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Abstract

Supply channels typically face uncertain and time-varying demand. Nonetheless, time-dependent

channel optimization while addressing uncertain demand has received limited attention due to

the high level of complexity of the ensuing nested equilibrium problems. The level of complexity

rises when demand is dependent on current and previous prices. We consider a decentralized

supply channel whose two members, a manufacturer and a retailer, must address the demand

for a perishable commodity within a multi-period time horizon. Using a general (additive-

multiplicative) stochastic model for the price-dependent demand, the purpose of this paper is to

provide the channel members with analytic tools to devise optimal pricing and supply strategies

at different times. In the first part of the paper, we propose a constructive theorem providing

an explicit solution algorithm to obtain equilibrium states for bilevel optimization in decentral-

ized supply channels. We also prove that the resulting equilibria are subgame perfect. In the

second part, we allow the retailer to postpone her supply and pricing decisions until demand

uncertainty is resolved at each period. Using subgame perfectness of the equilibria, we propose

solution algorithms that use the extra information obtained by postponement. Finally, in a

number of comparison theorems, we show that postponement strategies are always beneficial

for a centralized channel (whose revenue structure is identical to that of a retailer). Whereas for

a decentralized channel, due to vertical competitions, there may be scenarios wherein postpone-

ment strategies, i.e. access to extra information, turn out to be detrimental to the manufacturer

and even to the whole channel.
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∗Department of Business and Management Science, NHH Norwegian School of Economics, Helleveien 30, 5045 Bergen,

Norway, reza.gholami@nhh.no
†Department of Business and Management Science, NHH Norwegian School of Economics

1



1 Introduction

Demand for almost every commodity is typically uncertain and time-varying. Better products

being rolled out by competitors may reduce or eliminate demand for a certain commodity. Seasonal

changes in demand trends for commodities such as apparel may rapidly render a fashionable product

outdated. Thus gaining information about uncertain and time-varying demand for a commodity is

vital for every vendor facing it.

With the advent and growth of online shopping, supply channels have become able to obtain

reliable signals from the uncertain demand. Electronic-commerce retailers such as Amazon, Wal-

Mart and eBay provide their customers with “wish lists” where potential buyers can suggest or

pre-sale an item before its “future release”, thus reducing demand uncertainty for the retailers.

The main goal of this paper is to provide the supply channel members with analytic tools to use

the uncertain demand data when devising long-term (multi-period) pricing and supply strategies.

The problem of finding equilibrium state for a supply channel facing uncertain demand in a

single-period time setting has been long studied. Petruzzi and Dada (1999) solve the single-period

newsvendor problem for both (purely) additive and multiplicative price-dependent uncertain de-

mand models and compare the results with those of the benchmark deterministic model. Pasternack

(2008) analyzes the static (single-period) problem of finding optimal pricing strategies and buy back

contracts (return policies) for a retailer and a manufacturer facing uncertain demand for a perish-

able commodity. Gümüş et al. (2013) extend the study of inventory management for suppliers

facing uncertain demand into a double-period time setting. Keren (2009) solves the single-period

inventory problem for a specific demand distribution and two types of yield risks, with the decision

variable being the order quantity.

However, there are many scenarios in which a multi-period analysis of pricing and demand

is necessary. Market-penetration scenarios in which entrant suppliers try to manipulate demand

by offering lower prices in the beginning are among such cases. Incurring initial losses that may

manipulate the demand and cause higher profits in the future are not prescribed by single-period

solutions that do not consider future effects of pricing on demand and profit.

Considering the effect of the pricing history on future demand and, as a result, on future profits

in multi-period supply chain coordination is a challenging task. In many studies, the random

demand in different periods are considered to be Markovian and independent from each other

across time (Aviv and Federgruen 2001).

In Section 3, we embed the uncertain demand structure introduced in Section 2 in a dynamic

2



(multi-period) bilevel profit optimization problem where two competing suppliers, a manufacturer

and a retailer, try to maximize their respective revenues through addressing the demand. We

analyze the problem in a Stackelberg framework where the manufacturer is the leader and the

retailer is the follower. We assume both the agents to be risk-neutral so each one them tries to

maximize her respective expected profit while being subjected to the optimality of the other player’s

solution. The decision variables to be determined are the wholesale price, retail price, and the order

quantity which are set at the beginning of each period. We analyze the equilibrium problems within

the scope of multiple periods and with a general contract where the manufacturer may or may not

offer buy back prices to the retailer.

The analysis in that section results in Theorem 3.1 where we state the necessary conditions

for the existence of equilibria in different periods. Moreover, we propose a solution algorithm to

obtain the numerical variables constituting the equilibria. Moreover, in Proposition 3.2, we prove

that the obtained equilibria are subgame perfect—a property we will use later when analyzing price

postponement strategies.

Granot and Yin (2008) solve the single-period problem of price and order postponement in

a decentralized newsvendor model. The demand in their model is price-dependent and purely

multiplicative. They analyze and compare the effect of different demand mean functions on the

profit obtained by the whole channel and each individual supplier. Lenk (2008) extends the single-

period study of the effect of price postponement on supply chain coordination into a two-stage

newsvendor problem. Xu and Bisi (2011) study a price postponement scenario in a single-period

newsvendor model with wholesale price-only contract. They, too, consider purely multiplicative

or additive structures for the uncertain demand and make a series of assumptions about demand

distribution which assure the unimodality of ensuing profit functions for both the manufacturer

and the retailer.

Having solved the multi-period equilibria for no-postponement scenarios in Section 3, in Section

4 we propose and analyze the order postponement feedback policy in a multi-period setting. In this

scenario, at each period, the retailer postpones sending her order quantity to the manufacturer until

she observes the demand uncertainty in that period. We solve the problem of finding the optimal

feedback policy and in Theorem 4.1 and its Corollary 4.3 show how the results of postponement

equilibria outperform those of the non-postponing strategy adopted in Section 3.

In Section 5, we analyze another feedback policy in which the retailer postpones her retail pricing

decision until after demand uncertainty is resolved. Using the subgame perfect property of the

original equilibria found in Section 3, we solve the bilevel multi-period optimization problem with
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the additional information obtained after postponement. The structure of the ensuing equilibria

and the solution algorithm are offered in Theorem 5.1. In Section 5.3, we compare the results of

price postponement equilibria with those of the non-postponing strategy.

Finally, in Section 6, we provide a few number of examples containing simulated realizations

of the random scenarios described in the previous sections. These examples have been provided to

merely familiarize the reader with the implementation of the solution algorithms. They illustrate

our theoretical model’s scope of applicability and its flexility in performing prescriptive analyses

accordingly. It is imperative to note that these examples and the mathematical features of the

scenarios simulated therein are merely speculative and not the results of empirical studies.

2 Preliminary Model Description

In a dynamic setting and time-dependent structure, first we propose a general model for stochastic

demand at each point in time. Then, in sections 3, embedding this demand structure into various

profit-optimization games, we arrive at equilibria solutions for each scenario. We divide the time

scope into n discrete intervals referred to as periods. All the model variables and parameters are

assumed to remain constant within each period.

In general, we consider demand at each period k to be a function of the entire retail price

history, and time.

Dk = µ̃k(rk) + σ̃k(rk) εk (1)

where rk is the retail price at k, rk = [r1, · · · , rk] is the vector of the entire retail price history up

to period k. Moreover, µ̃k(·) and σ̃k(·) are deterministic functions of rk and time (period k), and

εk is the stochastic variable at k.

The stochastic variable εk is normalized such that E[εk] = 0 and Var[εk] = 1.We also assume that

the density function for εk and its cumulative distribution function, fεk(·) and Fεk(·) respectively,

are known over its support [εk, εk]. Furthermore, we assume Fεk(ε) = 0 and Fεk(εk) = 1. Plus, we

assume that Fεk is invertible on the support interval and denote the resulting inverse cumulative

distribution function (quantile function) by F−1
εk

(·).

In a purely additive model for the uncertain demand, the volatility of demand is considered

to be constant and in a purely multiplicative model, the mean and standard deviation of demand

are assumed to be equal, thus making the coefficient of variation of demand a constant (i.e. 1).

Both assumptions, as we will see in the next section, are restrictive and undesirable (Young 1978).1

1In the multiplicative demand model, D = µ(r)ζ, E[ζ] = 1. This structure is a special case of our model with the assumption
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An additive-multiplicative model, on the other hand, allows us to cover cases with coefficient of

variation of demand being affected by the retail price.

2.1 Open-loop and Closed-loop Equilibria problems

Having outlined our general demand structure in section 2, we embed it in a class of channel opti-

mization problems where the suppliers of a perishable good face the uncertain demand described

earlier. The supply chain is comprised of a manufacturer and a retailer. We consider a Stackel-

berg competition framework in which the manufacturer is the leader and the retailer acts as the

follower. Considering the uncertain demand for the product, at the beginning of each period k, the

manufacturer sets the optimal wholesale price wk, and the retailer has to find the optimal retail

price rk, and order quantity qk accordingly. We denote the equilibrium values of the wholesale and

retail prices and order quantity by w∗k, r
∗
k, and q∗k respectively.

In a non-postponement analysis, both the agents are risk-neutral and their optimization problem

is based on maximizing their respective expected profits within the n-period time scale. In such

scenarios, after w∗k is announced, the retailer announces her r∗k and q∗k without postponement.

