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Abstract

The growth in technology on autonomous transportation systems is currently moti-

vating a number of research initiatives. This paper first presents a survey of the literature

on autonomous marine vessels in general. By identifying the main research interests in

this field, we define nine thematic categories. The collected articles are then classified ac-

cording to these categories. We show that research on autonomous vessels has increased

dramatically in the past decade. However, most of the published articles have focused

on navigation control and safety issues. Studies regarding other topics, such as transport

and logistics, are very limited. While our main interest is the literature on autonomous

vessels, we contrast its development with respect to the literature on autonomous cars

so as to have a better understanding about the future potentials in the research on au-

tonomous vessels. The comparison shows that there are great opportunities for research

about transportation and logistics with autonomous vessels. Finally, several potential re-

search areas regarding logistics with autonomous vessels are proposed. As the technology

behind remote-controlled or autonomous ships is maturing rapidly, we believe that it is

already time for researchers in the field to start looking into future water-borne transport

and logistics using autonomous vessels.

Keywords: Autonomous ship, Autonomous Surface Vehicle, Unmanned Surface Ve-

hicle, Survey

1 Introduction

Different types of autonomous technologies have been applied and integrated into our trans-

port systems in the past decades. Today, with the technological breakthrough in areas such
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as artificial intelligence (AI), driverless or fully autonomous transportation is no longer just a

dream but a reality on certain transport legs. For road transport, the concept of autonomous

cars is being developed and tested by companies like Google and Tesla (Waymo, 2019; Tesla,

2018). For air-based transport, unmanned aerial vehicles (UAVs) or drones are also being in-

troduced for delivery services (Koiwanit, 2018; Amazon, 2018). In the domain of maritime

transport, the autonomization of vessels is also developing and intensively discussed in the

shipping industry.

Each year about 90 percent of the global trade is carried by sea (ICS, 2017). Furthermore,

maritime transport is the only option for the movement of large volume cargo among continents

(Gu et al., 2018). Therefore, the shipping industry is vital for our global economy. However,

this old business is now facing economic, environmental and social challenges. Traditional

technical or operational solutions, such as building larger ships or slow steaming, have reached

their limitations to overcome various problems. The new generation of technology, such as

autonomous vessels, is believed to be a potential cure for the difficulties faced by the shipping

industry (Kretschmann et al., 2017).

The interest in academia on automated marine vessels is also rapidly increasing. To the best

of our knowledge, nevertheless, comprehensive reviews about research and studies in this field

are limited. Campbell et al. (2017) wrote a survey paper on unmanned surface vehicles, but with

a special focus on research about intelligent collision avoidance systems and the corresponding

manoeuvres. Thieme et al. (2018) reviewed and investigated how far the existing ship risk

models for collisions and groundings are applicable for risk assessment of marine autonomous

surface ships. Schiaretti et al. (2017a) and Schiaretti et al. (2017b) conducted a survey regarding

autonomous surface vessels including literature on classifications of autonomy levels and existing

prototypes. Zolich et al. (2018) reviewed the major advancements on autonomous maritime

vehicles and systems, highlighting communication and networking technologies. Liu et al. (2016)

reviewed the historical and recent developments of unmanned surface vehicles and classified

the existing guidance, navigation and control approaches proposed in the literature. While

those papers present interesting reviews with a specific focus, we found no papers offering a

comprehensive overview of the research conducted on autonomous shipping or navigation in all

aspects. Therefore, the purpose of this review is to collect existing research papers regarding

autonomous vessels in the literature and systematically categorize them based on their contents.

The major findings of these papers in each category are also briefly summarized. Furthermore,

we compare the literature on autonomous vessels with the literature on autonomous vehicles.

We have two major contributions. First, the main body of existing literature on autonomous

vessels (marine vehicles) is summarized and categorized. Second, the we point out weak points

in the literature and thereby future opportunities based on the comparison between autonomous

vessels and autonomous vehicles.

As for types of marine crafts, this review paper considers vessel, ship and surface vehicle.

Vessels and ships are among the most common ones in the literature of shipping and maritime
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navigation. They have a relatively large size and can carry cargo or passengers during the

navigation. Surface vehicles are usually much smaller. They are widely used in scientific

experiments, prototype testing and other specific tasks with sophisticated environments, such

as pollution monitoring or mine exploration (Liu et al., 2016). For simplicity we use the word

vessel as the general term for water craft in this paper unless it is crucial to distinguish.

The paper is organized as follows. In Section 2, we introduce the methodology used to

conduct this review and also define the categories used to classify the literature. In Section 3,

we present an overview of the articles on each category. In Section 4, we present statistical

features of this literature and compare it with its parallel in autonomous vehicles. In Section 5,

we conclude the survey with some remarks and guidelines for future research.

2 Methodology and Categories

Since the literature offers different levels of autonomy and there are many types of marine

vessels, it is necessary to define the scope of the survey with respect to these concepts. Lloyd’s

Register (2017) and Rolls-Royce (2016) have both defined different levels of autonomy applied

in maritime navigation. The former divided the autonomy of maritime navigation into six

levels while the latter defined ten levels of autonomy, see Table 1 and Table 2. Although there

are some differences in these definitions, it is clear that the autonomy of maritime navigation

is not necessarily a binary feature (either fully autonomous or fully manual). The level of

autonomy increases gradually when human intervention decreases. Due to the development of

the technology, it is generally agreed that it will not be possible to achieve full autonomy in

maritime navigation in the short term. Unmanned ships with shore-based remote control or

monitoring is very likely to be adopted initially. In this review, we included not only autonomous

but also unmanned as main keywords to capture different levels of autonomy.

