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Abstract

We analyze the problem of time-dependent channel coordination in the face of un-

certain demand. The channel, composed of a manufacturer and a retailer, is to

address a time-varying and uncertain price-dependent demand. The decision vari-

ables of the manufacturer are wholesale and (possibly zero) buy-back prices, and

those of the retailer are order quantity and retail price. Moreover, at each period,

the retailer is allowed to postpone her retail price until demand uncertainty is re-

solved. In order to place emphasis on the price-decadent nature of demand, we

embed a class of memory effects in demand structure, such that current demand

at each period demand is affected by pricing history as well as current price. The

ensuing equilibria problems, thus, become highly nested in time. We then propose

our memory-based solution algorithm which coordinates the channel with optimal

buy-back contracts at each period. We show that, contrary to the conventional be-

lief, too generous buy-back prices may not only be suboptimal to the manufacturer,

but also decrease the expected profit for the retailer and thus for the whole channel.

Keywords: stochastic optimization; bilevel programming; game theory; channel co-

ordination; buy-back contracts; price postponement; pricing theory; contract theory

JEL Classification: C61, C73, D81, D47

∗Department of Business and Management Science, NHH Norwegian School of Economics/ Helleveien 30, 5045 Bergen,

Norway/ E-mail: reza.gholami@nhh.no
†Department of Business and Management Science, NHH Norwegian School of Economics

1



1 Introduction

Vertical competition between upstream and downstream vendors in decentralized channels

may in general be detrimental to the aggregate profit obtained by each individual and by

the whole channel. Thus, devising different contracts between the two levels of decision

making to align their respective objective functions has been the subject of extensive

research. A contract is said to coordinate the decentralized channel if the set of optimal

acts prescribed by it constitutes a Nash equilibrium (Cachon 2003). Such coordinating

solutions are usually sought within bilevel optimization problems where the upstream

vendor’s objective function is optimized in the outer level (i.e. treated as the leader

problem) and that of the downstream is solved in the inner level.

Decentralized supply channel members usually aim at maximizing their revenue by

addressing a time-varying and uncertain demand. Conventionally, in such a setting, the

downstream and upstream suppliers are referred to as retailers and wholesalers (manufac-

turers), respectively. Usually it is the retailer who is in direct contact with the uncertain

demand, while the upstream vendor may sense the demand uncertainty only through the

order quantity that she receives from the retailer. A coordinating buy-back contract aims

to find an optimal solution within which the upstream supplier also shares the risks stem-

ming from market uncertainty for the final objective of increasing individual and channel

profits.

We consider a channel composed of two members, a manufacturer and a retailer.

The channel is to address an uncertain and time-dependent demand for a perishable

commodity at different times. We divide the time frame into n discrete periods, and

solve the coordination problem such that the set of decision variables obtained for each

period k ∈ {1 · · ·n} will result in the optimality of the holistic revenue from 1 to n. The

commodity produced at each period is perishable and must be sold in that period; it

cannot be stored to be supplied at the next periods. Thus, at the end of each period,

the unsold items are to be salvaged at a lower price, or if possible, bought back by the

manufacturer. In our bilevel programming problem, the retailer’s decision variables are

the retail price per product unit and the order quantity that she sends to the manufacturer.

The retailer, thus, may incur a loss if her order quantity exceeds the actual demand. The

risks stemming from demand uncertainty may cause the retailer to order a lower amount

of products to the manufacturer, thus causing a lower profit margin for the manufacturer.

In our model, the manufacturer’s decision variables are the wholesale and buy-back

prices per unit of the product. The manufacturer may offer a non-zero buy-back price

for the retailer’s unsold items to incentivize a higher order quantity. By doing so, the

manufacturer shares the risks caused by demand uncertainty in the hope of receiving a

higher order quantity and securing a higher profit margin. However, while not providing a
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buy-back contract may cause the retailer to order conservatively, too generous a buy-back

price may also cause the manufacturer worse off. Thus finding an optimal buy-back price

becomes a vital task for the manufacturer and the whole channel.

In addition to the buy-back contracts which aim at sharing the risks stemming from

demand uncertainty between both the channel members, there are a variety of approaches

utilized by decentralized channels to decrease such risks. Price postponement by the

retailer is one of such approaches which allows the retailer, at each period, to postpone

her price until demand uncertainty at that period is resolved.

In our paper, we combine optimal buy-back coordination problem with a price post-

ponement approach and find a general equilibrium solution which coordinates the channel

at different times.

1.1 Coordinated Buy-back Contracts

In his seminal paper, Pasternack (1985) solves the problem of coordinating a buy-back

contract1 in a static (single-period) setting. The stochastic demand in his model is con-

sidered to have a general price-dependent probability density function. Song et al. (2008)

analyze the single-period buy-back contract in a decentralized channel with the assump-

tion that the profit function of each channel member is unimodal. In their model, too,

the decision variables of the manufacturer are wholesale and buy-back prices. They find

out conditions under which the manufacturer’s profit becomes independent of demand

uncertainty. In the single-period buy-back coordination analyses by Yao et al. (2008) and

Wei and Tang (2013), the channel members compete in a Stackelberg framework. In the

model offered by the latter, the only price-setting member is the manufacturer and the

retailer sets only the order quantity. Li et al. (2012) divide the single-period coordination

problem into two steps. In the first step, the Stackelberge bilevel optimization problem

is solved and in the second step, a buy-back contract is added to the channel decision

making process. Gümüş et al. (2013) extend their own buy-back contract coordination

problem into two periods. In their model, they consider a uniformly distributed demand

for durable products in online markets. For a short summary of the literature on channel

coordination problem with buy-back contracts, see Nan and Fang (2016) and numerous

sources therein.

The task of finding a set of optimal buy-back prices at different times, in multi-period

time setting, becomes challenging due to the fact that the elastic demand at each period

is influenced by the pricing history, thus making the ensuing bilevel problem highly nested

in time. In order to put emphasis on this nestedness, in Section 2.1, we introduce our

memory effects. These memory effects are embedded within the structure of the uncertain

1The buy-back contracts are sometimes referred to as return policies in the literature.
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demand and carry the effects of previous pricing on current and future demands.

In Section 4.4, we embed these memory-based demand structure in the bilevel pro-

gramming setting and propose a general solution for the ensuing equilibria problems at

each time in the time interval between the first and nth periods. The results of this section

are brought in Theorem 4.4.

In the buy-back contracts coordinated in Section 4.4, all decision variables are to

be set at the beginning of each period. That is, at the beginning of each period k,

the manufacturer offers her optimal wholesale and (possibly zero) buy-back prices to

the retailer, who then finds and sets her own optimal retail price and order quantity,

accordingly.

1.2 Buy-back Contractus with Retail Price Postponement

There are a variety of other contracts in which the retailer is allowed to postpone her

decision variables on order quantity and retail price until demand uncertainty is resolved

(Cheng et al. 2010). Van Mieghem and Dada (1999) have analyzed price postponement

scenarios where suppliers allow haggling about the final price. The final price is thus not

fixed and negotiable after the customers place their orders. According to their analysis,

one advantage of price postponement is that the profit margin can be adjusted after

demand uncertainty is resolved. Price postponement strategies have been used in online

commerce and car dealership (Granot and Yin, 2008, Cheng et al. 2010).

Garnot and Yin (2008) solve the single-period problem of channel coordination with

retail price postponement. In their setting, the uncertain demand is purely multiplicative.

They analyze the effect of vertical competition and different contracts (including buy-back

contracts) between channel members on the profit obtained by the whole channel and

each individual member. Xu and Bisi (2011) study a price postponement scenario in a

single-period newsvendor model with wholesale price-only contract. They, too, consider

purely multiplicative or additive structures for the uncertain demand and make a series

of assumptions about demand distribution which assure the unimodality of ensuing profit

functions for the two channel members.

In Section 5, we coordinate a buy-back contract in which, at each period, the retailer

postpones her decision on retail price until the demand uncertainty at that period is

resolved. We analyze the effects of price postponement on the profit obtained by each

channel member and the whole channel, in sections 5.2 and 5.3. The solution to the prob-

lem of coordinating multi-period buy-back contracts with price postponement is offered

in Theorem 5.1.