Whereas in an order quantity or retail price postponement scenario, the retailer postpones dec-

laration of one of her decision variables (either qk or rk) until she has observed demand uncertainty

εk. At each period k the retailer uses this extra delayed information in order to incorporate the

real value of her period (i.e. local-in-time) profit in her optimization problem. In Theorem 4.1,

its Corollary 4.4, and in Sections 5.3 and 5.3.1 we discuss how different postponement strategies,

allowing for post-observation optimization, will affect the profits for the two decision makers and

for the whole channel.

We refer to the post-observation equilibrium variables as ŵk, r̂k, and q̂k. In the subsequent

sections, we refer to the non-postponement optimization procedures as the open-loop, ex-ante, or

pre-observation analyses. We also use the terms post-observation, closed-loop, and ex-post analysis,

interchangeably to refer to the postponement analysis.

µ(r) = σ(r), where demand will be D = µ(r) + µ(r)ε. Despite its computational tractability, we find the assumption that the

mean and standard deviation of demand are necessarily equal quite strong and not always justifiable.

5



3 Pre-observation Equilibrium: An Open-loop Model Without

Postponement

At the beginning of each period, the manufacturer offers a wholesale price. Then the retailer sends

her order quantity (which may be zero) to the manufacturer and declares her retail price to the

market. At the end of the period, if the retailer is left with a surplus of items, which means her

order quantity was larger than the actual demand, she will sell them for a salvage price. She may

or may not receive a buy back offer from the manufacturer for the surplus items. Because the

commodity is perishable, she will not be able to store the unsold items to be offered to the market

in the next periods.

In this section we solve the problem of maximizing the expected profits within the whole

timescale encompassing all the periods. Thus, for instance, a pricing strategy that is optimal

for a single period problem may be found out to be suboptimal within the multi-period setting.

Thereby, the prescribed pricing and order quantity for the manufacturer and the retailer will enable

then to make strategic sacrifices in order to boost the demand and rip the highest expected profits

within the multi-period timescale. The decision variables to be determined are the wholesale price,

retail price, and order quantity in each period, and the objective functions to be maximized are

the holistic discounted expected profit for each decision maker.

3.1 The Static (Single-period) Equilibrium Problem

The final model in section 3.5, its equilibrium structure, and our proposed algorithm for its nu-

merical solution presented in theorem 3.1, will include the general multi-period problem. However,

for illustration purposes we start out with a single-period Stackelberg equilibrium problem. Later

we expand the scheme to solve the generalized equilibrium problem in a multi-period (dynamic)

setting.
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Model Variables and Parameters

w = wholesale price per unit, (decision variable)

r = retail price per unit, r > w (decision variable)

q = quantity of items to be supplied to the market, (decision variable)

D = actual uncertain demand

cm = manufacturing cost per unit, cm < w (given parameter)

cr = retailer’s marginal cost per unit, cr < r − w (given parameter)

s = salvage price per unit

b = buy back price per unit

πm = manufacturer’s profit

πr = retailer’s profit

Note that because this is a single-period analysis, we have suppressed the subscripts k. In such a

single-period setting the general demand expression in (1) will turn into a specific simplified form

described below.

D = µ(r) + σ(r)ε (2)

In the multi-period analysis, however, all the decision variables and parameters may vary with

time. This feature adds up to the level of non-autonomy the model can cover.

In general the single-period equilibrium is obtained by solving the following bi-level maximiza-

tion problem.

max
q

E[πr(r, w, q)] to obtain q∗(r, w)

max
r

E[πr(r, w)] to obtain r∗(w)

max
w

E[πm(w)] to obtain w∗ → r∗, q∗

(3)

Note that in (3), optimization procedures are applied on expected values of the players’ profits.

The retailer’s profit, πr is calculated as below.

πr(r, q, w) = rmin(D, q) + s(q −D)+ − crq − wq + b(q −D)+

= (r − s− b) min(D, q) + (s+ b− cr − w)q
(4)

In (4), for the sake of generality, we have considered buy back contracts represented by b. In a buy

back contract the manufacturer pays the retailer b < w per unit unsold. It should be noted that

a buy back contract does not necessarily mean that the unsold items will be physically sent back

7



to the manufacturer (Chacon 2003). In order to share the risks stemming from market uncertainty

and incentivize a larger order quantity, the manufacturer credits the retailer for each unsold item.

Obviously r > b+ s.

In order to obtain the expected value of the retailer’s profit, we need to calculate E
[

min(D, q)
]
.

Given fε, Fε, and ε we define and calculate the expected sales, S, as follows.

S(q) := E
[

min(D, q)
]

=

∫ ε

ε
min(µ+ σt, q) fε(t) dt

=

∫ q−µ
σ

ε
(µ+ σt) fε(t) dt+

∫ ε

q−µ
σ

q fε(t) dt

= q − (q − µ)Fε

(q − µ
σ

)
+ σ

∫ q−µ
σ

ε
tfε(t)dt

(5)

∂ S(q)

∂q
= 1− Fε

(q − µ
σ

)
(6)

From (4) and (5), we obtain the expected value of the retailer’s profit πr.

πr(r, w, q) := E[πr(r, w, q)] = (r − s− b)S(q) + (b+ s− cr − w) q (7)

Following the outline in (3), now the retailer can calculate her optimal order quantity, q∗ as a

function of r and w.

∂πr

∂q
= (r − s− b)

(
1− Fε

(q − µ
σ

))
+ (b+ s− cr − w) = 0 (8)

From the expressions in (6) and (7) it is readily observable that E[πr(r, w, q)] is convex with respect

to q; therefore, solving (8) yields q∗(r, w) as the argmax of the retailer’s expected profit.

q∗(r, w) = µ(r) + σ(r)F−1
ε

(
r − w − cr
r − s− b

)
(9)

Substituting (9) in (5) and the result in (7), we obtain the following.

πr(r, w) = (r − w − cr)µ(r) + (r − s− b)σ(r)

∫ z

ε
tfε(t)dt

where z(r, w) = F−1
ε

(r − w − cr
r − s− b

) (10)

Note that because ε < z < δ, the term
∫ z
ε tfε(t)dt is always negative, which in turn makes (r −

s − b)σ(r)
∫ z
ε tfε(t)dt also negative. This means that stochasticity in demand always reduces the

expected profit for the retailer.

Following the procedure outlined in (3) a numerical solution to max
r
πr(r, w) in (10) yields r∗(w)

which is in turn substituted in the expression for the manufacturer’s expected profit (12).

8



πm = (w − cm)q − b(q −D)+ = (w − cm− b)q + bmin(D, q) (11)

πm(w) = µ (r∗(w))
(
w − cm

)
+ σ (r∗(w))

[
(z∗(w)

(
w − cm −

r∗ − w − cr
r∗ − s− b

)
+ b

∫ z∗

ε
tfε(t)dt

]
where z∗(w) = F−1

ε

(r∗ − w − cr
r∗ − s− b

) (12)

A numerical solution to max
w

πm will complete the procedure in (3) and yield the equilibrium values

of w∗, r∗, and q∗.

3.2 The Dynamic (Multi-period) Equilibrium Problems

Having solved the open-loop equilibrium problem in a single-period setting, we now proceed to

the general open-loop problem in a multi-period time frame. In a multi-period setting, both the

manufacturer and the retailer try to maximize their total expected profit over the whole duration

of n periods. We start with analyzing the retailer’s optimization problem. The manufacturer will

face an structurally identical problem.

max
rk

Π
r

=
n∑
k=1

αkE[πrk|D1, · · · , Dk−1] (13)

where αk is the given discount factor at period k, (α1 = 1).2

From the structure of the expected profit at a single-period in (10) and without loss of generality

we can conclude that E[πrk] is a function of the mean and variance of the demand, which in turn

may depend on the entire price history. The dependence of µ(rk) and σ(rk) on the vector of the

whole retail prices in the past makes the optimization problem (13) highly nested.

Additionally, it should be noted that as was the case in the single-period problem, the retailer’s

problem must be solved while considering retail price at k as a function of the manufacturing price

at that period; rk = rk(wk). In other words, in the order presented in (3) the retailer solves her

optimization problem for any feasible value of wk offered by the manufacturer. Doing so she obtains

her optimal decision variable as a function of the manufacturer’s decision variable; r∗k = r∗k(wk).

Only when the third step in the bilevel optimization problem (3) is accomplished, i.e. when the

manufacturer’s problem to find the numerical value of w∗ is solved, can the retailer substitute this

value in the functional format of her optimal decision variable. This will yield the numerical value

of r∗k(w
∗
k). We assume that both the players are rational and each one can solve both her own and

2This allows for time-dependent discounting which in turn allows for different length of periods.
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the other’s optimization problem. That is, essentially in the bilevel optimization problem, each

agent when solving her own optimization problem is simultaneously constrained to the optimality

of the other player’s solution. The bilevel nature of the optimization algorithm also adds up to level

of inter-dependence between decision variables and to the complexity of the ensuing equilibrium

problem.

