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Abstract 

Digitalisation is making a growing appearance across all sectors, and traditional P&I insurance 

is no exception. Marine insurance is said to be several years behind traditional land-based 

insurance when it comes to digitalisation. This thesis is attempting to narrow the gap, by 

investigating the potential of applying machine learning on AIS-information against the 

extensive database on P&I insurance claims from the P&I Club Skuld.  

The thesis aims at investigating the potential to predict P&I insurance claims based on variables 

retrieved from AIS. AIS-information from 2013-2017 and Skuld's claims data for the same 

period was combined, and a total of five machine learning methods were tested to assess the 

predictive power of AIS-information. An extensive pre-processing was executed to make the 

data available for machine learning, and this section provides detailed information to anyone 

that aims at utilising AIS in their research.  

The research finds that AIS-information has predictive power for claims, as it links claims to 

activity level and operational patterns of the merchant fleet. The findings have implication for 

two fields in marine insurance; risk assessment/ pricing and loss prevention. In relation to loss 

prevention; average distance sailed, number of unique ports visited, and total distance sailed 

were found to have the most predictive power. Regarding risk assessment, the strongest model 

was able to predict 79 % of all cargo claims for Bulk & Cargo small.  

The research has revealed that machine learning has potential to create significant value in P&I 

insurance and that an extensive amount of data is ready to be applied in the pursuit of more 

accurate risk assessments and more precise loss prevention measures. Estimates vary between 

a potential yearly reduction in claims of 7-14%, in addition to increased revenue as a result of 

correct pricing.  
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1 Introduction 

Marine insurance is paramount to secure efficient shipping markets and allow shipowners and 

charters to take on the necessary risk to ensure global trade (Ajigboye, 2016, UNCTAD, 1982). 

A single accident could lead to bankruptcy for shipowner’s, if not for well-functioning marine 

insurance industry. The cost of replacing a vessel perished at sea only constitutes for a fraction 

of the possible liabilities shipowners face. Claims related to pollution, loss of lives, wreck 

removal and cargo claims can add to many times the value of the vessel.  

The current marine insurance market is dominated by three insurance products; Hull & 

Machinery (H&M), Cargo and Protection & Indemnity (P&I). H&M and Cargo belong to the 

traditional marine insurance products with origins dated back to the 14th century. P&I insurance 

developed later, and primarily through the mid-19th century in London, as to counter third-party 

liabilities. Today thirteen P&I clubs hold liability for 90% of the world’s ocean-going tonnage 

(IG, 2018). The clubs are in close cooperation and mutually responsible for each other’s claims 

through the International Group of P&I Clubs (IG). At the same time, they compete among each 

other, in a market with a limited number of vessels and operators. Mutuality makes it 

challenging to compete on price, and other elements such as service and support are essential 

factors in the competition to attract shipowners.   

The primary driver of cost in marine insurance is the frequency and severity of marine accidents, 

and damage of equipment or cargo, while under maritime transportation. Accidents have the 

potential to create environmental disasters, loss of life and tremendous financial loss. Accidents 

are defined as unfortunate incidents that happened unexpectedly (Oxford Dictionaries, 2018) 

and are unpredictable by nature. However, research reveals that accidents have common factors, 

and with growing available data, further patterns might arise.   

Accurate risk assessment is an essential part of any marine insurance company to attain 

competitive advantage.  Increased understanding of the contributing factors of marine insurance 

claims, can be achieved through in-depth data analyses. In the last decade, computer power has 

increased rapidly along with the amount of available data. Approximately 50,000 merchant 

vessels trade internationally (AGCS 2018), and transmits on AIS continuously. The market for 

analysing AIS-information is expected to reach $ 225 million in 2020 (Markets&Markets, 

2014), and the potential values for companies involved in shipping are likely higher. In general, 
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shipping lags in new tech adoptions compared to other sectors, but changes are inevitable 

(Latarche, 2018), and this research aims at narrowing the gap.   

Most research on marine accidents is related to collisions, groundings, machinery breakdown, 

fire on board and personal injuries. These categories constitute for a large part of P&I insurance 

claims. However, the largest category of insurance claims is related to cargo, and the vessels 

does not need to have taken any damage. This research contributes to expanding the scope of 

current research, to not only describe accidents at sea and also explain any claim related to 

vessels activity and operation.  

Standard & Poor’s rating report for Skuld (2018) explicitly identifies that the P&I structure of 

the marine insurance industry has high barriers to entry. They assess the risk of new competitors 

to enter the industry as low, and the overall assessment of Skuld gives the company an A rating.  

Further, Standard & Poor’s evaluate a downside scenario where Skuld is unable to maintain its 

strong competitive position. One key factor to sustain the current industry position, is to develop 

successful growth by taking full advantage of the existing information obtained in the company 

and create new solutions to increase the effectiveness of operations.   

The purpose of this thesis is to analyse the potential of exploiting a combination of  

AIS-information from Safetec and claims data from Skuld. More specifically it aims at utilising 

machine learning to create a model for predicting insurance claims in three categories; Cargo, 

Contact & Collisions and Human. Machine learning has the potential to analyse large amounts 

of data to retrieve patterns that are not possible to detect for any person, and findings can be 

used to develop more accurate risk models.  

Increased understanding of the relationship between vessels operational pattern and claims, has 

the potential to create value in three fields of marine insurance; loss prevention, pricing, and 

member support. Loss prevention is the field of insurance aimed at avoiding accidents before 

they happened. If the underlying factors behind an insurance claim are identified, monitoring 

these factors can potentially lead to the right measures being taken, and accidents can be 

avoided. The insight of underlying factors might also be used to adjust risk models, and 

implement new pricing strategies. Current price models in the P&I markets are based on a 

variety of factors, but to the knowledge of the researchers, activity level is not one of them.  

A possible future scenario is activity-based pricing as opposed to current static models.  
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 Problem Definition 

The objective of this thesis is two folded; examine the potential for machine learning and  

AIS-information in relationship to P&I insurance, while specifically designing a model to 

predict claims and identify predictors of importance. The specific research question defined are: 

1. (a) To what extent can AIS-information combined with machine learning algorithms 

predict claims; (b) What are the most important predictors retrieved from AIS-

information? 

2. What do these findings suggest about the potential for implementing machine learning 

and AIS-information in P&I insurance?  

The first research question defines the boundaries of the machine learning methods used in this 

thesis. The path from pre-processing data, to the final output of the models, is all purposely 

aimed at answering the first research question. The analysis only specifically address research 

question one. To answer the specific question machine learning will be applied to variables 

retrieved from AIS-information, relating to vessels activity level and operational pattern, such 

as nautical miles sailed, and the number of ports visited. The second research question is 

primarily answered in the discussion, as the nature of the subject makes it more suitable for a 

qualified assessment than a quantitative analysis.   

While machine learning and AIS-information is frequently applied in research of marine 

accidents, there are to the knowledge of the researchers of this thesis, no studies applying 

machine learning to AIS-information, with the purpose of predicting insurance claims. For any 

insurance company, the production cost of the insurance is not known at the time of sale. 

Determining the correct premium is challenging, and the price is calculated based on estimated 

risk from customer knowledge, historical data and predictive models. As this thesis aims at 

investigating the predictive power of AIS-information, it may lead to more accurate risk 

assessments. Identifying underlying factors of insurance claims may ensure more precise and 

timely loss prevention measures, and possibly reduce the total number of claims.  

 Limitations 

The research is limited to P&I insurance, claims within three categories; Cargo, Contact & 

Collision and Human, and nine specific types of vessels. P&I insurance refers to Shipowners 

P&I insurance as opposed to other P&I product, such as Charters P&I. The particular claims 
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categories represent the most frequent or costly categories of claims. The limitations are set 

based on available data and available computational power. The methods used are transmissible 

to any vessel or type of cargo. A broader list of arguments and limitation is discussed throughout 

Chapter 3, 4 and 5.  

 Defining Marine Accidents 

Marine accidents and claims may refer to a variety of situations and conditions. To ensure an 

unambiguous interpretation, the following definitions of a P&I insurance claim, marine incident 

and marine accident are used.  

Marine P&I Insurance claims 

Protection & Indemnity insurance claim is a formal request to a P&I insurance company for 

coverage or compensation for a covered loss (Brækhus & Rein, 1979).  

As this thesis is limited to owners´ P&I, the request will come from a Shipowner. The term 

claim refers to a P&I insurance claim unless otherwise specified.  

Marine Incident 

“Marine Incident means abnormal events occurring in the course of operation of sea-going ships 

and likely to cause danger to man, ships, architectural work or the environment.” (Kuehmayer, 

2008). 

Marine Accident 

“Marine Accident means one or more than one marine undesired incident which results in 

personal injury, damage or loss. Accidents include loss of life or major injury to any person 

on board, the actual or presumed loss of a ship, her abandonment or material damage to her, 

collision or grounding, disablement, and also material damage caused by a ship. It is the duty 

of every master or skipper to examine any accident occurring to, or on board, his ship.” 

(Kuehmayer, 2008)  

 Litterateur Review 

To the knowledge of the researchers, there is no research studying the relationship between 

AIS-information and P&I insurance claims. On the contrary, an extensive amount of research 
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on risk and causes related to maritime accidents exists. As claims related to maritime accidents 

constitutes to a large part of insurance claims, relevant literature related to such accidents are 

included in this section. The research can broadly be separated in four branches; studies of 

frequency and type of accidents, studies of underlying causes of accidents, studies of models to 

analyse marine accidents, and development of risk models of ship accidents. In the next 

paragraphs selected contributions to the research of marine accidents is presented.  

A study of Kujala (2009) on accidents in the Gulf of Finland concluded that the most frequent 

type of accidents was related to groundings, collisions, fire and machinery damage. Additional 

research and statistics from EMSA (2018) and AGCS (2018) support the findings of Kujala and 

adds foundering to the list. While foundering tops the statistics in many databases, it is normally 

a result of other underlying factors.  

The contributing factors to maritime accidents can be separated into human factors, vessel 

specifications, route characteristics, climatic factors, weather conditions and situational factors 

(Mazheri, 2017). Each of the elements could be studied separately; however, there has been a 

shift in focus of research related to maritime accidents from technical aspects to the human and 

organisational factors (Grech et al., 2008).  

Multiple models for human and organisational factors have been developed; SHEL (software, 

hardware, environment, liveware), Swiss Cheese model, Human Factors Analysis and 

Classification System (HFACS), (Guizhen, Z, 2016). Harrald, et al. (1998) states that human 

error is the primary cause of most transport-related accidents according to all research studies 

and investigation reports.  Through the HFACS framework, Chauvin et al. (2013) found that 

most collisions are caused by human errors due to decision error, because of poor visibility and 

misuse of instruments. By combining HFACS and cognitive maps Akyuz and Celik (2014) 

identified unsafe preconditions as the most essential factor for marine accidents. Akyuz and 

Celik point at lack of organisation on board, the absence of teamwork, and physical and mental 

tiredness as the main contributing factors in unsafe preconditions.  

Mullai and Paulsson (2011) developed a ground theory model for marine accidents based on 

empirical data from 6000 accidents, and 87 variables. They found that the predictive power for 

fatality by the exposure element was strong, and the most significant factor was the number of 

people on board. In contrast, the same research found that the predictive power of the variable 

marine accidents was very limited in predicting fatality.  
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Mazaheri (2017) takes ground theory model one step further, and his framework for evidence-

based risk modelling of groundings is extensive. Mazaheri argues that most risk models for 

groundings do not fully utilise the evidence available and they do not reflect reality in the 

required extent. His model identifies being of course, and loss of control as the two most 

significant factors resulting in groundings.  

In addition to independent research, a large body of investigation boards exists to investigate 

maritime accidents with the objective to increase maritime safety (Kuehmayer, 2008). Severe 

incidents are thoroughly studied in detail by these agencies. European Marine Safety Agency 

(EMSA) is responsible for maintaining the European Marine Casualty Information Platform 

and investigate incidents involving vessels flying the flag of any member state, or accident that 

occurs inside the member states territorial waters. Most nations with a large fleet have 

independent bodies to investigate marine accidents, such as the Norwegian Havarikommisjonen. 

Their purpose is to increase maritime safety, and they do not take part in the distribution of 

guilt. The variety of reporting regimes for accidents makes data available for independent 

researchers. However, data from insurance companies related to the cost of accidents is not as 

easily accessible. Also, minor accidents and other insurance-related issues are not reported in 

the public databases. The vast amount of studies are related to collisions, groundings, machinery 

breakdown, fire and human incidents and the cause of these incidents. Most studies have 

maritime safety as the overarching topic and not financial implications.  

 Thesis Structure 

Chapter 2 provides background information on maritime insurance and P&I Clubs. It intends 

to provide the necessary information to understand the basic principles of P&I insurance, the 

P&I Club structure, and current risk and loss prevention regimes. Chapter 3 explains the 

datasets used in the research as well as pre-processing of data. AIS is given special attention as 

it requires extensive pre-processing and choices of processing method is relevant for the 

outcome of the final models. Chapter 4 describes the dependent and independent variables used 

in the analysis. The purpose of the chapter is to explain the reasoning behind the choice of 

variables, and the expected predictive power. Chapter 5 details the methodology used to analyse 

data. It contains background information on machine learning and general information about 

the machine learning techniques used. Chapter 6 presents the final model and results. A total of 

five models is utilised and compared to identify the most accurate model, and the variables of 

most importance. Chapter 7 covers the implications of the findings, limitations of the research, 



7 

 

and further potential for machine learning in marine insurance. Chapter 8 contains the final 

conclusions. 

2 Marine Insurance 

This chapter provides background information on the particularities of P&I insurance, the 

development and history of the marine insurance industry, as well as different types of products. 

The aim is not to detail the extensive legal framework of P&I Insurance, and only selected rules 

and regulations are described. 

 History and Development of P&I Insurance 

The first marine insurance policies were written in the 13th century in Italy, after centuries of 

alternative methods for mitigating risk relating to piracy, stormy weather, or onboard fires 

(Haueter, 2013). In antiquity, risk was often seen through the lens of fate and met with 

acceptance rather than defiance; however, as ships grew larger and carried more cargo, the 

value of shipment increased. To protect their investments, seafaring nations mitigated risk by 

spreading their cargo on several vessels (Haueter, 2013). Diversifying shipments could only 

reduce a portion of the exposure, and the first marine insurance policies developed as a more 

sustainable method for limiting risks.   

In the next centuries marine insurance developed slowly, until the Italian Lombard family 

moved to London in the 16th century and popularised the concept. The further development is 

undeniably related to the history of Lloyds and his coffeehouse in Tower Street, where the 

insurance market was centred from 1688 onwards (Mutenga & Parson, 2012).  

Until the 1850s, the leading marine insurance products were related to hull and cargo, but in 

the 1850s a new insurance product where introduced, protection insurance. There are several 

theories as to why the demand for protection insurance arose. A common explanation is that it 

developed to cover the last one-fourth of collision liability, which hull underwriters refused to 

take on. An alternative theory relates to the introduction of new and stricter rules of liability 

related to death and personal injuries (Brækhus & Rein, 1979). The first P&I Club, Shipowners 

Mutual Protection Society, was established in 1855 in England, and it exists today, under the 

name Britannia Association.   
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Several P&I clubs were established in London in the following years, and the insurance product 

continued to develop. In 1870, after the loss of the vessel Westonhope, where the shipowner 

was made liable for the loss of cargo, indemnity protection was introduced. The new insurance 

products were adopted by most clubs, and it is from these two types of insurance products the 

clubs have their names today.  

In the next decades, two P&I clubs where established in Norway, Swedish Hull Club adopted 

P&I insurance as a separate class, and one club was formed in the US. By 1917, twelve of the 

thirteen members of the IG of P&I clubs were founded. The latest member, a Japanese club, 

was established in 1950. Today these thirteen clubs hold 90% of the P&I insurance market 

(Mutenga & Parson, 2012).  

 Market and Products  

In the modern market of marine insurance, a wide range of insurance products are available. 