We refer to the results of Section 5 as closed-loop solutions because they provide the

retailer with delayed extra information about the demand uncertainty which, in turn,

4



is used to enhance her decision variables obtained by solving the open-loop problem of

Section 4.4.

Having proposed our analytic solution methods in sections 4 and 5, in Section 6 we

implement the theoretical results in a few example scenarios and provide numerical results

constituting equilibria at each scenario.

2 Stochastic Demand Structure

In this section we propose a demand structure for a perishable good in a dynamic, i.e.

time-dependent, and price-dependent framework. The time scope is divided into n (pos-

sibly infinite) discrete intervals referred to as periods. We assume all the model variables

and parameters to remain unvaried within each period. The supply channel members have

to solve their overall bilevel profit optimization problems while addressing this demand

at each period. Thus, having introduced our general demand structure, in the subsequent

sections, we will embed it into various profit-optimization games to coordinate the channel

accordingly.

We consider the dynamic and price-dependent demand at each period k ∈ {1, · · · , n}
to be of the following additive-multiplicative form.

Dk = µ̃k(rk) + σ̃k(rk) εk (1)

where rk is the retail price at k, rk = [r1, · · · , rk] is the vector of the entire retail price

history up to period k, µ̃k(·) and σ̃k(·) are deterministic functions of rk and time (period

k), and εk is the stochastic variable at k.

We normalize the stochastic variable εk such that E[εk] = 0 and Var[εk] = 1. We also

assume that the density function for εk and its cumulative distribution function, fεk(·) and

Fεk(·) respectively, are known over its support [εk, εk]. Furthermore, we assume Fεk(εk) = 0

and Fεk(εk) = 1. Moreover, we assume that Fεk is invertible on the support interval and

denote the resulting inverse cumulative distribution function (quantile function) by F−1
εk

(·).
It is readily observable that the coefficient of variation of demand as presented in (1)

depends on both the vector of retail prices and time. In a purely additive demand structure

where at each period D = µ̃(r)+cε (c a constant), the volatility of demand is independent

of both time and prices. Whereas in a multiplicative demand model D = µ̃(r)ζ, E[ζ] = 1.

In the purely multiplicative demand model–which due to its numerical tractability has

been widely used in the literature–the coefficient of variation of demand turns out to

become a constant (i.e. 1). Thus the multiplicative model is equivalent to a special

case in our model where the mean and standard deviation of demand uncertainty (ε) are

equal.2 Both these features are restrictive and undesirable (Young 1978).

2We find this assumption too strong and not always justifiable.
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The dependence of the coefficient of variation of demand to time and retail prices in an

additive-multiplicative model will play a key role in defining and generalizing the memory

structure we will introduce in the subsequent section.

2.1 Memory Effects

In a market with elastic demand structure, the pricing history may affect the behavior

of strategic buyers at present and in the future. For example, strategic customers aware

of the repetitive patterns of pricing at previous seasons, may postpone their purchase

with the hope of getting a lower price. The influence of previous prices on the customers’

purchase decision in a market with an elastic demand structure can be generalized and

systematized as demand memory.

In our model, we embed a class of functional forms in the demand structure in (1)

such that they carry the effects of past pacing on current and future demand. We refer

to these functional forms as memory functions and denote them by Φk(rk−1).

As discussed in section 2, for the sake of generality, we consider the coefficient of

variation of demand at each period to be a function of retail price.

CVDk = CVDk(rk) (2)

In this paper, we limit our analysis to the case where previous prices scale the level of the

current demand.

Dk(rk) = Φk(rk−1)dk(rk)

where dk(rk) = µk(rk) + σk(rk)εk
(3)

Thus, from (3) and (1) we observe that

µ̃k(rk) = Φk(rk−1)µk(rk)

σ̃k(rk) = Φk(rk−1)σk(rk)
(4)

which in turn satisfies (2).

Moreover, the structure of the memory functions must be such that at period k + 1,

the memory retains the information stored in the pervious periods’ memory functions

while being affected by the most recently observed piece of information, which is rk. This

feature can be obtained by
Φk+1(rk)

Φk(rk−1)
= φk+1(rk) (5)

We refer to φks as memory elements and allow them to have different functional forms at

differing periods, adding to the level of non-autonomy of the ensuing equilibrium problems.
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With the memory structure described so far, we will have

Φk(rk−1) =
k∏
i=1

φi(ri−1)

Φ1(·) = φ1(·) = 1

(6)

In Section 6.1, we analyze and introduce general functional forms, compatible with eco-

nomic contexts, as memory functions.

3 Open-loop and Closed-loop Equilibria problems

Having introduced our memory-based demand structure, in the subsequent sections we

embed it into different profit optimization problems for the supply channel. The sup-

ply channel is composed of two members, a manufacturer and a retailer. We consider

the two channel members in a Stackelberg bilevel optimization framework in which the

manufacturer is the leader and the retailer is the follower. Each channel member has to

solve her own profit optimization problem while being subject to the optimality of the

other player’s solution as a constraint. The channel is to address the uncertain demand

discussed earlier for a perishable commodity.

At the beginning of each period, the manufacturer sets the wholesale price, wk, per

unit and offers a buy-back price per unsold unit, bk ≥ 0, to the retailer. The retailer

then solves her own optimization problem accordingly, and orders an amount of qk of the

commodity to the manufacturer and sets the retail price rk per unit.

In this paper, we classify the ensuing coordination problems into two major classes,

based on the behavior of the retailer at the beginning of each period. In the first class

of the equilibrium problems, at the beginning of each period, the retailer having solved

her optimization problem does not postpone her declaration of the price to the market.

We refer to this class as open-loop coordination problems or no-postponement problems,

interchangeably.

In the second class, the retailer, after receiving the manufacturer’s decision variables at

the beginning of each period, solves the open-loop problem to find out the optimal retail

price and order quantity. She then orders an amount of qk items to the manufacturer.

However, she postpones her decision on rk until demand uncertainty at that period εk

is resolved. She will then use the demand uncertainty as a rectifying feedback signal to

improve her open-loop prices both locally in time and also for the rest of the periods. That

is, after observing εk she solves her equilibria problems anew to find a new set of retail

prices from that period onward: ris, i ∈ {k, · · · , n}. We refer to this class of problems as

closed-loop or price-postponement coordination problems.
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The first and second class of coordination problems will be analyzed in sections 4 and

5, respectively.

4 An Open-loop Coordinated Model without Post-

ponement

The assumption of accessibility of demand distribution as a form of a priori knowledge

is commonplace in the existing literature; see for instance Cachon (2003), Pasternack

(2008), and Kim et al (2015). In our coordination analysis, we assume that both the

channel members possess an a priori knowledge about the distribution of the demand

uncertainty at each period, i.e. fεk and Fεk are known. Notice that the distribution of

the noise term at each period is independent of the retail price.

Moreover, in the no-postponement coordination analysis, we assume that both the

retailer and the manufacturer are risk-neutral, that is each channel member tries to max-

imize her respective expected profit over the course of the n periods. At the beginning

of each period the manufacturer sets the wholesale price and also may offer a buy-back

price to the retailer. The retailer then finds her optimal order quantity and retail price

accordingly.

It should be noted that the channel under study is considered to be a segment of a

more complete market, such that a segmentation of the pool of customers are addressed

by it. The market demand structure, in general, is an aggregation of the individual

demands from possibly heterogenous consumers who may be affected by the supply of

competing products from other vendors. This feature is embedded in D through the

choice of µk(k, r) and σk(k, r). Therefore, although the manufacturer and the retailer

in our model are basically monopolistic suppliers, the model considers competition via

demand structure.

We denote the ensuing open-loop equilibria variables by w∗k, b
∗
k, q

∗
k, and r∗k. It should be

noted that the equilibria states are the results of solving the bilevel optimization problem

over the whole span of periods from 1 to n, (n→∞ in the infinite-horizon analysis).

If the amount of the ordered items exceeds the demand at a period k, that is if q∗k > Dk,

the retailer can salvage the unsold items at a price of sk. However, because the commodity

is perishable, the retailer cannot restore the unsold items at the end of each period and

thus will not be able to supply them to market in the next period.