The articles reviewed in this survey are collected through three stages. First, we conducted

a systematic search on the website of Scopus (2018), which is one of the largest databases

of scientific journals, books and conference proceedings. As keywords, we used “autonomous

ship”, “unmanned ship”, “autonomous vessel”, “unmanned vessel”, “autonomous surface ve-

hicle (ASV)” and “unmanned surface vehicle (USV)”. In the second stage, due to the large

number of papers found, we further narrowed down the scope of the literature to journal arti-

cles or book chapters published in the last decade. We also excluded those papers which just

mention or slightly discuss the related keywords, rather than focusing on them. In the last

stage, this collection of articles was complemented with other articles that we came across nat-

urally while conducting the survey, either because they were frequently cited in the previously

selected articles or by tracking references to them. In the end, we had a total of 91 articles.

Based on the main topics of these articles, we define nine thematic categories which we found

useful for classification. The definition of these nine categories are listed in the following.

3



Table 1: Definition of autonomy level by Lloyd’s Register (2017)

Level of autonomy Description

AL 0: Manual steering No autonomous function. All action and decision-

making performed manually (note that some sys-

tems may have levels of autonomy, but with hu-

mans in the loop.), i.e. humans control all actions.

AL 1: On-board Decision Support All actions taken by a human operator, but de-

cision support tools can present options or oth-

erwise influence the actions chosen. Data is pro-

vided by systems on board.

AL 2: On & Off-board Decision Support All actions taken by human operator, but decision

support tools can present options or otherwise in-

fluence the actions chosen. Data may be provided

by systems on- or off-board.

AL 3: ‘Active’ human in the loop Decisions and actions are performed with human

supervision. Data may be provided by systems

on- or off-board.

AL 4: Human in the loop Operator/Supervisory: Decisions and actions are

performed autonomously with human supervi-

sion. High impact decisions are implemented in

a way that gives the human operators the oppor-

tunity to intercede and over-ride.

AL 5: Autonomous Rarely supervised operation where decisions are

entirely made and actioned carried out by the sys-

tem.

AL 6: Fully autonomous Unsupervised operation where decisions are en-

tirely made and actioned carried out by the sys-

tem during the mission.

• Category 1 refers to the safety concerns of autonomous vessels, which can be further divided

into three subcategories.

(a) Collision avoidance: One of the most important issues for any vessel is to avoid

colliding with other objects, either dynamic (e.g., ships) or static (e.g., rocks), during its

navigation. Collision avoidance becomes more challenging and critical when no human is on

board monitoring the surroundings and controlling the vessel.

(b) Cyber security : The autonomous/unmanned vessel needs to communicate with the

shore-based centre for monitoring or control purposes on a regular basis. Such communication

strongly depends on wireless networks, which leads to high cyber security risks during the

operation.

(c) Other safety concerns : In the literature, other safety concerns for autonomous ships,

such as safety assessment and fault detection are also addressed. New approaches for safety

assessment and fault detection are needed to ensure that all machineries are in proper status

before sailing. A breakdown of autonomous/unmanned vessels during the navigation can

lead to severe consequences.

4



Table 2: Definition of autonomy level by Rolls-Royce (2016)

Level Description

1 The computer offers no assistance, human in charge of all decisions and actions

2 The computer offers a complete set of decision alternatives

3 Computer narrows alternatives down to a few

4 Computer suggests single alternative

5 The computer executes the suggested action if human approves

6 The computer allows human a restricted time to veto before automatic execution

7 The computer executes automatically, when necessary informing human

8 The computer informs human only if asked

9 The computer informs human only if it (the computer) decides so

10 The computer does everything autonomously, ignores human

• Category 2 refers to navigation control of the autonomous vessel. Two subgroups are also

defined under this category.

(a) Individual control : This subcategory includes articles focusing on navigation control

for a single autonomous/unmanned vessel. Related topics include path planning, trajectory

planning, manoeuvring, steering and heading of the autonomous vessel.

(b) Group control : In certain circumstances, multiple autonomous/unmanned vessels are

required to finish the task. In such a case, fleet path planning and fleet formation control

are necessary.

• Category 3 refers to the design of the autonomous/unmanned vessel. Papers discussing

the general design of the entire maritime navigation system or more specific design regarding

each sub-system, for instance communication system or propulsion system, are included in

this category.

• Category 4 covers articles about reported research projects or experimental prototypes in

this field.

• Category 5 includes economic analysis of adopting autonomy technology in maritime logis-

tics. A typical example is cost-benefit analysis of using autonomous vessels in shipping.

• Category 6 collects the papers evaluating the environmental impact of autonomous/unmanned

vessels, such as emission reduction.

• Category 7 refers to law and regulation for autonomous vessels. The studies in this category

discuss, for example, the change of current maritime law for the autonomy as well as liability

issues in a marine accidents involving autonomous/unmanned vessels.

• Category 8 covers articles discussing how to integrate autonomous vessels into transporta-

tion and logistics.

• Category 9 consists of the papers offering general introductions of the concept of au-

tonomous vessels.
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3 Literature Review

In this section, we classify the collected studies on autonomous marine vessels based on the

nine predefined categories, namely safety, navigation control, design, project & prototype, eco-

nomic analysis, environmental impact, law & regulation, transportation & logistics and general

introduction. Naturally, some articles address multiple topics which are relevant to different

categories. In this case, this article is assigned to the multiple categories it belongs to. A brief

review of the articles assigned to each category is also provided. A detailed reference list for

each category can be found in Appendix A.