3.3 A General Solution Procedure

Using backward induction method, we begin the solution of the multi-variable nested optimization

problem by analyzing the final period. It is readily observable that the only profit expression in

(13) which depends on rn is E[πrn]. Thus maximization of Π
r

with respect to rn is equivalent to

maximization of E[πrn] with respect to rn.

max
rn

Π
r ≡ max

rn
E[πrn] (14)

Moreover, at period n all of the previous decision variables and demands have become common

knowledge. Therefore, given r∗n−1 and Dn−1 = [D1, · · · , Dn−1] and assuming that the mapping

rn 7→ E[πrn|Dn−1] has a global maximum, this global maximum can be expressed as a function of

the previous retail prices and demand history.

r∗n = r∗n(rn−1,Dn−1) (15)

Now the backward induction method proceeds to the period n − 1 where having r∗n as expressed

in (15) enables us to conclude that maximization of Π
r

with respect to rn−1 is equivalent to

maximization of αn−1E[πrn−1]+αnE[πrn] with respect to rn−1. The resulting r∗n−1 will be a function

of (r∗n−2,Dn−2). Inserting this new function into (13) and iterating the same procedure backward

in time, we obtain the vector r∗n.

3.4 Generalizing Demand’s Dependence on Time and Prices

The microeconomic relationship between an elastic demand structure and the current price is

classically portrayed as Dk = ψ(rk), where k denotes the current period.

However, not every market behaves in such a simple manner, as strategic buyers base their

purchase on the (possibly repetitive) trends of previous prices to which they have become anchored.

In general, potential buyer’s valuation of a commodity and, in turn, their purchase decision

may become biased by their comparison of the current price and those of the past. For example,

in a specific scenario, a price increase by 20% may reduce the customer base by, for example, 10%.
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Thus, a general time-dependent model of supply and price optimization should also consider

the effect of anchoring to the past prices on current demand.

We base our time-dependent model of uncertain demand on the simple premise that the prob-

ability of an item being sold at time k for the price of rk depends on the customers’ interest, which

in its own right, in general, may depend on the past prices,

Dk ∝ P(purchasek) = P(purchasek | interestedk) · P(interestedk) (16)

Dk = ψk(Rk) · Hk(Rk−1, · · · , R1) (17)

where the functional form H represents price history. Obtaining such a functional form may fall

into the domain of behavioral economics.

Obviously, such a general demand model, which considers the effects of anchoring to the past

prices, also covers the classical memoryless demand case where Hk = 1.

If the demand functional format remains identical (as is the case in some microeconomic anal-

yses), i.e. ψk(Rk) = ψ(Rk), the procedure outlined in Section 3.3 turns into a repeated game.

In contrast, a fully dynamic game emerges when the functional formats for ψk(Rk)s vary with

time, adding to the level of non-autonomy in the ensuing equilibrium problems. In addition,

assuming demand’s dependence on past prices, i.e. Hk = Hk(Rk−1, · · · , R1), makes the equilibrium

problems highly nested.

In Theorems 3.1, 4.1, and 5.1 we propose solution algorithms for the general non-autonomous

dynamic games. Obviously, the proposed solution algorithms are significant generalizations which

among others, cover the trivial n-periodic repeated games as well as the non-trivial fully non-

autonomous memory-less cases.

3.4.1 Memory-based Uncertain Demand

In our expression for memory-based demand, we embed a class of functional forms within the

uncertain demand structure such that the demand at each period be not only a function of price at

that period, but also carry the effects of pricing policies and the demand in the previous periods.

We will refer to these functional forms as memory functions and denote them by Φk(rk−1).

As discussed earlier, the additive-multiplicative structure of demand in (1) enables us to cover

general demand expressions with non-constant coefficient of variation. Here, for the sake of greater

generality, we consider the coefficient of variation of demand to be a function of the retail price as

well.

CVDk = CVDk(rk) (18)
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In this paper we limit our analysis to the reasonable case where previous prices scale the level of

the current demand.

Dk(rk) = Φk(rk−1)dk(rk)

where dk(rk) = µk(rk) + σk(rk)εk

(19)

Comparing (19) with (1) we observe that

µ̃k(rk) = Φk(rk−1)µk(rk)

σ̃k(rk) = Φk(rk−1)σk(rk).
(20)

The memory functions embedded within the uncertain demand Dk(rk) must be such that at the

k + 1st period, Φk+1(rk) retains the information from the entire previous periods’ memories while

being affected by the last piece of information that has becomes available, i.e. rk. This feature can

be obtained by the following expression.

Φk+1

Φk
= φk(rk) (21)

We call these φk(rk)s the memory elements. Notice that the possibility of having different functional

forms for φks in different periods enables our demand structure to cover more non-autonomy. With

the memory structure in (21), we will have:

Φk(rk−1) =
k∏
i=1

φi(ri−1)

Φ1(·) = φ1(·) = 1

(22)

3.5 Embedding the Demand Structure in the Equilibrium Problems

The general construction outlined in Section 3.3 is sufficiently explicit to enable solutions of the

problem for most choices of functions µ̃ and σ̃. However, as discussed in section 3.2 the resulting

bilevel optimization problem in its multi-period setting is so deeply nested that one cannot expect

to find an analytical solution.

The importance of our memory-based demand scheme lies in the structure it will create when

embedded inside the expressions for the channel members’ expected profits. At each period k, we

denote the local-in-time profit for the retailer and the manufacturer by π̃rk and π̃mk , respectively.

The memory-based expression for demand at each period Dk is given in (19). Due to linearity

of the expressions for π̃rk and π̃mk with respect to D in the single-period case, it is straightforward

to see that for the kth period, the resulting expressions for the order quantity and the expected
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values of the profits will be as below.

Dk(k, rk) = µ̃k(rk) + σ̃k(rk) εk = Φk(rk−1)
[
µk(rk, k) + σk(rk, k) εk

]
(23)

E[π̃rk] = (rk − wk − crk) µ̃k(rk) + (rk − sk − bk) σ̃k(rk)
∫ zk

εk

tfε(t)dt

=

:=πrk︷ ︸︸ ︷[
(rk − wk − crk)µk(rk) + (rk − sk − bk)σk(rk)

∫ zk

εk

tfε(t)dt
]
·Φk(rk−1)

where zk(rk, wk) = F−1
ε

(rk − wk − crk
rk − sk − bk

)
(24)

We refer to πrk as scaled expected profit for the retailer at k. Thus (24) can be simplified as below.

E[π̃rk] = πrk · Φk(rk−1) (25)

The manufacturer’s local-in-time expected profit is calculated as below.

E[π̃mk ] =

{
µk (r∗k(wk))

(
wk − cmk

)
+ σk (r∗k(wk))

[
(z∗k(wk)

(
wk − cmk −

r∗k − wk − crk
r∗k − sk − bk

)
+bk

∫ z∗k

εk

tfε(t)dt
]}
· Φk(r

∗
k−1)

where z∗k(w) = F−1
ε

(r∗k − wk − crk
r∗k − sk − bk

)
(26)

Analogous to the single-period case, the numerical value for the optimal order quantity is then

obtained from the following expression.

q∗k = Φk(r
∗
k−1)

[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k

)]
(27)

Similarly we refer to the term inside the curly brackets in (26) as the scaled expected profit for

the manufacturer at k and denote it by πrm. Whence (26) is simplified as below.

E[π̃mk ] = πmk · Φk(r
∗
k−1) (28)

It is important to note that in general, the argmax of the expected profit in a specific period k

for either supplier, i.e. the result of max
rk,mk

E[π̃r,mk ] is not equal to the value of the kth optimal

decision variable for that supplier when the objective function is the whole expected profit within

the periods 1 to n. In other words, in general

max
rk,mk

E[π̃r,mk ] 6≡ max
rk,mk

Π
r,m
. (29)

We refer to the results of the RHS of (29) as myopic solutions and to those of its LHS as the holistic

ones. Our objective is to find the vectors of the latter – those decision variables which considering

13



the effect of the pricing in the past on current and future demand, manipulate the demand such

that they yield highest amounts of expected profits for each decision maker over the time interval

between 1 and n.

To that end, we begin by analyzing the retailer’s optimization problem and re-write the general

optimization problem in (13) using the results of (25).

max
rn

Π
r

= πr1(r1, w1, q1) + · · ·+ αkΦk(rk−1)πrk(rk, wk, qk)

+ · · ·+ αnΦn(rn−1)πrn(rn, wn, qn)

(30)

Analogous to the approach adopted in Section 3.3, we observe that the variable rn appears only

in the final discounted profit term–more precisely in πrn. Thus following the backward induction

process, we begin the optimization from the final period.

max
rn

Π
r
(rn) ≡ max

rn
πrn(rn) (31)

At each period k we define Jrk as the discounted expected value of the profit obtained from that

period onward, i.e. within the time interval {k, · · · , n}.

Jrk = αkΦk(rk−1)πrk(rk) + · · ·+ αnΦn(rn−1)πrn(rn) (32)

Notice that Jr1 = Π
r
. We also observe that in this structure, beginning from the last period, the

variable rk in Πr appears for the first time in the expression for Jrk . Having solved the RHS of (31)

we obtain r∗n and proceed to the previous period n − 1. Knowing r∗n means that in the holistic

optimization problem (30) the unknown variable rn−1 appears only in the two final terms for the

expected profit. This is stated below.