Moreover, the manufacturer may offer the retailer with the additional buy-back price

b∗k ≥ 0 per unit for surplus items. Note that the existence of a buy-back contract (b∗ > 0) in

a decentralized channel does not necessarily mean that the unsold items will be physically

sent back to the manufacturer (Cachon 2003). The manufacturer, in general, may provide
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the retailer with a non-zero credit for any unsold item at the end of a period, in order to

incentive a higher order quantity. Obviously r > b+ s.

4.1 Coordination in a Single Period (Static) Problem

For illustration purposes, we start the open-loop coordination of the decentralized channel

by solving it in a single-period horizon. In section 4.2 we generalize the solution to cover

multi-period coordination problems as well.

4.1.1 Model Framework and Solution Procedure

Model Variables and Parameters

w = wholesale price per unit, (decision variable)

r = retail price per unit, r > w (decision variable)

q = quantity of items to be supplied to the market, (decision variable)

D = actual uncertain demand

cm = manufacturing cost per unit, cm < w (given parameter)

cr = retailer’s marginal cost per unit, cr < r − w (given parameter)

s = salvage price per unit

b = buy-back price per unit

πm = manufacturer’s profit

πr = retailer’s profit

Since this is a single-period problem, we have dropped the time index k. The general

demand expression in (1) can now be recast as below

D = µ(r) + σ(r)ε (7)

where µ(r) and σ(r) are given functions of the mean and standard deviation of the un-

certain demand.

Each player’s profit is then obtained as follows.

πr = rmin(D, q) + s(q −D)+ − crq − wq + b(q −D)+ (8)

= (r − s− b) min(D, q) + (s+ b− cr − w)q

πm = (w − cm)q − b(q −D)+ = (w − cm − b)q + bmin(D, q) (9)

Because the two channel members are risk-neutral, their objective functions will be the
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expected values of the profits, optimized in a bilevel framework.

max
q

E[πr(r, q, b, w)] to obtain q∗(r, b, w)

max
r

E[πr(r, b, w)] to obtain r∗(b, w)

max
b

E[πm(b, w)] to obtain w∗(b)

max
w

E[πm(w)] to obtain w∗ → q∗, r∗, b∗

(10)

The first two equations in the bilevel optimization problem (10) constitute the inner

(follower) problem and the rest are the outer (leader) problem. For notational simplicity,

we denote the expected values of the profits in the single-period problem as follows.

πr := E[πr]

πm := E[πm].
(11)

Proposition 4.1.

Assume that ε has a continuous distribution, supported on the interval , with density

fε > 0 a.e. on its support [ε, ε], and a corresponding quantile function F−1
ε . Then the

equilibrium state decision variables to the single-period bilevel optimization problem in

(10) are obtained from the closed-form expression in (12) and numerical solutions to (13)

and (14).

q∗(r, b, w) = µ(r) + σ(r)F−1
ε

(
r − w − cr
r − s− b

)
(12)

max
r
πr(r, b, w) (13)

max
b,w

πm(b, w) (14)

where

πr(r, b, w) = (r − w − cr)µ(r) + (r − s− b)σ(r)

∫ z

ε

tfε(t)dt (15)

where z(r, w) = F−1
ε

(r − w − cr
r − s− b

)
πm(w) = µ (r∗(w))

(
w − cm

)
+ σ (r∗(w))

[
(z∗(w)

(
w − cm −

r∗ − w − cr
r∗ − s− b

)
(16)

+ b

∫ z∗

ε

tfε(t)dt
]

where z∗(w) = F−1
ε

(r∗ − w − cr
r∗ − s− b

)
(17)

Proof

See Appendix 1.
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Remark 4.2. Notice that of all the four decision variables, only q∗ can be formulated in

a closed-form expression. The rest of the optimal decision variables must be obtained

numerically by two-level (follower-leader) optimization processes. These features, as we

will see, will be inherited by the corresponding sets of optimal decision variables in the

multi-period coordination problem.

Remark 4.3. The condition that ε is supported on an interval with fε > 0 a.e. on its

support is required to ensure that Fε is invertible. If Fε is not invertible, it is possible

that the retailer’s expected profit is maximized at several order quantities between which

the retailer is indifferent. Different order quantities lead to different profits for the man-

ufacturer, but the manufacturer lacks an instrument to ensure that the retailer chooses

order quantities that are optimal for the manufacturer.

Example 1.

In this example, we have been using the following Cobb-Douglas functions for the mean

and standard deviation of demand. The structure of demand expression is such that as

time goes by, the absolute value of price elasticity of demand increases. However, because

this is a single-period coordination problem, we have k = 1.

µ(r, k) =
1000

r2+0.1(k−1)
σ(r, k) = 0.1µ(r, k) +

100

r3
(18)

The given parameters are as below.

cm = 3, cr = 0, s = 1 (19)

In this example, we coordinate a supply channel facing the uncertain demand structure

given in (18). The manufacturer offers the retailer with a fixed buy-back price b. We solve

the coordination problem with different values of offered buy-back prices and analyze

the effect of buy-back price on the channel partners’ expected profits. Note that in this

example, we treat each value of b as a given parameter in the bilevel optimization problem.

Figures 1 and 2 illustrate the expected profits for the channel members in different

coordinated buy-back contracts. We observe that the highest expected profit for the

manufacturer is obtained when she offers a buy-back price of 1.51. While too generous

buy-back prices, for obvious reasons, are detrimental to the manufacturer’s expected

profit, a buy-back price of zero is also suboptimal. This is due to the fact that a non-zero

buy-back price encourages the retailer to opt for a higher order quantity, which in turn may

increase the manufacturer’s expected profit. Thus, optimization of the manufacturer’s

objective function with respect to offered buy-back prices seem necessary.

We also observe that the retailer’s expected profit does not monotonically increase

with buy-back prices. This is because an increase in the offered buy-back price is usually

accompanied by an increase in w∗.
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Figure 1: Retailer’s expected profit ver-

sus b

0 0.5 1 1.5 2 2.5 3 3.5 4
19.1

19.15

19.2

19.25

19.3

19.35

Figure 2: Manufacturer’s expected

profit versus b

4.2 The Dynamic (multi-period) Equilibria

In this section, we propose a general solution to the multi-period version of the bilevel op-

timization problem discussed in Section 4.1. We denote the manufacturer’s and retailer’s

local-in-time profits at period k by πmk and πrk, respectively.

The retailer’s price optimization problem is formulated as below.

max
rk

Π
r

= max
rk

E
[ n∑
k=1

αkE[πrk|D1, · · · , Dk−1]
]

(20)

In (20), αk is a given discounting factor at period k. Time-dependent discounting factors

enable the model to cover a higher level of non-autonomy as they allow for different period

lengths.

The retailer’s optimization problem must be solved in tandem with that of the man-

ufacturer within a Stackelberg framework. We formulate the manufacturer’s price opti-

mization problem as below.

max
wk

Π
m

= max
wk

E
[ n∑
k=1

αkE[πmk |D1, · · · , Dk−1]
]

(21)

We start our analysis by studying the retailer’s price optimization problem in (20). With-

out loss of generality, we can consider E[πrk] (the local-in-time expected profit) as a function

of demand mean and standard deviation at each k. However, according to the multi-period

demand expression in (1), µ̃k and σ̃k depend on the whole history of retail prices rk. This

will make the optimization problem in (20) highly nested in time.

In addition, analogous to the single-period bilevel problem, since the retailer is the

follower, her optimal decision variables will first be determined as functions of the decision

variables of the leader. That is, for instance, at each period k when the bilevel optimization
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algorithm proceeds to the outer level optimization problem, the optimal price of the

retailer will be of the functional form r∗k(wk, bk), and will not be determined numerically

until the outer problem is solved, i.e. until w∗k and b∗k have been found and substituted

in the expression for r∗k. This bilevel structure will also add to the complexity of the

problem.