Category 1: Safety

In this category, articles discussing safety issues for autonomous vessels or USVs are re-

viewed. The topics in this category consists of collision avoidance, cyber security and other

safety concerns.

• Collision Avoidance

The International Regulations for Preventing Collisions at Sea (COLREGs) is the main guid-

ance issued by the International Maritime Organization (IMO) in 1972 for collision avoidance

purposes. A large number of research regarding collision avoidance in autonomous maritime

navigation follow this regulation. Wang et al. (2018b) reported some preliminary results

of a new algorithm called the local normal distribution-based trajectory for the USV. This

approach ensures that the navigation of the USV complies with the COLREGs and avoids

collision successfully. Naeem et al. (2016) modified the Artificial Potential Fields (APF)

framework and developed a COLREGs-based collision avoidance technique for USVs which

can handle both stationary and dynamic obstacles. Zhao et al. (2016) employed the Eviden-

tial Reasoning theory to detect collision risks and adopted the optimal reciprocal collision

avoidance algorithm to generate COLREGs-compliant maneuvers. Campbell and Naeem

(2012) integrated a heuristic Rule-based Repairing A* algorithm in a path decision-making

framework incorporating the COLREGs. Beser and Yildirim (2018) presented a bearing only

obstacle avoidance approach as a backup COLREGs compliance method when the lidar or

radar fails. Naeem et al. (2012) reported a COLREGs-based collision avoidance strategy con-

sisting of way-point guidance by line-of-sight coupled with a manual biasing scheme. Lu et al.

(2016) used a probabilistic model checking technique for verifying three collision avoidance

behaviours (steering, acceleration and deceleration) associated with the crossing situation in

COLREGs. Lee et al. (2015b) proposed a heuristic search technique based on fuzzy relational

products to ensure COLREGs-compliant and collision-free navigation for autonomous ships.

Mei and Arshad (2017) proposed a navigation guidance system with APF which allows the

ASV to decide whether to follow the COLREGs based on the encounter situations and avoid

potential collisions. Other collision avoidance strategies with respect to COLREGs can also
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be found in Hu et al. (2017); Xu et al. (2018); Savvaris et al. (2014); Bertaska et al. (2015).

Besides the COLREGs related studies, Hong and Arshad (2015) introduced a balance-APF

hybrid method which helps the ASV successfully avoid static obstacles in challenging situa-

tions. Serigstad et al. (2018) reported a hybrid dynamic window (HDW) algorithm which acts

as both collision avoidance method and trajectory tracker for ASVs. Praczyk (2015) presents

two neuro-evolutionary methods used to build the neural anti-collision system (ACS). Kr-

ishnamurthy et al. (2008) proposed a hierarchical obstacle avoidance system consisting of a

wide-area planner based on the A* graph-search algorithm, a local-area planner based on

GODZILA (Game-Theoretic Optimal Deformable Zone with Inertia and Local Approach)

and a robust non-linear inner-loop controller. Hermann et al. (2015) described a radar and

vision technologies based obstacle detection system for a high-speed USV. Bovcon et al.

(2018) proposed a new segmentation model incorporating boat roll and pitch measurements

from the on-board inertial measurement unit and a stereo verification scheme for obstacle

detection with USVs. Statheros et al. (2008) examined different techniques including evo-

lutionary algorithms, fuzzy logic, expert systems, and neural networks for autonomous ship

collision avoidance.

Many other papers also discuss different strategies about collision avoidance but not as their

main research focus. For example Burmeister et al. (2014); Rolls-Royce (2016) explained

the importance of collision-free navigation for autonomous/unmanned vessels. Escario et al.

(2012); Singh et al. (2018); Song et al. (2017); Kim et al. (2017a); Breivik and Loberg (2011);

Niu et al. (2018); Mousazadeh et al. (2018); Liu and Bucknall (2018); Niu et al. (2016);

Thakur et al. (2012); Wang et al. (2019b); Du et al. (2018); Ma et al. (2018); Crasta et al.

(2018); Liu and Bucknall (2015); Yang et al. (2015); Liu and Bucknall (2016); Liu et al.

(2017b); Ma et al. (2014) all considered obstacle avoidance in their studies regarding path

planning for USVs which will be further reviewed later.

• Cyber Security

Hogg and Ghosh (2016) believed that an unmanned ship may have a reduced risk in tradi-

tional piracy due to the lack of crew to hold hostage but the exposure to a cyber-attack for

an unmanned ship increases significantly. When the core system is hacked, the vessel can

be hijacked and cause collision with casualties or pollution with environmental damage. To

handle such new cyber security threats, the cost for the shipping companies with unmanned

vessels will rise. Rolls-Royce (2016) pointed out the increasing concern on cyber security

for autonomous or remotely operated ships which have a more vulnerable information and

communication system compared to the conventional manned ships. Moreover, besides hack-

ing, the international jamming or spoofing of the Automatic Identification System (AIS) or

Global Positioning System (GPS) signal will also lead to cyber security issues and disturb the

operation of autonomous or unmanned vessels. Danish Maritime Authority (2016) also ex-

plained the importance of including cyber security considerations in the design of autonomous

maritime navigation systems.
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• Other Safety Concerns

Different from the conventional ships, the autonomous or unmanned vessel has no manpower

on board to fix the machinery when it breaks down during operation. Hence, it is very

important for the designers of autonomous or unmanned ships to identify and assess the

potential risks. Wróbel et al. (2018) used a system-theoretic model to analyze the safety

concerns of an autonomous merchant vessel based on the uncertainties during navigation.