However, the traditional products are still the most common; H&M, Cargo, and P&I. The 

included coverage is regulated by the insurance plan where the protection is placed. The Nordic 

Marine Insurance Plan (NMIP) is one of these plans: NMIP is signed by leading actors in 

Scandinavia and ensures a common framework for all non-P&I insurances (CEFOR, 2016). An 

alternative to NMIP is the Institute Time Clauses Hulls (ITC). The major difference between 

the plans is that NMIP covers everything not explicitly excluded, while the ITC only covers 

what is explicitly included. P&I is indirectly affected by these plans as NMIP provides full 

collision liability, while ITC only covers three-fourths. A shipowner under ITC will likely aim 

at 100% collision cover, and the last one-fourth collision liability is often covered through a 

Running Down Clause (RDC) under the P&I insurance. An owner under NMIP would not 

require RDC. In the following sections, H&M and Cargo insurance are mentioned briefly, while 

P&I is detailed to a more considerable extent.   

2.2.1 Hull & Machinery  

Skuld (2017) defines Hull & Machinery insurance as an insurance to protect the shipowner's 

investment in the vessel itself. The insurance typically covers total loss of the vessel, damage 

to the vessel or equipment on board, explosions and fires, and groundings (Luddeke, 1996). A 

clause for collision with other vessels and other objects are often added. In addition, a trading 

warranty usually restricts the area of operations for the vessel, and a breach of the agreement 

will result in limitations of cover (Skuld, 2017). 
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In practice the insurance cover is spread on several different insurance companies, where one 

company typically only covers a limited proportion of the vessel, for example, 5-10%, 

depending on the vessels value (Luddeke, 1996). The company with the most substantial stake 

in the vessel, will in case of an accident act as the claims lead, and all underwriters must follow 

the decisions made by the claims lead. In some circumstances, war insurance and loss of hire 

are included in the coverage.  

2.2.2 Cargo 

Cargo insurance is intended to cover the financial exposure of the cargo owner. The 

responsibility of the carrier depends on the specification in the Bill of lading1, in addition to 

established legislation and rules (Luddeke, 1996). The owner of cargo does not need to be the 

shipowner and are in most cases not (Skuld, 2017). Premiums vary with the type of cargo, and 

multiple insurance regimes exit. The most common practice is that each cargo owner takes out 

insurance for his/her proportion of the cargo with one insurance company. For a 10,000 TEU 

container vessel, hundreds of insurance companies could have liabilities in the cargo. In the 

case of cargo claims, where the owner of cargo is not the Shipowner, cargo insurers often aim 

at reclaiming their liabilities from the Shipowner. Shipowners are insured against these claims 

through their P&I insurance. Most cargo claims are related to an alleged breach of contract 

(Luddeke, 1996).  

 Protection & Indemnity 

P&I is a combination of two products; Protection & Indemnity. In contrary to H&M and Cargo, 

which aims at asset protection, P&I is a third-party liability insurance. P&I insurance can be 

divided into two categories, contractual liabilities, and legal liabilities. Contractual liabilities 

are all claims originating from parties with interest in the standard operating practices of the 

vessel, such as cargo owners. Legal liabilities relate to all claims arising from the jurisdiction 

where the vessel is operating, such as government, private persons or companies that have no 

contractual agreement with the ships, but whose property is affected (Gohlish, 2009). Claims 

in the latter category can be related to the cost of clean up after oil-spills or cost of damage to 

private property by any means.  In the following sections, selected topics associated with P&I 

insurance is discussed. The two last sections of this chapter are Skuld specific, as it is based on 

                                                

1 Bill of laden - Legal document between a Shipowner and the carrier, which specifies terms of the shipment. 
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information that is regarded confidential by most companies. The information in this section is 

likely representable for all P&I Clubs.  

2.3.1 Mutuality  

The P&I market is divided into two main categories; insurers that are part of International 

Group and insurers that are not (Gohlish, 2009). Furthermore, a common distinction is between 

fixed and mutual insurance, where the clubs in the IG primarily are mutual. The principles 

behind mutuality are that the assured also become the insurer (Gohlish, 2009). The assured 

becomes a member of the insurance organisation, and all members are mutually liable for 

claims. P&I clubs are in theory non-profits, where premiums for a given policy year is estimated 

and paid by the members. The final premium is agreed when the insurance policy is closed, 

which is generally after three years, due to the complexity of settling legal disputes. In the case 

of remaining funds, the profits are repaid to the members, and in the opposite case, more 

premiums need to be paid (Skuld, 2017).  

Mutual insurers do not suffer from capacity constraints, as each new member also becomes an 

asset to the organisation. This has enabled P&I clubs to offer higher coverage compared to what 

a traditional insurance company can provide (Gohlish, 2009). P&I club rules are based on a pay 

to be paid principal, where the insured first needs to pay the claim before claiming under the 

insurance policy. The pay to be paid principle limits shipowners ability to take on extensive 

risk, and reduce the risk of insolvency (Luddeke, 1996).   

2.3.2 P&I Clubs 

North (2012) defines P&I club as an association of shipowners that have grouped to insure each 

other on a mutual nonprofit-making basis, for their third-party liabilities. Although P&I clubs, 

in theory, are non-profits there are differences in how they are managed. At least two common 

management systems exist; P&I clubs led by a company operating for profit, and clubs managed 

by directly employed staff. For P&I clubs managed by a company, the P&I club and the 

management are two separate entities connected by a management contract. The benefit is that 

shipowners are more likely to only pay for their own claims handling. For P&I clubs managed 

by directly employed staff or a management company owned by the club, the main advantage 

is that such management will offer a higher level of enhanced services (North, 2012). 

As previously stated, thirteen of the leading P&I companies are part of the IG, which by itself 

operates on principles of mutuality.  All clubs are mutually responsible for the total portfolio. 
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The system is neatly defined and regulated. In short, the club which insures a vessel covers all 

individual claims up to $ 10 million, and for claims above this amount, all clubs are mutually 

liable (International Group, 2013).  

2.3.3 P&I Policy Period 

The P&I policy period starts noon GMT2 on the 20th of February. The historical reason is that 

many of the insured vessels were laid up during the winter months when the Baltic Sea was 

frozen. 20th of February was assessed as the date that the Baltic would certainly be “ice-free” 

(North, 2012).  

2.3.4 P&I Coverage 

P&I coverage varies with the clubs and the insurance plan the club operates. This section 

comments on claims statistics and standard coverage in the owners P&I covered by Skuld. 

However, for all clubs listed with the IG, the club rules are very similar (Gohlish, 2009). 

P&I insurance is intended to cover liabilities to thirds parties who may have a contractual or 

legal claim against the vessel (Skuld, 2017). The specific list of coverage is detailed and 

extensive, but the most frequent areas of claims origins from coverage of death and personal 

injuries, loss of crew members personal effects, loss of or damage to cargo, and optionally 

contact & collision through an RDC. Claims covered by wreck removal or pollution are less 

frequent, despite these types can potentially result in large payouts. In the following sections,  

coverage of the claims categories used in the analysis is discussed.   

Death and Personal Injuries 
P&I insurance covers the owner’s liability for all deaths, personal injuries, and illnesses which 

occur on board, including death or injury to crew, passengers, stevedores, pilots and visitors to 

the vessel (Skuld, 2017). In addition, the insurance covers costs of repatriating crew members 

who become sick or are injured on board, and crew’s hospital bills and expenses of sending 

replacement personnel to the ship (Skuld, 2017). 

                                                

2 Greenwich mean time 
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Claims covered in this category are among the most frequent and constitutes on average for 

approximately one-third of all P&I claims. However, claims in this category are usually less 

expensive than the average claim, and payout represents about one-sixth of total payouts.  

Loss of or Damage to Cargo 
Coverage in case of breach of contract of carriage is one of the primary functions for Protection 

and Indemnity insurance (Skuld, 2017). The cargo indemnity insurance is generally triggered 

as a result of damage or shortage of cargo while under the control of the shipowner. A cargo 

insurer will pay the owner of the cargo before the underwriter seeks to cover losses from the 

shipowner. P&I clubs usually handles the claim on behalf of the shipowner (Skuld, 2017). 

Cargo claims account for approximately 40% of all claims, and one-third of all payouts. Thus, 

the average cargo claims are more expensive than death and personal injuries, but still less than 

the average payout for a claim. 

Contact & Collision  
Coverage for contact & collision is only covered when an RDC and Fixed or Floating object 

(FFO) clause has been included (Skuld, 2017). In the Nordic Plan, collision is normally 

included under H&M insurance. Standard P&I coverage offered by Skuld are not including  

RDC and FFO, as several of the members are insured under the Nordic Plan. RDC and FFO are 

offered as a separate agreement.  

Contact & collision are among the least frequent claims, but when they occur the payouts have 

the potential to be extremely high. Less than 5% of all claims are related to contact & collision, 

but payouts constitute for close to 40% of total payouts made by Skuld in the period studied. 

More detailed investigation reveals that two vessels alone constitute for 60% of total payouts 

in the category. Most of these payouts are not directly related to the contact, collision or 

grounding, but the aftermath of the incident, such a wreck removal or pollution.  

The low frequency, but extreme payouts for contact & collisions emphasise the importance of 

the mutuality principles, both within the specific club as well as among the members of the 

international group.   

2.3.5 Premium and Risk Determination 

The two main parts related to pricing in P&I insurance are; premiums and deductibles. The 

current pricing structure at Skuld allows for some flexibility in the determination of deductible, 
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while premiums are the central area of negotiation. The premium is negotiated based on market 

prices and a risk-adjusted price model.  

Skuld’s current price model works by assessing risk, based on owners claims history, and static 

vessel information such as gross tonnage, age, type, and flag. The price model acts as a 

management tool in the negotiation between the representative of the shipowner, and the 

underwriter at Skuld. In practice, 80% of all negotiations are done by brokers, while the 

remaining 20% is negotiating directly between the underwriter and the Shipowner. In the latter 

case, there is usually a long relationship between the actors.  

Brokers have up to date information on market prices, which in most cases is the determining 

factor in agreeing on a premium. In a case with a significant deviation between the price model 

and the acceptable price of the broker, the insurance will not be approved by Skuld.  

The underwriter’s primary role is to act as a salesperson for the P&I Club, while at the same 

time ensure reliable risk assessments of entered vessels. Brokers act as an agent to provide the 

best possible price and conditions for the shipowner.  

2.3.6 Loss Prevention 

Loss prevention is performed on multiple levels, where the two main areas are information and 

vessel safety surveys3. The primary purpose of loss prevention is to reduce the number of claims, 

by avoiding them before they occur. An example of current measures is information brochures 

on how to prevent liquefication of iron ore during transport, as this is a very costly affair when 

it occurs. Surveys are used to assess a vessel before it enters the Club, and to identify 

shortcomings in any procedures the vessels undertake. Skuld also holds lectures and courses 

for shipowners and crew, to ensure they are up to date on the last safety requirements and best 

practice procedures.  

2.3.7 P&I Summary 

Gohlish (2009) argues that no organisation survives for over 100 years unless it serves a specific 

need, that is either unavailable or more expensive in alternative markets. He continues that the 

combined value of seaborne trade is about $ 8 trillion, while the combined P&I market generates 

a collective insurance premium of over $ 2.7 billion, which of about half is allocated for cargo 

                                                

3 Survey – technical control to assess safty of a vessel 
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liabilities. This means that the close to all seaborne cargo is insured for about 0.015% of its 

value. According to Gohlish, this proves that the current P&I market is remarkedly effective.  

3 Data 

The analysis is based on two primary sources of information; claims data provided by Skuld 

and AIS-information provided by Safetec. Aditional supporting dataets are utilised including 

world list of ports and list of flag of convenience. To answer research questions one, and build 

models for predicting and identifying variables related to P&I insurance claims, an extensive 

amount of data was required. Section 3.1 covers basics of the dataset, while section 3.2 – 3.5 

covers the data in detail, as well as the extensive pre-processing that were required to make the 

data usable for machine learning algorithms. Section 3.6 explains the process connecting 

AIS-information to the claims data.  

 Data Collection 

The entire AIS dataset provided by Safetec consist of 166 million lines of AIS-information for 

about 5,800 ships in the period January 2013 to December 2017. The data consists of satellite-

based AIS-information that ensures global coverage. The resolution of AIS-information is one 

hour and was chosen by Skuld to limit the cost and amount of data.  

Unstructured AIS-information contains limited to no information about aggregated activity 

level and operational patterns for a vessel, and to retrieve this information extensive pre-

processing was necessary. The final output from pre-processing and filtering was 52 million 

lines of AIS-information, and 2.4 million unique transits and port visits were identified. This 

information was further processed to determine the aggregated activity level and operational 

pattern for 3,500 vessels. Claims data from Skuld were extracted directly from Skuld database, 

and 18,541 claims were identified in the period.  Depending on the cataloguing system in use, 

more than 60 unique types of claims exists. In order to make the dataset usable for machine 

learning, claims data were categorised into four groups; Cargo, Contact & Collision,  

Human and Other.  
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 Vessel Selection 

The original dataset for Skuld, contained close to 5,800 insured vessels, of 19 different types. 

Vessels are classified by their design, purpose or type of cargo.  Each class has unique 

characteristics, and not all classes are suitable to be analysed through the same framework. To 

solve this problem, all vessels were reviewed to determine suitable vessels. Nine classes were 

removed, and the ten remaining classes contained approximately 3,500 vessels. Also, vessels 

under 1,000 Gross Tonnage was removed, as smaller vessels tend to perform shorter port visits, 

and the one-hour resolution of AIS-information is unsuitable for detecting port visits of less 

than 2 hours. The largest categories of vessels not included were offshore related vessels and 

ferries. Offshore vessels, such as supply, operates on or in the vicinity of offshore installations, 

and as the list of ports does not contain information about the location of these, transit-related 

information would not be comparable with vessels in transit between identified ports. Ferries 

were removed as their port visits are too short for our algorithms to detect the port. Vessels 

included in the dataset are presented in Figure 1. Numbers on the sector diagram represent 

vessels of each type, while the percentage in the legend indicates the proportion by type in the 

final dataset.  

 

Figure 1 – Vessels Statistics by Type 

Through initial testing of the algorithms, it was assessed that certain categories included too 

few observations for the machine learning models to work. In collaboration with insurance 

specialists in Skuld, a broader classification of vessels was agreed. Vessels with similar risk, 
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assessed by the specialists, were placed in the same group, and a total of five groups were 

established. The categories were designed to consider the type and size of vessels. Figure 2 

shows the five groups, while Table 1 summaries the criteria for each group.  

 

Figure 2 - Vessels by Group 

Group Size Type 

Bulk & Cargo Large  > 30 000 GT 
Bulk, General Cargo, Reefer 

Bulk & Cargo Small  < 30 000 GT 

Tankers Large  > 40 000 GT Gas Tanker, Chemical Tanker (clean dirty), 
Tankers (clean & dirty), Combination Tankers Tankers Small  < 40 000 GT 

Container All Container Vessels 

Table 1 - Criteria for Groups 

Both datasets contained information on all of Skuld's portfolio. In addition, the AIS-information 

contained five years of history for every vessel, not taking into consideration if the vessel were 

insured for only a shorter period during these years. Skuld's claims database only contains 

claims history for a vessel in the period of which it is insured with Skuld; thus, vessels were 

filtered by dates of actual insurance policy. Also, vessels with a combined policy period of 

fewer than six months during the five years were removed, as it was assessed as the operational 

statistics retrieved for these vessels were insufficient to provide value in the models.  

Bulk & Cargo Large, 682

Bulk & Cargo Small, 1092

Container; 365

Tankers Large, 378

Tankers Small 972
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3.2.1 Static Variables 

A long list of static variables for each unique vessel is possible to retrieve. Skuld's database 

contains detailed information about ownership such as age, type, physical dimensions.  

Furthermore, as the aim of research question one is to analyse the predictive power of AIS-

variables, only a limited number of static variables was selected to be utilised in the models; 

Flagg of convenience, Age and Gross Tonnage. Age and gross tonnage were directly extracted 

from the dataset, while Flag of convenience was identified by examining each vessel against 

the International Transport Workers' Federation (ITF) list of flags of convenience, which 

include 34 different countries (ITF, 2018). To travel under flag of convenience are defined as a 

vessel which is operated or taxed under the laws of a country different from its home country 

in order to save money (Cambridge Dictionary, 2018). Table 2 is a summary of the static 

variables used. The reasons for as to why the variables were included is covered in Chapter 4.  

