. We let xt be the cumulative orders of the informed trader, and define

(2.1) yt = xt + zt for all t ∈ [0, T ]

as the total orders accumulated by time t.
Market makers only observe the process y, so they cannot distinguish

between informed and uninformed trades. Let Fyt = σ(ys; s ≤ t) be the
information filtration of this process. Since the market makers are assumed
to be perfectly competitive and risk neutral, they will set the price pt at time
t as follows

(2.2) pt = E(ṽ|Fyt ),

which we will call a rational pricing rule. We assume that the insider’s
portfolio is of the form

(2.3) dxt = (ṽ − pt)β(t)dt, x(0) = 0,

where β is some deterministic function, both assumptions consistent with
Kyle (1985).1 The function βt is the trading intensity on the insiders infor-
mation surprise (v − pt).

Denote the insider’s wealth by w and the investment in the risk-free asset
by b. The budget constraint of the insider can best be understood by con-
sidering a discrete time model. At time t the agent submits a market order
xt−xt−1 and the price changes from pt−1 to pt. The order is executed at price
pt, in other words, xt is submitted before pt is set by the market makers. The
investment in the risk-free asset changes by bt − bt−1 = −pt(xt − xt−1), i.e.,
buying stocks leads to reduced cash with exactly the same amount. Thus,
the associated change in wealth is (which was pointed out by Back (1992))

(2.4) bt − bt−1 + xtpt − xt−1pt−1 = xt−1(pt − pt−1).

In other words, the usual accounting identity for the wealth dynamics is of the
same type as in the standard price-taking model, except for one important
difference; while, in the rational expectations model, the number of stocks in
the risky asset at time t is depending only on the information available at this
time, so that both the processes x and p are adapted processes with respect

1The finite variation property of x is assumed by Kyle (1985), and an equilibrium where
this is the case is found by Back (1992).
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to the same filtration, here the order x depends on information available only
at time T for the market makers (and the noise traders). As a consequence
writing the dynamic equation for the insider’ wealth as follows

(2.5) wt = w0 +

∫ t

0

xsdps.

This is not well-defined as a stochastic integral in the traditional interpreta-
tion, since pt is Fyt -adapted, and xt is not. Thus it needs further explanation.
However, since we assume that the strategy of the insider has the form (2.3)
for some deterministic continuous function βt > 0, then a natural interpre-
tation of (2.6) is obtained by using integration by parts, as follows:

wIt = wI0 + xtpt −
∫ t

0

psdxs

= wI0 + pt

∫ t

0

(ṽ − ps)βsds−
∫ t

0

ps(ṽ − ps)βsds

= wI0 +

∫ t

0

(ṽ − ps)2βsds−
∫ t

0

(ṽ − pt)(ṽ − ps)βsds.(2.6)

Alternatively, one might obtain (2.6) by interpreting the stochastic inte-
gral in (2.5) as a forward integral. See Russo and Vallois (1993), Russo and
Vallois (1995, 2000) for definitions and properties and Biagini and Øksendal
(2005) for applications of forward integrals to finance.

Towards this end, let us define the information filtration of the informed
trader as Gt = Fyt ∨σ(ṽ). Thus the informed trader knows ṽ at time zero and
observes yt at each time t. Obviously the filtration Gt ⊃ Fyt and this extension
is not of a trivial, or technical type, but a significant one. For example, there
is information in Gt for any t ∈ [0, T ) that will only be revealed to the market
makers at the future time T . The key point here is that from (2.3) the order
xt depends on ṽ which is not in Fyt . Since the insider knows the realization
of ṽ at time 0, he has long-lived forward-looking information. When z is
not assumed to be independent of ṽ, the extension of the ordinary stochastic
integral to a semimartingale setting is not justified any longer.2

2It does not help here to extend to a stochastic integral of a predictable process with
respect to a semimartingale, as in Back (1992). In his case this procedure was valid, since
z was explicitly assumed independent of ṽ.
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In the stochastic integral representing the budget constraints xt is Gt-
measurable, and pt is Ft-measurable which is the violation of the standard,
important requirement of any stochastic integral in the traditional interpre-
tation.

There is, however, a stochastic integration theory based on the so-called
forward integral, which turns out to be useful under the informational asym-
metry that we have. It is a natural extension of the usual stochastic integral,
with the informational constraints that we require of the dynamic wealth
equation based on the above budget constraints. It is denoted by

(2.7) wt = w0 +

∫ t

0

xsd
−ps,

where d−ps stands for forward integration. From its very definition, which is
given by a limit (in probability) of the usual partial sums of the type appear-
ing in (2.4), it follows that it will have the correct financial interpretation,
given that the concept is meaningful. It turns out that it is, and naturally
the forward integral will not possess many of the standard properties of the
stochastic integral, but there is a version of Itô’s formula that still is valid,
and which we need in the following (see Appendix I for a definition, Itô’s
formula, and references).