Jrn−1(rn−1) = αn−1Φn−1(rn−2)πrn−1(rn−1) + αnΦn(rn−1)πrn(r∗n)

= Φn−1(rn−2)

:=Jrn−1: a function of rn−1 only︷ ︸︸ ︷[
πrn−1(rn−1) +

αn
αn−1

φn−2(rn−1)πrn(r∗n)︸ ︷︷ ︸
given

] (33)

Thus the problem of finding the optimal r∗n−1 boils down to the following single-variable optimiza-

tion problem.

max
rn−1

Π
r
(rn−1) ≡ max

rn−1

Jrn−1(rn−1) ≡ max
rn−1

Jrn−1(rn−1) (34)

Going backward in time, we can generalize this procedure as shown in (35), given that α1 = 1 and

14



Φ1(·) = 1.

Jrk := αk Φk(rk−1)︸ ︷︷ ︸
price history

:=Jrk(rk)︷ ︸︸ ︷(
πrk(rk) + φk+1(rk)

[αk+1

αk
πrk+1(r∗k+1) + · · ·+ αn

αk
πrn(r∗n)

n∏
i=k+2

φi(r
∗
i−1)

]
︸ ︷︷ ︸

:=Frk= expected (future) values, given at kth period

)

max
rk

Jrk

(35)

In general, we define Frk , the scaled expected future profit within {k+ 1, · · · , n} and Jrk, the scaled

expected profit within {k, · · · , n}, as below.

Frk :=
1

αk

n∑
j=k+1

j∏
i=k+2

φi(r
∗
i−1) · αjπrj(r∗j ) (36)

Jrk(rk) := πrk + φk+1(rk)Frk (37)

As it is demonstrated in (35), when the backward induction process reaches the kth period, the

scaled profit expected to gain in the future denoted by Frk has been determined and is treated as

a constant. We also observe the following relationship between Jrk+1 and Frk .

Jrk+1(r∗k+1) =
αk
αk+1

Frk 1 ≤ k < n (38)

Note that, unlike Frk and Jrk+1, Jrk+1 includes the entire pricing history Φk(rk−1) and hence is not

known at k. In fact, Jrks are not resolved until the backward induction reaches k = 1. The effect of

the past represented by Φk(rk−1), though not yet determined by backward induction, is factorized

in (35) such that it only scales the expected profit from k onward. Therefore, we will have:

max
rk

Π
r
(rn) ≡ max

rk
Jrk(rk) ≡ max

rk
Jrk(rk) (39)

Combining (35) and (38) we can summarize the retailer’s part of the multi-period bilevel optimiza-

tion in the following recursive procedure.

Frn = 0 no future earning after n

max
rk

Jrk(rk) = max
rk

[
πrk(rk) + φk+1(rk)Frk

]
k = n, · · · , 1 (backward) → yields r∗k

Frk−1 =
αk−1

αk
Jrk(r

∗
k) k = n, · · · , 2 (backward)

(40)

From the procedure outlined in (40) it is readily observable that, in general, the holistic optimal re-

tail prices (r∗ks) are not the optimizers of individual πrks. The only situation where rk = argmax(πrk)

is when φk+1 = Ck, where Ck is a constant. A scenario in which all the memory elements are con-

stants, will create identical repeated games at different periods.
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The same structure is employed to decouple the nested optimization problems of the man-

ufacturer. Notice that as in the single-period case in (3), each r∗k is obtained as a function of

manufacturing price at k, i.e. r∗k = r∗k(wk).

max
wn

Π
m

(wn) = max
wn

n∑
k=1

αkΦk(r
∗
k)π

m
k (wk) (41)

Jmk (wk) =
n∑
i=k

αiΦi(r
∗
i )π

m
i (wi) (42)

max
wk

Jmk (wk) = αkΦk(r
∗
k−1)

Jmk (wk)︷ ︸︸ ︷[
πmk (wk) + φk+1

(
r∗k(wk)

)
Fmk
]

(43)

Where Fmk in (43) is the scaled expected value of future (time interval within {k + 1, · · · , n})

discounted profit. When the backward induction process reaches the kth period, Fmk has already

been calculated. This makes Jmk a function of only wk.

Fmk =
αk+1

αk
πmk+1(wk+1) + · · ·+ αn

αk
πmn (wn)

n∏
i=k+2

φi(r
∗
i−1)

Fmn = 0

(44)

Finally, we can decouple the nested n−variable optimization problem into n single variable opti-

mization problems.

max
wk

Π
m

(wn) ≡ max
wk

Jmk (wk) ≡ max
wk

Jmk (wk) (45)

Anaglogous to the retailer’s case, the manufacturer’s part of the multi-period bilevel optimization

is outlined in the follwing recusrsive procedure.

Fmn = 0 no future earning after n

max
wk

Jmk (wk) = max
wk

[
πrk(wk) + φk+1

(
rk(wk)

)
Fmk
]

k = n, · · · , 1→ yieldsw∗k

Fmk−1 =
αk
αk−1

Jmk (w∗k) k = n, · · · , 2

(46)

Finding the numerical values of w∗ks allows us follow the procedure outline in (3) in reverse order

and calculate the numerical values of r∗k(w
∗
k)s which in turn yield q∗ks. It is now evident that the

results of (45) and (39), (w∗n, r
∗
n, q
∗
n) are the optimal decision variables of the holistic objective

function and not those of individual myopic ones.

We state the final results of this section in the following two theorems.

Theorem 3.1.

Let n be the number of periods and assume that the uncertain demand at period k is given by
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Dk(rk) = Φk(rk−1)
(
µk(rk) + σk(rk)εk

)
(47)

where

Φ1(·) = φ1(·) = 1, Φk(rk−1) =
k∏
i=1

φi(ri−1)

and where εks are continously distributed with E[εk] = 0 and Var[εk] = 1 for all k. with fεk > 0

a.e. on their supports. If for each k the single-period Stackelberg problem below has an equilibrium

at r∗k and w∗k

Jrk = πrk + φk+1(rk)Frk

Jmk = πmk + φk+1(rk)Fmk
(48)

where Frk and Fmk are found recursively from:

Frn = 0, Fmk = 0

Frk−1 =
αk−1

αk
Jrk(r

∗
k), Fmk−1 =

αk−1

αk
Jmk (w∗k), k = n, · · · , 2

(49)

and

πrk = (rk − wk − crk)µk(rk) + (rk − sk − bk)σk(rk)
∫ zk

εk

tfε(t)dt

πmk = µk (r∗k(wk))
(
wk − cmk

)
+ σk (r∗k(wk))

[
(z∗k(wk)

(
wk − cmk −

r∗k − wk − crk
r∗k − sk − bk

)
+bk

∫ z∗k

εk

tfε(t)dt
] (50)

then the bilevel (Stackelberg) optimization problem

Π
r

=

n∑
k=1

αkE[πrk] =

n∑
k=1

αkΦk(rk−1)πrk

Π
m

=

n∑
k=1

αkE[πmk ] =

n∑
k=1

αkΦk(r
∗
k−1)πmk

(51)

has an equlibrium at r∗n = [r∗1, · · · , r∗n] and w∗n = [w∗1, · · · , w∗n].

The optimal order quantity at k is then calculated as below.

q∗k = Φk(r
∗
k−1)

[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k

)]
(52)

Next, we prove that the results of Theorem 3.1 are subgame perfect.

Proposition 3.2.

The equilirbium obtained in Theorem.3.1 is subgame perfect. That is, subsets of the equilib-

rium results covering the time interval between an arbitrary period j and n, i.e. [r∗j , · · · , r∗n] and
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[w∗j , · · · , w∗n] and, a fortiori, their resulting [q∗j , · · · , q∗n] will also constitue an equilibrium for the

corresponding subgame of the original problem, covering that time-inetrval:

Jrj = αjΦj(rj−1)πrj(rj) + · · ·+ αnΦn(rn−1)πrn(rn)

Jmj = αjΦj(r
∗
j−1)πrj(wj) + · · ·+ αnΦn(r∗n−1)πrn(wn)

(53)

Proof. (By induction)

We have to prove that if {r∗j , · · · , r∗n} and {w∗j , · · · , w∗n} are subsets of the equilibrium results for

[Π
r
,Π

m
, 1 : n], then they also constitue an equilibrium for [Jrj , J

m
j , j : n].

Beginning from the final period, we analyse the two agents’ equilibrium problem. In the expressions

for both Jrk and Π
r

the variable rn appears in πrn(rn) only. The same logic is applicable to the

manufacturer’s solution procedure.

max
rn

Jrk ≡ max
rn

πrn ≡ max
rn

Πr

max
wn

Jmk ≡ max
wn

πmn ≡ max
wn

Πm

Thus, at n the conclusion is obvious. The rest of the proof for an arbitrary k, j < k < n has been

argued in detail within the discussion resulting in (39) and (45).

In Section 5, we will use the subgame perfection of the open-loop equilibrium in the analysis of

the closed-loop equilibrium in a price-postponement scenario.

4 Post-observation Equilibrium: Postponing the Order Quantity

In this section, we analyze the closed-loop equilibrium in an order-postponement scenario. Similar

to the open-loop analysis, we begin by studying the single-period case and later generalize the

approach for the memory-based multi-period problem.

At each period analyze the order-postponement scenario in two steps, happening before and

after the realization of the demand uncertainty. At the beginning of the period, both decision-

makers are aware that the order-quantity will be sent to the retailer after demand uncertainty has

been resolved. That is, they both know that q = D(r, ε). Thus they both consider the following

equation in their further calculations.

min(D, q) = D sales

S = E[min(D, q)] = E[D] = µ expected sales
(54)
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In the first step at each period, both the retailer and the manufacturer substitute (54) in their

respective optimization expression as outlined in Section 3.1. The rest of the precedure is exactly

the same as the one in the open-loop equilibrium solution process.