Recommendations for safety-driven design are also offered. Wróbel et al. (2016) conducted a

hazard analysis associated with unmanned ships and listed the potential safety threats cov-

ering various aspects based on experts’ opinions. Rødseth and Burmeister (2015) introduced

a risk-based design method to identify critical safety and security risks and proposed corre-

sponding solutions to address them. Wróbel et al. (2017) performed a what-if analysis based

on historical maritime accident reports to assess the potential impact of unmanned vessels

on maritime safety from a transportation perspective. Besides risk assessment, accurate and

timely fault detection and isolation are also critical for safe navigation of autonomous marine

vessels. A data-driven, model-free technique based on the Principal Components Analysis

technique is proposed by Zanoli et al. (2012) to formulate the fault detection problem.

Category 2: Navigation Control

In this category, we review the studies about individual and group navigation control prob-

lems for unmanned vessels. The topics considered in this category include path or trajectory

planning, path tracking or following, manoeuvring, steering, heading and swarm or formation

control.

• Individual Control

The most discussed issue in the literature regarding the control of one single autonomous

vessel is the planning of its path or trajectory. Song et al. (2017) proposed a multi-layered

fast marching method to generate feasible trajectories for a USV with a dynamic surrounding.

Beser and Yildirim (2018) and Liu and Bucknall (2018) adopted a path planning method

based upon the fast marching square algorithm. Liu et al. (2017b) developed an angle

guidance fast marching square (AFMS) based path trajectory algorithm and integrated it

into the control system of a prototype USV. The A* approach is also widely used in path

planning for autonomous vessels, see example Singh et al. (2018) and Krishnamurthy et al.

(2008). Campbell and Naeem (2012), Yang et al. (2015) and Ma et al. (2014) developed new

algorithms based on this approach, including Rule-based Repairing A* algorithm, Finite

Angle A* algorithm and Smoothing A* algorithm, to better optimize the path planning for

USVs.

Many other methods have been adopted in the research on trajectory planning. These include

the APF method (Mei and Arshad, 2017; Naeem et al., 2016), Ant Colony Optimization

(Escario et al., 2009, 2012; Zhu et al., 2016), multi-objective particle swarm optimization
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(Hu et al., 2017; Ma et al., 2018), genetic algorithm (Kim et al., 2017a), integrated algo-

rithm based on Voronoi diagram, Visibility algorithm and Dijkstra search algorithm (Niu

et al., 2016, 2018), local normal distribution-based trajectory (Wang et al., 2018b), angular

rate-constrained Theta* algorithm (Kim et al., 2014), model-referenced trajectory planner

(Bertaska et al., 2015), GPU based algorithms and Markov Decision Process (Thakur et al.,

2012), grey wolf optimizer (Wang et al., 2019b), Trajectory Unit method (Du et al., 2018),

waypoint guidance by line-of-sight coupled with a manual biasing scheme (Naeem et al., 2012)

and heuristic search based on Bandler and Kohout’s fuzzy relational products (Lee et al.,

2015b). Savvaris et al. (2014) and Iovino et al. (2018) also briefly discussed path planning in

their research.

After the trajectory plan is generated, another important issue for the navigation control of

an individual autonomous vessel is to ensure the accuracy in path following. Liu et al. (2018a)

proposed a model predictive control approach based on adaptive line-of-sight (LOS) guidance

to solve the path following problem for ASVs. Liao et al. (2016) adopted a backstepping

adaptive sliding mode controller to solve the trajectory tracking problem. Zereik et al.

(2013) introduced a Jacobian task priority-based approach for the path planning of USVs.

The advantage of this approach is that without changing the architecture, further control

tasks can be easily added. Zizzari et al. (2009) developed a guidance motion control law which

guarantees bounded velocity commands and then applied it in the path following guidance

control of a USV prototype. Ghommam and Mnif (2016) designed a robust controller based

on adaptive sliding mode control and the radial basis function neural network. This controller

handles the uncertainties of ocean currents and ensures robust path-following performance of

ASVs under parameter variations and external disturbances. Bibuli et al. (2012) proposed a

cascade control scheme for USVs which offers accurate performance in terms of straight line

following. Larrazabal and Peñas (2016) designed a fuzzy logic controller and a gain scheduling

PID controller optimized by a genetic algorithm for trajectory tracking of USVs. Brief

discussions regarding trajectory following problems can also be found in Breivik and Loberg

(2011); Sharma et al. (2012); Hong and Arshad (2015); Serigstad et al. (2018); Mousazadeh

et al. (2018).

Besides path planning and following, other navigation control features, such as maneuver-

ing, steering and heading are also addressed by researchers. Different neural network-based

approaches are adopted in Peng et al. (2016); Fang et al. (2017); Jakovlev et al. (2017); Xu

et al. (2018); Woo et al. (2018) for USV maneuver and course control. Li et al. (2018b)

introduced an angular velocity guidance algorithm to address the challenges faced by the

compact form dynamic linearization based model-free adaptive control method in the USV

heading control problem. Liu et al. (2015) developed an adaptive gain-scheduling control

design methodology to maneuver the USV when mass variation is experienced. The maneu-

ver strategy of a single autonomous vessel is also briefly discussed in Statheros et al. (2008);

Zhao et al. (2016); Rolls-Royce (2016); Klinger et al. (2017). Studies regarding other control

issues, such as station keeping and motion state estimation, can be found in Sarda et al.
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(2016) and Ma (2014).