Variable Description 

Age 
Age is calculated as the difference between the insurance year and the year the vessels where 
built. At the aggregate level, age was represented as age of the vessels in 2013. For vessels 
insured after 2013, the age at entry is used.    

Gross 
Tonnage 

Gross-tonnage is measured as the overall internal volume of a vessel. It includes space for 
cargo as well as crew recreational areas.  

Flagg of 
convenience 

Flagg of convenience is indicated as a factor of Yes or No. Where Yes indicates that the vessel 
is registered in a country of convenience. At the aggregate level, flag status in the last recording 
is used to calculate the variable. Information about vessels that change flag during the period is 
not detected.  

Table 2 - Static Vessel Variables 

 Claims data 

Claims data are collected from Skuld’s insurance system. Each claim is entered into the system 

by a professional claims handler, typically a highly educated solicitor with extensive maritime 

experience.  Inputs are manually entered into the system based on information the claims 

handler collects from representatives of the shipowner and the opposing actor. This is done in 

a combination of drop-down menus and free text. Only inputs from drop-down menus and 

amounts in USD4 are utilised in this thesis.  

                                                

4 United States Dollar 
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A large part of registered claims results in zero payments, either because the deductible is higher 

than the claim, the claim is fought and won, or Skuld’s claims handlers are able to reimburse 

the costs from other actors. For this thesis, a claim is defined as any claim registered by Skuld, 

regardless of the size of payout. Zero-payout claims were included, as claims handlers at Skuld 

argued that in most cases there is a fragile line between these claims, and claims resulting in a 

payout.   

Data is some of the most sensitive and valuable information an insurance company possess, 

system managers at Skuld granted permission to an external database, where the information 

could be extracted without access to the complete system. The raw data retrieved was 

unfinished and insufficiently structured to be directly utilised in machine learning algorithms. 

Pre-processing and categorising the data was needed to get the final dataset.  

3.3.1 Processing and cleaning of claims data 

The original data was structured in multiple sub-datasets, and an extensive process was required 

to merge all datasets into one single dataset.  

Each vessel was identified through the unique IMO-number5 assigned to the vessel, and each 

claim registered is given a unique event number. Each vessel is possibly linked to multiple 

event numbers; however, each event number is only connected to one single vessel. Also, a 

single event can consist of numerous cases. A simple example illustrates the relations between 

IMO-number, event number and case; Two vessels collide, and two unique events are registered 

by their insurers. One vessel catch fire after the collision, and as a result, one person is injured, 

and nearby waters are polluted by oil. For the given vessel the insurance company will register 

one event type; collision, and three cases; fire on board, human injury, and pollution. The event 

type is used as the classification for claims as it is deemed to be the cause of the claim.  

To begin the processing, all unwanted vessels included in the sample was removed, as explained 

in section 3.2. Furthermore, the data included multiple transactions for accounting purposes, 

and payouts for each event had to be processed to retrieve the final payout for a given claim. A 

large proportion of claims from 2016 and 2017 were not yet closed, and the reserved amount 

(an estimate of total payouts) were used for open claims.  

                                                

5 International Maritime Organization identification number 
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A total of 64 event types were identified. Certain categories contained few claim observations. 

To ensure a sufficient number of incidents in each category, the 64 types were categorized into 

four groups; Cargo, Contact & Collision, Human and Other. Table 3 describes each category.  

Claim type Description 

Cargo Any cargo related claim (Shortage, damage, loss of, and more.)  

Contact & Collision Collision or contact between vessels, vessel and pier or other objects, and groundings 

Human Human accidents or injuries (crew and passenger) 

Other The remainder of claims, not related to the three defined categories 

Table 3 - Claim Description 

The category Other contained a vast range of different types of claims, with no apparent 

correlation between them. As any results from this category would be highly biased, the 

category was not included in further analysis.  

Only events that occurred between 2013-2017 where kept. The final claims dataset contained 

the variables: IMO-number, Event number, Event type, Incident date, Total amount claim, 

Incident country and Incident place. The total number of unique claims was 18,541. 

3.3.2 Claims output 

The following section presents the statistical findings from the claims dataset. Table 4 shows 

the USD amount for payouts made by Skuld in the registered period, and an average for claims 

by type. Contact & Collision are the categories with fewest claims, but the average amount per 

claim is significantly higher than the rest of the categories.    

Type Total Amount in USD Number of claims Average USD per claim 

Cargo  $ 951,166,645 7,465 $ 127,417 

Contact & Collision $ 705,653,230 908 $ 777,151 

Human  $ 510,667,798 5,395 $ 94,656 

Other $ 464,438,504 4,773 $ 97,306 

Total  $ 2,631,926,177 18,541 $ 141,952 

Table 4 - Claims Statistics 2013-2017 
 

Figure 3 describes the variation in the number of claims by year, and total payout for each year. 

As visualised by the columns, the year to year change in the number of claims are relatively 
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stable. As shown by the lines in the plot, payout varies considerably.  An example is the limited 

increase of four claims for Contact & Collision from 2015 to 2016, while total payout increased 

from $ 72 million to $ 214 million.  

 

Figure 3 - Frequency and Size of Claims 

Figure 4 shows the distribution of claims studies in the period. Cargo is the largest group 

followed by Human. Contact & Collison constitutes for a small part of a total number of 

accidents, but a significant portion of payout, and because of that it was decided to keep the 

category in the dataset despite the limited frequency.   
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Figure 4 - Distribution of Claims by Type 

The final variables retrieved from pre-processing of claims is presented in Table 5. Alternative 

variables are discussed in Chapter 7.  

Variable Description 

Cargo Yes/No 
Each variable represents the factor Yes / No and 
refers to whether or not the vessel had any claims 

in the specific category during the period. 
Contact & Collison Yes/No 

Human Yes/No 

Table 5 - Variables Extracted from Claims 

 AIS-data 

Automatic Identification System (AIS) is an anti-collision system designed to prevent accidents 

at sea (Kystverket, 2015). Currently, two systems coexist, Class-A and Class-B. Class-A is 

intended for vessels engaged in trade, while Class-B is designed for pleasure crafts and land 

stations. The main differences are concerning legal requirements, data contained in the specific 

AIS-message, and the frequency of update. All vessels studied in this thesis require Class-A 

AIS, and all information below primarily relates to this class. 

In year 2000, the International Maritime Organization (IMO), adopted a new requirement that 

made it mandatory for all vessels above 300 gross tonnage engaged in international trade, 

vessels above 500 gross tonnage not involved in international trade, and all passenger vessels 

Cargo
40 %

Contact & …
Human or Crew
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regardless of size to fit AIS on board (IMO, 2018). According to regulations, AIS equipment 

shall broadcast the following information; ship identity, type, position, course, speed, 

navigational status and other safety-related information. Detailed AIS-requirements can be 

found in Annex17, Chapter 5 in the SOLAS regulation.  

AIS-information can be classified as vessel and dynamic information. Vessel information is 

entered upon installation of the system or automatically transmitted from sensors. Static 

information entered upon installation are; Maritime Mobile Service Identity (MMSI) number, 

IMO vessel number, Radio call sign, Name of ship, Type of ship, Dimensions, and reference 

for the position of the electronic position fixing device (EPFD) antenna. In theory, this data 

should be protected by a password, and only modified in case of changes in ownership or 

technical changes to the vessel. Dynamic information regarding the movement of the ship is 

automatically updated through other systems, or directly by the AIS-system itself. This 

information includes position, course, speed, heading and rate of turn. Transit-related data is 

manually entered by the officer of the watch (OOW) and are prone to error. Common manual 

inputs are; Navigational status, destination, cargo and ETA. The frequency of update is 

regulated by IMO. Table 6 presents IMO requirements for update frequency of dynamic AIS 

information. Static data is updated every 6 minutes.  

Type of ship General Reporting interval 
Ship at anchor 3 min 
Ship 0-14 knots 12 sec 
Ship 0-14 knots and changing course 4 sec 
Ship 14-23 knots 6 sec 
Ship 14-23 knots and changing course 2 sec 
Ship >23 knots 3 sec 
Ship >23 knots and changing course 2 sec 

Table 6 – Update Frequency of AIS 
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Table 7 lists all variables included in a standard AIS-message.  
 
Type Information Source 

Dynamic 
 
Update rate 
determined 
by speed and 
course 
alteration 

Rate of turn Automatically updated from the ship’s ROT sensor or derived from the 
gyro. 

AIS-Navigational 
Status 

Manually entered by OOW. (Examples: -underway by engines, at 
anchor, moored, constrained by draught, aground 

Speed over Ground Automatically updated from the position sensor connected to AIS. 

Position Coordinates Automatically updated from the position sensor connected to AIS. 

Course over ground Automatically updated from ship’s main position sensor connected to 
AIS 

Heading Automatically updated from ship’s main position sensor connected to 
AIS 

Position time stamp, 
UTC Automatically updated from the position sensor connected to AIS. 

MMSI Number Set on installation 

Information 
item 
 
Updated rate 
every 6 
minute 

IMO Number Set on installation 

Call Sign Set on installation 

Name Set on installation 

Length and beam Set on installation 

Type of ship Set on installation (Examples: Fishing, Cargo, Passenger) 

Location of GNSS 
antenna Set on installation 

Draught Manually entered by OOW 

Voyage-
related 
 
Update rate 
every 6 
minute 

Destination Manually entered by OOW 

Hazardous cargo  
Manually entered by OOW 
(Examples: Dangerous goods, Harmful substances, Marine pollutants) 

ETA Manually entered by OOW 

Route plan Manually entered by OOW 

Table 7 – AIS-Information 

The research in this thesis utilises a larger variety of information contained in AIS, while the 

essential information is the recorded positions of the vessels. The information is used to 

determine if the vessel is alongside, or in transit. The position of the vessel is retrieved from a 

global navigational satellite system (GNSS) as required by IMO. AIS suppliers are free to 

choose the preferred GNSS; however, GPS is most commonly used. All GNSS encounter the 
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same performance issues. The following section discusses the limitations of GPS specifically, 

but the implication is in large valid for any GNSS. 

3.4.1 GPS 

The following information is based on official sources the National Coordination Office for 

Space-Based Positioning, who maintains online resources regarding GPS for the US 

Government. In specific, the sections rely on the GPS Standard positioning service (SPS) 

Performance Standard 4th edition published by Department of defence (2008).  

Global positioning system (GPS) was developed and is maintained, by the United States (US) 

government. Initially, the system was developed for military applications. However, as the 

potential for civilian use is tremendous, the system was soon opened for civilian users. Today 

the US government is committed to maintaining the system, and a set of specific commitments 

regarding availability and precision for SPS is contained in the GPS Performance Standard. 

SPS is a part of GPS available for civilian users. The list of commitments is detailed and 

included accuracy standards for Signal in Space (SIS), which excluded errors originating from 

signal disturbances in the earth’s atmosphere. Among the current SIS requirements are a 95% 

global user range error of fewer than 7.8 meters and a 99.94% use range error of fewer than 30 

meters. User range error is the distance measured from a satellite to the receiver, and not user 

accuracy which is defined as a radius in meters from the GPS receiver’s correct position. As all 

US Government commitments are related to SIS, independent performance analysis is 

necessary to identify user accuracy. A performance analysis performed in late 2016 found that 

within a 95% confidence interval, the average GPS accuracy for the twenty-eight test sites was 

less than 2 meters (Federal Aviation Administration, 2017). When recording positions for a 

stationary antenna over time, the position will fluctuate around the correct position. The 

precision has implantations for the algorithm used in this thesis to determine if a vessel is 

alongside or not, as each recording deviates by a few cm or meters. The aggregated recorded 

movement of a vessel in port can potentially reach several nautical miles for an extended port 

visit.  

3.4.2 Waypoints 

Waypoint is a commonly used term in navigational planning. In this thesis, the term waypoint 

is used to refer to the recorded position of a vessel at a given time. A twenty-four hours transit 

with one recording per hour will consequently have twenty-four recorded waypoints.  
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 Processing AIS-information 

Before utilising AIS-information in machine learning algorithms, it was necessary to process 

the data. The final output from pre-processing was a dataset containing information on 

aggregated activity level and operational patterns. Total time for each vessel is defined by the 

number of months insured in the period 2013-2017, limiting to a maximum of five years.  

Pre-processing included; cleaning the data for unwanted information, identifying individual 

transits, and calculating and extracting necessary variables. In the following sections, each 

particular part of the pre-processing is detailed. This information is included, as pre-processing 

of AIS is a challenging matter, and there are several methods to achieve similar, but not equal 

results. Also, the section aims at providing the necessary background information for Skuld to 

determine future business decisions regarding AIS-information.  

3.5.1 Data-cleaning 

Errors in the original dataset were identified by manually reading AIS-information and plotting 

sections of the original dataset on maps to visualise possible sources of error. Three primary 

sources of errors were identified and removed through pre-processing; position outliers, 

spoofing and missing or wrong inputs.  

Position outliers 
Position outliers can emerge from a variety of sources, where the most common are atmospheric 

disturbances, multipath, or signalling errors (Department of Defence, 2008). Position outliers 

can deviate from the correct position with hundreds or thousands of miles.  
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Figure 5- Example of a Single Outlier 

Figure 5 shows movements for the cargo vessel Vistigue, in the period 24-28 February 2016. 

26th of February, a single position was recorded in southern Russia. Outliers of this type are 

identified and removed by calculating the average speed between every waypoint in the dataset. 

If the average speed between one waypoint and the next is above 50 knots, the position is 

dropped. As data is recorded every hour, removing one waypoint results in a two-hour gap 

between positions. For overseas voyage this does not cause any challenges; however, for short 

inshore transits, a two-hour resolution might be too low to identify the particular port of calls.  

Spoofing and manipulation 
Windward (2014) published in 2014 an analysis of data manipulations at sea, the research was 

based on observed AIS-data from 2012 to 2014. Windward concluded that four manipulation 

practices are commonly used at sea; Identify Fraud, “Going Dark” (Obscuring Activities), GPS 

manipulation, and AIS spoofing. Table 8 lists significant findings in the report.  

AIS - Manipulation 

1% of all ships use fake identification information.  

On average final port of call was reported in only 41% of the time 

25% of the vessels turn off AIS 10% of the time 

Table 8 - Findings in Windwards 2014 report on AIS-manipulation 

Implications for this thesis is that fake identification makes it challenging to differentiate 

between the positions that belong to the actual vessel and the one that belongs to the fraudulent 
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vessel. If both vessels are kept in the dataset, variables such as total distance sailed and average 

speed will be wrong, and in most cases, extreme and unrealistic high speeds will be calculated. 

The underlying reason is that the method for calculating total distance sailed, where all data are 

sorted by date to calculate the distance between one waypoint and the next, and finally 

summarises all distances for each transit. Table 9 exemplifies the challenge. Rows marked with 

red indicates the fraudulent vessel, and the last column shows whether the algorithm for outliers 

would remove the waypoints or not. As the table shows, a position from the fraudulent vessel 

and a position form the actual vessel is removed. For single outliers, this is solved by calculating 

average speed between both the previous and the next waypoint. However, as spoofing have no 

logic pattern, this method is not possible. Running the algorithm over and over, would remove 

all spoofing, but also remove correct waypoints and introduce considerable gaps in the data.   

IMO Position Time Distance between WP Average Speed Removed by 
algorithm 

9039121 5.41N 1.101E 12:00 NA NA NO 

9039121 5.42N 1.102E 13:00 5 nm 5 kts NO 

9039121 9.13N 78.89W 14:00 2000 nm 2000 kts YES 

9039121 9.15N 78.92W 15:00 2 nm 2 kts NO 

9039121 5.42N 1.10E 16:00 2000 nm 2000 kts YES 

Totals   4007 nm 1002 kts  

Table 9 - Example of Spoofing 

Table 9 shows that total distance sailed could be extremely high when spoofing is present. By 

removing rows with extreme values, the problem will be shifted one row down, and the process 

needs to be performed until all extreme values are discarded. If ten consecutive rows belong to 

a fraudulent vessel, the process needs to be completed ten times, and the final data will contain 

one correct position at time T and the next correct position at time T+10. In some cases, both 

the fraudulent vessel and the actual vessels AIS-information is recorded for every hour, and 

gaps can be avoided. The method described above also requires that the first recorded AIS-

information must be the actual vessel. If not, the actual vessel will be removed, and the 

fraudulent vessel will remain in the dataset.  
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Figure 6 - Example of Spoofing 

 Figure 6 shows the recorded positions for the Crude Oil Tanker Interim, in November 2018. 