πr = (r − cr − w)q πm = (w − cm)q

πr = (r − cr − w)µ(r) max
r
πr → r∗(w)

πm = (w − cm)µ
(
r∗(w)

)
max
w

πm → w∗, r∗

(55)

The manufacturer, then, sets w∗ and the retailer sets r∗ as her own retail price. Note that at the

end of this open-loop solution, the optimal order quanity will be q∗ = µ(r∗).

However, instead of ordering q∗ items, the retailer postpones ordering until after she has ob-

served demand uncertainty ε̂. After observing ε̂, at the second step the retailer orders q̂ items to

the manufacturer.

q̂ = µ(r∗) + σ(r∗) ε̂ = D(r∗, ε̂) (56)

The real profit for the two players is then calculated as below.

πr = (r∗ − w∗ − cr) q̂ (57)

πm = (w∗ − cm) q̂ (58)

Note that as the retailer’s order quantity addresses the entire demand, there is no need to consider

salvage price and buy back contract in the profit expressions.

4.1 Multi-period Equilibria

In this section we generalize the two step single-period optimization procedure for a multi-period

scenario. Similar to the single-period scenario described in (55), at the first step in each period k, the

manufacturer and the retailer set their corresponding prices obtained from the open-loop equilibria

solutions. The retailer, however, postpones her order quantity until after demand randomness at

that period has been resolved; i.e. ε̂k has been observed.

At the second step, when the retailer observes demand uncertainty ε̂k, it is obvious that in order

to optimize her local-in-time profit, i.e. (r∗k −w∗k − crk) q̂k, she must pick the highest possible value

for q̂k which will be Dk = Φk(r
∗
k−1)

(
µk(r

∗
k) + σk(r

∗
k)ε̂k

)
. Notice that r∗k − w∗k − crk > 0, and this

net price is now fixed so the retailer cannot influence the future demand by her choice of price.

Hence she optimizes local profit by maximizing local sale. Thus the optimal order quantity for the

retailer is equal to real demand.

q̂k = Dk = Φk(r
∗
k−1)

[
µk(r

∗
k, k) + σk(r

∗
k, k) ε̂k

]
(59)
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The manufacturer on the other hand, may either benefit from or be adversely impacted by the

retailer’s deviation from q∗k depending on whether q̂k > q∗k or q̂k < q∗k respectively. Moreover, a

deviation from q∗k to q̂k does not change the initial condition at k + 1th period, i.e. the memory

function Φk+1(r∗k). Thus in the beginning of the k+ 1th period the manufacturer faces exactly the

same expected profit optimization problem as the corresponding one in the open-loop equilibrium

problem. In other words, a change in order quantity at period k does not affect the expected profit

of the manufacturer in the future periods because the retailer has not deviated from the r∗k obtained

by open-loop equilibrium solution. Besides the manufacturer has no strategic means to influence

the occurrence of ε̂k. Thus she will not deviate from previously calculated w∗k+1. Hence the results

[w∗k, r
∗
k, q̂k] constitute the ex-post equilibrium state at k. At the end of the nth period, the real total

discounted profit for the manufacturer and retailer will be as below.

Πr =
n∑
k=1

αk(r
∗
k − w∗k − crk) q̂k (60)

Πm =
n∑
k=1

αk(w
∗
k − cmk) q̂k (61)

4.2 Comparison between open loop and closed loop profits

We consider a scenario with two different retailers facing the same uncertain demand (εk). One of

the two retailers does not postpone her declaration of order quantity; instead she adheres to the

pre-observation optimal order quantity, q∗k. The other retailer postpones her declaration of optimal

order quantity q̂k until after observation of ε̂k. In this hypothetical scenario, they both face the

same ε̂k. We refer to the (real) profit obtained by the non-postponing retailer as πrOLk (open-loop

profit) and to the postponing one’s as πrCLk (closed-loop profit).

Below we show that for the retailers, the closed-loop profit is always greater than or equal to

the open-loop profit. Hence, for the retailer, it is always beneficial to postpone her declaration of

the order quantity until after she has observed demand uncertainty.

Theorem 4.1.

Between two retailers who will face the same uncertain demand Dk, the profit obtained by the one

who postpones her order quantify q̂k until she observes the demand uncertainty ε̂k is higher than or

equal to that of the retailer who instead of postponing, adheres to the order quantity obtained from

the open-loop equilibrium q∗k = E[Dk] = Φk(r
∗
k−1)µk(r

∗
k).

Proof.

We have to show that πrCLk ≥ π
r
OLk

.
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πrCLk = r∗kDk − w∗kq̂k
(Dk=q̂k)

= (r∗k − w∗k)Dk

πrOLk = r∗k min
( Dk︷ ︸︸ ︷

Φk(r
∗
k−1)

[
µk(r

∗
k) + σk(r

∗
k) ε̂k

]
, q∗k

)
− wkq∗k = r∗min(Dk, q

∗
k)− w∗kq∗k

Comparing with a no-postponement scenario, we have to analyze two possible situations.

1 - When the retailer under-orders: q∗k < Dk, min(Dk, q
∗
k) = q∗k

Then πrOLk = (r∗k − w∗k)q∗k < (r∗k − w∗k)Dk = πrCLk

2- When the retailer over-orders: q∗k > Dk, min(Dk, q
∗
k) = D∗k

πrOLk = r∗kDk − w∗kq∗k < r∗kDk − w∗kDk = πrCLk

Note that in the proof above, we compared q̂k = Dk with a general q∗k 6= q̂k. We did not use the

fact that q∗k = E[Dk] which stems from the a priori knowledge of the decision-makers about an

order-postponement taking place in the second step. The proof thus shows that for a given r∗k, an

order quantity equal to the resulting uncertain demand will outperform any other arbitrary order

quantity, including the one prescribed by the open-loop solution.

Equality (πrCLk = πrOLk) happens when the mean of demand is equal to the real demand, q∗k =

E[Dk] = Dk.

Remark 4.2.

Notice that while the order quantities and retail prices prescribed by the open-loop equilibrium

guarantee a non-negative expected profit for the retailer, the real retail profit can become negative

in extreme over-ordering cases, i.e when q∗k � Dk. In contrast, order quantity postponement

guarantees an always-positive profit for the retailer.

Corollary 4.3.

In the hypothetical scenario described in theorem 4.1, the holistic profit for the postponing retailer

is higher than or equal to that of the non-postponing retailer.

Proof.

Πr
CL =

n∑
k=1

αkπ
r
CLk
≥

n∑
k=1

αkπ
r
OLk

= Πr
OL

4.2.1 Postponement and Channel Profit

Corollary 4.4.

In a hypothetical scenario with two price-setting decentralized channels, the aggregate channel profit
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for a channel with an order-postponing retailer is higher than or equal to that of the channel with

a non-postponing retailer.

Proof.

We denote the channel profit for the postponing channel at period k by πcPk and for the non-

postponing channel by πcNPk .

πcPk = (r∗k − cmk)Dk

πcNPk = r∗k min(Dk, q
∗
k)− cmkq

∗
k

πcPk − π
c
NPk

= (r∗k − cmk)Dk − r∗k min(Dk, q
∗
k) + cmkq

∗
k

≥ (r∗k − cmk)
(
Dk −min(Dk, q

∗
k)
)
≥ 0

Remark 4.5. Corollary 4.4 shows that in an order-postponement scenario, despite the fact that the

manufacturer may lose potential profits due to postponement, the channel always benefits from

postponement.

Corollary 4.6.

In a hypothetical scenario with two price-setting centralized channels, the channel that postpones

supplying the market until after demand uncertainty has been resolved will benefit higher than or

equal to a non-postponing channel.

Proof.

It suffices to show that the profit expression for centralized channels is identical to that of a retailer.

πck = πrk + πmk = rmin(Dk, qk)− cmkqk

We observe that a centralized channel is equivalent to a retailer who has to pay only a given

manufacturing cost cmk at each period. Thus the result of Theorem 4.1 is applicable to centralized

channels.

5 Price Postponement

In this section, we analyse another closed-loop variant of the problem, in which the retailer post-

pones the announcement of retail price until after the demand uncertainty has been resolved. We
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use essentially the same notations for the model variables and parameters as those in Section 3.

We use r̂k, and q̂k to denote the optimal retail price and order quantity, respectively.

Here, again the two players start from the open-loop equilibrium solutions and obtain r∗n, w∗n,

and q∗n. At the beginning of the first period the manufacturer sets w∗1 and the retailer orders

q̂1 = q∗1. But the retailer postpones the announcement of the retail price r̂1 until after she observes

ε̂1. In sections 5.2 and 5.3.1 we solve the equilibrium problems for each player to obtain the optimal

post-observation decision variables at an arbitrary period k.

Furthermore, since in the price-postponement scenario the entire demand is not necessarily ad-

dressed by the retailer, for the sake of generality we must also consider a (possibly time-dependent)

salvage price for the retailer, and a buy back contract between the two agents.