• Group Control

To finish certain tasks, multiple autonomous vessels are needed. Therefore, the group control

of these vehicles in such scenarios becomes critical. One of the most popular formations used

in group control of autonomous vessels is the leader-follower structure. Lu et al. (2018b)

developed a distributed robust formation controller, based on directed graph theories, back-

stepping and the minimal learning parameter (MLP) algorithm, to handle the leader-follower

control problem of ASVs in the presence of external uncertainties. Similarly, Lu et al. (2018c)

also adopted the MLP algorithm together with the disturbance observer in their robust adap-

tive formation control scheme for USVs with leader–follower formation. Jin (2016) proposed

a fault tolerant leader–follower formation control scheme for a group of ASVs with LOS

range and angle constraints. Time-varying tan-type barrier Lyapunov functions are adopted

in the scheme to address the two constraints and finite time convergence. Liu et al. (2018b)

studied the output consensus problem of a leader-follower structured USV formation system.

A network-based incremental predictive control scheme was proposed in this paper to fix

the problems caused by network-induced delays and packet dropouts. Based on the leader-

following strategy, Shojaei (2016) introduced a second order formation dynamic model to

design the formation control system. Liu and Bucknall (2015) proposed a computer based

algorithm based on the fast marching method to solve the path planning problem of a leader-

follower USV formation. Liu and Bucknall (2016) also presented a formation path planning

algorithm based on AFMS for a group of USVs with a leader-follower shape. Inspired by LOS

guidance control laws, Kim and Kim (2018) developed a leader-follower motion control of

multiple autonomous ships under a stealth strategy for military purpose. Besides the leader-

follower structure, the virtual target approach is also a common choice for group control of

multiple autonomous vessels. Bibuli et al. (2018) integrates a safety distance constrained A*

approach with the virtual target approach to obtain the optimal trajectories for the USV

fleet. Discussion of the control problem of multiple USVs can also be found in Simetti et al.

(2012); Qin et al. (2017); Crasta et al. (2018).

Category 3: Design

Articles related to the design of autonomous vessels are reviewed in this category. The

research focus here includes the general design of the entire autonomous maritime system and

specific sub-systems of the autonomous vessels.

• General Design

Burmeister et al. (2014) illustrated a comprehensive conceptual design for an autonomous

dry bulk carrier. This design is proposed in the Maritime Unmanned Navigation through

the Intelligence in Networks (MUNIN) project and consists of four sub-systems, namely an
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advanced sensor module, an autonomous navigation system, an engine monitoring & control

system, and a shore control centre. Since the ship is unmanned, the advanced sensor module

is needed to replace the officer of the watch and monitor the surroundings of the vessel. The

sensor module will detect potential dangerous objects based on the data collected by radar,

camera and satellite. The autonomous navigation system ensures the ship follows a predefined

voyage plan. In the meantime, the system also helps difficult manoeuvres, such as collision

avoidance and mooring in ports. The engine monitoring & control system brings more

advanced condition monitoring functionalities which facilitate early failure prediction and

detection and better maintenance. Experienced nautical officers and engineers will monitor

the navigation in the shore control centre and be prepared to intervene when an emergency

occurs. Similar design ideas can also be found in Danish Maritime Authority (2016) and

Rolls-Royce (2016).

Perera et al. (2012) developed a control and navigation platform for ASVs. The overall sys-

tem can be further described under the hardware structure and the software architecture.

A command and monitoring unit (CMU) and a communication and control unit (CCU) are

proposed for the system hardware structure. The ashore based CMU will monitor the oper-

ations of the vessel and release new commands through a wireless Ethernet communication

linked with the CCU on board. The CCU will then execute orders and return operational

information. For the software architecture, several software loops, for example a real-time

loop and a TCP/IP loop, as well as a human machine interface are proposed for autonomous

and manual control of the ship. The developed system is implemented and tested on a scaled

self-propelled model of a real ship.

• Sub-system Design

Besides the general design of the entire system, the detailed design of specific sub-systems on

ASVs also attracts great attention. Man et al. (2015) and Wahlström et al. (2015) focused on

the human factor issues related with the design of a shore control centre. The former identified

the potential gaps that may decrease the operator’s situational awareness and affect the

decision quality during navigation. The latter, on the other hand, presented an overview of

human factor challenges, for instance information overload, negligence during changeovers,

and lack of feel of the vessel, which will affect the operational efficiency of autonomous

vessels. Both articles claimed that a better shore control centre design can solve the problems.

Jakovlev et al. (2017) illustrated an integrated intellectual data communication network for

a short-sea-shipping maritime information system which guarantees the adaptability and

availability of information for autonomous vessels. Wróbel et al. (2018) applied System-

Theoretic Process Analysis to offer valuable recommendations for innovative technical system

design of autonomous vessels. Jin et al. (2018) proposed a heading and velocity controller

design for USVs with backstepping technology. Makhsoos et al. (2018) and Khare and Singh

(2012) focused on hybrid energy system design for USVs. The former proposed a system with

solar power and 8KWh capacity lithium-ion battery. The hybrid system in the latter article
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comprises a solar array, an ocean wave energy converter, a fuel cell system, a diesel generator

and a lithium ion battery pack, which ensures stable power supply for long duration missions.