We can now formulate the problem: The insider wants to solve, for each
time point t

(2.8) max
x

E(wT |Gt)

subject to the price p satisfying the rational pricing rule (2.2), the insider’s
strategy x satisfying (2.3), and the dynamic forward stochastic differential
equation (2.7) holding for all t ∈ [0, T ]. Restricting the solution to (2.3)
seems natural in a situation with ṽ normally distributed, since then the price
pt will be linear (see the next section), but we have not shown that this
follows from (2.2).

Usually the assumption

(2.9) pT = ṽ a.s.

is made, but it can be demonstrated that this is a consequence of our other
model assumptions (see Aase et. al (2012)). This result seems natural,
ensuring that all information available has been incorporated in the price at
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the time T of the public release of the information. However, in our present
exposure we present a proof where this assumption is needed, which gives a
much simpler, but more constructive proof, which can be extended i scope.

Since there is a tacit understanding that the price process p is continuous
in this model, this result also means that the insider must trade continuously
throughout the time interval [0, T ], and we can expect that the trading in-
tensity β must be large as t approaches T in order for this condition to be
satisfied. 3

An equilibrium is a pair (p, x) such that p satisfies (2.2), given x, and
x is an optimal trading strategy solving (2.8), given p. We now have the
following result:

Theorem 2.1. Given the linear trading strategy (2.3), the optimal trading
intensity β(t) is given by

(2.10) βt =

(∫ T
0
σ2
sds

S0

) 1
2 σ2

t∫ T
t
σ2
sds

; 0 ≤ t ≤ T.

The corresponding price pt set by the market makers is

(2.11) pt = E(ṽ) +

∫ t

0

λsdys,

where ỹt defined by dỹt = 1
σt
dyt is a Brownian motion with respect to the

market makers’ information, and the price sensitivity λt is given by

(2.12) λt ≡ λ =
S

1
2
0( ∫ T

0
σ2
sds
) 1

2

; a constant over time.

In Section 4 we present a proof of this theorem. Here we discuss the
properties of the solution.

3 Properties of the equilibrium.

The generalization relative to Kyle (1985) included in Theorem 2.1 allows for
a time varying volatility parameter in the order process of the noise traders.

3If the price pt 6= ṽ for some t < T , and the agent did not trade in [t, T ), there would
have to be a jump in the price at time T , which the results of our model rule out. This
would not be rational for the insider to do, as he would miss some profit opportunities by
not trading.
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One would, perhaps, expect that as a consequence the market liquidity func-
tion λt would depend on time, suggested by the expression (5.26) in the next
section. The result of Theorem 2.1 is that it does not. The intuition for this
can be explained as follows:

The trading intensity βt will typically increase as t approaches T , since
the insider becomes increasingly desperate to utilize his residual information
advantage. In particular, from expression (2.10) in Theorem 2.1 we see that
βt/σ

2
t increases as t increases. It follows from the proof in the next section,

equations (5.25) and (5.26), that the price sensitivity λt can be written

λt =
βtSt
σ2
t

.

Here
St := E[(ṽ − pt)2] and S0 = E[(ṽ − E[ṽ])2].

Furthermore St can be shown to have the form

St =
S0

1 + S0

∫ t
0
β̃2
sds

; t ∈ [0, T ],

(see equation (5.10)) where

β̃t =
βt
σt

; 0 ≤ t ≤ T.

The quantity
∫ t

0
β̃2
sds measures the the ”amount” of insider trading to liq-

uidity trading by time t. As this quantity increases over time, the amount of
private information St remaining at time t is seen, from the above expression,
to decrease, where St is the (mean square) distance between ṽ and pt. The
function λt is seen to depend on two effects:
(i) The quantity βt/σ

2
t increases over time, which tends to increase λt as time

t increases.
(ii) The quantity St decreases over time, suggesting that the insider’s infor-
mation advantage is deteriorating, which tends to decrease λt as t increases.
In equilibrium (i) is offset by (ii) and λt = λ is constant over time.

Notice that the important quantities are βt/σ
2
t and βt/σt = β̃t in the above

arguments. The mere fact that the amount of insider trading represented by∫ t
0
β2
sds is large, is no guarantee that the market price pt is close to the

fundamental value ṽ, i.e., that St is small. It could be that the amount
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of noise trading
∫ t

0
σsds is also large, in which case the insider could hide

his trade, and less information about the true value would be revealed to
the market makers. Similarly, we do not know that βt is monotonically
increasing over time, only that βt/σ

2
t is. Notice that the equilibrium value

of the price sensitivity λ can be interpreted as the square root of a ratio,
where the numerator is the amount of private information, ex ante, and the
denominator is the amount of liquidity trading.

From the expressions in Theorem 2.1 we notice that

βt =
1

λ

σ2
t∫ T

t
σ2
sds

so βt is inversley related to λ for each t. Since the quantity 1/λ measures the
market depth, the insider will naturally trade more intensely, ceteris paribus,
when this quantity is large.