AIS shows the vessels are operating in the Gulf of Guinea, while at the same time transiting 

the Panama Canal. According to Skuld data, the correct positions of Interim are shown in the 

figure to the right, while the true identity of the vessel to the left remains unknown. The gap 

between the correct positions of Interim is due to the data has been replaced by positioning 

data from the unknown vessel. Data is recorded for every hour for the IMO-number, though it 

seems to be random which of the two vessels position that is registered to the database.  

Identifying spoofing in a visual plot is a simple task for any human. However, as the AIS-

information for the unknown vessels is identical to the one of the actual vessel, it is challenging 

to write an algorithm to detect and remove spoofing.  

The method decided to use for removing spoofing were based on predicting the position of the 

next waypoint and compare it to the recorded position. If the recorded position deviates by a 

set value from the predicted position, the recorded position is dropped. This method assumes 

that the first vessels observed in the dataset are the actual vessel. The method was found to be 

efficient to remove spoofing. The downside of the method are that it demanded intensive 

computer power, and would break down when the two vessels operated in the same area.  The 

algorithm could switch to the unknown vessel and discharge all correct positions. The 

discargement of a vessel was observed and fixed once in the dataset, but the problem might be 
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more frequent. Ultimately, the algorithm cannot verify that all vessels with fake identification 

have been removed, and the dataset is likely to include some fraudulent vessels. 

Going dark 
Windward (2014) identified that 25% of vessels turn of AIS, 10% of the time. The findings 

were controlled for scheduled and unscheduled loss of GPS availability. Windward found that 

larger vessels were more likely to turn off AIS, in order to conceal their activities. When a 

vessel turn of AIS, it is not possible to observe the movement of the vessel. In this thesis, the 

waypoints are connected regardless of the time between the positions. The connection is made 

by combining the positions to a straight line, without taking into consideration the feasibility of 

the transit along the line. Possible port visits and deviations from routes are not observed, and 

the outcome variables could contain errors.  

 

Figure 7 - Vessel “Going Dark” 

Figure 7 presents the recorded positions of the Bulk Carrier vessel Magsenger 11, transiting 

from Argentina to the Gulf. The plot shows that Magsenger 11 turned off AIS after passing 

Madagascar. The recordings are from 2013, during a period were piracy in Aden still was 

making headlines. Several shipowners advised their vessels to turn off AIS when transiting 

these waters, despite the recommendation from IMO’s Best Management Practices for 

Protection against Somalia Based Piracy to keep AIS on (BMP4, 2011). In theory, the vessel 

could have performed a port visit in Somalia during the four days without AIS. In this specific 

case that is highly unlikely, but it creates uncertainties in the dataset.  
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Missing or wrongful data 
Windward (2014) identified that only 41% of the recorded waypoints contained information 

about the final port of call. All manual AIS-inputs are prone to error, either by deliberate 

misleading, poor procedures or by accident. The variables for navigational status and final port 

of call could be of great use; however, the variables are not given any special attention as the 

data is prone to error, and multiple inconsistency was observed in the manual inputs. No manual 

data was utilised in the final models.  

3.5.2 Defining individual routes 

Unstructured AIS contain large extent of information, and it is possible to extract operational 

data, such as total distanced sailed, total time at sea, average speed. However, to exploit the 

dataset further and identify variables such as the number of port calls, number of transits, the 

data needs to be structured into individual transits. 

For the identification of individual transits, a series of methods were used. An individual transit 

is defined as the movement between one port and the next. This definition is not detailed enough 

to ensure unambiguous routes through machine learning, and the technical description of a 

transit is described as follow; A transit starts when a vessels navigational status changes from 

static to moving and ends once the vessel is stationary. Additionally, the total distance of the 

transit needs to be longer than 1 nm. The additional requirement was added to avoid separate 

transits when a vessel performs harbour movement, like changing pier to get fuel, give place to 

another vessel, or turn around to load from the opposite side.   

The process of extracting transits is simple in theory, while in practice several methods had to 

be performed. The next section describes the general process of how transits were derived.  

Determine navigational status  
As previously mentioned, the AIS-navigational status depends on manual updates from the 

OOW and will in several cases be wrong or delayed. To identify the proper navigational status 

of each waypoint, three parameters where used; distance, speed, and change in heading between 

one waypoint and the next. For this thesis, two navigational status were defined and used; 

stationary and moving.  

The logic behind the method is that a vessel at port does not move more than a few meters due 

to tides, current and wind. The heading of the ship will not change more than a few degrees 
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based on the same logic, and the log6 will not record high speeds while alongside. Two 

combinations of these criteria were used to determine if the vessel is stationary or moving.  

Combination one:  

• Navigational status stationary was decided, based on the following criteria:  

• Change in the heading of fewer than 3 degrees 

• Speed below 0.6 knots 

• Distance between two waypoints of less than 0.015nm (27.78 meters) 

Combination two:  

Navigational status stationary was decided, based on the following criteria:  

• Speed below 0.2 knots 

• Distance between two waypoints of less than 0.005nm (9.2 meters) 

For combination one, a length of less than 0.015 nm (27.78 meters) was chosen based on the 

GPS theory presented in section 3.4.2, and detailed studies of the dataset. Change in the heading 

of fewer than 3 degrees and speed of fewer than 0.6 knots, were based on values found in the 

recordings of vessels in port.   

Combination two were included to counter for sudden change in heading of certain vessels 

when moored to a pier. In some cases, the vessels turned around to bring the other side of the 

vessel alongside, while in other cases it is assessed that the gyro-compass7 were turned off, 

causing temporary deviation in heading.  

Heading were explicitly chosen to differentiate between vessels at anchor and in port. 

Anchorage could qualify as an independent navigational status, and there are arguments to 

support both that a vessel at anchor should be regarded as a vessel in port, or as a vessel at sea. 

For the purpose of this thesis, anchorage is classified as vessels at sea. In most cases, this is 

achieved. However, as the behaviour of vessels at anchorage and port are very similar, 

                                                

6 A vessels log indicates the speed of the vessel measured in nautical miles per hours, knots.   
7 Electronic compass used by vessels in order to detect true north, steer, and find positions and record courses. 
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anchorage could in some cases be classified as port visits. These classification errors can 

especially be found for vessels anchoring in still waters, or inside breakwaters.   

Assigning transit number to individual transits 
Once navigational status was determined, a transit was identified by assigning a common transit 

number to a sequence of waypoints with similar navigational status. All waypoint with the same 

number belongs to the same transit or port visit. The last waypoint of a port visit was assigned 

both the port stay and the next transit, to ensure that the transit could be named by the name of 

the port of departure and the port of arrival. The data were corrected for small movement of 

less than 1 nm or transits with the same port of departure and arrival of length sailed less than 

8 nm.  

Assigning port of departure and port of arrival 
Safetec provided a list of approximately 5000 ports, which were used to assign port of arrival 

and port of departure for each individual transit. 

Each port was represented by the name of the port and a single position. To identify the port of 

arrival and port of departure for each transit, the first and last waypoint of each individual transit 

were extracted. The distance between each individual waypoint and all ports were calculated, 

and the port with the shortest distance to the waypoint were assigned. The calculations were 

extremely computer intensive, and data had to be split in multiple sections in order to achieve 

the calculations.  

The calculated distance between a vessel and the port will varies by the size of the port, and a 

maximum distance between a vessel and a port were assigned to ensure that the vessels were 

within the port area. A short radius ensures that few vessels are assigned the wrong port, but a 

large number of vessels would not get any port assigned. Rotterdam harbour area extends for 

20 nm, while the port of Oslo extends less than 2 nm. In this thesis, a vessel is assigned a port 

if it is within 8 nm of the port. If the vessel is outside the 8 nm radius, the country name will be 

assigned instead of the port name.  

3.5.3 Variables Retrieved from AIS 

After each transit was identified, information was aggregated to describe the activity level and 

operational patterns of each vessel. Table 10 includes all variables extracted from AIS and 

provides information about the technical methods used for the calculations. All variables are 
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calculated for the aggregated insurance period  for the vessels. A detailed argumentation for the 

choice of variables is included in Chapter 4.  

Variable Description 
Number of transits per month Aggregated number of all transits for each vessel, scaled by the number of months 

with available data for the vessel.  

Total distance sailed per month Aggregated total distance sailed for each vessel, scaled by the number of months 
with available data for the vessel. 

Total time at sea per month Aggregated time spent at sea for each vessel, scaled by the number of months 
with available data for the vessel.  

Average distance at sea Aggregated distance sailed for each vessel, divided by the number of transits for 
each vessel.  

Average time at sea Aggregated time sailed for each vessel, divided by the number of transits for each 
vessel. 

Number of Unique ports per 
month 

Aggregated number of unique port visits, scaled by the number of months with 
available data for the vessel. For unknown ports, country is used, and the actual 
number of unique ports is likely higher for certain vessels.  

Proportion at sea vs. port The total percentage of time spent at sea versus time spent in port. 100% indicates 
that a vessel has not been in port during the period. As explain above, vessels at 
anchor are in most cases classified as vessels at sea.  

Table 10 - Variables Extracted from AIS-Information 

 Combining AIS-information and claims data 

In order to analyse the explanatory power of AIS against claims data, the datasets had to be 

merged. At an aggregated level AIS-information and claims data can be combined by  

IMO-number; however, to maintain valuable information contained in the table of transits,  

AIS and claims were combined by using both IMO-number and incident date.  

The major challenge in combining the datasets was related to the uncertainty in the reported 

incident date. While AIS-information contains extremely accurate timestamps, the incident date 

of a claim is dependent on when the damage was identified, as well as the accuracy of each 

claims handler. Specific claims such as collisions, groundings and personal injuries are recorded 

in the vessels logbook, and one can assume that the incident date is somewhat accurate. 

Damaged cargo might not be identified before the cargo is handed over to the owner; thus, the 

incident date could deviate by months from the correct date.   
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The limitations related to incident date is only of concern when studying variables for individual 

ports or transits. At an aggregated level, such as total transits performed or total distance sailed, 

the impact of a wrong incident date only matters the claim are assigned to the wrong year.  

 Summary 

Pre-processing is time-consuming and computationally intensive. The balance between 

available time, data power and accuracy of the results were a constant factor through the work. 

The extensive pre-processing finally resulted in 3 categorical variables, 4 static variables and 7 

AIS-variables.  

For static vessel variables, the accuracy is assessed as high, and only changes of flag of 

convenience are deemed as a source of error. For claims related data, no particular concerns 

associated with the final data is identified, except for accuracy of incident date, which cannot 

be assessed without detailed analysis of other sources. Pre-processing of AIS was the most 

challenging task, and the AIS variables are likely to contain sources of error. However, as the 

variables are used at an aggregated level, the impact of errors are assumed to have limited effect.  

4 Variables 

While pre-processing was elaborated in Chapter 3, this chapter aims at explaining choice of 

variables. The overall aim of this thesis is to identify the potential for machine learning and AIS 

in P&I insurance and develop a model to predict claims, and the choice of variables is of great 

importance to develope a feasible model. The choice of variables is based on previous research, 

recommendations from Skuld and Safetec, and feasibility to extract the variables from AIS.  

 Dependent Variables 

Information from claims data provides the opportunity to research a large variety of dependent 

variables. During the exploration of models, a range of variables was tested, and three variables 

were found to have the potential for machine learning models; Cost of Claims, Claim/No Claim, 

and Number of Claims. Claim/No Claim was chosen as the preferred variable, and a discussion 

on the alternatives is found in section 7.6.  
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4.1.1 Assessment of Claim/No Claim 

General statistics from the dataset reveals that the majority of vessels experience some sort of 

claim during the period. However, when studying the four groups of claims; Cargo, Contact & 

Collison, Human and Other, the frequency of claims is more widely spread. The assessment of 

whether a vessel will have a claim or not is a useful variable and can be used to assess risk 

factors and identify variables of importance. If a vessel has any cargo claims during the period, 

the variable will return “Yes” for the category Cargo claims. The variable does not take number 

of claims or time occurrence into consideration. 

 Independent variables  

This section provides reasoning for choosing the variables included in the models. In addition 

to the seven variables related to vessel operations, four variables were included; Age, Age², Flag 

of Convenience and Gross Tonnage. The four variables were chosen on recommendations by 

Skuld, based on previous findings and the fact that they are all part of Skuld current pricing 

model. All variables (except Flag of Convenience) is numeric, and most variables are 

continuous, except for Proportion of time at sea, which is a percentage. The following sections 

assess how the independent variables presumably will react and a short explanation as to why. 

Several of the machine learning algorithms are complex and studies the relationship between 

independent variables as well as the relationship between the independent and dependent 

variables. There might be indications for certain variables that can contributes to more claims 

and fewer claims at the same time, depending on the relationship between the variable and other 

variables. The assessment in the following sections is based on an all else equal methodology, 

and not taking into consideration relations between the independent variables.  

Age  
Age is included to identify possible relationship with age and claims frequency, as age can be 

regarded as a proxy for vessel quality. The most intuitive impact is that increased age results in 

more accidents as the equipment on board are more likely to fail (Butt et al., 2012). However, 

an older ship might be more familiar to the crew, and result in less accidents. The relationship 

could alternatively be assumed to be quadratic with more frequent claims, primarily related to 

Human, in the first period when the ship is new, and a declining number of claims as the 

familiarity with the vessel increases. Thus, the variable Age² were included.  
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Gross Tonnage 
A variety of methods to describe a vessels size, weight, or carrying capacity exists; 

displacement, deadweight tonnes, gross registered tonnage and gross tonnage is some the most 

commonly used. The difference measurement relates to carrying capacity, volume and absolute 

weight. As several of the vessels, types insured by Skuld does not move goods in bulks, gross 

tonnage was chosen as the preferred measurement to compare vessel size. Gross Tonnage is 

defined as the moulded volume of all enclosed spaces of a vessel and selected as the preferred 

measurement (Oxford Dictionaries, 2018).  

Larger vessels have a different operational pattern than smaller vessels. Large vessels tend to 

conduct long and few transits and are likely to move more cargo than smaller vessels. 

Consequently, it is more likely that larger vessels are more exposed to cargo claims, while 

possibly less exposed to human accidents. For smaller vessels, one can assume operations are 

performed more manually, which might lead to an increased number of human accidents. 

Flag of convenience  
A vessel sailing under Flags of convenience could be exposed to higher levels of risk than 

vessel sailing under the flag of the home country.  Flags of convenience are possibly linked to 

countries with fewer requirements than other countries; thus, maintenance and condition of 

vessels might be worse than for other vessels (Butt et al., 2012). Thereby, vessels under flag 

of convenience could be more exposed to accidents. Certain professional at Skuld, argued 

strongly that flag of convenience is not of importance, as it is merely a result of financial 

decisions (primarily related to taxation) and does not reveal information about the quality of 

the shipowner.  

Number of unique ports per month 
Number of unique ports per month represents the operational pattern of vessels. One could 

expect that a high number of unique ports would results in more frequent incidents as the areas 

and operators the vessel interact with are unfamiliar. Vessels on long contracts normally visit 

fewer ports, compared to vessels that trade in the spot marked. As 15% of the port visits are 

defined as unknown, the actual number of unique ports are likely higher than the variable 

express and could be a source of bias. To reduce the impact from unknown ports, country of 

departure or arrival is used to compensate for unknown ports, and thus ensures higher precision 

in the variable. 
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Number of transits per month 
Number of transits per month relates to activity level and/or length of each individual transit. 

A high activity level could indicate increased risk, and vessels with few and short transits are 

likely more exposed to risk. A high number of transits also indicates more regional travel, and 

possible more transits in high traffic areas. High traffic density is known to increase risk 

(Stornes, 2015) 

Average distance at sea 
Average distance at sea indicates the length of each transit at sea. The variables relates to 

operational patterns of the vessel, more than activity level. However, a high average could be a 

result of both few and long transits or short and faster transits. The prior example would likely 

result in fewer claims, while a high average due to high speeds and low turnover could indicate 

increased risk, as it also relates to increased activity level.  

Total distance per month 
Total distance per month is related to activity level and/or length of each individual transit. 

High activity level as a result of multiple short transits is likely increase risk, while fewer and 

longer transits will likely  reduce risk.  