While any non-zero buy back price in a single-period setting is desirable for the retailer, as it

reduces her expected loss due to uncertainty, the manufacturer may try to hedge the amount of

possible loss she may incur. In our game setting, the manufacturer who is the leader imposes the

following constraint on the buy back price to ensure a non-negative profit at each period:

0 ≤ bk ≤ wk − cmk . (62)

5.1 Observing the Feedback: Closing the Loop

In this scenario, at the beginning of the kth period the manufacturer sets the w∗k and the retailer

orders q̂1 = q∗k items. However, the retailer postpones her declaration of the retail price until after

she has observed the demand uncertainty ε̂k.

It should be noted that while in the ex-ante analysis of the no-postponement equilibria states, we

used the dynamic programming method known as backward induction, here in the ex-post analysis

of price-postponement scenario we use a forward induction approach. Thereby, we incorporate the

newly-revealed information in the form of feedback signals into the decision-making process. This

is due to the fact that we now change future demand by our postponement.

5.2 Post-observation Bilevel Optimization

In our analysis of the retail price-postponement scenario, we divide the decision-making process

into two steps. First, at the beginning of each period k, both the retailer and the manufacturer

solve the expected profit optimization (equilibrium) problem in a Stackelberg framework within

the time interval {k, · · · , n}. The manufacturer then declares the equilibrium wholesale price and

the retailer submits her order quantity to the manufacturer. However, the retailer does not declare
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her retail price to the market. Instead, she postpones doing so until after she observes demand

uncertainty.

In the second step, having observed ε̂k, the retailer incorporates this new information and solves

the equilibrium problem anew while considering the manufacturer’s response for the next periods.

That is, after observing ε̂k the retailer tries to find optimal retail prices within {k, · · · , n} while

being subject to the optimality of the wholesale prices within {k + 1, · · · , n}. The equilibrium

solution will provide the retailer with her post-observation optimal retail price vector [r̂k, · · · , r̂n].

Then she declares the first element of her newly found optimal price vector, r̂k, to the market.

We begin the analysis of the equilibrium problem from the first period and using forward

induction reasoning delineate a general optimization procedure for all periods. At the first step

in the first period, both the retailer and the manufacturer solve the equilibrium problem aimed

at maximizing their own respective expected holistic profit while subject to the optimality of the

other player’s solution. Thus they obtain the results of the open-loop equilibrium, i.e. {r∗k,q∗k,w∗k}.

Therefore at k = 1 the manufacturer proceeds with declaring w∗1 and the retailer orders q∗1 items.

However, instead of declaring r∗1 to the market, the retailer waits for the uncertainty of demand, ε1

to be resolved. In the second step and after observing ε̂1, the retailer (and the manufacturer) solve

the following equilibrium problem to obtain the optimal retail prices.

max
rn

Πr

max
w2,··· ,wn

Jm2

Πr = πr1(r1, w
∗
1, q
∗
1) + · · ·+ αkΦk(rk−1)πrk(rk, wk, qk)

+ · · ·+ αnΦn(rn−1)πrn(rn, wn, qn) = πr1 + Jr2

Jm2 = α2Φ2

(
r̂1(w1)

)
πm2 (w2) + · · ·+ αnΦn

(
r̂1(w1), · · · , r̂n−1(wn−1)

)
πmn (wn)

where πr1 = (r1 − s1 − b1) min

D1(r1)︷ ︸︸ ︷(
µ1(r1) + σ1(r1)ε̂1

)
+(s1 + b1 − cr1 − w∗1)q∗1

(63)

Note that the only difference between the retailer’s problem expression in (63) and the one in (32)

is in the first term, where the expected value of the profit in the first period πr1 is replaced by the

real profit πr1. Thus the retailer, having observed ε̂1, tries to find the vector of optimal retailer

prices r̂n to optimize the sum of her real profit at the first period πr1 and the expected (discounted)

profits in the future Jr2 .

To solve (63) we use the backward induction reasoning again. Starting with the retailer’s

problem in the last period n we observe that in order to obtain r̂n from (63) the retailer has

to solve (31) once again. This means that r̂n(wn) equals r∗n(wn) which was obtained in the pre-
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observation optimization. In general, going backward in time from period n to 2, the retailer

will face the exact same optimization problems as the ones in the pre-observation analysis, i.e.

r̂k(wk) = r∗k(wk), k ∈ {2, · · · , n}. However, when the backward induction reaches the first period,

it will face the only term in the objective function which is different from the corresponding one in

(32), i.e. πr1. Thus, in general the optimal r̂1 is different from r∗1.

max
r1

Πr = πr1(r1) + φ2(r1)×
[α2

α1
πr2(r∗2) + · · ·+ αn

αk
πrn(r∗n)

n∏
i=3

φi(r
∗
i−1)

]
︸ ︷︷ ︸

Fr
1 future expected profit, given (obtained from pre-observation analysis)

(64)

Therefore the vector of optimal decision variables for the retailer after observing ε̂1 is [r̂1, r
∗
2, · · · , r∗n]

where r̂1 is obtained from (64) and r∗ks (k = 2 · · ·n) are equal to the ones obtained from the pre-

observation optimization problems.

Now we proceed to the manufacturer’s part of the equilibrium (63), considering the effect of

the new retail pricing scheme on future (time interval {2, · · · , n}) demand.

max
w2,··· ,wn

Jm2 = max
w2,··· ,wn

[
α2Φ2(r̂1)πm2 (w2) + · · ·+ αnΦn(r̂1, r

∗
2, · · · , r∗n−1)πmn (wn)

]
where r̂1 = r̂1(w∗1), r∗k = r∗k(wk) 1 < k

(65)

where each πmk is calculated from (26) and (28).

Analogously, observing that the term wn appears only in the profit expression for the final

period πmn , we start the backward induction process from the nth period.

max
wn

Jm2 ≡ max
wn

πmn (66)

But this problem has already been solved in the open-loop analysis and it will yield the same

optimal decision variable as before, i.e. w∗n. Going backward in time, in general, at each period

j ∈ {2, · · · , n} the manufacturer faces the optimization problem (67). Note that for this arbitrary

period j we have max
wj

Jm2 ≡ max
wj

Jmj . This is due to the result of the Proposition 3.2 about

the subgame perfection of the equilibrium aimed at maximization of the expected profits on time

interval between 2 and n.

max
wj

Jm2 ≡ max
wj

Jmj = max
wj

αkΦj(r̃j−1)

Jmk (wj)︷ ︸︸ ︷[
πmk (wj) + φj+1

(
r∗k(wj)

)
Fmj
]

where r̃j−1 = {r̂1(w∗1), r∗2(w2), · · · , r∗j−1(wj−1)}, Φj(r̃j−1) = φ2(r̂1)

j∏
i=3

φi(r
∗
i−1)

(67)

Fmj =
αj+1

αj
πmj+1(wj+1) + · · ·+ αn

αj
πmn (wn)

n∏
i=k+2

φi(r
∗
i−1)

Fmn = 0

(68)
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Again we have max
wj

Jmj ≡ max
wj

Jmj . Plus, when solving max
wj

Jmj we observe that the choice of r̂1

does not affect Fmj . Therefore the results of max
wj

Jmj will be exactly as equal to ones obtained

by the open-loop solutions. Thus comparing 67 with 43 and 44) we can conclude that after the

observation of ε̂1 and declaration of r̂1 in the first period, the manufacturer’s optimal price vector

for the rest of the periods (from 2 to n) does not change.

However, φ2(r̂1) in (68) will scale Jmj differently from φ2(r∗1) in the corresponding open-loop

equilibrium. Hence while the same w∗j s will come out of the two equilibrium problems, the expected

values of the total profits will be different due to different memory elements.

After analysing the two-step solution for the players in the period 1, we try to find a general

solution procedure at a period k. The players arrive at period k with the memory function contain-

ing the already declared r̂k−1. In the first step they have to solve the following bilevel optimization

(Stackelberg equilibrium) problem.

max
rk,··· ,rn

Jrk

max
wk,··· ,wn

Jmk

(69)

From Proposition 3.2 we know that the equilibrium aimed at maximization of the expected profits is

subgame perfect. Hence, in the first step, each decision maker obtains a subset of her original open-

loop equilibrium results; i.e. [r∗k, · · · , r∗n] and [w∗k, · · · , w∗n]. Thus, at the first step in period k, the

manufacturer declares w∗ and the retailer orders q̂k = Φk(r̂k−1)
[
µk(r

∗
k) +σk(r

∗
k)F

−1
εk

(
r∗k−w

∗
k−crk
r∗k

)]
.

At the second step, after the retailer observes ε̂k the following bilevel equation has to be solved.

max
rk,··· ,rn

αkΦk(r̂k−1)πrk(rk) + Jrk+1 over k, · · · , n (70)

max
wk+1,··· ,wn

Jmk+1 = max
wk+1,··· ,wn

n∑
i=k+1

αiΦi(r̃i−1)πri (wi) over k + 1, · · · , n

where r̃i−1 = [r̂k−1, rk, · · · , ri−1] (71)

Similarly, starting the backward induction from the final period, it is evident that from period n

to k+1 the retailer will face the exact same optimization problems as the ones in the pre-observation

analysis. The only term in the entire objective function which is different from its corresponding

term in (32) is πrk (the real profit at k which has replaced its own expected value, πrk). Therefore
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the retailer’s optimization problem boils down to the following.