From the general discussion in Kyle (1985) it is indicated that if the slope
of the residual supply curve λt ever decreases (i.e., if the market depth ever
increases), then unbounded profits can be generated. This is inconsistent
with an equilibrium, so λt must be monotonically non-decreasing in any
equilibrium. It is argued that this follows since in continuous time, the
informed trader can act as a perfectly discriminating monopsonist, moving
up or down the residual supply curve (i.e., the market is infinitely tight).
Hence, he could exploit predictable shifts in the supply curve. From the
analysis of Back (1992) it is known that, more generally, this slope must be
a martingale given the market makers’ information. Our result that λt is
indeed a constant is, accordingly, consistent with the literature.

One would, perhaps, expect that the insider, since he can be assumed to
know the function σt, may use it to further conceal his trade in that he will
use a high βt at a time when σt is large. This impression is confirmed by
investigating the optimal trading intensity β appearing in expression (2.10)
of Theorem 2.1.

However, when σt is low the insider must apply a correspondingly lower
trading intensity, and it turns out that the expected (ex ante) profits average
out. This can be demonstrated as follows: Consider the expected wealth of
the insider given in (5.12)

E[wT ] = w0 + S0

∫ T

0

βtdt

1 + S0

∫ t
0
β̃2
sds

.
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Here the last term is the expected (ex ante) profits, which can be shown to

be
√
S0

∫ T
0
σ2
t dt.

4 Thus, trading at a time-varying volatility σt corresponds

exactly, when it comes to expected profits, to trading at a constant volatility
σ determined by σ2 = 1

T

∫ T
0
σ2
t dt, the right comparison in this regard.

When the amount of liquidity trading
∫ t

0
σ2
sds is large, we noticed above

that λ is small, in which case the insider’s profit is large. However, a small
value of λ is, in isolation, no guarantee for a large ex ante profit of the insider,
since a large value of S0 also makes the profit of the insider large, and λ large
as well.

This points in one possible direction for extending the present model.
Suppose that the private information is connected to quaterly accounting
data for the firm, so T stands for one quarter, and let us extend the model
beyond T to 2T , 3T, · · · , etc. Let us, as in Admati and Pfleiderer (1988),
imagine two types of liquidity traders, discretionary and non-discretionary.
Just after each disclosure period of length T , the level of private information
relative to the uninformed is at its minimum. It seems reasonable, from the
above formula for the ex ante profits of the insider, that the discretionary
traders, acting strategically to time their trades, should concentrate their
trade to these times in order to loose less to the insider. That this kind
behavior is optimal is expected from the conclusions of Admati and Pfleiderer
(1988), who noticed that λ is a constant is not in accordance with empirical
findings; the bid ask spread 2λ is varying over time.

We also have the following corollary:

Corollary 1. Suppose σt = σ > 0 is a constant. Then the optimal trading
intensity for the insider is

(3.1) βt =
σ
√
T√

S0(T − t)
; 0 ≤ t < T.

The corresponding price pt set by the market makers is given by

(3.2) dpt = λtdyt,

where

(3.3) λt ≡ λ =

√
S0

σ

1√
T

; a constant for all t ∈ [0, T ).

4In the case when σt = σ is a constant, we get that the expected profits equal σ
√
S0T ,

consistent with Kyle (1985).
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This result follows from Theorem 2.1 by setting σs ≡ σ in (5.27). The
results of Corollary 1 are in agreement with Kyle (1985) and Back (1992)
(when we set T = 1).

Eide (2007) focuses on the situation when the price process ṽt of the stock
is assumed to have a specific dynamics (an Itô diffusion and a martingale with
respect to an independent Brownian motion), and its current value ṽt (not
ṽT ) is known to the insider at time t for all t ∈ [0, T ]. She avoids the use of
forward integrals by assuming a priori that the processes are semimartingales
with respect to the relevant filtrations. Like Back she then assumes that the
market makers set the price equal to pt = H(t, yt) for some function H and
that H(t, yt) = E(ṽT |Fyt ). These assumptions put the problem of finding
a corresponding equilibrium into a Markovian context, which allows her to
solve the problem by using dynamic programming. In conclusion, her a
priori assumptions are stronger than ours, but they enable her to solve other
problems than we do. In particular, the final stock value ṽ = ṽT need not be
normally distributed in her case.

Before we present the proof of Theorem 2.1, we will also need the dynam-
ics of the profit of the insider for illustrations in the next section. This we
first provide.

3.1 The dynamics of the profit of the insider

Later we will need the dynamics of the profits of the insider. As before let

(3.4) St = S
(β)
t := E[(ṽ − pt)2]

be the mean square error process and define

(3.5) Ss,t = S
(β)
s,t := E[(ṽ − ps)(ṽ − pt)]; 0 ≤ s ≤ t ≤ T.

Then, taking expectation in (2.7), the insiders expected profit at any time
t ∈ [0, T ] can be written

(3.6) E[wt] = w0 +

∫ t

0

S
(β)
t βsds−

∫ t

0

S
(β)
s,t βsds.