Proportion at sea 
Proportion at sea is measured as the time at sea compared to time in port, and a level of 100 

indicates 100% time spent at sea and no time in port. Increased proportion at sea indicates a 

higher activity level and possibly increased risk. The variable also reveals information of the 

operational pattern of the vessels, as a percentage close to 100% will indicate that the vessel is 

operating between offshore installations or in layup. The latter can be controlled for by 

measuring total distance sailed.  

Average time at sea 
Average time at sea indicates the average time of each individual transit. The variable is related 

to activity level and operational pattern of the vessel. High average indicates high activity. A 

low average indicates lower activity, and the vessel are more likely operating in regional waters.   

Total time at sea per month 
Total time at sea per month indicates the activity level of vessels. If a vessel has a high time at 

sea, the proportion at port will be lower. Increased time at sea is likely to imply increased risk 

as it relates to an high activity level. Exceptions are vessels at anchor or in lay-up that are 

currently not in trade, and their risk exposure is low.  
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5 Methodology 

Machine learning is a broad terminology, and a wide range of algorithms and methods are 

included in the term. This chapter briefly explains the terminology, before it elaborates on 

methods and algorithms specifically used, and how model performance is determined. The last 

section describes the specific process for how the analysis was performed.  

 Machine learning models 

Machine learning is one of the most up and coming fields of study, but the term has been around 

for quite some time. Arthur Samuel (1959) defined the area as a “Field of study that gives 

computers the ability to learn without being explicitly programmed". Since then, there have 

been numerous ways to explain the area. For simplicity, the term in this thesis describe learning 

algorithms used for modelling and prediction. The two main types of statistical machine 

learning models are classification and regression. The difference is that the output of a 

regression model is quantitative, while for a classification model the output is qualitative (James 

et al., 2013).  All models presented and evaluated in this thesis are classification models; 

however, regression models were utilised in the process of identifying possible dependent 

variables.  

 Supervised and unsupervised machine learning 

Statistical and machine learning problems are often categorised into two groups; supervised 

learning and unsupervised learning. Unsupervised learning is defined as when the measurement 

or predicting variables are known, while the outcome variable is unknown. The process can be 

seen as “learning without a teacher” since the prediction cannot be associated with a response 

variable (Hastie et al., 2009). Unsupervised learning is primarily used for analysis, estimation 

and clustering.  

In supervised learning, the response variable is known, and the primary goal is to explain or 

predict the outcome, based on the predictors (James et al., 2013). By acting as a guide, the intent 

is to teach the algorithm the result it should present. The requirement for the algorithm to work 

is that the output is known, and training data are labelled. Supervised machine learning 

algorithms can be used to solve both classification and regression problems (Hastie et al., 2009). 
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Since the response variable for the dataset used in this thesis is known, the process is classified 

as supervised learning. 

 Splitting data and K-fold Cross-Validation 

To assess the performance of machine learning models, a method for validating the model is 

essential. A conventional approach is to split the dataset into two sections; training set to make 

the algorithm, and a test set to assess the performance of the model on new data (Burger, 2018). 

A random split is used, where the algorithm ensures that a minimum number of outcomes are 

included in each set. This is achieved by specifying the dependent variable for the split to 

minimise the possibility that the observations in either the training or test set are skewed. Data 

in this thesis are split by 80% for training and 20% for testing. By assigning most of the data to 

the training set, the purpose is to build the best possible model to predict unseen data from the 

test set. 

Cross-validation is a resampling procedure to evaluate the model while performing model 

training (Hastie et al., 2009). Training data is split into k-folds, where k-1 folds are used for 

training, and one-fold are used for validation. The purpose of cross-validation is to minimise 

error while training the model and to avoid overfitting the unseen test data (Hastie et al., 2009). 

For this thesis, 5-fold cross validation has been performed on the data.  

Figure 8 visualise the process of data splitting and cross-validation used in the analysis.  

 

Figure 8 – Model-Validation (Eissa, 2018) 
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The following sections give a brief introduction to machine learning models used in the analysis 

in Chapter 6. The complexity of models varies, and a broad understanding of the models are 

only achieved through a detailed mathematical description. This section aims at providing the 

minimum knowledge necessary to interpret the output of the models.  

5.3.1 Logistic Classification model 

Logistic regression models are similar to linear models in predicting, but instead of fitting a 

linear output, they classify the dependent variable as a categorical value. While the output in 

linear regression is a numeric value, logistic regression models print the probability that the 

dependent variable belongs to a particular category (James et al., 2013). By using the logistic 

function, the response variables are given a value between 0 and 1, which is referred to as a 

binomial distribution (James ett. All 2013). The regression is then performed, using a method 

called maximum likelihood, which solves a mathematical formula to maximise the chance of 

predicting the correct outcome for all response variables. The outcome of the regression is a 

value between 0 and 1 for each response variable, and a threshold is determined to classify the 

response variable in one of two categories. A threshold of >0.5 will ensure that all response 

variables with a value of less than 0.5 will be assigned one category, and the variables with a 

value of 0.5 or more will be assigned the other category. The specific logistic regression model 

used in this thesis is a generalized linear model with a binomial probability distribution, and in 

the remaining of the work referred as logistic classification model.   

5.3.2 Random Forest 

Random forest is one of the most popular and influential algorithms used in machine learning. 

The model is built on a method called bagging or bootstrap aggregation, a technique for 

reducing the variance of an estimated prediction function (James et al., 2013). The bagging 

method creates multiple subsamples of the training data, which are trained to predict an 

outcome. The algorithm creates decision trees based upon each subsample and aggregates the 

results. Instead of using the same predictors each time, the model randomly samples predictors 

for each new tree. Random sampling adds more diversity and reduces variance, at the cost of 

equal or higher bias. The process create a more robust and powerful model.  

For classification, Random Forest uses the most frequent result from all trees, known as the 

majority vote. One of the most valuable features of the random forest is that it reduces 

overfitting by creating multiple decision trees (Burger, 2018). Single trees are often prone to 
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overfitting, primarily if a tree consists of many branches. In random forest two main features 

are decided by the researcher, number of trees and the number of variables randomly sampled 

as candidates at each split.  

5.3.3 Naive Bayes  

Naive Bayes is a widely used algorithm to solve classification problems. The conditions of the 

model are based on Bayes theorem of probability. The term naive springs from the simplifying 

assumptions for how the algorithm threats interaction between predictors. The first assumption 

of the algorithm is that there is strong independence between predictors; in reality, this is 

generally not true (Hastie et al., 2009). The second assumption is that the formal value of the 

predictor is irrelevant, and the algorithm produces a probability of each outcome. Based on this 

assumption, the algorithm produces a probability model and chooses the outcome with the 

highest probability. Despite these rather optimistic assumptions, Naive Bayes classifiers often 

outperform far more sophisticated alternatives (Hastie et al., 2009).  

5.3.4 AdaBoost 

Adaptive boosting, or more commonly known as AdaBoost, is a boosting algorithm. Boosting 

is a method which aims at converting “weak” learners into “strong” learners by combining 

multiple weak learners (Hastie et al., 2009). A weak learner is a predictor that is only partially 

correlated with the correct output, but provides better results than pure guessing. Strong learners 

are well-correlated with the output, and are naturally more suited to predict the correct value 

(Hastie et al., 2009).  

AdaBoost performs this process by sequentially using the weak classification algorithm on a 

repeatedly modified version of the training set. In each iteration, both classifiers and data points 

are weighted to force the algorithm to focus on observations that are difficult to predict. After 

a certain number of iterations, the final weight of the predictors is calculated by combining the 

result of all previous attempts, using the majority vote (Hastie et al., 2009).  

Boosting is in theory applicable to numerous models, and multiple variations to the original 

AdaBoost is available. In the analysis a version of AdaBoost applied to classification trees is 

used. The specific model utilises the original AdaBoost algorithm in addition to two alternative 

versions; Gentle and Real AdaBoost. The difference is the specific mathematical formulas 

applied when boosting, while the general principle of making “weak” learners “strong” is the 
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same. The model can be tuned by specifying the number of threes and the depth of each tree. 

Learning parameter can also be set to avoid overfitting and limit the use of computer power.  

5.3.5 Neural Network  

Neural Networks are nonlinear statistical models, with the ability to study the relationship 

among variables in addition to the relationship between independent and the dependent variable. 

The term neural network comes from the biological term neuron, which is a nerve cell that 

receives, process and transmits information. Neural network algorithms are built on the same 

basis, with artificial neurons that solve for the input they receive. An artificial neuron is a 

number between 0 and 1, depending on what it represents (Burger, 2018).  

A neural network consists of multiple layers, where the output from one layer is used as input 

in the next, until the last layer, where the neuron with the highest number represents the final 

outcome or answer to the classification problem. Like the logistic model, the final output is 

estimated by maximum likelihood (Hastie et al., 2009). All layers between the first and the last 

are referred to as hidden layers. The complexity of a network is dependent on the number of 

hidden layers and the number of neurons in each layer. In theory, all neurons are connected, 

and if it were not for the simple mathematical formulas of linear combinations, developing 

neural network would be an extremely computer-intensive task.  The specific algorithm used 

for the neural network is the NNET, which consist of one single hidden layer. 

 Evaluation of model performance 

In order to assess the performance of a classification model or to compare two models, a set of 

statistics must be applied. In the analysis Accuracy and Kappa statistics were utilised, as both 

statistics are commonly used in classification problems (Akosa, 2017, Viera et al., 2005).  

For each model a confusion matrix can be extracted; the matrix provides information about the 

model’s performance, by presenting the distribution of how the model classified all 

observations compared to the true result. Information from the matrix can be used to calculate 

both Accuracy and Kappa statistics. Table 11 presents an example matrix, and how the 

information should be interpreted.  
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 Reference 

NO YES 

NO TN FP 

YES FN TP 

Table 11 - Example of a Confusion Matrix 

In application to the specific analysis performed, True Positive (TP) is the correctly predicted 

values for true claims, True Negative (TN) is the correctly predicted values for No Claim. False 

Positive (FP) and False Negative (FN) is predictions the model got wrong. To make a 

comparison between models more intuitive, the Confusion Matrix were scaled into percentages. 

The primary function of this adjustment is that each category of claims and vessels contain a 

different number of observations, and a percentage would make it easier to compare the results.  

𝑇𝑁 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 								𝐹𝑁 =
𝐹𝑁

𝑇𝑁 + 𝐹𝑁 							𝑇𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 									𝐹𝑃 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃											 

The value for TP should be read as the percentage of true claims the model got right. The sum 

of each column adds to 100% and represent the total number of true claims and the total number 

of no claims.  The sum of each row has no logic interpretation. Accuracy is calculated by the 

formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Accuracy of 1 indicates a perfect model, while a model with accuracy closer to 0.5 has very 

limited predictive power. Accuracy has severe limitations in imbalanced datasets (Akosa, 2017). 

Kappa aims at overcoming this limitation by taking into consideration Expected Accuracy. 

Expected Accuracy is calculated by the formula below, where OBS equals the number of total 

observations. 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦:
(𝑇𝑁 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃)

OBS +	(𝐹𝑃 + 𝑇𝑃) ∗ (𝐹𝑁 + 𝑇𝑃)OBS
OBS 	 
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Kappa is further derived by the formula for Accuracy and Expected Accuracy, and calculated 

by the following formula: 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  

Kappa values are interpreted on a scale from < 0 to 1, where a value of 1 indicates perfect 

agreement, and 0 or less indicates less agreement than chance (Viera et al., 2005). Table 12 

summaries the interpretations of Kappa. 

Kappa Agreement 

< 0 Less than chance agreement 

0.01 - 0-20 Slight agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.60 - 0.80 Substantial agreement 

0.81 - 0.99 Almost perfect agreement 
Table 12 - Interpretation of Kappa 

Accuracy and Kappa can be calculated for all classification models and compared among all 

models used in this thesis.  

 Identifying the most suitable model  

As previously stated, accidents are unexpected events, and multiple factors are of importance 

when analysing accidents or insurance claims. Thus, it is not possible to aggregate all the data 

and expect good results. From the discussion in Chapter 4, one dependent variable was chosen; 

however, three types of events were assessed as the minimum to ensure useable results. This 

makes for three different dependent variables of the same classifier. In Chapter 3 the logic for 

selection of vessels by type was outlined, and the uniqueness of each type of vessel makes it 

challenging to make a single model containing vessels from different classes. To limit the 

number of necessary models, all vessels were grouped into five categories. Last, five algorithms, 
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including the benchmark model, were chosen to build the strongest model. Thus, to overcome 

the issues of vessel and claims specifics a total of 75 models8 was assessed.  

The extensive number of models made for a real challenge in how to compare, evaluate and not 

least, present the findings. To solve for these challenges the following sequence and method 

were used in the analysis, to stepwise assess the performance of the models. The process is 

outlined in Chapter 6. 

6 Analysis and Results 

In the following chapter, results from the analysis are presented. The analysis aims at answering 

research question 1a and 1b. A combination of tables, figures, and written explanations are used 

to ensure readability. Findings in section 6.1 and 6.2 emphasise model performance, where 

section 6.1 address model specific and 6.2 group specific variations. Bulk & Cargo Small 

vessels are presented as illustrative examples. Section 6.3 conveys the variable importance 

retrieved from the Random Forest model. Section 6.4 present conclusion for the analysis.  

 Models Performance  

Assessing the model performance, a logarithmic classification model was used as a benchmark. 

The reason behind using the logarithmic model as a benchmark is due to the simplicity and high 

interpretability of the model. All models are performed with the use of 5-fold cross-validation 

to for tuning and optimising the results for testing and avoid overfitting. Only results from Bulk 

& Cargo Small (B&CS) have been explicitly presented for each model, and Appendix A-E 

contains results for the remaining vessel groups. For each model; Accuracy, Kappa and the 

Confusion Matrix is displayed and discussed.  

For Contact & Collision, Kappa values are near zero for all models and are found to have no 

predictive power. Results from this category are thereby only discussed under the section for 

the benchmark model. Also, Kappa values for Container are close to zero for most models and 

findings are just mentioned briefly.    

                                                

8 3 Claims categories * 5 group of vessels * 5 machine learning algorithms = 75 models 
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6.1.1 Model Performance of Benchmark Model 

Results from the benchmark model for B&CS are highlighted in Table 13. The model achieves 

a prominent score for Accuracy on Cargo claims, with a Kappa value deemed as fair. Contact 

& Collision produces the best Accuracy for all models, but the Kappa value is near zero, which 

indicates that the model has low or none predictive value. For Human, the results are weak, and 

Kappa indicates only a slight agreement.  

Model 
Logistic Classification 

Validation Performance Test Performance 

Accuracy Kappa Accuracy Kappa 

Cargo 0.7661 0.3420 0.7622 0.2718 

Contact & Collision 0.7729 0.0039 0.8432 0.0452 

Human  0.6212 0.1824 0.5730 0.1174 

Table 13 - Model Performance - Logistic Classification 

The results from B&CS are representative for the remaining groups, with one notable exception. 

Kappa values for Container in predicting Cargo claims is negative and indicates no agreement. 

Except for Container, the general trend is that the model predicts Cargo claims better for Bulk 

& Cargo and Human better for Tankers. Additionally, the model is unable to predict claims for 

Contact & Collision for any of the groups.  

  Cargo   Contact&Collision   Human  

  No Yes   No Yes   No Yes 

No 23 % 4 % No 99 % 100 % No 64 % 43 % 

Yes 77 % 96 % Yes 1 % 0 % Yes 36 % 57 % 

                  
Table 14 -  Confusion Matrix - Logistic Classification 

The output presented in Table 14 is the Confusion Matrix of B&CS. The result for Contact & 

Collision explains the lows Kappa values. The model gets 99% correct of No Claim, while all 

predictions for Claim are incorrect. As there are significantly more No Claim than Claim, the 

total Accuracy is high, while Kappa correcting for, by providing a low score. Furthermore, the 

model for B&CS predicts 96% correct Claim for Cargo, while only 23% the No Claim. For 

Human, correct and incorrect predictions are near evenly distributed around 60%, which are the 

explanation for the low Accuracy. The trend is similar for the remaining groups, except Tankers 
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large, where the model is better at predicting Claim for Cargo than No Claim. For all groups, 

the models perform better in predicting No Claim than Claim for Human. 