4.3 General Equilibrium Solution

Using backward induction method, we begin the solution of the multi-variable nested

optimization problem by analyzing the final period. The only profit expression in (20)

which depends on rn is E[πrn]. Thus maximization of the entire multi-variable sum,Π
r
,

with respect to rn is equivalent to maximization of only the single-variable E[πrn] with

respect to rn.

max
rn

Π
r ≡ max

rn
E[πrn] (22)

Moreover, at period n all of the previous decision variables and demands have become

common knowledge. Therefore given r∗n−1 and Dn−1 = [D1, · · · , Dn−1] and assuming

that the mapping rn 7→ E[πrn|Dn−1] has a global maximum, this global maximum can be

expressed as a function of the previous retail prices and demand history.3

r∗n = r∗n(rn−1,Dn−1) (23)

Now the backward induction method proceeds to period n−1 where having r∗n as expressed

in (23) enables us to conclude that maximization of Π
r

with respect to rn−1 is equivalent

to maximization of αn−1E[πrn−1]+αnE[πrn] with respect to rn−1. The resulting r∗n−1 will be

a function of (r∗n−2,Dn−2). Inserting this new function into (20) and iterating the same

procedure backward in time, we obtain the vector r∗n.

4.4 Memory-based Equilibrium Solution

The general construction outlined in Section 4.3 becomes highly nested both in time and

solution level. This section should be regarded as an attempt to propose an analytically

constructed and numerically efficient solution method to the ensuing nested equilibria

problems in a multi-period time setting. In this section, we introduce our memory-based

equilibrium solution method utilizing the memory-based demand structure. The im-

portance of our memory-based demand scheme lies in the structure it will create when

embedded inside the expressions for the manufacturer’s and retailer’s expected profits.

3It is still a function of the manufacturer’s decision variables as well. This is because at this time, all these procedures

are happening within the lower level (follower) solution algorithm.
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We begin by embedding the memory effects into the additive-multiplicative demand

structure. From (1) and (4), it is straightforward to see that

Dk(k, rk) = µ̃k(rk) + σ̃k(rk) εk = Φk(rk−1)
[
µk(rk, k) + σk(rk, k) εk

]
(24)

We refer to the expression in (24) as memory-based demand structure. Substituting this

demand structure into the retailer’s expected profit at period k we obtain the following.

E[πrk] = (rk − wk − crk) µ̃k(rk) + (rk − sk − bk) σ̃k(rk)
∫ zk

εk

tfε(t)dt

=

:=πrk︷ ︸︸ ︷[
(rk − wk − crk)µk(rk) + (rk − sk − bk)σk(rk)

∫ zk

εk

tfε(t)dt
]
·Φk(rk−1)

where zk(rk, wk) = F−1
ε

(rk − wk − crk
rk − sk − bk

)
(25)

We refer to πrk as scaled expected profit for the retailer at k. Thus (25) can be simplified

as below.

E[πrk] = πrk · Φk(rk−1) (26)

Note that the in the single-period case, where Φ(·) = 1, the expression in (26) will turn into

E[πr] = πr which is consistent with (11). Similarly, we can calculate the manufacturer’s

expected profit at k as below.

E[πmk ] =

{
µk (r∗k(wk))

(
wk − cmk

)
+ σk (r∗k(wk))

[
(z∗k(wk)

(
wk − cmk −

r∗k − wk − crk
r∗k − sk − bk

)
+bk

∫ z∗k

εk

tfε(t)dt
]}
· Φk(r

∗
k−1)

where z∗k(w) = F−1
ε

(r∗k − wk − crk
r∗k − sk − bk

)
(27)

Analogously, we refer to the term inside the curly brackets in (27) as the scaled expected

profit for the manufacturer at k and denote it by πrm. Whence (27) is simplified as below.

E[πmk ] = πmk · Φk(r
∗
k−1) (28)

Using the result of Proposition 4.1, the numerical value for the optimal order quantity at

k is obtained from the following closed-form expression.

q∗k = Φk(r
∗
k−1)

[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k − b∗k − sk

)]
(29)

It is important to note that in general, the argmax of the expected profit in a specific

period k for either supplier, i.e. the result of max
rk,mk

E[πr,mk ] is not equal to the value of the
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kth optimal decision variable for that supplier when the objective function is the whole

expected profit within the periods 1 to n. In other words, in general

max
rk,bk,wk

E[πr,mk ] 6≡ max
rk,bk,wk

Π
r,m

(30)

Our purpose is to find the results of the LHS of (30) – those decision variables which,

considering the effect of the pricing in the past on current and future demand, manipulate

the demand such that the highest amounts of expected profits for each decision maker

over the time interval between 1 and n.

Thus the following nested bilevel constrained optimization problems must be solved

throughout the periods from 1 to n.

max
rn

Π
r

= max
rn

E
[
πr1(r1, b1, w1) + · · ·+ αkΦk(rk−1) πrk(rk, bk, wk) (31)

+ · · ·+ αnΦn(rn−1)πrn(rn, bn, wn)
]

The inner level optimization

max
wn,bn

Π
m

(wn,bn) = max
wn,bn

E
[ n∑
k=1

αkΦk(r
∗
k)π

m
k (wk, bk)

]
The outer level optimization

(32)

s.t. 0 ≤ bk < wk − cmk ∀k ∈ {1, · · · , n}

Analogous to the single-period bilevel optimization, the optimal decision variables ob-

tained from the inner (follower) optimization problem will be functions of the variables

of the outer optimization problem. Additionally, for the manufacturer’s problem, the

feasible domain must be searched for couples of bk, wk at each period.

According to the procedure proposed in Section 4.3, at each level, the nested n-variable

problem should be decoupled into n single-variable optimization problems. Similar to the

observation in that section, it is evident that the variable rn appears only in the final

discounted profit term. Thus utilizing the backward induction method, we begin the

optimization from the final period.

max
rn

Π
r
(rn) ≡ max

rn
πrn(rn) (33)

In order to develop this approach, at each period k we define Jrk as the discounted ex-

pected value of the profit obtained from that period onward, i.e. within the time interval

{k, · · · , n}. each period k we define Jrk as the discounted expected value of the profit

obtained from that period onward, i.e. within the time interval {k, · · · , n}.

Jrk = αkΦk(rk−1)πrk(rk) + · · ·+ αnΦn(rn−1)πrn(rn) (34)

We observe that in this structure, beginning from the last period, the variable rk in Πr

appears for the first time in the expression for Jrk . Having solved the RHS of (33) we
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obtain r∗n and proceed to the previous period n− 1. Going further backward in time, we

can generalize this procedure as shown in (35) and (36), given that α1 = 1 and Φ1(·) = 1.

Jrk =αkΦk(rk−1)

(
πrk(rk) + φk+1(rk)

[αk+1

αk
πrk+1 +

αk+2

αk
φk+2(rk+1)πrk+2

+ · · ·+ αn
αk
πrn

n∏
i=k+2

φi(ri−1)
])

max
rk

Jrk

(35)

Jrk = αk Φk(rk−1)︸ ︷︷ ︸
price history

Jrk(rk)︷ ︸︸ ︷(
πrk(rk) + φk+1(rk)

[αk+1

αk
πrk+1(r∗k+1) + · · ·+ αn

αk
πrn(r∗n)

n∏
i=k+2

φi(r
∗
i−1)
]

︸ ︷︷ ︸
Frk= expected (future) values, given at kth period

)

max
rk

Jrk

(36)

In general, we define F rk , the scaled expected future profit within {k + 1, · · · , n} and Jrk,

the scaled expected profit within {k, · · · , n}, as below.

F rk :=
1

αk

n∑
j=k+1

j∏
i=k+2

φi(r
∗
i−1) · αjπrj(r∗j ) (37)

Jrk(rk) := πrk + φk+1(rk)F rk (38)

As it is demonstrated in (36), when the backward induction process reaches the kth period,

the scaled profit expected to gain in the future denoted by F rk has been determined and

is treated as a constant. We also observe the following relationship between Jrk+1 and F rk ,

the resolved future expected earning when the backward induction reaches k with.

Jrk+1(r∗k+1) =
αk
αk+1

F rk 1 ≤ k < n (39)

Note that, unlike F rk and Jrk+1, Jrk+1 includes the entire pricing history Φk(rk−1) and hence

is not known at k. In fact, Jrks are not resolved until the backward induction reaches k = 1.

The effect of the past represented by Φk(rk−1), though not yet determined by backward

induction, is factorized in (36) such that it only scales the expected profit from k onward.