We need to compute S
(β)
s,t = E[(ṽ − pt)(ṽ − ps)]: We have

E[(ṽ − pt)(ṽ − ps)] = E[(ṽ2)− E[(ṽps)− E(ṽpt) + E(ptps)

= E(ṽ2)− E(p2
s)− E(p2

t ) + E(ptps) .
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We first compute E(ptps). By (4.4) we have that pt is a square-integrable
martingale. Hence

E[pspt] = E[p2
s],

and consequently

E[(ṽ − pt)(ṽ − ps)] = E(ṽ2)− E(p2
s)− E(p2

t ) + E(ptps)

= E(ṽ2)− E(p2
s)− E(p2

t ) + E(p2
s)

= E(ṽ2)− E(p2
t ) .

But
E(p2

t ) = E(ṽ2)− E(ṽ − pt)2 = E(ṽ2)− S(t) ,

and hence

S
(β)
s,t = E[(ṽ − pt)(ṽ − ps] = St(β) .(3.7)

In particular, note that

(3.8) S
(β)
s,t ≥ 0 for all s ∈ [0, t]

and

(3.9) S
(β)
s,T = 0 if pT = ṽ.

We then have shown the following:

Theorem 3.1. The profit of the insider is given by

E[wt] = w0 +

∫ t

0

Sβs βsds− S
β
t

∫ t

0

βsds

for any t ∈ [0, T ].

4 Illustrations

In this section we provide some illustrations of the results of the paper. First
we consider the situation where the volatility σt is constant through time,
and address the situation with a time varying volatility below.
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4.1 Constant volatilities

We start with some illustrations of the trading intensity βt for various choices
of the parameters.

We let the time horizon T = 12, and consider three different scenarios,
where in 1) σ = 0.20, σṽ = .30, 2) σ = 0.50, σṽ = .20, and 3) σ = 0.50,
σṽ = .40.

Fig. 1: The trading intensities of the insider as functions of t.
In Figure 1 we illustrate the three βi(t)’s for each of the above scenarios

i = 1, 2 and 3. Here β1(t) is the lowest graph, β2(t) is the highest graph and
the one in the middel is β3(t). Thus, when the ratio of σ/σṽ is largest, the
trading intensity is the largest, as we know from Corollary 1.

Fig. 2: The square deviations St as functions of t.
In Figure 2 we illustrate the time developments of the functions St in

these three scenarios. Here the two lowest graph is S2(t), the next lowest is
S1(t), while the largest one corresponds to S3(t). Since S0 = σ2

ṽ , it is natural
that S3(t) starts out at the highest level, and thjs gives the ranking of these
curves, since they are all linear and end up in the same point (12, 0). At the
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horizon, when the true value of the asset is known in the market, naturally
all these expected square deviations between the true value and the market
price pT must then be zero, since pT = ṽ (a.s.).

Fig. 3: The profits of the insider as functions of t.
Moving to the profit functions of the insider for these three scenarios,

they are illustrated in Figure 3. We consider (E[wi(t)]− w0) as functions of
t ∈ [0, 12] for scenario i = 1, 2 and 3. The lowest profit curve corresponds
to scenario 1, the next lowest to scenario 2, and the highest profit curve
corresponds to scenario 3. Naturally when the volatility of the true price is
largest, this gives the insider an informational advantage, which she uses to
obtain a larger profit. In this situation the volatility of the noise traders is
also the highest, which allows the insider to better camouflage her actions
from the market maker. In the situation where the volatilities of the true
price are the same, the insider obtains the highest profit function when the
volatility of the noise trade is the largest, again for the same reason.

Here one should notice that the profit E|wt] of the insider can be written
at each t ∈ [0, T ] as follows

E[wt]− w0 =

∫ t

0

Ssβs ds− St(β)

∫ t

0

βsds, t ∈ [0, T ],

where E[wT ] − w0 =
∫ T

0
Ssβs ds, since at the horizon ST = 0, see Theorem

3.1.

4.2 Time varying volatilities

Our analysis also allows the volatility of the noise traders to vary through
time, which is an extension of the situation considered by Kyle (1985).
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Below we consider three scenarios.
The first is a cyclical volatility. Many economic phenomena display some

degree of cyclical behavior, for various reasons, one being that that supply
of certain goods may be seasonally affected. Here we simply assume that
there is a deterministic cycle that lasts for 12 time units i.e., months), with
dynamics

σ1(t) = 0.6 sin
(π

6
t
)

+ 0.6, t ∈ [0, T ].

The second one gives a lower volatility of the noise traders as time progresses;
σ2(t) = e−0.1t, t ∈ [0, T ]. This could indicate som increasing degree of ’ratio-
nality’ on behalf of the noise traders as time goes, as they more and more
come to the realization that they are loosing, and consequently trade less
and less.

The third case is σ2(t) = 0.6e0.1t, t ∈ [0, T ]. Here the noise traders trade
more and more as time goes. Figure 4 illustrate these three situations, where
the graphs are self eksplanatory. In all three cases σ2

ṽ = 0.09.