Jrk = αk Φk(r̂k−1)︸ ︷︷ ︸
price history

Jrk(rk)︷ ︸︸ ︷(
πrk(rk) + φk+1(rk)

[αk+1

αk
πrk+1(rk+1) + · · ·+ αn

αk
πrn(rn)

n∏
i=k+2

φi(ri−1)
]

︸ ︷︷ ︸
Frk=expected (future) values, given (obtained from pre-observation problem)

)

max
rk

Jrk ≡ max
rk

Jrk

(72)

Note that by the time the backward induction process reaches the kth period Frk in (72), i.e. the

future expected profit, is already calculated and is treated as a constant. Solving the single-variable

optimization problem in (72) yields r̂k while the rest of the optimal retail prices remain equal to

those obtained in the pre-observation (open-loop) optimization problem. Thus at the second step in

the kth period, the retailer obtains her optimal decision variables [r̂k(w
∗
k), r

∗
k+1(wk+1), · · · , r∗n(wn)]

as functions of corresponding manufacrting prices.

In order to find the numerical values of r̂k(wk) and the rest of the optimal retail prices, the

retailer has to solve the manufacturer’s problem of an optimal response for the next periods.

max
wk+1,··· ,wn

Jmk+1

Jmk+1 = αk+1Φk+1(r̂k)π
m
k+1 + · · ·+ αnΦk(r̂k)

n∏
i=k+2

φi(r
∗
i−1)πmn

= αk+1Φk+1(r̂k)
[
πmk+1 + · · ·+ αn

αk+1

n∏
i=k+2

φi(r
∗
i−1)πmn

] (73)

The numerical results for optimal wholesale prices are obtained using the recursive solution proce-

dure delineated below.

Jmj = αjΦj(r̃j−1)
[
πmj (wj) + φj+1(r∗j )Fmj

]
k + 1 ≤ j ≤ n

r̃j−1 = (r̂k, r
∗
k+1 · · · , r∗j−1)⇒ Φj(r̃j−1) =

k+1∏
i=1

φi(r̂i−1)

j∏
i=k+2

φi(r
∗
i−1)

(74)

Fmn = 0

Fmj =
αj+1

αj
πmj+1(wj+1) + · · ·+ αn

αj
πmn (wn)

n∏
i=k+2

φi(r
∗
i−1)

(75)

Again, comparing (73) with (43) and (44), and using the result of Proposition 3.2, it is straightfor-

ward to see that after declaration of r̂k at period k, and when solving manufacturer’s optimization

problem for the time interval {k + 1, · · · , n} the backward induction process will yield the same
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{w∗k+1, · · · , w∗n} as those obtained in the open-loop equilibrium problem. However, the manufac-

turer’s expected profit will be different from the results of the open-loop solutions. This is due to

the scaling factor Φk(r̂k−1) which in general will be different from Φk(r
∗
k−1) in (43). The results of

this section are expressed in the following theorem.

Theorem 5.1.

In a retail price postponement scenario where the retailer and the manufacturer face the uncertain

demand described in Theorem 3.1, the retailer at each period k postpones the declaration of her

price until after observing demand uncertainty εk.

Assuming that there exists an equilibrium state [r∗k,w
∗
k] for the open-loop problem described in

Theorem 3.1, if the following objective function has a global maximum, r̂k,

Jrk(rk) = πrk(rk) + φk+1(rk)Frk

where Frk =
αk+1

αk
πrk+1(r∗k+1) + · · ·+ αn

αk
πrn(r∗n)

n∏
i=k+2

φi(r
∗
i−1) given value

then the closed-loop problem of price postponement has an equilibrium with the following optimal

decision variables.

r̂n = [r̂1, · · · , r̂n]

w∗n = [w∗1, · · · , w∗n]

q̂n = [q̂1, · · · , q̂n]

where q̂k = Φk(r̂k−1)
[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k

)]
=

Φk(r̂k−1)

Φk(r
∗
k−1)

q∗k

5.3 Comparison between open loop and closed loop profits

At the end of period n, the set of post-observation optimal retail prices, [r̂n] is the result of the

optimization problem max
rn

Πr considering the real values of πrks. Whereas the set of pre-observation

optimal retail prices, [r∗n] is the result of optimization max
rn

Π
r

considering the expected values of

the profits at each period πrks. Thus it is trivial that in a hypothetical n-period scenario where two

retailers face the same εk at each period k, the one that postpones the declaration of her prices

(r̂ks) until after observation of each εk gains higher profit compared to the retailer who adheres to

sub-optimal r∗ks. In other words, in a price-postponement scenario, because r̂ks are the results of

the real profit optimizations, any other set of decision variables (including the set of r∗ks) will be

28



sub-optimal. Therefore we have Πr
CL ≥ Πr

OL where Πr is the total discounted real profit gained

through n periods.

5.3.1 Closed-loop Optimization for the Manufacturer

In general, in the closed-loop optimization scenario, at each period k the retailer enjoys the strategic

means to find an optimal r̂k maximizing the sum of her current profit and expected future prof-

its. Whereas the manufacturer always faces the structurally identical (though differently scaled)

expected profit optimization.

At each period k after observing ε̂k, the retailer deviates from the previously obtained equi-

librium price r∗k by declaring r̂k instead. Due to the structure of the memory functions, this new

pricing scheme will affect the future demand and thereby the future earnings for both the retailer

and the manufacturer. The retailer’s optimization problem as generalized in Theorem 5.1 is tailored

such that an optimal r̂k will maximize the sum of the current real profit and expected future prof-

its. Thus after declaring each r̂k, it is the manufacturer’s turn to modify her own optimal pricing

scheme for the future considering the effects of the retail prices on future demand and expected

earnings.

Comparing to the non-postponement solutions, the retailer always benefits from postponing her

retail price. Whereas the manufacturer’s may either benefit or lose potential profit compared to the

non-postponement case, depending on the structure of demand mean and variance, and different

realizations of the uncertain demand. In Section 6.3, we provide simulated examples with price-

postponement having different effects on the manufacturer’s profit. In that section, we provide a

hypothetical scenario (example 3) wherein the entire channel is worse off due to price postponement.

6 Numerical Implementation of the Model

In this section, we illustrate the theoretical results and implement the solution algorithms discussed

in Sections 3, 4, and 5. In the examples analyzed in this section, we use Cobb-Douglas demand

functions.

In the examples we use a truncated and re-normalized normal distribution function for εs to

ensure that the negative noise terms do not cause the entire demand to become negative.

The theoretical results for each sections, as expressed in Theorem 3.1, Section 4.1, and Theorem

5.1 consider all model parameters and functional forms, including µks and σks to be time-dependent.

However, for illustration purposes, we consider only the case in which the same functions are used
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for all periods, although using varying functions does not make the problem any harder to solve.

It should be noted that the main purpose of this section is merely to familiarize the reader

with the implantation of the solution algorithms and the type of results that they can potentially

produce. The examples we present are particularly simple, and the mathematical features describing

the market structure are merely speculative and not the results of empirical studies.

To take full advantage of the model, one should try to vary scaling factors and functional forms

in a systematic way. This makes it is possible to model a wide range of economic contexts. A full

discussion of the model and all the variations it can cover, is, however, beyond the scope of this

paper.

6.1 The Open-loop Equilibria Solutions

Following the order by which the scenarios were presented, we begin by providing an example of the

open-loop equilibria wherein optimization takes place based on the expected values of discounted

profits within a number of periods.

• Example 1 (boosting the demand through initial free distribution)

For the first example, we consider the following scaled demand function.

dk(rk) =
1000

r2
k

+ 10εk (76)

Multiplicative memory functions scale the future demand such that an increase in the current retail

price decreases the future demand. Thus the memory function at period k+ 1 which will scale the

future demand Dk+1 is monotonically decreasing with respect to the retail price at all previous

periods.

∀k ∈ {1, · · ·n} ∂Φk+1(r1, · · · , rn)

∂rk
=
∂
∏n
k=1 φk+1(rk)

∂rk
< 0 (77)

This means that the memory element at k + 1 must be monotonically decreasing with respect to

rk.
∂φk+1(rk)

∂rk
< 0 (78)

Here, for illustration purpose, we use the following functional structure for memory elements

φk+1(rk) = 1 + γk(κk − rk) (79)

where γk ≥ 0, the memory strength factor at period k, is a given parameter. The given parameter

κk ≥ 0 can be interpreted as a price cap; i.e., any initial price above κk reduces demand, whereas

demand is more likely to increase if rk < κk. If the scaling factor is negative, maxima are turned
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Figure 1: Equilibrium State Retail and Wholesale Prices
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Figure 2: Equilibrium State Order Quantities and De-

mand Means

into minima. Hence, if φk+1(rk) ≤ 0, the optimal order qk+1 is zero. To avoid this problem, we

consider

φk+1(rk) = [1 + γk(κk − rk)]+. (80)

For simplicity, we set γk = 0.01, κk = 5, αk = 1, cmk = 2, crk = 0, sk = 1, and bk = 0 for all ks.

The number of periods, n, is set to be 25.

The decision variables at the equilibrium state obtained from Theorem 3.1 are given in Figures

1 and 2. Figure 1 illustrates r∗k and w∗k and Figure 1 shows q∗k Dk = Φk µk at each period.