Therefore, we will have:

max
rk

Π
r
(rn) ≡ max

rk
Jrk(rk) ≡ max

rk
Jrk(rk) (40)

Combining (36) and (39) we can summarize the retailer’s part of the multi-period bilevel
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optimization in the following recursive procedure.

F rn = 0 no future earning after n

max
rk

Jrk(rk) = max
rk

[
πrk(rk) + φk+1(rk)F rk

]
k = n, · · · , 1 (backward) → yields r∗k

F rk−1 =
αk−1

αk
Jrk(r

∗
k) k = n, · · · , 2 (backward)

(41)

From the procedure outlined in (41) it is readily observable that, in general, the holistic

optimal retail prices (r∗ks) are not the optimizers of individual πrks. The only situation

where rk = argmax(πrk) is when φk+1 = Ck, where Ck is a constant. A scenario in which

all the memory elements are constants, will create identical repeated games at different

periods.

It goes without saying that the same procedure can be applied and obtain equilib-

ria results if the channel was comprised of one supplier (thus constituting a centralized

channel). The only difference in a bilevel setting is that the optimal results obtained by

solving the inner problems will be functions of the variables of the outer problems, i.e.

r∗k = r∗k(bk, wk). When the leader’s optimization problems are solved, i.e. when b∗ks and

w∗ks are found, the follower can find numerical values to her optimal results.

In decoupling the nested n-variable optimization problem of the retailer into n single-

variable problems, we did not make any assumption about the level of the optimization

problem. Thus the same scheme can be applied twice to the manufacturer’s optimization

problems to decouple them into 2n single-variable ones. Once to obtain b∗(w)s and next

to find numerical results for w∗ks.

We state the final results of this section in the following two theorems.

Theorem 4.4.

Let n be the number of periods and assume that the uncertain demand at period k is given

by

Dk(rk) = Φk(rk−1)
(
µk(rk) + σk(rk)εk

)
(42)

where

Φ1(·) = φ1(·) = 1, Φk(rk−1) =
k∏
i=1

φi(ri−1)

and where εks are continously distributed with E[εk] = 0 and Var[εk] = 1 for all k. with

fεk > 0 a.e. on their supports. If for each k the single-period Stackelberg problem below

has an equilibrium at r∗k, b
∗
k and w∗k

Jrk = πrk + φk+1(rk)F rk
Jmk = πmk + φk+1(rk)Fmk

(43)
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where F rk and Fmk are found recursively from:

F rn = 0, Fmk = 0

F rk−1 =
αk−1

αk
Jrk(r

∗
k), Fmk−1 =

αk−1

αk
Jmk (w∗k, b

∗
k), k = n, · · · , 2

(44)

and

πrk = (rk − wk − crk)µk(rk) + (rk − sk − bk)σk(rk)
∫ zk

εk

tfε(t)dt

πmk = µk (r∗k(wk))
(
wk − cmk

)
+ σk (r∗k(wk))

[
(z∗k(wk)

(
wk − cmk −

r∗k − wk − crk
r∗k − sk − bk

)
+bk

∫ z∗k

εk

tfε(t)dt
] (45)

then the bilevel (Stackelberg) optimization problem

Π
r

=
n∑
k=1

αkE[πrk] =
n∑
k=1

αkΦk(rk−1)πrk

Π
m

=
n∑
k=1

αkE[πmk ] =
n∑
k=1

αkΦk(r
∗
k−1)πmk

(46)

has an equlibrium at r∗n = [r∗1, · · · , r∗n], b∗n = [b∗1, · · · , b∗n], and w∗n = [w∗1, · · · , w∗n].

The optimal order quantity at k is then calculated as below.

q∗k = Φk(r
∗
k−1)

[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k − b∗k − sk

)]
(47)

Next, we prove that the results of Theorem 4.4 are subgame perfect.

Proposition 4.5.

The equilibrium obtained in Theorem.4.4 is subgame perfect. That is, subsets of the

equilibrium results covering the time interval between an arbitrary period j and n, i.e.

[r∗j , · · · , r∗n], [b∗j , · · · , b∗n], and [w∗j , · · · , w∗n] and, a fortiori, their resulting [q∗j , · · · , q∗n] will

also constitute an equilibrium for the corresponding subgame of the original problem, cov-

ering that time-interval:

Jrj = αjΦj(rj−1)πrj(rj) + · · ·+ αnΦn(rn−1)πrn(rn)

Jmj = αjΦj(r
∗
j−1)πrj(wj) + · · ·+ αnΦn(r∗n−1)πrn(wn)

(48)

Proof. (By induction)

We have to prove that if {r∗j , · · · , r∗n}, {r∗j , · · · , r∗n}, and {w∗j , · · · , w∗n} are subsets of

the equilibrium results for [Π
r
,Π

m
, 1 : n], then they also constitute an equilibrium for

[Jrj , J
m
j , j : n].
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Beginning from the final period, we analyse the two agents’ equilibrium problem. In the

expressions for both Jrk and Π
r

the variable rn appears in πrn(rn) only. The same logic is

applicable to the manufacturer’s solution procedure.

max
rn

Jrk ≡ max
rn

πrn ≡ max
rn

Πr

max
wn

Jmk ≡ max
bn,wn

πmn ≡ max
bn,wn

Πm

Thus, at n the conclusion is obvious. The rest of the proof for an arbitrary k, j < k < n

has been argued in detail within the discussion resulting in (40).

We will use the subgame perfection of the open-loop equilibrium in Section 5 in the

analysis of the closed-loop equilibrium in a price-postponement scenario.

5 Coordination with Price Postponement: A Closed-

loop Model

In this section, we analyse a closed-loop variant of the problem, in which the retailer

postpones the announcement of retail price until after the demand uncertainty has been

resolved. We use essentially the same notations for the model variables and parameters

as those in Section 4. We use r̂k, and q̂k to denote the optimal retail price and order

quantity, respectively.

In a price-postponement scenario, the two players start with the open-loop equilibrium

solution procedures and obtain r∗n, b∗n, w∗n, and q∗n. At the beginning of the first period the

manufacturer sets b∗1 and w∗1, then the retailer orders q̂1 = q∗1. But the retailer postpones

the announcement of the retail price r̂1 until after she observes ε̂1. In sections 5.1 we solve

the equilibrium problems for each player to obtain the optimal post-observation decision

variables at an arbitrary period k.

Furthermore, since in the price-postponement scenario the entire demand is not neces-

sarily addressed by the retailer, for the sake of generality we must also consider a (possibly

time-dependent) salvage price for the retailer, and a buy-back contract between the two

agents.

Similar to the open-loop equilibrium settings, in a retail-price postponement scenario,

the manufacturer who is the leader imposes the following constraint on the buy-back price

to ensure a non-negative profit at each period.

0 ≤ bk < wk − cmk (49)

While in the ex-ante analysis of the no-postponement equilibria states, we used the

dynamic programming method known as backward induction, here in the ex-post analysis
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of price-postponement scenario we use a forward induction approach. Thereby, we incor-

porate the newly-revealed information in the form of feedback signals into the decision-

making process. This is due to the fact that the retailer now changes future demand by

her postponement.

5.1 Post-observation Bilevel Optimization

In our analysis of the retail price-postponement scenario, we divide the decision-making

process into two steps. First, at the beginning of each period k, both the retailer and the

manufacturer solve the expected profit optimization (equilibrium) problem in a Stackel-

berg framework within the time interval {k, · · · , n}. The manufacturer then declares the

equilibrium wholesale price and offers a (possibly zero) buy-back price, then the retailer

submits her order quantity to the manufacturer. However, the retailer does not declare

her retail price to the market. Instead, she postpones doing so until after she observes

demand uncertainty.

In the second step, having observed ε̂k, the retailer incorporates this new information

and solves the equilibrium problem anew while considering the manufacturer’s response

for the next periods. That is, after observing ε̂k the retailer tries to find optimal retail

prices within {k, · · · , n} while being subject to the optimality of the wholesale prices

within {k + 1, · · · , n}. The equilibrium solution will provide the retailer with her post-

observation optimal retail price vector [r̂k, · · · , r̂n]. Then she declares the first element of

her newly found optimal price vector, r̂k, to the market.