Fig. 4: The volatilities σi(t) as functions of t.
For these three types of volatilites we next illustrate the trading intensi-

ties βi(t) of the insider as a function of time, i = 1, 2, 3. It is given in Figure 5.
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Fig. 5: The insider’s trading intensities βi(t) as a functions of t.
The behavior reflected by these graphs would, perhaps, not be readily

foreseen without some serious calculations. Starting with β1(t), when the
volatility of the noise traders is very low, here zero at one point in time,
the insider reduces trade to zero in order not to loose her informational
advantage to the market maker. Towards the end, when the volatility of the
noise traders increase, we observe some of the same trading intensity increase
as in Figure 1. However, the rather high volatility around t = 3, comes to
early for the insider to really increase trade, since there is stil a fairly long
time to the horizon. By trading too much at this early stage, would reveal too
much information to the market maker, making it more difficult to increase
profits later.

The intensity β2(t) starts out highest of the three, but ends up lower than
β3(t). This is natural, since the insider’s trade intensity decreases relative to
the case with increasing noise volatility. Because of the increasing volatility
of noise trade, it is reasonable that the insider trades much towards the end
in scenario 3, and it is here that the intensity is highest.

The square deviation functions Si(t), i = 1, 2, 3 are displayed in Figure 6.

Fig. 6: The square deviations Si(t) as functions of t.
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Here S2(t) is convex, S3(t) is concave, and S1(t) is varying with time, and
at its lowest around time t = 7.

At time zero all graphs start at σ2
ṽ = 0.09 as they should according to

theory, and then decrease with time to zero when t approaches T . For S1(t),
in contrast to the situation with a constant volatility, the main decrease
comes before t = 6, after which the curve flattens out. By this time a fair
amount of the information has already been resolved by a combination of
the insider’s trade and the deterministic cyclicality of the trade by the noise
traders, which the insider takes into account in her trade.

The functions S2(t) andS3(t) are symmetrically situated around a hy-
pothetical straight line (Figure 2), which would have been the case with
constant volatilities. Here S3(t) is uniformly the largest for all t, which is
reasonable, because of the increasing variance of the noise traders in this
scenario.

Finally, we consider the developments of the profit functions of the in-
sider. The graphs are given in Figure 7.

Fig. 7: The profit functions of the insider as functions of time.
The insider in scenario 1 is seen to make most of her profits before t = 6,

which is consistent with the previous figures. Despite of the intense trading
activity towards the end, the profit does not increase much later. For scenario
2 the profit ends up lowest of all at the end, and in scenario 3 the insiders
intensive trade works out, and the final profit here ends up as the highest
of the three. But notice that if trade were interrupted at time points 6, 7
or 8, the ranking of the profits would be quite different. Also notice that all
the profits start out low, caused by the negative second term in the dynamic
version of the profit function.

As can bee seen, it is an advantage to have a solution for the possibility
of a time-varying volatility of the noise traders, since it can be used to throw
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some more light on both the role of the noise traders, as well as on this
interesting model of insider trading.

We now present the proof of Theorem 2.1 It can be noted to be rather
different from the corresponding development in Kyle (1985).

5 The solution of the problem

From the requirement that the market makers are able to calculate the correct
conditional expectation of ṽ at all times, we are led to consider filtering
theory, which involves the following system of equations:

(5.1) dṽt = 0, ṽ0 = ṽ, (system equation)

and

(5.2) dŷt = ṽβtdt+ dzt, (observation equation).

Let F ŷt = σ(ŷs; s ≤ t) be the information filtration of the process ŷ. The
innovation process y is defined by

(5.3) dyt = (ṽ − E(ṽ|F ŷt )βtdt+ dzt

From filtering theory (see Allinger and Mitter (1981)) we then know that
y generates the same filtration as ŷ, i.e., F ŷt = Fyt , and that ỹ defined by
dỹt := 1

σt
dyt is a Brownian motion with respect to the information filtration

Fyt . 5

Using (2.2), (2.3) and the definition y = x+ z, we see that what we have
called the innovation process y in the above is equal to the total accumulated
order process of the previous section. Returning to the equation (2.7), there
is a analog of Itô’s formula for forward integration, which says that

(5.4) d−(xtpt) = xtd
−pt + ptd

−xt + dptdxt,

(see formula (7.8) of Appendix I). Since x has finite variation, dptdxt = 0
and we get

(5.5) wT = w0 + xTpT − x0p0 −
∫ T

0

ptd
−xt.

5The result that 1
σy is a Brownian motion with respect to the market makers’ infor-

mation was observed by Back (1992), using a different type of argument. The result by
Allinger and Mitter proved a long-standing conjecture by Kailath.
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Since (ṽ − pt) ⊥ pt in L2(P ), i.e., E[(ṽ − pt)pt] = 0, we see that

(5.6) E[

∫ T

0

ptd
−xt] =

∫ T

0

E[pt(ṽ − pt)]βtdt = 0.