 Model performance for advanced machine learning models 

In this section, advanced algorithms are used to identify models with enhanced predictive power. 

The machine learning models have considerable more tuning abilities to be optimised for 

retrieving better results. A variety of machine learning algorithms were tested and assessed, and 

four models are presented. The performance measure for each machine learning model is 

assesed against the benchmark model, to ensure comparability in the results.  

6.2.1 Random Forest 

This section presents the results for the Random Forest (RF) model. Each model was tuned to 
grow 1000 decision trees and randomly sample 3 variables for each split. The general 
performance of RF exceeds the benchmark model, both on Accuracy and Kappa. As seen in 
Table 15 for B&CS, Accuracy is slightly higher for Cargo and significantly higher for Human. 
Kappa values for both models are significantly higher compared to the benchmark model.  

Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.7718 0.3605 0.7798 0.3928 

Contact & Collision 0.8144 0.0441 0.7982 -0.0571 

Human  0.6749 0.3442 0.6422 0.2795 

Table 15 - Model Performance - Random Forest 

The trend for the remaining groups is similar to B&CS. Except for Tankers Small and Tankers 
Large for predicting Human, where Kappa values of all models achieve a significantly higher 
score than the benchmark. Overall, RF achieves significantly higher Kappa agreement and a 
slightly higher Accuracy.  

  Cargo   Contact & Collision   Human  

  No Yes   No Yes   No Yes 

No 44 % 9 % No 96 % 100 % No 67 % 39 % 

Yes 56 % 91 % Yes 4 % 0 % Yes 33 % 61 % 

         
Table 16 - Confusion Matrix - Random Forest 
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As seen in Table 16, RF for B&CS most accurately predicts Claims for Cargo, while for  

No Claim on Cargo, less than half of the predictions is correct. For all groups, RF performs 

more accurate forecasts for No Claim than the benchmark, which results in higher Accuracy.  

For Human, the distribution is generally better for all the models, and especially Tankers Large 

are able to predict claims for Human at a significantly higher rate than the benchmark. 

6.2.2 Naive Bayes 

Naive Bayes (NB) is the model with the most similarities to the benchmark in the way the 

algorithm works. There are performed any tuning for the final model, and it is performed with 

standard settings. Table 17 shows a significant increase in Kappa and a slight increase in 

Accuracy for all models. It is the only model that provides a slight agreement for Contact & 

Collision.  

Model Validation Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.7429 0.3327 0.7706 0.4009 

Contact & Collision 0.7439 0.0492 0.7523 0.1018 

Human  0.6362 0.2737 0.6193 0.2477 

Table 17 - Model Performance - Naive Bayes 

For the remaining groups, the model gives the same indication as for B&CS. The exceptions 

are Human in Tanker Large and Tanker Small, where the benchmark model outperforms NB 

on both Accuracy and Kappa. 

  Cargo   Contact & Collision   Human  

  No Yes   No Yes   No Yes 

No 51 % 13 % No 86 % 76 % No 54 % 29 % 

Yes 49 % 87 % Yes 14 % 24 % Yes 46 % 71 % 

                  
Table 18 - Confusion Matrix - Naive Bayes 

Assessing the Confusion Matrix of NB, the model gives slightly lower correct predictions for 

Claim, compared to the benchmark model. However, the NB models manage to predict No 

claim significantly better than the benchmark. The increased Accuracy in the models is thereby 

a result of the more accurate prediction of No Claim.  
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6.2.3 AdaBoost 

To work with AdaBoost (AB) the dataset had to be normalized and converted to a matrix. The 

parameters for the model were set to a depth of 3, and a learning rate of 0.1. No restrictions for 

iterations were set, and the best fit for the majority of the models used 150 iterations. AdaBoost 

performs significantly better results for B&CS on both Accuracy and Kappa for Cargo and 

significantly better Kappa for Human.   

Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.7659 0.3016 0.7936 0.4007 

Contact & Collision 0.8261 0.0000 0.8303 0.0000 

Human 0.6800 0.3568 0.6284 0.2489 

Table 19 - Model Performance - AdaBoost 

For most groups AB perform significantly better results for Cargo. For Bulk & Cargo a 

significant increase in Kappa for Human are observed. For results for Tankers against Human 

are poor, with a decrease in performance for Tankers Small, and negative Kappa values for 

Tankers Large. Container has significant Kappa values for Human, while the Accuracy is on 

the lower end of acceptable values.   

 

  Cargo   Contact & Collision   Human  

  No Yes   No Yes   No Yes 

No 39 % 5 % No 100 % 100 % No 68 % 43 % 

Yes 61 % 95 % Yes 0 % 0 % Yes 32 % 57 % 

                  
Table 20 - Confusion Matrix - AdaBoost 

AB’s Confusion Matrix from Table 20 shows more accurate predictions for No Claim compared 

to the benchmark model. The result of this is increased Kappa for the majority of the models. 

Exceptions are Human for Tankers Large, where AB predicts Claim significantly better than 

the benchmark, while the benchmark outperforms AB on No Claim. For Tankers Small the 

benchmark also outperforms AB for Human on both predictions.  
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6.2.4 Neural Network  

The following section presents the results for Neural Network (NNET). As with Adaboost the 

data were converted into a matrix and data normalised. Tuning parameters for learning parame

ter were set to 0.1. NNET outperforms the benchmark model on Cargo, while underperforms f

or Human. 
  

Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.7670 0.3635 0.7838 0.3662 

Contact & Collision 0.7820 0.0000 0.8432 0.0000 

Human  0.6528 0.2687 0.5568 0.0913 

Table 21 - Model Performance - Neural Network 

The remaining groups show variable performance when comparing the benchmark and NNET. 

For Bulk & Cargo Large/Small the prediction for Cargo are almost similar, while for Human 

model performance is low. For Tankers Small, the benchmark outperforms NNET for Human, 

while for Cargo the models have relatively similar results. The benchmark model outperforms 

both models for Tanker Large.    

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 36 % 7 % No 100 % 100 % No 59 % 40 % 

Yes 64 % 93 % Yes 0 % 0 % Yes 41 % 60 % 

                  
Table 22 - Confusion Matrix - Neural Network 

The NNET model predicts No Claims for Cargo at a better rate than the benchmark, while the 

rest of the parameters differ only a few per cent as shown in Table 22. For the remaining groups, 

most of the models are outperformed by the benchmark model. 

6.2.5 Overall Assessment of Model specific variation 

Overall model performance is as expected low to moderate. However, several models predict 

Claim for Cargo and Human significantly better than the benchmark model. Random Forest, 

AdaBoost and Naive Bayes provide the best overall results. Variation in performance across 

these three models is low. However, for particular groups and categories, extensive variations 
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are observed, and a combination of the three models could provide the best overall result. Neural 

Network produces the weakest results among all models.  

6.2.6 Model Performance by Group  

Previously model specific variations were addressed, while in the following section, group-

specific variations are highlighted. In the first part group variations for Random Forest are 

presented, while the following parts address the overall variation across all groups for Cargo.  

Random Forest - Cargo 
Group Validation Performance Test Performance 

  Accuracy Kappa Accuracy Kappa 
Bulk & Cargo Small 0. 7718 0. 3605 0. 7798 0. 3928 
Bulk & Cargo Large 0.7269 0.3733 0.7132 0.3203 
Tanker Small 0.6938 0.3603 0.6546 0.2794 
Tanker Large 0.6243 0.1231 0.7067 0.3529 
Container 0.5618 0.0809 0.5000 -0.0791 

Table 23 - Model Performance - Cargo with Random Forest all Groups 

Table 23 shows that predictions for both groups of Bulk & Cargo, as well as Tankers Small,  

provided the best overall results in predicting claims for Cargo using Random Forest. Accuracy 

and the average Kappa for Tankers are generally weaker than the score of Bulk & Cargo. 

Negative Kappa and the low accuracy for Container indicates no agreement. 

Random Forest – Human  
Group Validation Performance Test Performance 

 Accuracy Kappa Accuracy Kappa 
Bulk & Cargo Small 0.6749 0.3442 0.6422 0.2795 
Bulk & Cargo Large 0. 6284 0. 2119 0. 6103 0. 1897 
Tanker Small 0.6798 0.3256 0.5928 0.1494 
Tanker Large 0.6276 0.1189 0.6933 0.2694 
Container 0.6381 0.2665 0.5972 0.1675 

Table 24 - Model Performance - Human with Random Forest all Groups 

Table 24 shows the results for RF against Human for all groups. Performance statistics are on 

average lower when predicting Human. However, all groups show agreements of slight or fair. 

Figure 9 visualises the model performance for predicting Cargo for all models and all groups 

(negative values for Kappa are not included). The plot indicates the highest Kappa agreement 

for Bulk & Cargo, and it illustrates that no models can predict Cargo for Container vessels. The 
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plot also shows that AB, NB and RF are the models with the most predictive power. A similar 

plot for Human is found in the Appendix F.  

 

Figure 9 - Model Performance - Cargo all groups 

6.2.7 Summary Model Performance  

On average, all models outperformed the benchmark model. However, beating the benchmark 

is not the most prominent insight. The important conclusion of this section is that the models 

are able to predict claims based on AIS-information. Three models were found to provide the 

highest agreement overall; Random Forest, Naive Bayes and AdaBoost. The models provided 

no value in two particular situations; predicting claims in Contact & Collision, and Cargo claims 
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for Container. Table 25 summarises the findings in section 6, by visualising the average 

predictive power in each model.  

 

Predictive Power 
Green = Strong, Yellow = Medium, Red = Weak 

  Cargo Claims Contact & Collision Human 
GLM       
Random Forest       
Naive Baye       
ADA Boost       
NNET       

Table 25 - Predictive Power of Models 

 Variable Importance 

Prediction power of models is essential but has limited contribution when it comes to loss 

prevention. To impliment the correct loss preventing measures, identifying the most important 

predictors is necessary. Several machine learning models have limitations when it comes to 

extracting variables of importance. The “black box” of machine learning refers to a model 

where inputs go into a box and decisions comes out on the other side (Hastie et al., 2009). One 

of the critiques towards “black box” models are that the process between input and output is 

not observable for the researcher (Burger, 2018). In this thesis, there was deliberately selected 

a mixture between “black box” and simpler models, as variable importance is of significant 

interest for the research. In the following sections findings for variable importance of Random 

Forest is presented. Random Forest was selected, due to high overall performance, and variable 

importance can easily be extracted from the model.  

6.3.1 Random forest - Variable Importance 

In the following section, variable importance is presented for Cargo and Human for all vessel 

groups. Variable importance for Contact & Collision is omitted, as the model performance in 

section 6.1 and 6.2 were assessed as too low to provide any value. The variables are weight by 

their importance, and the most important variable is listed at top. The concept of benchmarking 

variable importance is of limited value, so results from logarithmic classification are omitted in 

this part.  

Figure 10 shows variable importance from Random Forest. The plots show that variable 

importance varies among all vessel groups, as well as between claims categories for each group 
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of vessels. An essential feature of that Random Forest is that it is not an adaptive model, and 

the plots presented below does not indicate the direction of how the variable affects claims 

statistics, but it is a measure of the strength of each predictor. The decrease in accuracy is used 

as a measure of the importance of a variable in Random Forest (Hastie et al., 2009).  

 

Figure 10 - Variable Importance for Random Forest  

Four variables score higher than the others on average, regardless of vessel group; Gross 

Tonnage, Average distance sailed per Transit, Distance Sailed per Month, and  

Number of Unique Ports per Month.  

There are several possible reasons for Number of Unique Ports per Month to be among 

the most important factors. Number of Unique Ports per Month is likely related to 

transiting in new and unknown waters, and lack local knowledge by the navigator might 

increase the rate of accidents. On the contrary, good navigators would pay special 
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attention when transiting in new waters, and utilise pilots when taking the vessel into 

port. Thus, Number of Unique Ports per Month could also indicate fewer accidents. 

Another reason might be related to the communication and relationship between the 

crew and operators in the port. Each port has unique procedures and methods, and 

without an established relationship between the actors, misunderstanding might occur, 

and cargo and persons can take damage or be injured during port operations.  

Average distance sailed per transit indicates the operational pattern of the vessel. Ocean 

crossing vessels will have a high average distance, and regional or domestic vessels will 

normally have a shorter average distance. Ocean crossing vessels are often larger than 

regional and domestic vessels. Increased Average distance sailed per transit can 

possibly lead to fewer accidents; one explanation is that machinery is better off with 

running more extended periods, then short intervals, and results in less maintenance and 

damage to machinery. Shorter Average distance sailed per transit could result in 

increased frequency of claims as the vessels are likely in areas with higher traffic density 

and with more port activities.  

Distance Sailed per Month acts as a proxy for activity level. Two operational patterns 

lead to high distance sailed; vessels with short to medium transits with high speeds and 

short turn-over in port, and vessels with long transits and short turnover time in port. For 

both types, the high activity level could indicate increased risk and more claims.  

The variable Age and Age² scores very low in all models and groups. A possible reason 

could be that Skuld does not insure vessels above 30 years of age, unless the vessel is of 

particular interest. Age of maximum 30 years is likely chosen by Skuld, based on 

historical data, and could represent a threshold for risk. The short time span of age in the 

sample is likely explaining the limited importance of age in the models.   

In variable importance plots variables is sometimes omitted due to low importance. In 

Figure 10, Flag of convenience was excluded by the model. The importance of Flag of 

convenience was revealed in a secondary plot, and the overall importance was less than 

Age and Age².  

Table 26 shows a summary of findings for variable importance and the prediction 

strength of each predictor retrieved from AIS-information. 
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Predictive Power 
Green = Strong, Yellow = Medium, Red = Weak 

 Cargo Human 
Average Distance Sailed per transit   
Average Time Sailed per Month   
Number of Transits per Month   
Number of Unique Port visits per Month   
Proportion at sea   
Total Distance sailed per Month   
Total Time at Sea per Month   

Table 26- Predictive Power of AIS-Variables 

 Conclusion Analysis  

Chapter 6 aims at answering research question 1; To what extent can AIS-information 

combined with machine learning algorithms predict claims, and what is the most important 

predictors retrieved from AIS-information? 

Results from the analysis indicate that models based on AIS-variables are able make predictions 

for most claim categories. The overall results for Cargo are fair to moderate, for Human it is 

slight to fair, while predictive power for Contact & Collision is close to zero. AdaBoost, Naive 

Bayes and Random Forest provide the best overall results, and on average their predictive 

power is relatively similar. The results from predicting Cargo claims achieve on average on the 

highest Accuracy and Kappa score. The models predict approximately 75 % of Cargo claims 

for Bulk & Cargo groups and 68 % for Tankers. 

Chauvin et al. (2013) found that most collisions are caused by human errors due to decision 

error, because of poor visibility and misuse of instruments. The models used to predict claims 

do not contain any predictors for human characteristics, visibility conditions or systems 

specifications for vessels. This could be one of the main reasons why all models for Contact & 

Collision provide poor results.  

Results for variable importance makes it hard to give a single conclusion. The overall tendency 

is that Number of Unique Ports per Month, Total Distance Sailed per Month and Average 

Distance Sailed per Month is assigned most importance.  

In relation to research question 2, the analysis provides evidence that machine learning models 

based on AIS-variables have predictive power for Cargo and Human, and could provide value 
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in risk assessment and determination of insurance premium. Regarding loss prevention, 

machine learning can identify the most important AIS-variables and provide additional support 

in determining measures to prevent claims.  

7 Discussion 

The purpose of this thesis, as previously stated, is two-folded; investigate the opportunities for 

machine learning in marine insurance, while specifically making a model to predict claims 

based on AIS-information. The following sections are structured to discuss the two research 

objectives, based on statistical findings from the analysis. The questions are strongly connected. 

However, for the purpose of clarity, they have been separated into two sections; statistical 

findings, and potential for machine learning in P&I Insurance. In addition, the chapter includes 

sections on financial impact, limitations, recommendations, and possible improvements of 

models.  

 Statistical Findings 

As outlined in Chapter 6, the overall model performance varies by vessel group and type of 

claim. Predicting claims is a challenging task, and any statistically significant results are of 

potential value. Multiple models achieve fair to moderate results in predicting Cargo claims, 

and fair results in predicting Human claims. Certain models have no predictive power; in 

particular, the models fail to predict claims related to Contact & Collision for all vessel groups, 

and Cargo claims for Container vessels.  