We begin the analysis of the equilibrium problem from the first period and using for-

ward induction reasoning delineate a general optimization procedure for all periods. At

the first step in the first period, both the retailer and the manufacturer solve the equi-

librium problem aimed at maximizing their own respective expected holistic (throughout

entire time interval between periods 1 and n) profits while subject to the optimality of

the other player’s solution. Thus they obtain the results of the open-loop equilibrium, i.e.

{r∗k,b
∗
k,q

∗
k,w

∗
k}. Therefore at k = 1 the manufacturer proceeds with declaring w∗1 and the

retailer orders q∗1 items. However, instead of declaring r∗1 to the market, the retailer waits

for the uncertainty of demand, ε1 to be resolved. In the second step and after observing

ε̂1, the retailer (and the manufacturer) solve the following equilibrium problem to obtain
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the optimal retail prices.

max
rn

Πr

max
{(b2,w2),··· ,(bn,wn)}

Jm2

where

Πr = πr1(r1, b
∗
1, w

∗
1, q
∗
1) + · · ·+ αkΦk(rk−1) πrk(rk, bk, wk, qk)

+ · · ·+ αnΦn(rn−1) πrn(rn, bn, wn, qn) = πr1 + Jr2

Jm2 = α2Φ2

(
r̂1(w1)

)
πm2 (w2) + · · ·+ αnΦn

(
r̂1(w1), · · · , r̂n−1(wn−1)

)
πmn (wn)

and πr1 = (r1 − s1 − b1) min

D1(r1)︷ ︸︸ ︷(
µ1(r1) + σ1(r1)ε̂1

)
+(s1 + b∗1 − cr1 − w∗1)q∗1

(50)

Note that the only difference between the retailer’s problem expression in (50) and the

one in (34) is in the first term, where the expected value of the profit in the first period

πr1 is replaced by the real profit πr1. Thus the retailer, having observed ε̂1, tries to find

the vector of optimal retailer prices r̂n to optimize the sum of her real profit at the first

period πr1 and the expected (discounted) profits in the future Jr2 .

To solve (50) we use the backward induction reasoning again. Starting with the

retailer’s problem in the last period n we observe that in order to obtain r̂n from (50) the

retailer has to solve (33) once again. This means that r̂n(wn) equals r∗n(wn) which was

obtained in the pre-observation optimization. In general, going backward in time from

period n to 2, the retailer will face the exact same optimization problems as the ones in

the pre-observation analysis, i.e. r̂k(wk) = r∗k(wk), k ∈ {2, · · · , n}. However, when the

backward induction reaches the first period, it will face the only term in the objective

function which is different from the corresponding one in (34), i.e. πr1. Thus, in general

the optimal r̂1 is different from r∗1.

max
r1

Πr = πr1(r1) + φ2(r1)×
[α2

α1

πr2(r∗2) + · · ·+ αn
αk
πrn(r∗n)

n∏
i=3

φi(r
∗
i−1)
]

︸ ︷︷ ︸
Fr

1 future expected profit, given (obtained from pre-observation analysis)

(51)

Therefore the vector of optimal decision variables for the retailer after observing ε̂1 is

[r̂1, r
∗
2, · · · , r∗n] where r̂1 is obtained from (51) and r∗ks (k = 2 · · ·n) are equal to the ones

obtained from the pre-observation optimization problems.

Now we proceed to the manufacturer’s part of the equilibrium (50), considering the
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effect of the new retail pricing scheme on future (time interval {2, · · · , n}) demand.

max
{(b2,w2),··· ,(bn,wn)}

Jm2 = max
{(b2,w2),··· ,(bn,wn)}

[
α2Φ2(r̂1) πm2 (b2, w2) + · · ·

+αnΦn(r̂1, r
∗
2, · · · , r∗n−1) πmn (bn, wn)

]
where r̂1 = r̂1(b∗1, w

∗
1), r∗k = r∗k(bk, wk) k ∈ {2, · · · , n}

(52)

where each πmk is calculated from (27) and (28).

Analogously, observing that each of the terms bn and wn appear only in the profit

expression for the final period πmn , we start the backward induction process from the nth

period.

max
bn,wn

Jm2 ≡ max
bn,wn

πmn (53)

But this problem has already been solved in the open-loop analysis and it will yield the

same optimal decision variable as before, i.e. b∗n and w∗n. Going backward in time, in

general at each period j ∈ {2, · · · , n} the manufacturer faces the optimization problem

(54). Note that for this arbitrary period j we have max
bj ,wj

Jm2 ≡ max
bj ,wj

Jmj . This is due to the

result of the Proposition 4.5 about the subgame perfection of the equilibrium aimed at

maximization of the expected profits on time interval between 2 and n.

max
wj

Jm2 ≡ max
bj ,wj

Jmj = max
bj ,wj

αkΦj(r̃j−1)

Jmk (bj ,wj)︷ ︸︸ ︷[
πmk (bj, wj) + φj+1

(
r∗k(bj, wj)

)
Fmj
]

where r̃j−1 = {r̂1(b∗1, w
∗
1), r∗2(b2, w2), · · · , r∗j−1(bj−1, wj−1)}

Φj(r̃j−1) = φ2(r̂1)

j∏
i=3

φi(r
∗
i−1)

(54)

Fmj =
αj+1

αj
πmj+1(bj+1, wj+1) + · · ·+ αn

αj
πmn (bn, wn)

n∏
i=k+2

φi(r
∗
i−1)

Fmn = 0

(55)

Again we have max
bj ,wj

Jmj ≡ max
bj ,wj

Jmj . Plus, when solving max
bj ,wj

Jmj we observe that the choice

of r̂1 does not affect Fmj . Therefore the results of max
bj ,wj

Jmj will be exactly as equal to ones

obtained by the open-loop solutions.

However, φ2(r̂1) in (55) will scale Jmj differently from φ2(r∗1) in the corresponding open-

loop equilibrium. Hence while the same b∗js and w∗j s will come out of the two equilibrium

problems, the expected values of the total profits will be different due to different memory

elements.

After analyzing the two-step solution for the players in the period 1, we try to find a

general solution procedure at a period k. The players arrive at period k with the memory
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function containing the already declared r̂k−1. In the first step they have to solve the

following bilevel optimization (Stackelberg equilibrium) problem.

max
rk,··· ,rn

Jrk (56)

max
(bk,wk),··· ,(bn,wn)

Jmk (57)

From Proposition 4.5 we know that the equilibrium aimed at maximization of the expected

profits is subgame perfect. Hence, in the first step, each decision maker obtains a subset of

her original open-loop equilibrium results; i.e. [r∗k, · · · , r∗n], [b∗k, · · · , b∗n], and [w∗k, · · · , w∗n].

Thus, at the first step in period k, the manufacturer declares w∗ and the retailer orders

q̂k = Φk(r̂k−1)
[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(
r∗k−w

∗
k−crk

r∗k−b
∗
k−sk

)]
.

At the second step, after the retailer observes ε̂k the following bilevel equation has to

be solved.

max
rk,··· ,rn

αkΦk(r̂k−1)πrk(rk) + Jrk+1 over k, · · · , n (58)

max
(bk+1,wk+1),··· ,(bn,wn)

Jmk+1 = max
wk+1,··· ,wn

n∑
i=k+1

αiΦi(r̃i−1)πmi (bi, wi) over k + 1, · · · , n

where r̃i−1 = [r̂k−1, rk, · · · , ri−1] (59)

Similarly, starting the backward induction from the final period, it is evident that from

period n to k + 1 the retailer will face the exact same optimization problems as the ones

in the pre-observation analysis. The only term in the entire objective function which is

different from its corresponding term in (34) is πrk (the real profit at k which has replaced

its own expected value, πrk). Therefore the retailer’s optimization problem boils down to

the following.

Jrk = αk Φk(r̂k−1)︸ ︷︷ ︸
price history

Jrk(rk)︷ ︸︸ ︷(
πrk(rk) + φk+1(rk)

[αk+1

αk
πrk+1(rk+1) + · · ·+ αn

αk
πrn(rn)

n∏
i=k+2

φi(ri−1)
]

︸ ︷︷ ︸
Frk=expected (future) values, given (obtained from pre-observation problem)

)

max
rk

Jrk ≡ max
rk

Jrk

(60)

Note that by the time the backward induction process reaches the kth period F rk in

(60), i.e. the future expected profit, is already calculated and is treated as a constant.