Therefore, using the consistency requirement (2.9), we get that

E[wT ] = w0 + E[xTpT ] = w0 + E[pT

∫ T

0

(ṽ − pt)βtdt] =

w0 + E[

∫ T

0

ṽ(ṽ − pt)βtdt] =

(5.7) w0 + E[

∫ T

0

(ṽ − pt)2βtdt] = w0 +

∫ T

0

Stβtdt,

where

(5.8) St := E[(ṽ − pt)2]

satisfies the Riccati equation

(5.9) S ′t :=
dSt
dt

= −β
2
t

σ2
t

S2
t ; S0 = E[(ṽ − E[ṽ])2].

The solution of this equation is

(5.10) St =
S0

1 + S0

∫ t
0
β̃2
sds

; t ∈ [0, T ],

where

(5.11) β̃t =
βt
σt

; 0 ≤ t ≤ T.

Hence, by combining (5.7) and (5.10), we get

(5.12) E[wT ] = w0 + S0

∫ T

0

βtdt

1 + S0

∫ t
0
β̃2
sds

.

Returning to our problem formulation in (2.8), the problem is now reduced
to maximizing the above integral in the function β. The first order condition
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for this problem consists in equating the relevant directional derivative to
zero, which is equivalent to use a perturbation method, or the calculus of
variations, to maximize this integral over all functions β.

To this end let A be the family of all continuously differentiable functions
β : [0, T )→ R such that

(5.13)

∫ t

0

β̃2
s <∞ for all t < T.

We use a perturbation argument to find the function β ∈ A which maximizes
E[wT ]: Suppose β ∈ A maximizes

J(β) := S0

∫ T

0

(
1 + S0

∫ t

0

β̃2
sds
)−1

βtdt.

Choose an arbitrary function ξ ∈ A and define the real function g by

(5.14) g(y) = J(β + yξ); y ∈ R.

Then g is maximal at y = 0 and hence

0 = g′(0) =
d

dy
J(β + yξ)|y=0 =

d

dy

(
S0

∫ T

0

(
1 + S0

∫ t

0

(βs + yξs)
2

σ2
s

ds
)−1

(βt + yξt)dt
)∣∣∣

y=0
=

S0

∫ T

0

(
1 + S0

∫ t

0

β̃2
sds
)−1

ξtdt− S2
0

∫ T

0

(
1 + S0

∫ t

0

β̃2
sds
)−2( ∫ t

0

2βsξs
σ2
s

ds
)
βtdt

=

∫ T

0

Stξtdt− 2

∫ T

0

S2
t

( ∫ t

0

βsξs
σ2
s

ds
)
βtdt.

Changing the order of integration in the last term we get∫ T

0

Stξtdt− 2

∫ T

0

( ∫ T

s

S2
t βtdt

)βsξs
σ2
s

ds = 0,

or ∫ T

0

{St − 2(

∫ T

t

S2
sβsds)

βt
σ2
t

}ξtdt = 0.
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Since ξ ∈ A was arbitrary, we conclude that an optimal βt must satisfy the
equation

(5.15) σ2
tSt = 2βt

∫ T

t

S2
sβsds

where, as before, St is given by equation (5.10). This is an integral equation
in the unknown function β. Differentiating (5.15) with respect to t we get

2σtσ
′
tSt + σ2

tS
′
t = 2β′t

∫ T

t

S2
sβsds− 2β2

t S
2
t .

Combining this with (5.9) we obtain

(5.16) 2σtσ
′
tSt + β2

t S
2
t = 2β′t

∫ T

t

S2
sβsds.

We now combine (5.15) and (5.16) to get

2σtσ
′
tSt + β2

t S
2
t =

β′t
βt
σ2
tSt

or
β′t
βt

=
2σ′t
σt

+
β2
t

σ2
t

S0

(1 + S0

∫ t
0
β2
s

σ2
s
ds)

.

Integrating this we obtain, with ci integration constant, i = 1, 2, · · ·

log βt = 2 log σt + log(1 + S0

∫ t

0

β2
s

σ2
s

ds) + c1

or

(5.17) βt = c2σ
2
t (1 + S0

∫ t

0

β2
s

σ2
s

ds).

Define

(5.18) αt =
βt
σ2
t

.

Then equation (5.17) gives the non-linear, separable differential equation

α′t = c2S0σ
2
tα

2
t ,
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which has the general solution

αt =
(
c3 − c2S0

∫ t

0

σ2
sds
)−1

or

(5.19) βt = σ2
t

(
c3 − c2S0

∫ t

0

σ2
sds
)−1

.

Substituting (5.19) into the right hand side (RHS) of (5.17) we get

RHS = c2σ
2
t

(
1 + S0

∫ t

0

σ2
s(c3 − c2S0

∫ s

0

σ2
udu)−2ds

)
= c2σ

2
t

(
1− 1

c2

∣∣∣t
0

1

c3 − c2S0

∫ s
0
σ2
udu

)
= σ2

t

[
c2 −

( 1

c3 − c2S0

∫ t
0
σ2
udu
− 1

c3

)]

=
σ2
t

(
(
∫ t

0
σ2
udu)

(
c2S0 − c2

2c3S0

)
+ c2c

2
3

)
c3

(
c3 − c2S0

∫ t
0
σ2
udu
) .