The model accuracy of close to zero for Contact & Collision is not surprising, as predicting 

collisions are exceptionally challenging. Multiple researchers such as Harrald et al. (1998) and 

Chauvin et al. (2013) conclude that human factors are the main triggering factor related to 

collision and groundings. Activity level might indirectly relate to physical and mental tiredness, 

which is one of the factors that are likely to increase the risk of accidents (Akyuz, 2014). 

However, most AIS-variables primarily relates to activity level and operational pattern, and not 

directly to human factors, and the low-performance is reasonable. In addition, claims for 

Contact & Collision are underrepresented in the dataset, and the algorithm has fewer 

observations to build a strong machine learning model.  
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The results for Container vessels are surprising. One possible factor could be that Container is 

the smallest group of vessels, resulting in fewer observations to build models. On the contrary, 

the group Tankers Large only consists of a few more vessels than Container and provides 

significantly better results. Comments from claims handlers at Skuld has not provided any 

further insight. Inspecting the data for Container did not indicate any explanations for the 

differing results. Further analysis of the group Container should be assessed to reveal possible 

explanations for the low performance.   

Increases activity are likely to induce more Cargo claims, as higher activity level translates to 

more shipment of cargo. The models predict approximately 75 % of Cargo claims for Bulk & 

Cargo groups, and 68 % for Tankers. The findings represent valuable insight for Skuld, as 

activity level is not a part of current risk-assessments. A further discussion for implementing 

the results are included in the section 7.2.  

Models for Human scores on average 62 % for Bulk & Cargo, and 66 % for Tankers. Activity 

and the operational pattern seem to have less explanatory power for Human claims. A reason 

could be that the relationship between cargo transported, and cargo damage is linear. While for 

Human, higher activity could lead to more claims, but also more experienced workers and 

familiar procedures, resulting in fewer claims.  

Findings for variable importance are primarily identified by their weight in the Random Forest 

model. The results reveal minor disagreement as compared to the expected results discussed in 

Chapter 4. The limited significance of Age and Age² defy the expectations, and indicates that 

the variables are not suited for risk assessment. Research by Clarkson (1991) finds that 

maintenance seems to be more important than age when it comes to quality of a vessel, which 

support the low relevance for Age and Age² in the models. The low importance of flag of 

convenience is in agreement with statements from several professionals at Skuld, who claims 

that flag is only a measure to optimise taxes, and that does not reflect the quality of the 

shipowner. However, the finding contradicts the results of Butt et al. (2012) analysis on marine 

accidents.  

The high importance of Gross Tonnage may indicate that the groups defined in Chapter 3 are 

not optimal, and more precise limits of size should be adjusted before further modelling. The 

low importance of Number of transits per month and moderate importance of Total time sea 

per month are more surprising. The moderate importance for Total time at sea per month could 
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be explained by the inclusion of vessels at anchor in the aggregated time, and the accuracy in 

relation to activity level is less than variable related to distance. No logical explanation for the 

low importance for Number of transits per month is identified.  

The high importance of Number of Unique Ports per Month, Total Distance Sailed per Month 

and Average distance sailed per Transit agreed with the expectations, and their importance was 

discussed in section 6.3.1.  

 Potential for machine learning in P&I Insurance 

Insights from analysing claims have two main areas for utilisation; identify potential loss 

prevention measures, and increased accuracy in determining risk. The following sections 

discuss possible implementations for the specific findings, in addition, the sections take a 

broader view on how machine learning can contribute to P&I Insurance.  

7.2.1 The potential for loss prevention 

In Chapter 6 machine learnings ability to identify variables of importance were demonstrated. 

Knowledge of these variables can be exploited in different ways in loss prevention. The 

research from this thesis has identified some areas where machine learning can be implemented.  

Monitor fleet activity / Targeted loss prevention 
The machine learning models can bring Skuld valuable information into which factors should 

be monitored. By implementing a service where Skuld and the members can monitor their 

activities, Skuld can inform members when potential threshold values are reached and suggest 

measures to minimise risk. An example could be that a member vessel, reached a certain 

threshold for average sailing distance. Skuld can notify the member and suggest that a survey 

should be performed in the next port, to check for possible errors which can lead to a claim. 

Implementing thresholds for the predictors identified in this thesis could provide additional 

support to members and possibly differentiate Skuld from other P&I companies. An alternative 

to informing shipowners are to impose restrictions on their activity levels. P&I insurance 

companies have a limited history with restricting vessels operations, and only certain limitations 

in the area of trade-related to war zones are common. Imposing limitations based on a maximum 

total distance sailed or the number of ports visited is absent, and the market is likely, not 

prepared for such restrictions.  
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Education and training 
A current area of loss prevention is information campaigns, training and education. The 

curriculum is determined through findings in claims statistics and reports. Results from the 

analysis can be implemented in a more targeted training for shipowners, and possibly 

implement new subjects in the curriculum. A specific example is to inform shipowners of the 

increased risk vessels that trade in multiple ports is exposed to compared to liner traffic between 

fewer ports. The loss prevention measures could include a recommendation for the use of pilots, 

or specific naming preferred operators in the most risk exposed ports.  

CSR & Sustainability 
Corporate Social Responsibility (CSR) and sustainability are not directly related to loss 

prevention, but negative publicity can result in financial loss. Machine learning can identify 

unfavourable trading patterns, or trading that violates international treaties, and shipowners can 

be sanctioned or expelled from the club based on their behaviour.  

7.2.2 The potential for risk assessment and pricing 

The process to determine premiums were addressed in section 2.3.5, where two means are used, 

a risk assessment model and market prices. Machine learning has the potential to increase 

accuracy in risk/price models by implementing more variables and exploit complex 

relationships between activity levels and claims.  

Accurate pricing of segments 
Identifying under or over-priced segments are of substantial value and can be used to identify 

unwanted risk or to increase market shares. If a vessel segment is under-priced, Skuld can 

reduce prices to gain market-shares. If a vessel segment is over-priced, Skuld should increase 

premiums in the following negotiation period. If a segment has to high risk after new 

assessments, Skuld could evaluate to drop the segment. By identifying miss-pricing in the 

insurance portfolio, Skuld can lower the overall risk, which can result in lower claim amounts 

and more stable premium incomes.  

Activity-based insurance 
Current risk models are as discussed based on historical performance of the member and static 

information about the vessel. Current models are likely developed based on what records were 

available when P&I insurance started to develop, and until electronic navigation systems and 

AIS became available, the vessels activity levels were close to impossible to monitor. With 

easily available AIS-information and possibly other external sensors, the activity can now be 
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continuously monitored. Findings in Chapter 6 makes a strong argument for activity-based 

pricing. Activity can be linked to pricing in multiple ways. An interval pricing structure could 

work as a simple framework, where the premium is partly based on total distance sailed each 

year. If the agreed interval is breached, a new premium is determined, or the deductible is 

increased.  

Automatisation of Marine Insurance 
P&I insurance premiums are primarily determined by negotiations between brokers and 

underwriters. It is a manual process, often conducted person to person, and including extensive 

travelling. A manual process is usually costlier than an automatic process, and by developing a 

sophisticated automatic price model, the use of brokers can be decreased. In a possible future 

scenario, shipowners buy insurance online through a Skuld portal, and not through a broker. 

Automated pricing reduces costs for all actors.  

 Financial impact  

In order to emphasise the relevance of the work, this section aims at setting a value in USD of 

the findings. Calculating potential savings is challenging, as predicting claims is one part of the 

equation, but avoiding the claim is something different. To overcome these issues, several 

simplifications are made, and the calculation is based on payouts for Cargo and Human claims.  

As stated in Table 4, costs related to Cargo claims in the period were $ 951,166,645, and for 

Human $ 510,667,798. The average payout is $ 127,417 for Cargo claims and  

$ 94,656 for Human claims.  

On average, the models are able to predict, 73% of all Cargo claims and 64% of all Human 

claims. Even though models predict a large proportion of claims, it is challenging to determine 

a number on how many of these claims can be avoided. Two of the major actors in AIS  

risk-analysis Skuld have met with, estimates a yearly reduction in claims between 7-14%. In 

USD this is equivalent of saving between $ 20 - $ 40 million, based on anual payouts.  

In addition to savings from loss prevention, Skuld can use the information from the predictors 

in their pricing models to better calculate premiums and increase earnings. More accurate 

pricing also reduces the risk of having to collect additional premiums from members during the 

policy period. Predictable prices are of importance to all members, as it allows for a better 

allocation of funds throughout the year.  
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An explicit value of the findings is impossible to calculate without further research. By 

comparing the agreed premiums with an alternative premium based on activity-level for the 

five year period, a potential profit of using activity-level could be uncovered. These calculation 

should Skuld consider doing, before deciding on implementing activity-based pricing system. 

At this stage, the best estimation for savings in loss prevention, which the established AIS  

risk-analysis actors presents.  

 Limitations 

Limitations in scope are discussed in section 1, this section address limitations in the sense of 

weaknesses with the work. Most of the arguments are related to limitations as a result of choices 

during pre-processing of data.  

Several sources of error were not entirely eliminated through the pre-processing. Two of the 

issues relates to spoofing and identification of ports, and both are thoroughly discussed in 

Chapter 3. An additional limitation as a result of the pre-processing is the treatment of vessels 

at anchor. The impact of grouping vessels at anchor with vessels at sea was not revealed before 

the analysis was complete, and as discussed variables relate to time are heavily biased by vessels 

at anchor. In hindsight vessels at anchor should have been treated as a particular case, and the 

accuracy of the activity level as a function of time would likely increase significantly. An 

adjustment should be implemented in future work. In general, all bias and errors in dataset will 

affect model performance (Hastie et al., 2009).  

This thesis is based on the assumption that most claims are caused by accidents, and not 

deliberately insurance fraud. However, it is likely that claims in our dataset are a result of fraud, 

and Skuld professionals confirm that they identify fraud from time to time. In particular claims 

such as shortage of cargo, might be related to theft and not damage or accidental mistakes. 

Other variables would likely be more suited to predict fraud, such as the inclusion of operators, 

specific ports or crew composition.  

Regarding claims data, three event categories were used. As explained in Chapter 3, each claim 

may have several cases, and by exploiting case type in addition to Event type, a more profound 

insight could be achieved.  

Choice of models is also likely to limit the performance. Algorithms that are easy to interpret 

and allow for extraction of variable importance were deliberately chosen. More advanced 
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models could lead to higher predictive power, at the cost of the “black box” effect discussed 

previously. A clear distinction between models for use in loss prevention and risk identification 

could be utilised to solve for this, and by separating the models based on what they intend to 

find, overall performance could be increased.  

 Recommendations for model enhancement  

In this section recommendation for further work and measures to increase model performance 

is addressed. The recommendations are based on observations and limitations revealed 

throughout the process.  

Increased number of observations  
Model performance would presumably increase with more observations (Burger, 2018). Two 

methods to increase the number of observations are possible, expand scope or increase 

resolution of available data. Expanding scope can be done by including more years of AIS-

information or more vessels. This is in practice not a feasible solution as AIS-information 

before the year 2012 is limited, due to the lack of satellite-based AIS-systems, and Skuld is not 

able to “buy” claims history from other clubs9.  Increased resolution can be achieved by splitting 

the data into shorter time periods. The current analysis is performed on an aggregated level for 

all years. There are several reasons as to why this method was chosen. The potential lag of 

activity towards claims, e.g. increased such as increased sailing in one year, may not result in 

more claims before next year, as maintenance has been put on hold. The other reason is related 

to the number of claims. 18,541 claims on 3,500 vessels for four event groups, leaves on average 

just above one claim per vessel for each category. Increasing the resolution would result in a 

very skewed dataset. Other reasons are related to the uncertainty of the incident date, the 

problem with vessels in lay-up during the winter seasons, and vessels starting long transits just 

before a new year.   

Several of the issues mentioned above could be solved, and by increasing the resolution to one 

year, the number of observations would increase by about 3 times. The most favourable 

resolution would be to study claims on individual transits. Activity levels would need to be 

altered, by possibly including variables on activity level the last six months before the given 

voyage, or number of ports visited last month. A resolution per voyage could also allow for 

                                                

9 A project to collaborate on data analysis between Clubs was attempted, but failed. 
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including other variables such as operators, type of cargo transported and whether pilots were 

used or not.  

Possible Gains from Increase Accuracy in AIS-Information 
Windward (2014) identifies a limitation in manual updates of AIS-information. Model 

performance could increase significantly by more accurate AIS-information, such as the type 

of Cargo, next port of call and navigational status. The potential gain from increased accuracy 

in navigational status is outlined in section 3.4. An incentive from P&I Clubs to motivate 

Shipowner and OOW to increase attention on accurate AIS updates could lead to more accurate 

model predictions. An incentive could be implemented as a bonus system with a reduction in 

premium based on the accuracy of the AIS-information. Calculations on the value of accurate 

data should be performed to decide if the incentives-system is profitable.  

Research Port-risk 
Through this research, the object of study is vessels activity and operational patterns. It is 

possible to tweak the methods used, to study risk related to ports to a more considerable extent. 

By placing individual ports as the object of study, one could assess the risk of individual ports 

by analysing variables extracted from AIS-information related to traffic density, navigational 

bottlenecks, type of vessels and time in port. Thus, machine learning and AIS could be used to 

create an index including risk for all ports of interest.  

 Alternative variables 

Through the research, multiple predictors have been reviewed, and two alternative dependent 

variables were considered. In this section, both alternative dependent and independent variable 

are discussed.  

7.6.1 Alternative dependent variables 

In the process of building the models, the variable Claim/No Claim where used as the 

dependent variable. Following are an elaboration of the two alternative variables retrieved 

from the claims data, with potential in machine learning modelling. 

Cost of Claims 
 Cost of claims was tested in the initial phase and did not yield any useful results. In discussion 

with Skuld professionals, two major causes were assessed as the likely reasons. Firstly, the five 

most costly accidents account for 60 % of the total payouts during 2013-2017, and no 
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correlation based on AIS were identified between these five accidents. Even if these five vessels 

were removed, the element of randomness was deemed too large. A simple example is that a 

grounded vessel could ground on a bank of sand, rocks or coral reef. Grounding on rocks 

compared to sand would naturally cause more damage to the vessel. Grounding on a coral reef 

would likely result in similar damage as on rocks, while the environmental effects would likely 

be higher, and claims from government related to clean-up could result in significantly higher 

costs. Thus, small but significant changes in where the accidents occur might result in 

considerable differences in liabilities. 

Further reasoning why this variable was unsuitable is due to the time bar for certain claims, that 

can be 2-3 years. A large proportion of the claims from 2016 and 2017 are still open, meaning 

the final payout has not been decided. However, the potential of a model able to predict the size 

of claims would be of high value, and building a model predicting size of claims by including 

more variables should be exploited.  

Number of Claims 
An alternative to Cost of Claims and the categorical variable was Number of Claims. The benefit 

of the variable as compared to the categorical variable is the reflection of number of claims and 

allows for regression algorithms. In practice, the variable would only differ slightly from the 

categorical variable, as claims frequency is overall low, and for vessels with one claim the factor 

variable YES/NO would yield the same result. It was decided that the increased value from 

adding Number of Claims as a dependent variable would not be of great importance at this stage. 

However, exploiting number of claims further could be of great value in claims assessment. 

7.6.2 Alternative predictors 

Model performance could increase by including new variables, and this section discussed 

several alternative predictors. Some of the alternative variables require the analysis to be 

performed on transit level as opposed to the five year aggregated approach. 

Information of Ownership 
Previous claims statistics, financial strength, size of fleet and type of trade could all be relevant 

factors in predicting claims. Some of these factors are already utilised in determining premiums 

or when accepting new members into the club. By including predictors related to owners, the 

model would assess member specific issues, and new findings could be revealed. 
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Information on Trade 
Information about the specific trade of each transit could be of potential value as certain types 

of goods are believed to be more exposed to risk. One example is the transportation of grain 

compared to oil, where the risk of pollution arises when carrying oil. By adding the type of 

goods to the model, the vessel-specific risk could be further assessed when predicting claims. 

Also, trade specific patterns could reveal additional factors connected to trading routes.  