We observe that the holistic optimization algorithm prescribes the retailer to set r∗1,2,3 = 0 and

q∗1,2,3 ≈ 0. A strategy of this type makes good sense economically; it corresponds to a situation in

which a small number of items (q ≈ 0 ) are given away for free at earlier periods to create increased

interest for the product in the next periods. We observe the resulting boost in demand mean D in

Figure 1 to begin at period 4. The expected profits for the two suppliers are: Π
r

= 1140.14 and

Π
m

= 799.6.

6.2 Order Postponement Scenarios

In this section we implement the two-step optimization algorithm delineated in Section 4.1. In the

first step, the retailer and the manufacturer both aware of a forthcoming order-postponement have

to solve a specific open-loop problem with assumptions described in (54) and (55).

In order to provide illustrative examples of different scenarios that may happen in the second

step, we simulate different realizations of the stochastic variable εk. We create these εks based on

a given truncated normal distribution and normalized as discussed in Section 2.

• Example 2.
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dk = µk(rk) + σk(rk) εk µk =
1000

r3
k

, σk(rk) =
10

rk

αk = 0.95k−1, γk = 0.01, κk = 5, cmk = 2, crk = 0, sk = 1, n = 25

(81)

We use the same functional structure in (80) for the memory elements in this analysis as well. Note

that because both the suppliers are aware that there will be an order-postponement, there is no

buy-back feature embedded in their contract. Besides, because the retailer will always address the

demand, no salvage price is needed in the model.

At the beginning of the first step, having solved the open-loop equilibrium problem, we obtain

the following results.

Π
r

= 242.23,Π
m

= 202.46

Figure 3 illustrates the optimal retail and wholesale prices that the suppliers set at the first step,

in the beginning of each period.
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Figure 3: Equilibrium State Retail and Wholesale Price at k

At each period, the retailer postpones her order-quantity until after demand uncertainty at

that period is resolved. Figure 4 shows a possible realization of uncertain demand stemmed from a

simulated set of εks. The retailer sets her q̂ks as equal to these realizations. The figure also shows

the expected values of demand at each period. If the retailer had not decided to postpone her

order-quantity, she would have adhered to these expected values as her q∗ks. In other words, the

non-postponing retailer described in Theorem 4.1 would order the following amount at each period.

q∗k = Dk = E[Dk] = Φk(r
∗
k−1)µk(r

∗
k).

The demand realization shown in Figure 4 results in the following real profits for the two hypo-

thetical channels described in Theorem 4.1 and its Corollary 4.4. The subscripts P and NP denote
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postponement and no-postponement, and the superscripts r,m, c denote retailer, manufacturer,

and channel, respectively.

Πr
NP = 207.6 Πm

NP = 202.46 Πc
NP = 410.05

Πr
P = 258.47 Πm

P = 215.53 Πc
P = 474.00

The results of this simulated scenario show that facing this set of εks, both the retailer and the man-

ufacturer, and a fortiori, the whole channel benefit from order postponement. We also observe that

in a no-postponement scenario, the real profit obtained by the manufacturer equals her expected

profit: Πm
NP = Π

m
. This is due to the fact that in no-postponement scenario, the manufacturer

receives the order quantity at the beginning of each period and thus does not share the risk of

facing an uncertain demand.

Different realizations of demand uncertainty εk may indeed cause different real profits for the

channel members. Iterating the simulation, in Figure 5, we illustrate the results of a different

realization of the uncertain demand. Similarly, we consider two channels facing this realization

of demand, one with a postponing retailer and one with a retailer who adheres to the open-loop

solutions. In this realization, the real profits for these two hypothetical channels and their individual

members are as follows.

Πr
NP = 127.97 Πm

NP = 202.46 Πc
NP = 330.43

Πr
P = 222.96 Πm

P = 185.31 Πc
P = 408.27

In this case, the manufacturer does not benefit from order postponement. Despite her loss, the

whole channel still benefits from order postponement. This observation is consistent with the result

of Corollary 4.4.

6.3 Price Postponement Scenarios

In this section we provide examples of price postponement scenarios and implement the two-step

optimization algorithm discussed in Section 5. Because in a price postponement scenario, the

retailer does not necessarily address the entire demand, for the sake of generality, we have to

consider non-zero salvage prices and buy-back rates in the profit optimization expressions.

The buy-back rates bks can be considered as either given model parameters or be expressed as

functions of the decision variables which are to be found. For example, the expression in (62) states

that the manufacturer may offer a, possibly too conservative, buy-back rate of bk = wk−cmk to the
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Figure 5: Stochastic Demand Realization and Expected

Demand

retailer. While the retailer benefits from any non-zero buy-back rate, this specifically constrained

buy-back rate guarantees a non-negative local-in-time profit for the manufacturer at every period.

It should be noted that the solution procedures described in Theorems 3.1 and 5.1 can take

each form of the buy-back rate (wether a constant or a function of the decision variables).

In the examples, following the procedure outlined in Theorem 5.1, at the first step, we provide

the open-loop solution upon which the suppliers base their initial decision variables, i.e. the whole-

sale price and the order quantity w∗k,Φk(r̂k−1)q∗k. Next, we simulate a vector of εks based on a given

truncated normal distribution and normalized as stated in Section 2. The retailer then observes

this demand uncertainty and finds her optimal retail price r̂k accordingly.

• Example 3. Given buy back prices

We consider the following demand structure and parameters for the model. We also use the same

functional structure in (80) for the memory elements.

dk = µk(rk) + σk(rk) εk µk =
1000

r2
k

, σk(rk) =
10

rk

αk = 0.95k−1, γk = 0.01, κk = 5

cmk = 2, crk = 0, bk = 1.1 > sk = 1, n = 25

(82)

The open-loop (first-step) solution results for this scenario are given in Figures 6 and 7. The

corresponding expected values for the profits are as below.

Π
r

= 74.55,Π
m

= 77.07

Now that both the channel members have obtained the open loop solutions, at each period, the

retailer updates her objective function after demand uncertainty is resolved. She then declares her
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Figure 6: Open-loop Equilibrium Prices
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Figure 7: Open-loop Equilibrium Order Quantities

optimal retail price r̂k to the market. The optimal prices for a simulated scenario are given in

Figure 8. Analogous to the analysis in the previous section, we consider two hypothetical channels

facing the same set of εks at each period. In one channel (denoted by the subscript NP ), the

retailer does not postpone her declaration of the retail price, i.e. she always adheres to r∗k. In the

other channel (denoted by the subscript P ), the retailer postpones her decision on retail price after

demand uncertainty is resolved and then declares r̂k instead.

Πr
NP = 81.93 Πm

NP = 126.60 Πc
NP = 208.54

Πr
P = 87.87 Πm

P = 119.04 Πc
P = 206.90

In this simulated example, while the retailer benefits from postponing her retail prices, the manu-

facturer loses potential profits, causing the whole channel worse off by price postponement.
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Figure 8: Open-loop and Closed-loop Optimal Retail Prices

• Example 4. Buy back prices as functions of decision variables
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Figure 9: Open-loop Equilibrium Prices
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Figure 10: Open-loop Equilibrium Order Quantities

In this example we use the following functional structures and parameters for the uncertain de-

mand. Instead of using a given buy back price at each period, we let the manufacturer to subject

the buy back price she is offering, according to the discussion in the beginning of this section.

dk = µk(rk) + σk(rk) εk µk =
1000

r2
k

, σk(rk) =
5µk
rk

αk = 0.95k−1, γk = 0.01, κk = 5, cmk = 2, crk = 0, n = 25

buy-back rate subject to bk = wk − cmk

(83)

Similarly, first, the two suppliers solve the open-loop equilibrium problems and obtain the following

results. The decision variables r∗k, w
∗
k, q
∗
k for all periods are given in Figures 9 and 10.

Π
r

= 308.98,Π
m

= 306.80

Now, at each period, the retailer postpones her decision on retail price until demand uncertainty

is resolved and then declares r̂k. The optimal prices for a specific scenario based on a simulated

realization of εks is given in Figure 10. The corresponding profits for two hypothetical postponing

and non-postponing channels facing the same realization of εks are given below.

Πr
NP = 355.59 Πm

NP = 341.75 Πc
NP = 697.34

Πr
P = 387.42 Πm

P = 420.51 Πc
P = 807.93

In this scenario, both the retailer and the manufacturer benefit from price postponement.

7 Concluding remarks

In this paper, we have developed analytical tools to use postponement strategies in multi-period

supply chain optimization problems. In the first part of the paper, we developed an explicit solution
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Figure 11: Open-loop and Closed-loop Optimal Retail Prices

algorithm for the problem of finding equilibria without employing postponement strategies. In this

part, the agents are risk-neutral and try to maximize their expected profits within a given time

period.

Next, we allowed for the gradual addition of extra information and enhanced the decision

variables obtained in the previous part accordingly.

The importance of our analytical solution algorithms lies in that not only do they provide us

with theoretical results in various scenarios, but also they yield concrete numerical solutions for a

wide variety of multi-period bilevel optimization problems.

Due to flexility and generality of our model which allows different functional forms to represent

the market features, and also due to its high level of non-autonomy with respect to the parameters

and variables, it can be applicable to different economic and management contexts.

An interesting next step would be adding an extra dimension to the equilibrium problem at each

period. This can be done, for example, by the inclusion of buy back price as a decision variable,

where the bks are considered as unknowns and the equilibria problems are solved to obtain b∗ks as

well as the other optimal decision variables.
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