Therefore, (5.17) holds if and only if

c2S0 − c2
2c3S0 = 0,

i.e.,

(5.20) c2c3 = 1.

Substituting this into (5.19) we get

(5.21) βt =
σ2
t c2

1− c2
2S0

∫ t
0
σ2
sds

.

Since by the consistency requirement the relation (2.9) holds, we must have
ST = 0 and hence

(5.22) lim
t→T−

βt =∞.
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Using this in (5.21) we deduce that

(5.23) c2
2S0

∫ T

0

σ2
sds = 1

which gives

(5.24) βt =
σ2
t

( ∫ T
0
σ2
sds
) 1

2

S
1
2
0

∫ T
t
σ2
sds

.

By the Kalman filter theory (see e.g., Kalman (1960), Davis (1977-84),
Kallianpur (1980) or Øksendal (2003), Ch. 6) we know that the correspond-
ing conditional expected value pt = E(ṽ|Fyt ) is given by

(5.25) dpt =
βtSt
σ2
t

dyt = λtdyt,

with

(5.26) λt =
St
( ∫ T

0
σ2
sds
) 1

2

S
1
2
0

∫ T
t
σ2
sds

; 0 ≤ t < T.

Now recall from equation (5.10) that

St = E[(ṽ − pt)2] =
S0

1 + S0

∫ t
0

(
βs
σs

)2
ds

; S0 = var(ṽ) = σ2
ṽ .

By the use of (5.24) we find that

St =
S0

1 +
( ∫ T

0
σ2
sds
) ∫ t

0
σ2
u

(
∫ T
u σ2

sds)
2
du

=
S0

∫ T
t
σ2
sds∫ T

0
σ2
sds

.

Inserting this expression for St into the expression for λt in (5.26), we obtain

(5.27) λt ≡ λ =

√
S0√∫ T

0
σ2
sds

; a constant.

This completes the proof of Theorem 2.1.
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6 A short discussion

Under a set of rather natural assumptions we have formulated an insider’s
problem as maximizing the expected value of future wealth subject to the
price of the stock satisfying the rational pricing rule (2.2) and the strategy
satisfying (2.3). This latter constraint seems reasonable, since from (5.5) we
see that the insiders wealth can be written (x0 = 0)

(6.1) wT = w0 + ṽxT −
∫ T

0

ptd
−xt = w0 + ṽxT −

∫ T

0

ptdxt,

where the equality follows since x has finite variation. As a consequence
the final net wealth equals the value of the final position less the cost of
acquiring it. The cost formula is analogous to the usual one for the cost of
a discriminating monopsonist. It also follows that this final wealth can be
written

(6.2) wT = w0 +

∫ T

0

(ṽ − pt)d−xt = w0 +

∫ T

0

(ṽ − pt)dxt,

(assumption (4.1) on p. 1326 in Kyle (1985)).
From our assumptions we derive that the rational pricing rule has the

form

(6.3) pt = E(ṽ) +

∫ t

0

λsdys

(assumption (4.3) p. 1326 of Kyle (1985)). Even in the case of time-varying
noise trading we obtain that the price response function λt = λ for all t, a
constant.6

Conceptually it was an advantage to use an extended stochastic integral
to achieve our goal, and given this new concept our approach was rather
direct and gave a unique solution to the problem, provided our assumptions.

7 Conclusions

The continuous-time version of Kyle’s (1985) model of asset pricing with
asymmetric information has been studied, and generalized by allowing time-
varying noise trading. From rather simple assumptions we are able to derive

6The results (6.1)-(6.3) follow from our assumptions, which are the same as the ones
that Kyle employ, even if he chooses to call them assumptions (Kyle (1985) (4.1)-(4-3) p.
1236).
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the optimal trade for an insider; the trading intensity satisfies a deterministic
integral equation, given perfect inside information, which we give a closed
form solution to. We also have a dynamic relation for the profit of the insider.

Conceptually we use a new technique called forward integration in order
to find the optimal trading strategy. This is an extension of the stochastic
integral which takes account of the informational asymmetry inherent in this
problem. The market makers’ price response is found by the use of filtering
theory. The novelty is our approach, which could be extended in scope.

It has been purpose of this article to study the continuous-time model
directly, not as a limiting model of a sequence of auctions, and use certain
aspects of the modern methodological machinery in continuous-time model-
ing to resolve the problem of the informed trader, in the more general setting
with time-varying noise trading. The wealth of the insider can be represented
as a stochastic integral of his orders with respect to the changes in the market
price. This integral is not of a standard form, since the insider’s order is not
in the information set generated by the prices. This is precisely where a key
part of the problem lies; the insider has more information then reflected in
the market prices.

Wh illustrated by some examples the time developments of the various
key quantities developed in the paper, like the trading intensity and the profit
function of the insider, as well as the square deviation between the true value
of the security and the price set by the market maker. In our illustrations
we also included examples where the volatility of the noise traders were time
dependent. It is evident that these examples would be very hard to analyze
without our explicit results for time-varying volatilities.