Information on Weather 
Weather is known to impact trade at sea, and every year vessels are lost due to heavy weather 

(AGCS, 2018). Several variables are suitable to represent the possible impact of weather while 

sea state and wind are the most common. Sea state represents the wave height. Both variables 

are possible to extract from multiple sources; the challenge is the practical implementation in 

the model. At an aggregated level weather is not useful, and even on a transit-based level, the 

uncertainty of the incident date and time, makes it difficult to implement in practice.  

Information on Crew: 
Crew composition and level of training and experience could be a relevant factor to exploit. 

Multi-ethnicity crews are common, and language barriers could induce risk (Badawi & Halawa, 

2014). In many types of trade, crew turnover is high, and the data is most suitable to be used on 

a transit-based level. However, this will introduce costs in data collection, and might not be 

feasible in practice.  

Common Challenges 
A common challenge to most of these predictors is the time lag between the build-up to an 

accident and the trigger of the accident. An underqualified crew in the previous year could lead 

to accidents in the following year, as maintenance was not performed according to standards. 

For activity level, this can be solved by making a variable for activity in a given period before 

a voyage, but for other variables, this is not possible.  
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8 Conclusion 

This thesis aimed at determining the potential of applying machine learning in P&I insurance, 

by analysing the relationship between activity level and operational patterns against P&I 

insurance claims. A comprehensive pre-processing of AIS-information were performed, and 

variables were extracted from 52 million data points, combined with data on 5,000 ports. The 

process allowed for analysing five years of insurance data, including information on 3,500 

vessels. The work contributes to current research by expanding the scope of literature on 

maritime accidents, to include any incident related to vessel activity. 

To answer the research questions, five categorical machine learning algorithms were applied to 

predict the outcome of whether a vessel would encounter a claim or not in three different 

categories. A total of 75 models were built and compared to analyse algorithm and vessel group-

specific variations. This allowed to control for multiple sources of errors and make the 

presidency for a robust conclusion. Findings from the analysis imply that activity level and 

operational patterns of a vessel have predictive power on P&I insurance claims. Three variables 

were found to contain the strongest predictive power; Number of unique ports per month, Total 

distance sailed per month, and Average distance sailed per month. The former variable is 

related to the operational pattern of vessels, while the two latter is a combination of operational 

pattern and activity-level of the vessel. Two major shortcomings of the analysis are the lack of 

predictive power for claims in the category Contact & Collison and the lack of predictive power 

for Container vessels.  

A major challenging are to compute an economic value on the research, as predicting claims is 

one part of the equation, preventing claims from occurring are more complex. However, 

through business presentations, the two major providers of AIS analysis, Windwards and 

Concirrus, gives a point in the direction of potential savings. They assess that machine learning 

can reduce claims by 7-14%. This translate to a yearly saving of between $ 20 - $ 40 million. 

In addition to savings from loss prevention, the increased knowledge from AIS-information 

could help Skuld to create more accurate price models; thus, increase revenues from premiums.  

While Skuld will continue to explore the potential of AIS and increased integration of fleet 

monitoring and activity-based decisions, the primary recommendation on further work is to 

rethink the processing of vessels at anchor, and possibly apply three states of operation; transit, 

port and anchor. In addition, future research should aim at increasing the resolution of the 
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current data, to investigate activity level per transit. This could enhance the model performance 

by expanding number of observations and by facilitating for additional variables related to 

ownership, crew, weather, trade, and more.   

Findings from the analysis are directly applicable in P&I insurance and can be implemented in 

automated real-time loss prevention, or directly as a parameter in risk assessment and 

calculation of insurance premiums. The research makes a strong argument for implementing 

activity-based pricing in P&I Insurance. The P&I Club Skuld have as a result of this research 

investigating how to practically implement risk parameters from the AIS-variables found in this 

thesis in their pricing strategy.  Knowledge and experience attained through the process were 

directly applied when Skuld decided to enter into an agreement with the AIS analysis company 

Concirrus in December 2018.  
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10 Appendix  

 Bulk & Cargo Small 

Model performance - Logistic Classification Model 

Model Validation Performance Test Performance 

Logistic Classification  Accuracy Kappa Accuracy Kappa 

Cargo 0.7283 0.1459 0.7569 0.2408 

Contact & Collision 0.8172 0.0090 0.8257 -0.0090 

Human 0.6627 0.3180 0.6055 0.2056 

 
Confusion Matrix - Logistic Classification Model 

  Cargo   Contact&Collision   Human 

  No Yes   No Yes   No Yes 

No 23 % 4 % No 99 % 100 % No 64 % 43 % 

Yes 77 % 96 % Yes 1 % 0 % Yes 36 % 57 % 

                  
 
Model Performance -  Random Forest 

Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.7718 0.3605 0.7798 0.3928 

Contact & Collision 0.8144 0.0441 0.7982 -0.0571 

Human 0.6749 0.3442 0.6422 0.2795 

 
Confusion Matrix  - Random Forest 

  Cargo   Contact&Collision   Human 

  No Yes   No Yes   No Yes 

No 44 % 9 % No 96 % 100 % No 67 % 39 % 

Yes 56 % 91 % Yes 4 % 0 % Yes 33 % 61 % 
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Model Performance -  Naïve Bayes 
Model Validation Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.7429 0.3327 0.7706 0.4009 

Contact & Collision 0.7439 0.0492 0.7523 0.1018 

Human 0.6362 0.2737 0.6193 0.2477 

 
Confusion Matrix -  NB 

    

  Cargo   Contact&Collision   Human 

  No Yes   No Yes   No Yes 

No 51 % 13 % No 86 % 76 % No 54 % 29 % 

Yes 49 % 87 % Yes 14 % 24 % Yes 46 % 71 % 

                  
 
Model Performance - AdaBoost 

Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.7659 0.3016 0.7936 0.4007 

Contact & Collision 0.8261 0.0000 0.8303 0.0000 

Human 0.6800 0.3568 0.6284 0.2489 

 
Confusion Matrix - AdaBoost 

  Cargo   Contact&Collision   Human 

  No Yes   No Yes   No Yes 

No 39 % 5 % No 100 % 100 % No 68 % 43 % 

Yes 61 % 95 % Yes 0 % 0 % Yes 32 % 57 % 
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Model Performance – Neural Network 
Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.7362 0.2487 0.7706 0.3380 

Contact & Collision 0.8261 0.0008 0.8303 0.0000 

Human 0.6570 0.3122 0.5963 0.1920 

 
Confusion Matrix – Neural Network 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 36 % 7 % No 100 % 100 % No 59 % 40 % 

Yes 64 % 93 % Yes 0 % 0 % Yes 41 % 60 % 

                  
 

 Bulk & Cargo Large  

Model performance - Logistic Classification Model 
Model Validation Performance Test Performance 

Logistic Classification  Accuracy Kappa Accuracy Kappa 

Cargo 0.6915 0.2631 0.7132 0.3137 

Contact & Collision 0.8050 -0.0057 0.8088 0.0000 

Human 0.5911 0.0999 0.6029 0.1292 

 
Confusion Matrix – Logistic Classification Model 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 39 % 10 % No 100 % 100 % No 30 % 18 % 

Yes 61 % 90 % Yes 0 % 0 % Yes 70 % 82 % 
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Model Performance -  Random Forest 
Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.7269 0.3733 0.7132 0.3203 

Contact & Collision 0.7952 0.0050 0.8088 0.0868 

Human 0.6284 0.2119 0.6103 0.1897 
 
Confusion Matrix – Random Forest 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 41 % 11 % No 98 % 92 % No 49 % 30 % 

Yes 59 % 89 % Yes 2 % 8 % Yes 51 % 70 % 

                  
 
Model Performance Naïve Bayes 

Model Validation Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.6873 0.2859 0.7132 0.3458 

Contact & Collision 0.7615 0.0070 0.7868 0.0811 

Human 0.6048 0.1274 0.6250 0.2046 

 
Confusion Matrix – Naïve Bayes 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 49 % 16 % No 95 % 88 % No 44 % 24 % 

Yes 51 % 84 % Yes 5 % 12 % Yes 56 % 76 % 
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Model Performance - AdaBoost 
Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.7215 0.3507 0.7426 0.3779 

Contact & Collision 0.8095 0.0000 0.8088 0.0000 

Human 0.6434 0.2255 0.6397 0.2358 

 
Confusion Matrix  - AdaBoost 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 41 % 7 % No 100 % 100 % No 46 % 23 % 

Yes 59 % 93 % Yes 0 % 0 % Yes 54 % 77 % 

                  
 
Model Performance  - Neural Network 

Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.7161 0.3482 0.7132 0.3396 

Contact & Collision 0.8095 0.0000 0.8088 0.0000 

Human 0.6291 0.2119 0.5956 0.1633 

 
Confusion Matrix – Neural Network 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 47 % 15 % No 100 % 100 % No 49 % 33 % 

Yes 53 % 85 % Yes 0 % 0 % Yes 51 % 67 % 
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C. Tankers Small 

Model performance - Logistic Classification Model 
Model Validation Performance Test Performance 

Logistic Classification  Accuracy Kappa Accuracy Kappa 

Cargo 0.6388 0.2028 0.6443 0.2050 

Contact & Collision 0.7957 -0.0040 0.7990 0.0000 

Human 0.6355 0.2234 0.6701 0.2972 

 
Confusion Matrix – Logistic Classification Model 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 27 % 8 % No 100 % 100 % No 48 % 19 % 

Yes 73 % 92 % Yes 0 % 0 % Yes 52 % 81 % 

                  
 
Model Performance - Random Forest 

Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.6938 0.3603 0.6546 0.2794 

Contact & Collision 0.7819 0.0251 0.8041 0.0685 

Human 0.6798 0.3256 0.5928 0.1494 

 
Confusion Matrix – Random Forest 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 52 % 25 % No 99 % 95 % No 46 % 31 % 

Yes 48 % 75 % Yes 1 % 5 % Yes 54 % 69 % 
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Model Performance – Naïve Bayes 
Model Training Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.6739 0.3014 0.6546 0.2572 

Contact & Collision 0.7275 0.0626 0.7165 0.0340 

Human 0.6513 0.2589 0.6186 0.1990 

 
Confusion Matrix – Naïve Bayes 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 41 % 17 % No 85 % 82 % No 47 % 27 % 

Yes 59 % 83 % Yes 15 % 18 % Yes 53 % 73 % 

                  
 

Model Performance – AdaBoost 
Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.6949 0.3503 0.6856 0.3283 

Contact & Collision 0.7943 . 0.7990 0.0000 

Human 0.6700 0.3004 0.6134 0.1838 

 
Confusion Matrix – AdaBoost 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 41 % 17 % No 85 % 82 % No 47 % 27 % 

Yes 59 % 83 % Yes 15 % 18 % Yes 53 % 73 % 
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Model Performance – Neural Network 
Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.6856 0.3298 0.6546 0.2622 

Contact & Collision 0.7943 0.0000 0.7990 0.0000 

Human 0.6526 0.2533 0.5979 0.1308 

 
Confusion Matrix – Neural Network  

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 44 % 19 % No 98 % 91 % No 35 % 22 % 

Yes 56 % 81 % Yes 2 % 9 % Yes 65 % 78 % 

                  
 

D. Tankers Large 

Model performance - Logistic Classification Model 
Model Validation Performance Test Performance 

Logistic Classification  Accuracy Kappa Accuracy Kappa 

Cargo 0.6051 0.1020 0.6800 0.2701 

Contact & Collision 0.8554 -0.0110 0.8667 0.0000 

Human 0.6764 0.2125 0.7333 0.3590 

 
Confusion matrix - Logistic Classification Model 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 81 % 56 % No 25 % 33 % No 25 % 33 % 

Yes 19 % 44 % Yes 75 % 67 % Yes 75 % 67 % 
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Model performance – Random Forest 
Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.6243 0.1231 0.7067 0.3529 

Contact & Collision 0.8439 0.0558 0.8533 -0.0248 

Human 0.6276 0.1189 0.6933 0.2694 

 
Confusion Matrix – Random Forest 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 79 % 44 % No 98 % 100 % No 37 % 13 % 

Yes 21 % 56 % Yes 2 % 0 % Yes 63 % 88 % 

                  
 
Model Performance – Naïve Bayes 

Model Validation Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.6111 0.2349 0.6267 0.2723 

Contact & Collision 0.7707 0.1047 0.7733 -0.0241 

Human 0.6734 0.2047 0.7067 0.2949 

 
Confusion Matrix – Naïve Bayes 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 56 % 26 % No 88 % 90 % No 37 % 10 % 

Yes 44 % 74 % Yes 12 % 10 % Yes 63 % 90 % 
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Model Performance – AdaBoost 
Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.6565 0.2097 0.7333 0.4118 

Contact & Collision 0.8548 0.0210 0.8667 0.0000 

Human 0.6498 0.0672 0.6400 0.0203 

 
Confusion Matrix – AdaBoost 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 85 % 52 % No 100 % 100 % No 4 % 6 % 

Yes 15 % 48 % Yes 0 % 0 % Yes 96 % 94 % 

                  
 
Model Performance – Neural Network 

Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.6291 0.1771 0.6267 0.1898 

Contact & Collision 0.8548 0.0000 0.8667 0.0000 

Human 0.6862 0.2450 0.7067 0.3309 

 
Confusion Matrix – Neural Network 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 85 % 52 % No 100 % 100 % No 48 % 17 % 

Yes 15 % 48 % Yes 0 % 0 % Yes 52 % 83 % 

                  
 

 

  



83 

 

E. Container 

Model Performance – Logistic Classification Model 
Model Validation Performance Test Performance 

Logistic Classification  Accuracy Kappa Accuracy Kappa 

Cargo 0.5849 0.1293 0.5417 -0.0017 

Contact & Collision 0.8371 -0.0117 0.8333 -0.0261 

Human 0.5792 0.1530 0.5972 0.1714 

 
Confusion Matrix - Logistic Classification Model 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 19 % 20 % No 98 % 100 % No 42 % 26 % 

Yes 81 % 80 % Yes 2 % 0 % Yes 58 % 74 % 

                  
 
Model Performance -  Random Forest 

Model Validation Performance Test Performance 

Random Forest Accuracy Kappa Accuracy Kappa 

Cargo 0.5618 0.0809 0.5000 -0.0791 

Contact & Collision 0.8352 -0.0005 0.8472 0.1121 

Human 0.6381 0.2665 0.5972 0.1675 

 
Confusion Matrix – Random Forest 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 19 % 27 % No 98 % 91 % No 39 % 23 % 

Yes 81 % 73 % Yes 2 % 9 % Yes 61 % 77 % 
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Model Performance -  Naive Bayes 
Model Validation Performance Test Performance 

Naive Bayes Accuracy Kappa Accuracy Kappa 

Cargo 0.5710 0.1142 0.5139 0.0047 

Contact & Collision 0.7867 0.0040 0.8056 0.1173 

Human 0.6219 0.2333 0.5833 0.1449 

 
Confusion Matrix - Naive Bayes 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 42 % 41 % No 92 % 82 % No 42 % 28 % 

Yes 58 % 59 % Yes 8 % 18 % Yes 58 % 72 % 

                  
 
Model Performance - AdaBoost 

Model Validation Performance Test Performance 

AdaBoost Accuracy Kappa Accuracy Kappa 

Cargo 0.5983 0.1300 0.5278 -0.0364 

Contact & Collision 0.8464 0.0000 0.8472 0.0000 

Human 0.6116 0.2091 0.6389 0.2589 

 

Confusion Matric Ada-Boost 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 16 % 20 % No 100 % 100 % No 48 % 23 % 

Yes 84 % 80 % Yes 0 % 0 % Yes 52 % 77 % 
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Model Performance - Neural Network 
Model Validation Performance Test Performance 

Neural Network Accuracy Kappa Accuracy Kappa 

Cargo 0.5901 0.1313 0.5417 -0.0277 

Contact & Collision 0.8464 0.0000 0.8472 0.0000 

Human 0.6065 0.2000 0.4861 -0.0423 

 
Confusion Matrix - Neural Network 

  Cargo   Contact & Collision   Human 

  No Yes   No Yes   No Yes 

No 10 % 12 % No 100 % 100 % No 39 % 44 % 

Yes 90 % 88 % Yes 0 % 0 % Yes 61 % 56 % 
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F. Model Performance Cargo for all Models and Groups  
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