Hermann et al. (2015) described an obstacle detection system for a USV operating with high

speed and agile maneuvers. Liu et al. (2017b) introduced an original design of the intelligent

navigation system for a USV which is implemented and tested on a prototype. Rather

than directly studying the design of the autonomous vessel, Heins et al. (2017) presented a

multiphysics simulation model to evaluate the design of an autonomy management system

and reduce the need for real-world trials.

Category 4: Projects and Prototypes

The project MUNIN - Maritime Unmanned Navigation through Intelligence in Networks – is

a major research project regarding autonomous shipping funded by the European Commissions

under its Seventh Framework Programme with intensive multinational and cross-industrial

cooperations (MUNIN, 2016). Burmeister et al. (2014) offered a brief overview of the MUNIN

project and outlined the contributions made in this project for the development of future

e-Navigation solutions. Rødseth and Burmeister (2015) described a Formal Safety Analysis-

based risk assessment method which was applied in the MUNIN project. In the meantime,

the main results of the assessment and the corresponding application in the MUNIN project

were also presented in the paper. Kretschmann et al. (2017) calculated the cost difference

between the conceptual autonomous dry bulk carrier developed in the MUNIN project and

a conventional bulker. Another research project, named Advanced Autonomous Waterborne

Applications Initiative (AAWA) and funded by the Finnish Funding Agency for Technology and

Innovation, aimed to study the specification and preliminary designs for the next generation

of advanced ship solutions. The detailed contents and findings of this research project can be

found in the project report by Rolls-Royce (2016). Both the MUNIN and the AAWA projects

are also presented and summarized in a pre-analysis report on autonomous ship conducted

by the Danish Maritime Authority (2016). Simetti et al. (2012) presented a research project

based on the real-world application of USVs for security of civilian harbors. This project was

conducted by the University of Genova and Selex Sistemi Integrati (an Italian defence and

security equipment producer) and aimed to develop a solution for a USV team to intercept

a suspect vehicle in port areas. Moreover, many experiments are also made on specific USV

prototypes for different purposes. A summary of the literature in this category can be found

in Table 3.

Category 5: Economic Analysis

Without plausible economic incentives, the new ideas will hardly find their way to practice.

Hence, the economic analysis or cost-benefit analysis is also vital for the studies of autonomous

vessels. Danish Maritime Authority (2016) claims that the adoption of autonomous technology
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Table 3: Literature related with USV prototypes

Prototype Name Article Testing Purpose

Springer

Singh et al. (2018) Path planning

Sharma et al. (2012) Autopilot system

Liu et al. (2017b) Path planning

Charlie

Zanoli et al. (2012) Fault detection and isolation

Bibuli et al. (2012) Navigation, Guidance and Control (NGC) system

Zizzari et al. (2009) Path following and guidance control

CART and Trimaran Fumagalli et al. (2014) Visual and acoustic characterization

WAM-V USV14 Klinger et al. (2017) Control with uncertain displacement and drag

WAM-V USV16 Sarda et al. (2016) Station-keeping control

Halcyon Heins et al. (2017) Simulation model

Morvarid Makhsoos et al. (2018) Energy system

C-Enduro Savvaris et al. (2014) Collision avoidance

C-Worker 5 Iovino et al. (2018) Path manger

Dolphin I Li et al. (2018b) Heading control

DH-01 Peng et al. (2016) Steering

Aurora model Perera et al. (2012) Navigation and control platform

in shipping depends on the trade-off between lower crew cost and higher construction cost of

the newbuildings. However, Hogg and Ghosh (2016) argue that the reduction of crew cost may

be easily offset by the higher manning cost in the shore control centre and other additional costs

in ports, such as mooring and cargo handling. Cross et al. (2017), Hogg and Ghosh (2016) and

Rolls-Royce (2016) believed that the cost saving brought by reduced seaman salary is limited.

They pointed out that the main potential for cost reduction comes from the removal of the

on board infrastructure and facilities for crew’s daily life, which will lead to increased cargo

capacity as well as smaller and lighter vessels. Such arguments coincide with the findings in

Kretschmann et al. (2017). The results show that reduced crew cost only will not be sufficient to

promote autonomous shipping, but great economic benefit can be achieved through innovative

ship design with better space utilization for unmanned vessels.

Category 6: Environmental Impact

Shipping is one of the major sources for different types of emissions, for example CO2, SOx

and NOx. The literature about emission reduction for the conventional ships is well developed.

However, only few articles collected in this survey considered the environmental impact brought

by autonomous vessels. Hogg and Ghosh (2016) and Rolls-Royce (2016) briefly discussed the

potential emission reduction due to higher energy efficiency of unmanned ships.

Category 7: Law and Regulaiton

The existing maritime laws do not offer a practical legal framework for autonomous vessels

to operate in international waters. Hogg and Ghosh (2016) argue that such incompleteness in
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law and regulation has become one of the main obstacles for the development of autonomous

ships and therefore need to be fixed. Rolls-Royce (2016) offered a comprehensive analysis on

the legal implications of remote-controlled or autonomous shipping from different perspectives

including law of the sea, international conventions and liability rules. Karlis (2018) identified

the main areas of ambiguity and potential operational difficulties found in today’s crew related

conventions, which may prevent shipowner from investing in this new technology. Danish

Maritime Authority (2016) suggested that inspiration can be obtained from the legal progress

for autonomous vehicles and reminded us that special attention should be paid to the transition

period when unmanned and manned ships co-exist. Cross et al. (2017) asserted that it is possible

to stretch the existing IMO regulations to fit the operation of remotely controlled ships while

the update to cover fully autonomous ship remains challenging.