Our line of attack is a natural framework to further investigate some of
the problems underlying insider trading and differential information. In a
companion paper we intend to analyze the situation when the market maker
is not a fiduciary, unlike in the present model.

Appendix I: The forward integral

Consider a general information filtration Gt ⊃ Ft. If Bt is a Brownian motion
with respect to Ft, it need not be a semimartingale with respect to a bigger
filtration Gt ⊃ Ft. A simple example is

Gt = Ft+δ; t ≥ 0

25



where δ > 0 is a constant.
First we ask the question what integrals of the form

∫ t
0
xsdBs are supposed

to mean when xs is Gs-adapted. In this paper Gt is the information filtration
of the insider, while Ft is the corresponding information filtration generated
by the order process y and thus possessed by the market makers. Below we
consider forward integrals of processes driven by Brownian motion.

The forward integral
∫ t

0
xsd

−Bs is defined by

(7.1)

∫ T

0

xtd
−Bt := lim

∆ti→0

∑
i

xti(Bti+1
−Bti),

whenever the limit exists in probability, and 0 = t0 < t1 < t2 < · · · <
tn = T is a partition of [0, T ]. Thus this integral is defined in the intuitive
manner as a limit of sums, and it should be clear that when xt is Ft-adapted,
this integral coincides with the ordinary Itô integral over non-anticipating
functions. Viewed this way, the forward integral is a direct and very natural
extension of the Itô integral to anticipating (non-adapted) functions.

More formally, suppose x : [0, T ]→ R is a measurable stochastic process
adapted to the filtration Gt but not necessarily to the filtration Ft. The
forward integral of x with respect to Bt was first defined by Russo and Vallois
(1993), and was applied to insider trading, in a framework different from the
one in the present paper, in Biagini and Øksendal (2005). For our purpose,
it is sufficient to consider the case when x is left continuous with right-sided
limits (càglàd). Then the original definition simplifies to (7.1).

One can show that if xt is adapted to some filtration Gt such that Bt

is a Gt-semimartingale, then the forward integral of x coincides with the
semimartingale integral of x (if it exists). See Biagini and Øksendal (2005).
Thus the forward integral is an extension of the semimartingale integral to
(possibly) non-semimartingale contexts.

An Itô formula for the forward integrals was first obtained by Russo and
Vallois (1995, 2000). It may be presented as follows: Let Xt = Xt(ω) be a
stochastic process of the form

(7.2) Xt = X0 +

∫ t

0

αsds+

∫ t

0

βsd
−Bs; X0 ∈ R, a constant,

where α and β are measurable processes, such that∫ t

0

{|αs|+ β2
s}ds <∞ a.s. for all t,
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and β is forward integrable. A short hand differential notation for (7.2) is

(7.3) d−Xt = αtdt+ βtd
−Bt; X0 ∈ R.

Such processes Xt are called forward processes.

Theorem 7.1. (The one-dimensional Itô formula for the forward processes.)
Let Xt be as above and let f ∈ C1,2(R×R) . Define

Yt = f(t,Xt).

Then Yt is again a forward process and

(7.4) d−Yt =
∂

∂t
f(t,Xt) dt+

∂

∂x
f(t,Xt) d

−Xt +
1

2

∂2

∂x2
f(t,Xt) β

2
t dt.

Note the similarity between this and the classical Itô formula. We refer
to Russo and Vallois (1995, 2000) for a proof.

The Itô formula extends to several dimensions, as follows:

Theorem 7.2. (The multi-dimensional Itô formula for the forward pro-
cesses.) Let

(7.5) d−X
(i)
t = α

(i)
t dt+

m∑
k=1

β
(i,k)
t d−B

(k)
t ; 1 ≤ i ≤ n

be n forward processes, driven by m independent Brownian motions
(B

(1)
t , · · · , B(m)

t ). Let f ∈ C1,2(R×Rn) and define

Yt = f(t,Xt).

Then Yt is again a forward process and

d−Yt =
∂

∂t
f(t,Xt) dt+

n∑
i=1

∂

∂xi
f(t,Xt) d

−X
(i)
t

+
1

2

n∑
i,j=1

∂2

∂xi∂xj
f(t,Xt) dX

(i)
t dX

(j)
t ,

(7.6)

where

(7.7) dX
(i)
t dX

(j)
t =

m∑
k=1

β
(i,k)
t β

(j,k)
t dt.
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Example 5.3. Suppose m = 1 and i = 2, i.e.,

d−X
(i)
t = αit dt+ β

(i)
t d−Bt; i = 1, 2.

Choose f(t, x1, x2) = x1x2 and define

Yt = f(t,Xt) = X
(1)
t X

(2)
t .

Then by (7.6) and (7.7) we get

(7.8) d−(X
(1
t X

(2)
t ) = d−Yt = X

(1)
t d−X

(2)
t +X

(2)
t d−X

(1)
t + β

(1)
t β

(2)
t dt.

This is the formula we use in (5.4), and later.
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