Solving the single-variable optimization problem in (60) yields r̂k while the rest of the

optimal retail prices remain equal to those obtained in the pre-observation (open-loop)
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optimization problem. Thus at the second step in the kth period, the retailer obtains her

optimal decision variables [r̂k(b
∗
k, w

∗
k), r

∗
k+1(bk+1, wk+1), · · · , r∗n(bn, wn)] as functions of the

corresponding buy-back and manufacturing prices.

In order to obtain numerical values for r̂k(bk, wk) and the rest of the optimal retail

prices, the retailer has to solve the manufacturer’s problem of finding optimal responses

for the next periods.

max
(bk+1,wk+1),··· ,(bn,wn)

Jmk+1

Jmk+1 = αk+1Φk+1(r̂k)π
m
k+1 + · · ·+ αnΦk(r̂k)

n∏
i=k+2

φi(r
∗
i−1)πmn

= αk+1Φk+1(r̂k)
[
πmk+1 + · · ·+ αn

αk+1

n∏
i=k+2

φi(r
∗
i−1)πmn

] (61)

The numerical results for optimal buy-back and wholesale prices are obtained using the

recursive solution procedure delineated below.

Jmj = αjΦj(r̃j−1)
[
πmj (bj, wj) + φj+1(r∗j )Fmj

]
k + 1 ≤ j ≤ n

r̃j−1 = (r̂k, r
∗
k+1 · · · , r∗j−1)⇒ Φj(r̃j−1) =

k+1∏
i=1

φi(r̂i−1)

j∏
i=k+2

φi(r
∗
i−1)

(62)

Fmn = 0

Fmj =
αj+1

αj
πmj+1(bj+1, wj+1) + · · ·+ αn

αj
πmn (bn, wn)

n∏
i=k+2

φi(r
∗
i−1)

(63)

Using the result of Proposition 4.5, it is straightforward to see that after declaration of

r̂k at period k, and when solving manufacturer’s optimization problem for the time interval

{k+1, · · · , n}, the backward induction process will yield the same {(b∗k+1, w
∗
k+1), · · · , (b∗n, w∗n)}

as those obtained in the open-loop equilibrium problem. However, the manufacturer’s ex-

pected profit will be different from the results of the open-loop solutions. This is due

to the scaling factor Φk(r̂k−1). The results of this section are expressed in the following

theorem.

Theorem 5.1.

In a retail price postponement scenario where the retailer and the manufacturer face the

uncertain demand described in Theorem 4.4, the retailer at each period k postpones the

declaration of her price until after observing demand uncertainty εk.

Assuming that there exists an equilibrium state [r∗k,w
∗
k] for the open-loop problem described
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in Theorem 4.4, if the following objective function has a global maximum, r̂k,

Jrk(rk) = πrk(rk) + φk+1(rk)F rk

where F rk =
αk+1

αk
πrk+1(r∗k+1) + · · ·+ αn

αk
πrn(r∗n)

n∏
i=k+2

φi(r
∗
i−1) given value

then the closed-loop problem of price postponement has an equilibrium with the following

optimal decision variables.

r̂n = [r̂1, · · · , r̂n]

b̂n = [b̂1, · · · , b̂n]

w∗n = [w∗1, · · · , w∗n]

q̂n = [q̂1, · · · , q̂n]

where q̂k = Φk(r̂k−1)
[
µk(r

∗
k) + σk(r

∗
k)F

−1
εk

(r∗k − w∗k − crk
r∗k − b∗k − sk

)]
=

Φk(r̂k−1)

Φk(r∗k−1)
q∗k

5.2 Price Postponement and Retailer’s Profit

At the end of period n, the set of post-observation optimal retail prices, [r̂n] is the result

of the optimization problem max
rn

Πr considering the real values of πrks. Whereas the set of

pre-observation optimal retail prices, [r∗n] is the result of optimization max
rn

Π
r

considering

the expected values of the profits at each period πrks. Thus it is trivial that in a hypo-

thetical n-period scenario where two retailers face the same εk at each period k, the one

that postpones the declaration of her prices (r̂ks) until after observation of each εk gains

higher profit compared to the retailer who adheres to sub-optimal r∗ks. In other words, in

a price-postponement scenario, because r̂ks are the results of the real profit optimizations,

any other set of decision variables (including the set of r∗ks) will be sub-optimal. Therefore

we have Πr
CL ≥ Πr

OL where Πr is the total discounted real profit gained through n periods.

5.3 Price Postponement and Manufacturer’s Profit

In general, in the closed-loop optimization scenario, at each period k the retailer enjoys

the strategic means to find an optimal r̂k maximizing the sum of her current profit and

expected future profits. Whereas the manufacturer always faces the structurally identical

(though differently scaled) expected profit optimization.

At each period k after observing ε̂k, the retailer deviates from the previously obtained

equilibrium price r∗k by declaring r̂k instead. Due to the structure of the memory functions,
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this new pricing scheme will affect the future demand and thereby the future earnings for

both the retailer and the manufacturer. The retailer’s optimization problem as generalized

in Theorem 5.1 is tailored such that an optimal r̂k will maximize the sum of the current real

profit and expected future profits. Thus after declaring each r̂k, it is the manufacturer’s

turn to modify her own optimal pricing scheme for the future considering the effects of

the retail prices on future demand and expected earnings.

Comparing to the non-postponement solutions, the retailer always benefits from post-

poning her retail price. Whereas the manufacturer’s may either benefit or lose potential

profit compared to the non-postponement case, depending on the structure of demand

mean and variance, and different realizations of the uncertain demand.

6 Numerical Implementation of the Model

In this section, we illustrate the theoretical results and implement the solution algorithms

discussed in Sections 4 and 5. In the examples analyzed in this section, we use Cobb-

Douglas demand functions.

Note that when deriving the results in those sections, we did not made any assump-

tion on the underlying distribution of ε except that its inverse commutative distribution

function, F−1
ε must exist. In the examples we use a truncated and re-normalized normal

distribution function for εs to ensure that the negative noise terms do not cause the entire

demand to become negative.

It should be noted that the main purpose of this section is merely to offer practical

advice on how our theory can be implemented in some special cases. The examples we

present are particularly simple, and hardly reflect the potential of this framework. To

take full advantage of the model, one should try to vary scaling factors and functional

forms in a systematic way. This makes it is possible to model a wide range of economic

contexts. A full discussion of the model and all the variations it can cover, is, however,

beyond the scope of this paper.

6.1 The Open-loop Equilibria Solutions

Following the order by which the scenarios were presented, we begin by providing examples

of the open-loop equilibria wherein optimization takes place based on the expected values

of discounted profits within a (possibly infinite) time horizon.

Multiplicative memory functions scale the future demand such that an increase in the

current retail price decreases the future demand. Thus the memory function at period

k + 1 which will scale the future demand Dk+1 is monotonically decreasing with respect
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to the retail price at all previous periods.

∀k ∈ {1, · · ·n} ∂Φk+1(r1, · · · , rn)

∂rk
=
∂
∏n

k=1 φk+1(rk)

∂rk
< 0 (64)

This means that the memory element at k + 1 must be monotonically decreasing with

respect to rk.
∂φk+1(rk)

∂rk
< 0 (65)

Here, for illustration purpose, we use the following functional structure for memory ele-

ments

φk+1(rk) = 1 + γk(κk − rk) (66)

where γk ≥ 0, the memory strength factor at period k, is a given parameter. The given

parameter κk ≥ 0 can be interpreted as a price cap; i.e., any initial price above κk reduces

demand, whereas demand is more likely to increase if rk < κk. If the scaling factor is

negative, maxima are turned into minima. Hence, if φk+1(rk) ≤ 0, the optimal order qk+1

is zero. To avoid this problem, we consider

φk+1(rk) = [1 + γk(κk − rk)]+. (67)

Example 3

For this example, we consider the following scaled demand function.

dk(rk) = µk(r, k) + σk(r, k)εk

µk(r, k) =
10000e−0.05(k−1)

r
4+0.1(k−1)
k

σk(r, k) = 0.2µk(r, k) +
10

r4
k

(68)

Note that in the expression for demand, the absolute value of price elasticity of demand

increases as k increases. Thus, as time goes by, the market gradually becomes more

sensitive to price increases. Moreover, due to competition, we have considered demand to

be monotonically decreasing with respect to time.