Category 8: Transportation and Logistics

We have found three entries in the transportation and logistics category. Rolls-Royce (2016)

discussed how the autonomous vessel will redefine the entire shipping industry. New business

relationships and networks,as well as new actors and their roles are the main drivers for this

transition. Danish Maritime Authority (2016) proposed many ideas about potential applica-

tion of autonomous vessels, for instance island ferries for rural areas, service vessels for offshore

operations and tugboats in port. Zhu et al. (2016) presented a real-world application of USVs

collecting maritime traffic information to facilitate the judgement and decision regarding other

vessels’ navigation. Since the literature in this category is relatively recent and limited, we

foresee that important research about how autonomous ships will impact logistics and trans-

portation is still to come.

Category 9: General Introduction

Since the topic of autonomous vessels is relatively new, a general introduction about this

concept is needed in the literature. Readers may find such introductions in Burmeister et al.

(2014), Danish Maritime Authority (2016), Cross et al. (2017), and Rolls-Royce (2016).

4 Analysis and Comparison

In this section, we perform a basic statistical analysis on the literature gathered. In addition,

we perform a comparison between the analysis of the literature of autonomous vessels and the

analysis of the literature of autonomous vehicles. The purpose of such a comparison is to

explore the potential research opportunities in the field of autonomous vessels based on the

experience obtained in the studies about autonomous vehicles.

First of all, we present a histogram regarding the number of articles published in each year
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for the past decade, see Fig. 1. A clear trend in this figure is that the popularity of research

about autonomous ships is rapidly increasing. One of the main reasons for such a trend is that

the autonomous technology for vessels has matured in recent years.

Figure 1: Publication data of papers studying autonomous vessels in each year

Secondly, we provide a geographical characterization of the literature in the field of au-

tonomous vessels, see Fig. 2. In computing the number for each country, we have counted

the number of articles in which a country is mentioned in the affiliation of its authors. If the

author of an article has affiliation in different countries, each of these countries gets one point

for this article. If a country appears two or more times in the affiliations of a same article,

it only accounts for one point. We can see from the results in Fig. 2 that China, UK, USA

and Norway have the highest number of publications on autonomous vessels. Aggregating all

European countries, they create the region with the largest share of contributions, equivalent

to 46 papers in total. In fact, several research projects, such as the MUNIN project and the

AAWA project, have taken place in Europe and attracted a great amount of attention from the

researchers in European universities and institutions.

The statistical analysis gives the distribution of the literature among the nine categories

defined in this survey, see Fig. 3. If an article belongs to only one category, one point is

assigned to this category. If the article belongs to multiple categories, the point is evenly

distributed among these categories for the final statistics. Clearly, the category of navigation

control and the category of safety have the largest shares (46% and 28%) of the literature, while

the shares of the other categories are considerably more limited. The distribution coincides

with the observation that most of the articles in this field are published in journals with strong

engineering and technology background, see Fig. 4. However, such unbalanced development in

the literature is to a certain extent understandable. Navigation control and safety concerns are

the two most basic prerequisites for the practical application of autonomous vessels. Therefore,
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Figure 2: Top countries & regions with most publications of autonomous vessels

it is reasonable that these two categories have much higher priorities than the others in the

beginning phase of this new technology.

Figure 3: Category distribution of the collected literature regarding autonomous vessels

With the literature on autonomous vehicles in a more advanced stage of development (e.g.

see reviews by Berrada and Leurent, 2017, and Bhoopalam et al., 2018), we found interesting

to compare recent contributions on that stream to its counterpart in autonomous vessels and

to distinguish some patterns. Fig. 5 summarizes this comparison.

Note that for autonomous vehicles, we considered only articles published after 2015. The

main reason for a shorter time coverage here is that the autonomous vehicle literature is much
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Figure 4: Top journals with most publications of autonomous vessels

more numerous than the autonomous vessels literature. Without a tighter time restriction, we

would easily end up with more than one thousand articles related to autonomous vehicles, which

is impractical for our survey purpose. The search was performed in Scopus (2018) and consid-

ered only journal articles. The search keywords include autonomous vehicle, autonomous car,

automated vehicle, automated car and automated driving. In total, we gathered 161 qualified

journal articles and classified them based on the same nine categories as defined in Section 2.

The classification is outlined in Appendix B. The comparison of category distribution between

the two streams of literature is illustrated in Fig. 5.

Figure 5: Comparison between autonomous vessels and vehicles

We observe that the general trends of distribution in most categories are very similar for

both literature streams. The number of publication in safety and navigation control related
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topics are high while the studies in other categories including design, project & prototypes, eco-

nomic analysis, environmental impact, law & regulation and general introduction, are limited.

The only exception occurs in the category of transportation and logistics. While transportation

and logistics has played a protagonist role in the recent literature on autonomous road vehicles,

this category is not yet predominant in the literature on autonomous vessels. We conjecture

that this difference is mainly caused by the different maturity levels of the two technologies.