For simplicity, we set γk = 0.02, κk = 5, αk = 0.95, cmk = 5, crk = 0, and sk = 4 for

all ks. The number of periods, n, is set to be 25.

The three pricing decision variables (r∗, b∗, w∗) in equilibrium state at each period are

illustrated in Figure 3. The corresponding expected profits for the whole duration of time

between period 1 and n are Π
m

= 9.78 and Π
r

= 11.04. We observe that the optimal

buy-back price for the manufacturer is non-zero at all times. The lowest buy-back price

is 0.05 offered at k = n = 25 and the highest buy-back price is 1.39 offered at k = 1.

Now, we solve the closed-loop coordination problem in which the retailer is allowed to

postpone her retail price at each period. That is, we simulate scenarios in which a channel

who has already solved the open-loop solutions, faces different values of price-dependent

27



0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Figure 3: Three pricing decision variables in equilibrium state at each period (open-loop

solutions)

stochastic demand. In doing so, we gerenerate a set of εks representing demand uncertainty

at each period: E = {ε1, · · · , εn} using the given fεk and F−1
εk

. The retailer, after observing

each stochastic εk sometime within the period k, has to re-solve the coordination problem

and find her r̂k.

In a postponement scenario, in order to find out the effect of postponement on the

channel members’ profits, we compare two sets of results for each channel member and

for the whole channel. The first set, which we denote by the subscript NP (standing for

no postponement) are the profits obtained in the face E if the channel members adhere to

the decision variables obtained by open-loop solution {r∗n,q∗n,w∗n,b∗n}. The second group

of the results, denoted by the subscript P are the profits of the channel in the face of the

same E if the retailer postpones her retail price. Thus the second group represent the

profits obtained by the set of optimal variables {r̂n, q̂n,w∗n,b∗n}. The superscripts r,m, c

denote retailer, manufacturer, and channel, respectively.

Πr
NP = 11.87 Πm

NP = 10.11 Πc
NP = 21.99

Πr
P = 13.27 Πm

P = 10.66 Πc
P = 23.94

We observe that price postponement has been beneficial to each channel member and thus

to the whole channel. Figure 4 illustrates the sets of r̂ks corresponding to the specific E
generated for this example and r∗ks at different periods.

Example 4

In this example, we consider a slightly different channel facing a different demand struc-
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Figure 4: Open-loop and closed-loop optimal retail prices

ture.
dk(rk) = µk(r, k) + σk(r, k)εk

µk(r, k) =
10000e−0.1(k−1)

r
4+0.1(k−1)
k

σk(r, k) =
1

r3
k

(69)

In this example, too, the absolute value of price elasticity of demand increases with time.

The model parameters differing from those in Example 3 are cmk = 2 and sk = 1 for all

ks. The number of periods, n, is set to be 25.

The three pricing decision variables (r∗, b∗, w∗) in equilibrium state at each period are

illustrated in Figure 5. The corresponding expected profits for the whole duration of time

between period 1 and n are Π
m

= 233.57 and Π
r

= 274.36. We observe that all buy-back

prices are found to be zero at equilibrium states.

Next, we generate a vector E . Figure 6 illustrates the two sets of retail prices r∗n and

r̂n, where the latter is the retailer’s optimal response to demand realization due to E .

Analogous to the comparison in Example 3, we compare the results of the open-loop (no

postponement) and closed-loop coordination solutions.

Πr
NP = 273.98 Πm

NP = 233.57 Πc
NP = 507.56

Πr
P = 279.82 Πm

P = 233.48 Πc
P = 513.30

In both Examples 3 and 4, the retailer benefits from postponement. In Example 3,

the manufacturer also benefits from retail price postponement, while in Example 4, the

manufacturer is slightly worse off due to postponement. All of these observations are

consistent with the result of the analysis in Sections 5.2 and 5.3. The aggregate channel

profit in both examples has increased due to price postponement.
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Figure 5: Three pricing decision variables in equilibrium state at each period (open-loop

solutions)
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Figure 6: Open-loop and closed-loop optimal retail prices

7 Concluding Remarks

The main objective of this paper has been to offer an analytic tool to solve the general

problem of channel coordination with optimal buy-back contracts at different times in

a multi-period setting when addressing a time-varying and uncertain demand. We have

also embedded an important feature in the model which allows the downstream supplier

to postpone (and enhance) her pricing decision until demand uncertainty is observed.

Through these two approaches, first, the upstream supplier also takes part of risk

caused by demand uncertainty. Moreover, with price postponement, the downstream

supplier reduces the level of the risk stemming from uncertainty at each period (she
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still has to order before uncertainty is resolved, so the uncertainty risk is not entirely

eliminated).

In addition, in the theoretical results presented in theorems 4.4 and 5.1, all model

parameters and variables are considered as time-dependent. The model also allows for

functional forms such as φks, fεks, µks, and σks to vary with time. This feature also adds

up to the level of non-autonomy our solution method can cover.

An interesting next step would be to extend our construction to include inventory

management. Such a model can cover channel coordination in cases where the channel is

to address demand for a non-perishable good which can be stored at the end of the current

period and supplied in the next. Also, multiple downstream suppliers can be added to

the channel.

Quantity discount contracts in which the upstream supplier offers the downstream

channel partner(s) with a discount proportional to their order quantities will also increase

the level of the non-linearity of the original problem. The nestedness of the ensuing

equilibrium problems may need memory structures different from those offered in Section

6.1 to decouple.

8 Appendix 1: Proof of Proposition 4.1

In order to obtain the expected value of the retailer’s profit, we need to calculate E
[

min(D, q)
]
.

Given fε, Fε, and ε we define and calculate the expected sales, S, as follows.

S(q) := E
[

min(D, q)
]

=

∫ ε

ε

min(µ+ σt, q) fε(t) dt

=

∫ q−µ
σ

ε

(µ+ σt) fε(t) dt+

∫ ε

q−µ
σ

q fε(t) dt

= q − (q − µ)Fε

(q − µ
σ

)
+ σ

∫ q−µ
σ

ε

tfε(t)dt

(70)

∂ S(q)

∂q
= 1− Fε

(q − µ
σ

)
(71)

From (8) and (70), we obtain the expected value of the retailer’s profit πr.

πr(r, w, q) := E[πr(r, w, q)] = (r − s− b)S(q) + (b+ s− cr − w) q (72)

Following the outline in (10), now the retailer can calculate her optimal order quantity,

q∗ as a function of r and w.

∂πr

∂q
= (r − s− b)

(
1− Fε

(q − µ
σ

))
+ (b+ s− cr − w) = 0 (73)
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From the expressions in (71) and (72) it is readily observable that E[πr(r, w, q)] is convex

with respect to q; therefore, solving (73) yields q∗(r, w) as the argmax of the retailer’s

expected profit.

q∗(r, w) = µ(r) + σ(r)F−1
ε

(
r − w − cr
r − s− b

)
(74)

Substituting (74) in (70) and the result in (72), we obtain the following.

πr(r, w) = (r − w − cr)µ(r) + (r − s− b)σ(r)

∫ z

ε

tfε(t)dt

where z(r, w) = F−1
ε

(r − w − cr
r − s− b

) (75)

According to the procedure outlined in (10) a numerical solution to max
r
πr(r, b, w) in

(75) yields r∗(b, w) which is in turn substituted in the expression for the manufacturer’s

expected profit (76).

Using the expression for πm given in (9), we have:

πm(w) = µ (r∗(w))
(
w − cm

)
+ σ (r∗(w))

[
(z∗(w)

(
w − cm −

r∗ − w − cr
r∗ − s− b

)
+ b

∫ z∗

ε

tfε(t)dt
]

where z∗(w) = F−1
ε

(r∗ − w − cr
r∗ − s− b

) (76)
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