For example, it is remarkable that the project of Google self-driving cars started in 2009 and

they have accumulated 300,000 miles self-driving experience during the last decade (Waymo,

2019). Tesla also lunched its autopilot project and finally commercialized it as a feature of its

final product in 2014 (Tesla, 2018). Due to the high maturity of the self-driving technology,

great attention from the logistics research community was attracted, which finally triggered the

research gravity shift from fundamental topics (control and safety) to application topics (trans-

portation and logistics). For autonomous vessels, the development of real-world applications is

relatively slower. Therefore, the research priority still remains on the basic issues today (control

and safety) and have not yet switched to transportation and logistics issues. The situation is

gradually changing. In December 2018, Rolls-Royce and the Finnish state-owned ferry operator

Finferries demonstrated the operational feasibility of the world’s first fully autonomous ferry

(Rolls-Royce, 2018). In the trial voyage, both navigation and docking are handled by the ferry

with zero human intervention. Furthermore, the world’s first fully electric and autonomous

container ship, Yara Birkeland, will also be tested in 2019 and start fully autonomous oper-

ation by 2022 (Kongsberg, 2018). As technology matures, the commercialized application of

autonomous navigation in shipping is expected in the near future, which leads to great research

opportunities. Hence, we argue that it is the right time for the research community interested

in autonomous vessels to shift their research focus from the basic control and safety studies to

transportation and logistics applications.

5 Conclusion

We made a parallel comparison between the existing literature on autonomous vessels and

autonomous vehicles. One can observe that in both cases there is significant work on navigation

control and safety. That literature shows that in both cases we are achieving a level of maturity

that may allow researchers to start working on realistic applications of autonomous technologies.

Our results show that for autonomous vehicles that is indeed the case, particularly the literature

in the category of transportation and logistic is booming.

However, it appears that the impact of autonomous vessels in the current logistic models is

still an open question. Indeed, our review shows that there is little work done in that category.

The technology of autonomous ships is developing rapidly, with a significant pace observed in

the past few years. Those developments are delivering a mature technology that we believe is

opening the opportunity to start investigating its impact on the logistic systems.
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We foresee several application areas where autonomous vessels may impact the logistic sys-

tems. First, we think this technology allows us to rethink the operations of the vessels. For

example, they may help to improve the delivery of services and the distribution systems in

sparsely populated coastal areas. We believe that the flexibility on the operations introduced

by the autonomous technologies may help to improve coverage for some services and the dis-

tribution of goods. It also poses the question of the management of mixed fleets with both

conventional and autonomous ships, which may include multi-functional vessels with remote

control. In particular, this problem may arise in a transitional period of migration from con-

ventional vessels to autonomous vessels. Given the initial high costs of autonomous vessels and

perhaps the need for infrastructure that can accommodate them, it is possible to have a tran-

sition period when both technologies will coexist. That assumes that there will be a transition

to a fleet only of autonomous vessels. However, an open question is if a fully autonomous fleet

is something desirable to ensure the robustness and reliability of the logistic networks.

Furthermore, the categories on economic analysis and environmental impact are worthy of

more investigation as well. Improvements in those dimensions can be main drivers for expanding

the use of autonomous vessels in transport and logistics. One may consider, for example, feasible

newbuilding prices of autonomous vessels for commercialization and cost-benefit analysis in the

category of economic analysis. In the category of environmental impact, emission reduction

with autonomous vessels is a subject of study that may also contribute to such an expansion.
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Bertaska, I. R., Shah, B., von Ellenrieder, K., Švec, P., Klinger, W., Sinisterra, A. J., Dhanak,

M., and Gupta, S. K. (2015). Experimental evaluation of automatically-generated behaviors

for USV operations. Ocean Engineering, 106:496–514.

Beser, F. and Yildirim, T. (2018). COLREGS based path planning and bearing only obstacle

avoidance for autonomous unmanned surface vehicles. Procedia Computer Science, 131:633–

640.

Bhavsar, P., Das, P., Paugh, M., Dey, K., and Chowdhury, M. (2017). Risk analysis of au-

tonomous vehicles in mixed traffic streams. Transportation Research Record, 2625:51–61.

Bhoopalam, A. K., Agatz, N., and Zuidwijk, R. (2018). Planning of truck platoons: A literature

review and directions for future research. Transportation research part B: methodological,

107:212–228.

Bibuli, M., Bruzzone, G., Caccia, M., Ippoliti, G., Longhi, S., Orlando, G., and Pelusi, G. M.

(2012). Discrete-time sliding mode control for guidance of an unmanned surface vehicle.

IFAC Proceedings Volumes, 45(27):441–446.

Bibuli, M., Singh, Y., Sharma, S., Sutton, R., Hatton, D., and Khan, A. (2018). A two layered

optimal approach towards cooperative motion planning of unmanned surface vehicles in a

constrained maritime environment. IFAC-PapersOnLine, 51(29):378–383.

20



Bichiou, Y. and Rakha, H. A. (2019). Real-time optimal intersection control system for auto-

mated/cooperative vehicles. International Journal of Transportation Science and Technology,

8(1):1–12.

Bischoff, J. and Maciejewski, M. (2016a). Autonomous taxicabs in Berlin – a spatiotemporal

analysis of service performance. Transportation Research Procedia, 19:176–186.

Bischoff, J. and Maciejewski, M. (2016b). Simulation of city-wide replacement of private cars

with autonomous taxis in Berlin. Procedia Computer Science, 83:237–244.
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et al. (2018); Chen et al. (2017a); Liu et al. (2017a); Loeb et al. (2018); Cantarella and Febbraro (2017); Yap et al. (2015); Calvert et al. (2017);

Vitello et al. (2017); Zhao and Kockelman (2018); Levin and Boyles (2015); Lu et al. (2018a); Sherif et al. (2017); Duarte and Ratti (2018); Olia

et al. (2018)

• Category 9: General Introduction

Shladover (2018)
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